
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 0000; 00:1–34
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Are Concurrency Coverage Metrics Effective for Testing:
A Comprehensive Empirical Investigation

Shin Hong1, Matt Staats2, Jaemin Ahn3, Moonzoo Kim1∗, Gregg Rothermel4

Department of Computer Science, KAIST, Daejeon, South Korea1; SnT Centre, University of Luxembourg,
Luxembourg2; Agency for Defense Development, Daejeon, South Korea3; Department of Computer Science, University

of Nebraska-Lincoln, Lincoln, USA4

SUMMARY

Testing multithreaded programs is inherently challenging, as programs can exhibit numerous thread
interactions. To help engineers test these programs cost-effectively, researchers have proposed concurrency
coverage metrics. These metrics are intended to be used as predictors for testing effectiveness and provide
targets for test generation. The effectiveness of these metrics, however, remains largely unexamined. In
this work, we explore the impact of concurrency coverage metrics on testing effectiveness, and examine
the relationship between coverage, fault detection, and test suite size. We study eight existing concurrency
coverage metrics, and six new metrics formed by combining complementary metrics. Our results indicate
that the metrics are moderate to strong predictors of testing effectiveness and effective at providing test
generation targets. Nevertheless, metric effectiveness varies across programs, and even combinations of
complementary metrics do not consistently provide effective testing. These results highlight the need for
additional work on concurrency coverage metrics. Copyright c⃝ 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

Testing multithreaded programs is challenging, because in most applications a large number of
thread interactions are possible and exploring all potential interactions is infeasible. While several
techniques for detecting concurrency faults (e.g., [1, 2, 3]) have been developed as alternatives, these
techniques have limited accuracy, and thus more systematic concurrent program testing approaches
are desirable.

To address this problem, researchers have developed concurrency coverage metrics for
multithreaded programs [4, 5, 6, 7]. These metrics, like structural coverage metrics such as branch
and statement coverage, define a set of test requirements to be satisfied. In the case of concurrency
coverage metrics, the test requirements typically enumerate a set of possible interleavings of
synchronization operations or shared variable accesses. Just as structural coverage metrics offer a
rough estimate of how well testing has covered a program’s structure, concurrency coverage metrics
allow engineers to estimate how well they have exercised concurrent program behaviors.

The intuition behind all test coverage metrics is that as more requirements relative to the metric
are satisfied, the testing process is more likely to detect faults, thus more effective. Thus, to maximize
the effectiveness of testing processes, researchers create test adequacy criteria based on these
metrics, and develop techniques to satisfy them. The development of such techniques has long
been an active area of research in the context of structural coverage metrics for non-concurrent

∗Correspondence to: E-mail: moonzoo@cs.kaist.ac.kr

Copyright c⃝ 0000 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]



programs [8, 9, 10, 11], and as multithreaded programs have become more common the development
of techniques centered around concurrency coverage metrics has also become an active area of
research [12, 13, 14, 15].

Unfortunately, the intuition behind concurrency coverage metrics remains largely unexplored
prior to our own recent study [16]. While a large body of evidence exists exploring the impact
of structural coverage metrics on testing effectiveness (e.g., [17, 18, 19]), we are aware of no
study rigorously examining the impact of concurrency coverage metrics. We expect that increasing
coverage relative to these metrics will improve testing effectiveness, but we also expect that it
will increase test suite size. Thus we must ask: does improving concurrency coverage directly
lead to a more effective testing process, or is it merely a byproduct of increasing test suite size?
Further, if improving coverage does lead to increased testing effectiveness what practical gains
in testing effectiveness can we expect? Finally, based on the effectiveness of the current state of
the art concurrency coverage metrics, what steps should be taken with respect to continuing the
development of test case generation techniques for concurrency coverage metrics?

To explore these questions, we studied the application of eight concurrency coverage metrics in
testing twelve concurrent programs [16]. For each program and metric pair, we used a randomized
test case generation process to generate 90,000 test suites with varying levels of size and coverage,
and measured the relationships between the percentage of test requirements satisfied, the number
of test executions, and the fault detection ability of test suites via correlation and linear regression.
Additionally, we compared test suites generated to achieve high coverage against random test suites
of equal size. Finally, we examined the value of combining complimentary concurrency coverage
metrics, and the impact of difficult-to-cover requirements on the testing process. We measured fault
detection ability using both mutation analysis (systematically seeding concurrency faults) and real-
world faults.

Our results show that each coverage metric explored has value in predicting concurrency testing
effectiveness and as a target for test case generation. In sharp contrast to work on sequential coverage
metrics [18] and the intent of the concurrency metrics, however, the metrics’ results vary across
programs. In particular, we found that the correlation between concurrency coverage and fault
detection, while often moderate to strong (i.e., 0.4 to 0.8) and stronger than the relationship between
test suite size and fault detection, is occasionally low to non-existent.

We also found that while large increases in fault detection effectiveness (up to 25 times) can
be found when using concurrency coverage metrics as targets for test case generation relative to
random test suites of equal size, in some cases the results were no better than random testing.
Further analysis indicated that it may be possible to develop test case generation approaches that
improve fault detection by specifically targeting difficult-to-cover test requirements.

Finally, we found that while combining proposed coverage metrics can alleviate issues involving
inconsistency across objects, and test suites reduced with respect to the combined metrics
outperform the original metrics in most cases, there still appear to be other factors unaccounted
for by the metrics (e.g., configurations of test case generation techniques).

Given these results, we believe that while existing concurrency coverage metrics have value, and
efforts to develop techniques based on these metrics are justified, additional work on such metrics is
required. In particular, the variability in metric effectiveness across programs highlights the need for
guidelines to help engineers select from among the many metrics already proposed. Additionally, the
impact of the parameters used in random testing, which in some cases are much stronger predictors
of testing effectiveness, indicates that the metrics can be improved to better capture the factors that
constitute effective concurrency testing.

2. BACKGROUND AND RELATED WORK

2.1. Concurrency Coverage Metric

Structural coverage metrics for concurrent programs, like their sequential counterparts such as
branch and statement coverage metrics, are used to derive a set of test requirements from the

2



code elements of a program under test. These test requirements typically enumerate a set of thread
interleaving cases. Unlike sequential metrics, satisfying a test requirement for a concurrent program
requires engineers not only to execute specific code elements (generally synchronization and/or
shared data access operations), but also to satisfy constraints on thread interactions. For example,
the Blocked metric requires every synchronization block/method in a program to be blocked (due to
lock contention) at least once during testing [12].

Figure 1 describes as example how the concurrency coverage metrics define test requirements
and for which concurrent execution the test requirements are covered. The program (Figure 1(a))
consists of two threads which execute two synchronized blocks guarded by the same lock m. In the
example execution, Thread1 holds the lock m first (line 12), defines the variable x (line 13), and
then releases the held lock (line 14). While Thread1 holds the lock m, Thread2 acquires the same
lock m (line 22), which blocks Thread2 until Thread1 releases the lock. As the second thread
holds the lock m, Thread2 reads the variable x (line 23) whose value is defined by Thread1,
assigns the read value to the variable y, and then releases the held lock m.

The concurrency coverage metric Follows defines a pair of two synchronized as a test requirement
which is covered by an execution when two synchronized blocks are executed by two different
thread, and these hold hold a same lock consecutively. In the example, the execution covers a Follows
test requirement ⟨12, 22⟩ because the lock m is first held at line 12 by Thread1 and then held at
line 22 by Thread2. Note that there exists another Follows test requirement ⟨22, 12⟩ which is not
covered in the execution. Another metric Blocked defines one test requirement per synchronized
block that is covered by an execution when one thread becomes blocked for acquiring the lock for
the synchronized block. In the example, there are two Blocked test requirements 12 and 22; 22 is
covered in the execution scenario because Thread2 is blocked by Thread1 at line 22.

The coverage metric PSet generates test requirements for def-use relation over different threads.
In the example, a PSet test requirement ⟨13, 23⟩ is covered as Thread2 reads the variable x at line
23, whose last update is by Thread1 at line 13.

2.2. Assessing Effectiveness of Concurrency Coverage Metrics

In work on concurrency coverage metrics, the effectiveness of achieving high coverage has been
argued for primarily through analytical comparisons between coverage definitions and concurrency
fault pattern, such as those involving data races and atomicity violations [5, 6, 14].

Trainin et al. [6] note that concurrency faults are related to certain test requirements for the
Blocked-Pair and Follows concurrency coverage metrics, which suggests that achieving high levels
of coverage should correlate with testing effectiveness. Wang et al. [14] highlight how data races
or atomicity violations may be triggered by satisfying HaPSet test requirements. Neither analysis
empirically demonstrates the benefits of achieving higher coverage.

The study most similar to the one we present in this paper is by Tasiran et al. [20], who evaluate
the location-pair metric empirically, and compare it to two other coverage metrics (method-pair and
def-use) with respect to the correlation between coverage and fault detection. The study uses two
case examples and generates faulty versions via concurrency mutation operators and manual fault
seeding. The scope of our study is more comprehensive, encompassing twelve case examples and
eight concurrency coverage metrics, and we apply a broader set of analyses.

The work presented in this paper is an extension of work previously published [16]. This work
differs in three key ways. First, this work explores additional research questions related to the value
of combining complementary concurrency coverage metrics and the impact of difficult-to-cover test
requirements. These questions are based on hypothesis presented, but not explored in the previous
work [16]. These questions seek to address what directions future work in concurrency coverage test
generation should take. Second, we have added three more study objects to the study to broaden our
base. Finally, we have conducted our analyses for systems using concurrency mutation operators at
a per mutant level, rather than averaging behavior across all mutants. This allows for a more fine
grained analysis, and highlights how effectiveness can vary within the same system depending on
the specific fault present.

3



(a) Code (b) Execution

Figure 1. Concurrent Execution Example

3. STUDY DESIGN

The purpose of this study is to rigorously investigate the concurrency coverage metrics presented in
previous work, and to either provide evidence of each metric’s usefulness or demonstrate that the
metric is of little value. The usefulness of a coverage metric, concurrency or otherwise, invariably
relates to many factors, such as the testing budget available, the characteristics of the program under
test, and the goals of the testing process. Nevertheless, to show that any coverage metric can be
considered useful, it is necessary at minimum demonstrate two things:

1. increased levels of coverage correspond to increased fault detection effectiveness;
2. these increases are due in part to increasing coverage levels, not merely larger test suite sizes.

Further, to aide practitioners in selecting a coverage metric for use, we should attempt to quantify
the relationship between coverage, size, and fault detection effectiveness. In particular, we are
interested in the predictive value of each metric and the expected improvements over random testing
in terms of fault detection.

4



Finally, we are interested in how, given the concurrency coverage metrics proposed, we can
best approach test case generation for concurrent systems. Specifically, we wish to know whether
potential issues with these metrics, already identified in our previous work [16], can be overcome
by a combined use of coverage metrics. We also wish to know whether the current state of the art,
coverage-guided test generation techniques for concurrent program testing could be improved by
the development of techniques targeting difficult-to-cover test requirements. Such techniques would
be analogous to existing methods for improving coverage when using sequential coverage metrics,
for example symbolic execution and genetic algorithm based approaches [9, 21].

Our study is thus designed to address four core questions.

• Research Question 1 (RQ1): For each concurrency coverage metric studied, does the
coverage achieved positively impact the effectiveness of the testing process for reasons other
than increases in test suite size? In other words, we would like to provide evidence that
given two test suites of equal size, the test suite with higher coverage will generally be more
effective.

• Research Question 2 (RQ2): For each concurrency coverage metric studied, how does the
fault detection effectiveness of test suites achieving maximum coverage compare to that of
random test suites of equal size? While coverage levels may relate to effectiveness, the
practical impact of achieving high coverage for some metric over random test suites may
be insignificant.

• Research Question 3 (RQ3): For the concurrency coverage metrics studied, do combinations
of coverage metrics outperform the original coverage metrics? The effectiveness of coverage
metrics can vary, with the most effective metric varying from case example to case example.
By combining metrics, we can potentially overcome these inconsistencies.

• Research Question 4 (RQ4): For each concurrency coverage metric studied, does covering
difficult-to-cover test requirements result in above average fault detection relative to other
coverage requirements? For a given case example, some coverage metrics contain test
requirements that are hard to cover, i.e. a small percentage of possible test cases satisfy the
requirement, and thus achieving maximum coverage in such scenarios can require significant
effort. We would like to determine whether such effort is potentially justified.

The objects for this study have been drawn from existing work on concurrent software
analysis [22, 23, 24], and include objects without faults, and objects with faults detected in previous
studies. Each object is a multithreaded Java program.

We list the objects with the lines of code, numbers of threads, the type of test oracle for the
program, and mutants used in Table I. The LOC column represents the size of the original source
code for each subject. The number of threads column shows how many threads are created during
test execution, as determined by the test case given for each object. The test oracle column describes
the test oracle used for the program. ‘AS’ means that the fault is detected by assertion, and the
number in the parenthesis represents the number of assertion statement statements in the program.
An assertion is a part of a program that checks application-specific invariant checking; ’TO’ means
the fault is detected by timeout expire(i.e., deadlock). The incorrect versions column represents, for
the mutation testing objects, the number of generated mutants and the number of used mutants in
parenthesis (the reason for the difference is explained in Section 3.2.1).

3.1. Variables and Measures

3.1.1. Independent variables. In this study, we manipulate two independent variables: the
concurrency coverage metric and the method of test suite construction.

Concurrency Coverage Metrics. Numerous concurrency coverage metrics have been proposed,
each based on some intuition about how to capture different aspects of concurrent executions.
We view these metrics as having two key properties: the number of code elements the test
requirements consider (either a single element or a pair of elements), and the the code construct
the metric is defined over (either synchronization operations or data access operations). For
example, the Blocking and Blocked coverage metrics define test requirements based on individual

5



Table I. Study Objects

Type Program LOC Number of Test Incorrect Number of test
threads oracle versions executions

Mutation ArrayList 5866 29 AS(6), TO 42 (10) 2000

testing Boundedbuffer 1437 31 AS(6), TO 34 (6) 2000
Vector 709 51 AS(15), TO 88 (35) 2000
Accountsubtype 193 12 AS(1) 1 1000
Alarmclock 125 4 AS(1) 1 1000
Clean 51 3 TO 1 1000

Single Groovy 433 3 TO 1 1000
fault Piper 71 9 TO 1 1000

program Producerconsumer 87 5 AS(1) 1 1000
Stringbuffer 416 3 AS(19) 1 1000
Twostage 52 3 AS(1) 1 1000
Wronglock 118 22 TO 1 1000

Table II. Concurrency Coverage Metrics Used in the Study

Synchronization operation Data access operation

Singular Blocking [12], LR-Def [5]Blocked [12]

Pairwise Blocked-Pair [6], PSet [26],
Follows [6], Sync-Pair [15] Def-Use [20]

Combined
Blocked-Pair+Def-Use, Blocked-Pair+PSet

Follows+Def-Use, Follows+PSet
Sync-Pair+Def-Use, Sync-Pair+PSet

synchronized blocks/methods in a Java program [12], and are thus singular concurrency
coverage metrics, while the Blocked-Pair metric is defined over pairs of blocks, and is thus a
pairwise metric. All of these metrics are defined over synchronized blocks, and thus they are
all synchronization metrics [6].

We selected eight coverage metrics for use in our study, focusing on well-known metrics while
also ensuring that we considered every possible combination of our two key properties. We list
the metrics selected in Table II. We concentrated on metrics that generate modest numbers of test
requirements, as this makes achieving high levels of coverage feasible in a reasonable time. Thus,
coverage metrics that produce very large numbers of test requirements are not included in this study.
These include metrics defined over memory addresses or exhaustive sets of interleavings (e.g., all-
du-path [7], ALL, SVAR [5]) and the series of extended coverage metrics proposed by Sherman et
al. [25]. Access-pair [25] and location-pair [20] are omitted as they are almost equivalent to the
PSet metric. We interpret the LR-Def metric as generating two test requirements for read accesses:
one for the use of memory defined by a local thread and the other for the use of memory defined by
any remote thread.

In addition to these metrics, we considered six coverage metrics that are combinations of these
metrics to investigate the benefits of combining existing metrics (to address RQ3). Each combined
metric was created by combining the test requirements of one pairwise synchronization based
coverage metric (i.e., Blocked-Pair, Follows, and Sync-Pair) and the test requirements of one
pairwise data access based coverage metrics (i.e., Def-Use, and PSet). Hereafter we refer to the
non-combined metrics as original coverage metrics, and the six new coverage metrics as combined
coverage metrics.

We chose these combinations for three reasons: (1) synchronization based coverage metrics
and data access based coverage metrics represent different paradigms for measuring concurrency
coverage, and thus seem likely to be complementary; (2) metrics within a paradigm tend to
achieve similar coverage and fault detection effectiveness rates; and (3), pairwise metrics generally

6



outperform singular metrics (at least as test case generation targets), and thus make a better starting
point when attempting to improve concurrency coverage metrics.

Test Suite Construction. We used two methods of test suite construction: random selection
and greedy test suite reduction. In random selection, test suites are constructed by randomly
selecting test executions to construct test suites of specified sizes. In greedy selection, test suites
are constructed to achieve maximum achievable coverage using a small number of test executions.
These test suite construction methods are used to address RQ1 and RQ2, respectively.

3.1.2. Dependent Variables We measure three dependent variables computed over generated test
suites: coverage achieved, test suite size, and fault detection effectiveness. Additionally, we measure
two dependent variables computed over test requirements: difficulty of covering test requirements,
and the fault detection effectiveness achieved when covering test requirements.

Achieved concurrency coverage of test suites. For a give metric M , each test suite S’s coverage
is computed as the ratio of M ’s test requirements that are satisfied by S to the total number of
test requirements satisfied across all executions for a given program version. We construct test
executions while holding random test case generation parameters constant (see Section 3.2); because
different parameters can result in covering different requirements, the coverage of M ’s requirements
is often less than 100%, and our measurements reflect this. However, for the purpose of greedy test
suite construction, we define maximum achievable coverage as the number of requirements than can
be covered for a specific set of test case generation parameters.

Test suite size. Test suite size is the number of test cases in the test suite, and estimates testing
cost.

Fault detection effectiveness of generated test suites. The fault detection effectiveness of a test
suite is “success” when the fault is detected by at least one execution of a test case in the test suite
, or “failure” when the fault is not detected by any test case execution. During analysis we typically
compute the average fault detection effectiveness across many test suites, with results that range
from 0.0 to 1.0.

Difficulty of satisfying test requirements. The difficulty of satisfying each test requirement is
computed as the ratio of the number of test executions satisfying the requirement to the total number
of test executions.

Fault detection effectiveness of test requirements. The fault detection effectiveness of a test
requirement is the ratio of the number of test executions detecting a fault while covering the test
requirement to the number of test executions that cover the test requirement.

3.2. Experiment Setup

Conducting our experiment requires us to:

1. generate mutants for programs without faults,
2. conduct a large number of random test executions,
3. for each execution, record the requirements covered for all metrics and whether a fault is

detected,
4. compute the difficulty and fault detection rate for each requirement generated,
5. perform resampling over executions to construct test suites, and
6. measure the resulting coverage and fault detection effectiveness of each test suite.

3.2.1. Mutant Generation We wished to study fault detection in the presence of many diverse
fault types, which is not possible when using single fault programs. Thus, for several of our
object programs we corrected known faults [23] and applied mutation analysis. To choose mutation
operators for our study, we drew on concurrency mutation operators used in a recent survey on
concurrency mutation testing [27]. These operators are similar to traditional syntactic mutation
operators commonly used in other studies [17, 28], but focus on manipulating synchronization
constructs, e.g., adding and removing synchronization primitives. Table III describes the operators.
We applied these operators to generate mutants. We then discarded any mutants that (1) did not

7



Table III. Mutation Operators

Category Description
Change Exchange Synchronized Block Parameter
Synchronization Remove wait()
Operations Replace notifyAll() with notify()

Expand Synchronized Block
Modify Remove Synchronized Block
Synchronized Remove synchronized Keyword from Method
Block Shift Synchronized Block

Shrink Synchronized Block
Split Synchronized Block

fail for any generated test execution, (2) were malformed, e.g., resulted in code that could not be
executed, or (3) were killed by every test execution.

We list the number of mutants generated together with the final number of mutants used within
parentheses in Table I. Note that we also use objects containing real faults, thus mitigating the
risk present when using concurrency mutation operators, whose usage is less established and
studied than structural mutation operators for sequential programs [17]. Hereafter, when referring
to “objects” we are referring to individual faulty programs, e.g. “all objects” refers to all single fault
programs and all mutants.

3.2.2. Test Generation and Execution We used a randomized test case generation approach to
avoid bias that might result from using a directed test generation approach such as those proposed
in [12, 29]. Our approach selects an arbitrary test input and generates a large number of test
executions by executing a target program on the test input with varying random delays (i.e. calls
to sleep()) inserted at shared resource accesses and synchronization operations.

We control two parameters of this approach: the probability that a delay will be inserted at each
shared resource access or synchronization operation (0.1, 0.2, 0.3, and 0.4), and the maximum
length of the delay to be inserted (5 milliseconds, 10 milliseconds, and 15 milliseconds). We
used these controls because prior work indicates that they can impact the effectiveness of the
testing process [13]. The specific values used were selected based on our previous experience in
this domain [15] and pilot studies, both of which indicated that larger or finer grained delays and
probabilities did not yield significantly different results. In addition to the twelve random scheduling
techniques, we ran test executions without inserting any delay noise.

We began by estimating the number of test executions E required to achieve maximum coverage
for all eight coverage metrics used, and each of the six combined metrics considered. This was done
by executing the original object for several hours and recording the rate of coverage increase for each
metric. For each object, we required either 1000 or 2000 test executions. Following this, for each
parameter setting (13 (=4×3+1) in total) we conducted E executions for each mutant (for objects
with mutants) or each object program (for objects without mutants). During each execution, we
recorded (1) the test requirements covered for each coverage metric studied, and (2) whether a fault
was detected. We recorded an execution as detecting a fault if (1) an application-specific assertion
statement is not satisfied (i.e., invariant violations), (2) a crash occurs which throws a uncaught
exception (e.g., null pointer dereference, array index out-of-bound, invalid memory access), or (3)
the program deadlocked, determined by checking whether execution time is exceptionally long.

3.2.3. Data Collection After each test execution we know (1) which test requirements are covered
for each coverage metric and (2) whether the program failed. Based on this information, we can
obtain the data for each test requirement – how frequently the test requirement is covered and how
frequently executions that cover the test requirement detect a fault. This data is used for analysis
related to RQ4.

Using the test execution information, we can, via random resampling, construct test suites of
varying sizes and levels of coverage. Ideally, we would like to construct test suites encompassing all

8



possible combinations of size and coverage. Unfortunately, as coverage and size tend to be highly
correlated this is impossible; small test suites with high coverage (or vice-versa) are extremely rare
in practice. We instead generated, for each combination of object and coverage metric, 90,000 test
suites ranging in size (i.e. number of test executions) from 1 to the maximum size via random
sampling of executions. This results in a set of test suites with increasing size and, within each level
of size, varying coverage. These test suites are used to help address RQ1, RQ2 and RQ3.

We also generated 100 test suites achieving maximum achievable coverage for each coverage
metric. We generated these using a mostly greedy test suite reduction approach: from the set
of executions, repeatedly select either (1) the test execution satisfying the most unsatisfied
requirements (80% chance) or (2) a random test execution (20% chance) until all requirements
are satisfied. This results in a test suite that achieves maximum coverage using fewer test executions
than are required by simple random test suite construction. The randomization adds noise, ensuring
some variation in the generated suites. These test suites are used to address RQ2. To investigate
RQ3, we apply the same test construction for the six combined coverage metrics as well.

To select a test suite for a single fault program or mutant, we have one set of executions over
the object, and we resample from this set to construct test suites. Each test suite becomes a data
point for analysis, having an associated level of coverage, size, and fault detection result (killed/not
killed). When constructing each test suite, we held probability and delay constant. This was done to
facilitate later analysis considering the impact of these factors.

Note that the generation process for the original eight metrics and the six combined metrics is the
same. We treat a combined metric (e.g. Follows+PSet) as a single metric, with it’s own separate set
of coverage requirements, a separate sets of greedy test suites, etc. This allows for an fair comparison
of the original and combined metrics in Section 4.

3.3. Threats to Validity

External: We conducted our study using only Java programs with standard synchronization
operations. These programs are relatively small but have been chosen from existing work in this area,
and thus we believe that our results are at least generalizable to the class of programs concurrent
program testing research focuses on.

For concurrency coverage metrics, it is difficult to accurately determine satisfiable test
requirements. For all coverage metrics, however, we appear to have reached saturation during
test case generation (see Section 4.1) [25], and thus a larger number of executions is unlikely to
significantly alter our results.

The randomized test generation technique we use was implemented in-house, but we have
attempted to match the behavior of other random testing techniques by constructing a general
technique and varying the parameters of probability and delay. Our study employs only a single
test input value, varying scheduling, and thus we do not consider the impact of test input value
on concurrent program testing. However, most concurrent testing techniques assume that intensive
testing is required for each test input value, and thus our study reflects the current approach to
concurrent testing.

Internal: Our randomized test case generation technique is implemented on top of Java’s internal
thread scheduler. When using other algorithmic thread schedulers such as PCT [30, 31] and
CTrigger [32] results may vary. Additionally, while we have extensively tested our experimentation
tools, it is possible that faults in our tools could lead to incorrect conclusions.

Construct: Our method of detecting faults may miss faults, e.g., errors not captured by an
assertion violation or not leading to an exception. In practice, however, much of concurrent testing
focuses on detecting faults via imperfect test oracles and thus our study uses a realistic approach to
fault detection.

We measured the maximum coverage for a metric by tracking all coverage requirements covered
in any execution during test generation. This value is likely lower than the actual maximum coverage
because there likely exists coverage requirements which are achievable, but which are not covered
by any generated execution. Nonetheless, since we generate a massive number of executions with
different random testing techniques, we expect missed coverage requirements are few. Furthermore,

9



even if the maximum coverage values are incorrect, only RQ3 depends on this value and thus other
conclusions drawn would not change.

We used mutation analysis to measure testing effectiveness for some objects. Our seeded faults are
designed to mimic actual concurrency faults, and of course are indeed faults, but the relationship
between faults generated by concurrency mutation operators and real concurrency faults has not
been thoroughly investigated. Nevertheless, the results for mutation-based objects and objects with
real faults are similar.

Conclusion: For each object, we constructed from 1 to 88 faults and 100,000 test suites per
coverage metric. While more mutants, faults, and test suites could in theory alter our conclusions,
in practice our conclusions remain the same for both single fault programs, mutation-testing driven
programs, and larger numbers of test suites.

4. RESULT AND ANALYSIS

Our analyses are designed to study how each coverage metric impacts fault detection effectiveness.
Towards RQ1, we visualized the pairwise relationship between variables, measured the correlation
between coverage, size, and fault detection effectiveness, and performed linear regression to
better understand how both coverage and size contribute to fault detection effectiveness. Towards
RQ2, we compared the fault detection effectiveness of test suites satisfying maximum achievable
coverage and random test suites of equal size. Towards RQ3, we performed the analysis above over
combinations of pairwise metrics and compared the results with the single metric versions. Finally,
towards RQ4 we examined the correlation between the difficulty of covering a test requirement and
the average fault detection for test executions covering a test requirement, and compared the average
fault detection for difficult-to-cover to the fault detection for easy-to-cover test requirements.

Ideally, we would like a coverage metric with the following properties: highly correlated with
fault detection (over 0.7 coverage); along with size, results in in regression models with high fit
for fault detection (higher than 0.8); allows us to select test suites with significantly higher fault
detection than randomly selected test suites of equal size (improvements in fault detection of at
least 20%). Any metric fitting such criteria would be useful both as a predictor of fault detection
effectiveness and as a test generation target.

4.1. Visualization

To understand the relationship between test suite size, coverage, and fault detection effectiveness,
we began by plotting the relationship between each pair of variables. In Figure 2 we show the
relationship between size and coverage for each coverage metric, for four single fault objects
(Figure 16 for all single fault objects). In Figure 3 we show the same relationship for objects using
mutation testing. In Figure 4 we show the relationship between coverage and fault detection for four
single fault objects (Figure 17 for all single fault objects). In Figure 5 we show the same relationship
for objects using mutation testing. Finally, in Figure 6 we show the relationship between size and
fault detection for all objects. Note that expanded versions of Figure 2 and 4 are found in Section 6.
To ease readability, we have elected to show only specifically referenced objects here.

Recall from Section 3.2.2 that for each combination of probability and delay (two variables
controlled during test generation) 1000 test executions were generated for each single fault program.
Each figure is an average across these traces of the test executions. Additionally, rather than plot a
separate figure for each of the dozens of mutants for the Arraylist, Boundedbuffer and Vector objects,
figures for these objects are averages across all mutants. Note that this averaging results in figures
that do not necessarily reflect the underlying trends within each mutant, as we discuss later in this
section.

In all of the figures, there is typically a fair amount of variation along the y-axis as coverage
and size increase. To improve the readability of the figures, we have used two forms of smoothing.
In the case of plots of size versus coverage and size versus fault detection, we have used LOESS
smoothing with a factor of 0.1. The relationships here are clearly visible with raw plots; the use

10



0 200 400 600 800 1000

Test Suite Size

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Accountsubtype

0 200 400 600 800 1000

Test Suite Size

40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Alarmclock

0 200 400 600 800 1000

Test Suite Size

50

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(c) Clean

0 200 400 600 800 1000

Test Suite Size

20
30
40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(d) Groovy

Figure 2. Size versus coverage, four single fault objects

0 500 1000 1500 2000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Arraylist

0 500 1000 1500 2000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Boundedbuffer

0 500 1000 1500 2000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(c) Vector

Figure 3. Size versus coverage, mutation objects

of mild smoothing allows us to distinguish coverage metrics and objects after plotting. However,
plots of coverage versus fault detection are very noisy, as indicated by the correlations shown in
Section 4.2. LOESS smoothing is of limited help here, and so to further improve readability, before
plotting we have averaged the fault detection rates for all coverage levels within 5 percentage points,

11



i.e. we have averaged the fault detection rate for test suites achieving 12.5-17.5% coverage, 17.5-
22.5% coverage, etc.

This averaging across mutants and test generation parameters results in graphs that must be
carefully interpreted: individual points on the lines can reflect the average of many test suites —
particularly for coverage levels above 50% — or few test suites, as very low coverage levels are
infrequently achieved in practice. This is unfortunate, but necessary, as the alternative is to either
plot each combination of coverage metric and object separately, which would require hundreds
of figures, or as very dense scatterplots, resulting in unintelligible figures. However, the goal of
visualization is just to spot broad trends; rigorous analysis follows in the remaining sections.

Note that in several cases coverage achieved is less than 100%. This occurs because each test suite
is specific to a single combination of test generation parameters, but the set of test requirements (and
thus the mark for 100% achievable coverage) is computed across all test suites. Thus, it is possible
that no single test suite achieves 100% maximum achievable coverage. Similar behavior is shown
in Figure 6, as several test suites of maximum size fail to detect the fault.

We begin by examining the relationship between size and coverage/fault detection, as shown in
Figures 2, 3 and 6). We can see that the concurrency coverage metrics often — but clearly not
always — exhibit behavior similar to what we expect from sequential coverage metrics and testing:
broadly logarithmic behavior, with a rapid increase in both fault detection and coverage for small
test suite sizes, and smaller increases as test suite size increases. Here we see small differences in
coverage metrics: some coverage metrics begin with very high levels of coverage for even small test
suites, and thus quickly achieve close to maximum coverage, while others grow in coverage more
slowly. For example, LR-Def is an extreme case, achieving maximum coverage almost immediately
for many programs. In contrast Follows, a more complex metric, often achieves maximum coverage
only with larger test suites sizes, i.e., those greater than 300. Here, differences are related primarily
to the number of “easy” requirements to satisfy – those metrics that are easier to satisfy have high
coverage even for very small test suites, e.g., Blocking, Blocked, LR-Def. Similar variations are also
visible in the relationship between size and fault detection (see Figure 6). On the whole, however,
the relationship between size and coverage/fault detection is clearly positive.

Less easily inferred from the figures is the relationship between coverage and fault detection
(Figures 4 and 5). Clearly, in many cases the relationship is positive; for example, this is true for
all metrics when applied to the Twostage and Arraylist objects. In other cases the relationship is
noisy, but nevertheless, high coverage appears to result in high fault detection, for example on
the Alarmclock object. In some cases, however, the relationship is quite unclear. Boundedbuffer,
for example, exhibits no clear pattern for any coverage criteria (except when testing one specific
mutant, as we discuss later), whereas Blocked-Pair coverage varies from seeming clearly related
to fault detection (e.g., for the Groovy and Vector objects) to seeming marginally related to fault
detection (e.g., for the Alarmclock and Stringbuffer objects).

This clear positive relationship between size and fault detection, coupled with the inconsistent, but
nevertheless positive relationship between coverage and fault detection, provides informal evidence
that both size and coverage impact fault detection effectiveness. We quantify the impact of both
factors in the following subsections.

4.2. Correlation Between Variables

The foregoing visualizations indicate that both test suite size and coverage appear to be positively
correlated with fault detection effectiveness, and that size is positively correlated with coverage.
To measure the strength of these relationships, for each object and coverage metric we measured
the correlation between each variable using Pearson’s r.† We selected Pearson’s r for two reasons.
First, we are interested in the application of concurrency coverage metrics as predictors and thus
measuring the strength of the linear relationship between variables is desirable. Fault detection is
guaranteed to increase monotonically with size and coverage, and thus establishing this using rank

†For small samples, conclusions based on Pearson’s can be unsound for non-normal data; in our case the use of very
large number of samples, 30,000-90,000 per correlation computed, mitigates this risk.

12



0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

vg
.F

au
lt

D
et

ec
ti

on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Alarmclock

20 40 60 80 100

Coverage (%)

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Groovy

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(c) Stringbuffer

0 5 10 15 20 25

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(d) Twostage

Figure 4. Coverage versus fault detection effectiveness, four single fault objects

20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Arraylist

0 20 40 60 80 100

Coverage (%)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Boundedbuffer

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(c) Vector

Figure 5. Coverage versus fault detection effectiveness, mutation objects

correlation (e.g. Spearman or Kendall’s tau) yields less new information [33]. Second, single fault
programs can only fail or pass for each test suite; computing correlation over such data is a special
case known as point-biserial correlation, for which rank correlation (due to the many ties present) is
unsuitable. For every non-zero correlation computed, the p-value was (far) less than 0.05 and thus
statistically significant at α = 0.05.

13



0 500 1000 1500 2000

Size

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

accountsubtype
alarmclock
arraylist
buffer
clean
groovy
piper
producerconsumer
stringbuffer
twostage
vector
wronglock

Figure 6. Size versus fault detection effectiveness, all objects

The computed correlations for single fault programs are presented in Table IV. For example,
for Accountsubtype, the correlation between Blocked coverage and fault detection/test suite size is
0.39 and 0.11, respectively, while the correlation between size and fault detection (S-FF) is 0.22,
indicating that coverage is more highly correlated with fault detection than test suite size.

The correlations for objects with multiple faulty versions are shown as boxplots in Figure 7.‡ The
column labeled X-FF represents the correlation between the coverage X and fault detection, and
the column with X-SZ represents the correlation between the coverage X and the test suite size. The
last column labeled S-FF is the correlation between test suite size and fault detection.

For example, we can see for Arraylist that the correlation between size and fault detection (column
labeled “S-FF”) ranges from 0.4 to slightly less than 0.2, with a median slightly under 0.2 and a
mean of 0.2. In contrast, the correlation between each coverage metric and fault detection tends to
be higher, with means and medians ranging from roughly 0.3 for Blocking coverage to roughly 0.7
for Blocked coverage. Additionally, several outliers, both above and below the mean, can be seen;
for example in the near perfect correlation of Blocked coverage and fault detection for one mutant,
and the very low (and sometimes even negative) correlations exhibited for a handful of combinations
of coverage and mutant scenarios.

For each metric there exists at least one single fault object for which the correlation with fault
detection is at or above 0.88. Further, even when coverage weakly correlates with fault detection,
this correlation is often higher than the correlation of fault detection and size (S-FF). These
results provide evidence that each metric is a useful predictor of concurrency testing effectiveness,
depending on program.

The best metric, however, varies across programs, and no single metric is a consistent predictor
of effectiveness, though PSet is often quite strong. For the single fault programs, PSet shows the
highest correlation for four programs among nine single fault programs in total, and PSet always
shows high or moderate correlations except in the case of Boundedbuffer. Although PSet has a low
average/median of 0.2 (Boundedbuffer), PSet has a better correlation than other coverage metrics.

The reason for this variation is unclear, but we believe this occurs because the metric’s intuition
does not always capture the single fault present. This is supported by the results shown in Figure 7,
where we see a wide variation even within program depending on the mutant used. For example,
for the Vector program, the relationship between coverage and fault detection varies strongly for
several metrics, e.g., Def-Use, which varies from exhibiting a negligible relationship to a moderately
strong relationship depending on the mutant used. This contrasts strongly with the very consistent
relationships between coverage and size for most metrics when applied to all of Vector’s mutants.

In any case, the variation in the best metric for a given object indicates that selecting an
effective metric may be challenging. Additionally, the occasional low and often moderate correlation
between coverage and fault detection (and somewhat surprisingly, size and fault detection) hints that

‡For each boxplot, the mean is shown as a star, the box plot whiskers represent data within the 1.5 times the interquartile
range, and the outliers are shown as red “+” marks. This convention is maintained for box plots shown in future sections.

14



Table IV. Correlations Over Coverage Metrics: Each Cell contains (Coverage & Fault Detection
Effectiveness Correlation, Size & Coverage Correlation). S-FF denotes Size & Fault Detection Effectiveness

Correlation

Blocked Blocked-Pair Blocking Def-Use S-FF
Accountsubtype 0.39, 0.11 0.39, 0.11 0.35, 0.10 0.60, 0.28 0.22

Alarmclock 0.77, 0.25 0.52, 0.24 0.27, 0.23 0.56, 0.22 0.05
Clean 0.16, 0.16 0.73, 0.23 0.19, 0.40 0.96, 0.29 0.30

Groovy 0.46, 0.36 0.50, 0.37 0.45, 0.37 0.45, 0.16 0.17
Piper 0.0, 0.0 0.62, 0.45 0.48, 0.25 0.07, 0.03 0.38

Producerconsumer 0.14, 0.03 0.17, 0.21 0.14, 0.16 0.57, 0.15 0.12
Stringbuffer 0.58, 0.18 0.67, 0.23 0.59, 0.31 0.43, 0.12 0.13

Twostage 0.88, 0.23 0.94, 0.13 0.88, 0.23 0.92, 0.13 0.10
Wronglock 0.12, 0.01 0.12, 0.01 0.12, 0.01 0.53, 0.13 0.11

Follows LR-Def PSet Sync-Pair S-FF
Accountsubtype 0.28, 0.09 0.30, 0.12 0.57, 0.42 0.28, 0.09 0.22

Alarmclock 0.66, 0.29 0.59, 0.30 0.59, 0.35 0.19, 0.26 0.05
Clean 0.17, 0.42 0.91, 0.30 0.83, 0.28 0.09, 0.05 0.30

Groovy 0.52, 0.24 0.30, 0.09 0.48, 0.18 0.52, 0.24 0.17
Piper 0.59, 0.49 0.66, 0.27 0.67, 0.27 0.62, 0.45 0.38

Producerconsumer 0.21, 0.43 0.46, 0.26 0.30, 0.26 0.11, 0.20 0.12
Stringbuffer 0.44, 0.35 0.74, 0.14 0.87, 0.15 0.66, 0.23 0.13

Twostage 0.88, 0.23 0.95, 0.13 0.96, 0.13 0.96, 0.13 0.10
Wronglock 0.0, 0.0 0.50, 0.15 0.58, 0.21 0.0, 0.0 0.11

factors other than those captured by the concurrency coverage metrics may relate to fault detection
effectiveness. We discuss this further in Section 5.2.

4.3. Models of Effectiveness

Based on the previous two analyses we can see that for every metric, coverage levels do correspond
(somewhat) to testing effectiveness. However, we also see that test suite size and coverage are often
similarly correlated, and thus the relationship between size, coverage and fault detection is unclear.
It is possible that, in fact, that coverage and size are not very independent in terms of their effect on
fault detection; for example, it may be that (depending on the case example) coverage or size alone
are sufficient exploratory variables for fault detection.

Does coverage predict fault detection effectiveness, or merely reflect test suite size? And if so,
to what extent does considering coverage improve our ability to predict fault detection. To address
this question we used linear regression to attempt to model how test suite size and coverage jointly
influence the effectiveness of the testing process, with the goal of determining whether coverage has
an independent explanatory ability with respect to fault detection.

In linear regression, we model the data as a linear equation y = β1x1 + β2x2 + . . .+ βpxp + εi
where variables xi correspond to explanatory factors and variable y denotes the dependent variable.
After modelling the data, the coefficient of determination R2 is produced. R2 indicates how well the
data fits the model, and can be interpreted as the proportion of variability explained by the model,
e.g. a fit of 0.6 indicates about 60% of the variation can be explained by the explanatory variables. In
many cases, the goal of linear regression is model selection: from a set of candidate models, select
the model that offers the highest goodness of fit, while omitting unneeded explanatory variables.

In our work, we will focus largely upon the adjusted R2. Adjusted R2 is a measure of fitness that
adjusts for the number of explanatory variables. When comparing two models, a model with more
explanatory variables will have a higher adjusted R2 only when additional variables significantly
contribute.§ Strictly speaking, adjusted R2 cannot be used to indicate the proportion of variance
captured, but as adjusted R2 is always less than or equal to R2, we can infer that the proportion of
variance captured by a model is equal to or greater than that given by adjusted R2. Thus if for some

§We also used Mallow’s Cp to determine goodness of fit [34]. The results when using Mallow’s led to the same
conclusions, and we have presented results using adjusted R2 as we believe this metric is easier to interpret.

15



Bloc
ked

-F
F

Bloc
ked

-S
Z

Bloc
ked

Pair
-F

F

Bloc
ked

Pair
-S

Z

Bloc
kin

g-F
F

Bloc
kin

g-S
Z

DefU
se

-F
F

DefU
se

-S
Z

Foll
ow

s-F
F

Foll
ow

s-S
Z

LRDef-
FF

LRDef-
SZ

PSet-
FF

PSet-
SZ

Syn
cP

air
-F

F

Syn
cP

air
-S

Z

Size
-F

F

0.0
0.2
0.4
0.6
0.8
1.0

C
or

re
la

ti
on

(a) Arraylist

Bloc
ked

-F
F

Bloc
ked

-S
Z

Bloc
ked

Pair
-F

F

Bloc
ked

Pair
-S

Z

Bloc
kin

g-F
F

Bloc
kin

g-S
Z

DefU
se

-F
F

DefU
se

-S
Z

Foll
ow

s-F
F

Foll
ow

s-S
Z

LRDef-
FF

LRDef-
SZ

PSet-
FF

PSet-
SZ

Syn
cP

air
-F

F

Syn
cP

air
-S

Z

Size
-F

F

0.0
0.1
0.2
0.3
0.4
0.5
0.6

C
or

re
la

ti
on

(b) Boundedbuffer

Bloc
ked

-F
F

Bloc
ked

-S
Z

Bloc
ked

Pair
-F

F

Bloc
ked

Pair
-S

Z

Bloc
kin

g-F
F

Bloc
kin

g-S
Z

DefU
se

-F
F

DefU
se

-S
Z

Foll
ow

s-F
F

Foll
ow

s-S
Z

LRDef-
FF

LRDef-
SZ

PSet-
FF

PSet-
SZ

Syn
cP

air
-F

F

Syn
cP

air
-S

Z

Size
-F

F

0.0
0.2
0.4
0.6
0.8

C
or

re
la

ti
on

(c) Vector

Figure 7. Correlations across mutants, mutation objects. FF = fault-finding, SZ = test suite size.

model an adjusted R2 of 0.6 is produced, this indicates that the model explains at least 60% of the
variation in fault detection.

In this case we would like to model fault detection effectiveness for each object and coverage
metric using test suite size (TS) and/or coverage level (CV) as explanatory variables. If the best
models always employ coverage levels as an explanatory factor, this indicates that coverage has
an independent ability to predict fault detection effectiveness. Accordingly, for every combination
of object and coverage metric where coverage varies, we fit all possible linear models employing
combinations of TS, log(TS), CV, and log(CV) as explanatory variables (with fault detection (FF) as
the dependent variable).

Our fitting process results in over 10,000 regression models and thus listing regression models
with computed coefficients is infeasible; additionally, we are interested in exploring how well size
and coverage levels model fault detection effectiveness, not the specific models. To summarize
our data, we began by selecting the best fitting model for each object/coverage metric pair. We
plot the associated adjusted R2 in Figure 8 for each coverage metric, across all objects, indicating
which set of explanatory variables had the highest fit. For example, we see that for the Def-Use
metric, for two objects adjusted R2 was greater than 0.8, indicating high fit with model FF =
α× CV + β × log(SZ), while on all other objects fit was under 0.4, suggesting a low to moderate
fit. Here we can clearly see the variation in metric effectiveness, with fits ranging from less than 0.2
to over 0.8, indicating a wide variation in predictive power. However, for all coverage metrics, for

16



Blocked
BlockedPair

Blocking
DefUse

Follows
LRDef PSet

SyncPair
0.0

0.2

0.4

0.6

0.8
A

dj
us

te
d
R

2

FF = SZ + log(CV)
FF = CV + SZ

FF = log(SZ)
FF = SZ

FF = CV + log(SZ)
FF = log(CV) + log(SZ)

Figure 8. Adjusted R2 for every best fit model, all combinations of objects & coverage metrics. FF = fault-
finding, SZ = test suite size, CV = % coverage.

at least one object an adjusted R2 of 0.8 or above was observed, indicating high fit, and for many
objects fits above 0.4 were observed, indicating moderate fit.

Following this, we wished to measure the degree to which coverage improves the model fit,
i.e., how much does adding coverage as a dependent variable improve the fit as compared to
models using size alone? To answer this question, we computed minimum and maximum relative
improvement in adjusted R2 when using models with two dependent variables over models using
size alone as a dependent variable. We list the results in Table V for single fault objects, and plot
the results in Figure 9 for mutation objects. In the plots, the columns MN and MX represent the
minimum and the maximum relative increase in adjusted R2 when using two dependent variables
for the corresponding object. A NA denotes that the improvement cannot be computed, as the linear
regression’s adjusted R2 is 0.0 (resulting in infinite improvement).

As shown in Table V, in many cases adjusted R2 greatly improved with the addition of coverage
to the regression models. In several instances, for example when applying nearly every coverage
metric to the Stringbuffer object, we see improvements over 100%, indicating a more than double
increase in adjusted R2. In the case of mutation objects, we see less consistency, with Arraylist
exhibiting small improvements (less than 10% increases), and Vector exhibiting a mix of small to
moderates increases ranging from under 5% up to 30% (see Figure 9).

In some cases, however, the improvement found in using coverage as part of the regression model
is small, indicating that test suite size is the main component of effective testing. For example,
Blocked coverage applied to the Clean object yields a maximum improvement of only 0.4%, and
for the Boundedbuffer object (Figure 9) we see several instances where the relative change in
adjusted R2 is negative, indicating that the addition of coverage to the model provides no statistically
significant improvement to the predictive power of the model.

Based on these analyses, we can see that while no single set of explanatory variables is best,
much of the time models based on both coverage and size are preferable to models using only one
explanatory variable. Indeed, in several cases the addition of coverage to the model improves the
model fit many times over. This provides evidence that coverage metrics have a predictive ability
separate from test suite size. Nevertheless, the adjusted R2 is generally less than 0.8, indicating that
while our models do have reasonable predictive power, a significant proportion of variability is not
accounted for by the models. Furthermore, in some cases coverage provides little or no predictive
power, leaving test suite size as the sole (and often also weak, per Section 4.2) predictor of testing
effectiveness. We discuss this further in Section 5.2.

4.4. Effectiveness of Maximum Coverage

Our first three analyses have characterized the relationship between test suite size, coverage and
fault detection effectiveness and statistically established that for each metric, coverage level has a
predictive ability for fault detection apart from that of test suite size. From these results, we can

17



Table V. Minimum and Maximum Relative Increase in Adjusted R2 When Using Two Dependent Variables.

Blocked Blocked-Pair Blocking Def-Use
Accountsubtype 0.0%, 45.8% 0.0%, 44.7% 0.0%, 34.0% 121.9%, 134.3%

Alarmclock 3293.5%, 3858.0% 1591.1%, 1767.3% 351.2%, 483.0% 1847.4%, 2008.1%
Clean 0.0%, 0.4% 67.0%, 122.9% 0.0%, 0.5% 244.6%, 253.7%

Groovy 198.5%, 313.9% 241.8%, 355.4% 182.8%, 280.5% 131.5%, 209.3%
Piper NA 16.5%, 30.1% 0.0%, 13.0% NA

Producerconsumer 0.0%, 10.4% 0.0%, 6.9% 0.0%, 6.5% NA
Stringbuffer 369.1%, 562.9% 518.9%, 542.0% 386.1%, 540.3% NA

Twostage 1384.0%, 1497.6% 1624.1%, 1703.9% 1384.0%, 1497.6% 1511.5%, 1609.3%
Wronglock 0.0%, 14.3% 0.0%, 14.3% 0.0%, 14.3% 223.5%, 245.1%

Follows LR-Def PSet Sync-Pair
Accountsubtype 0.0%, 20.2% NA 104.4%, 116.5% 0.0%, 20.2%

Alarmclock 2576.8%, 2791.3% 2170.2%, 2446.5% 2211.9%, 2621.7% 138.1%, 179.3%
Clean 0.0%, 1.0% 199.8%, 216.5% 142.0%, 164.7% 0.0%, 0.1%

Groovy 257.7%, 279.2% 27.0%, 85.7% 169.2%, 228.0% 257.7%, 279.2%
Piper 6.3%, 20.5% NA 43.6%, 55.3% 16.5%, 31.1%

Producerconsumer 0.0%, 5.2% NA 0.0%, 32.5% 0.0%, 1.6%
Stringbuffer 166.2%, 296.9% 624.7%, 653.9% 927.4%, 948.7% 514.3%, 619.2%

Twostage 1384.0%, 1497.6% 1688.0%, 1740.2% 1724.8%, 1774.8% 1627.3%, 1764.8%
Wronglock NA NA 289.3%, 294.2% NA

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

0

10

20

30

40

50

R
el

at
iv

e
A

dj
.

R
2

Im
p

(%
)

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(a) Arraylist

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

0

2

4

6

8

R
el

at
iv

e
A

dj
.

R
2

Im
p

(%
)

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(b) Boundedbuffer

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

M
N M

X
M

N M
X

0
5

10
15
20
25
30

R
el

at
iv

e
A

dj
.

R
2

Im
p

(%
)

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(c) Vector

Figure 9. Minimum and maximum relative increase in adjusted R2 when using two dependent variables,
mutation objects. MN = minimum, MX = maximum.

18



Table VI. Maximum Achievable Coverage Test Suite Statistics

(* = Not statistically significant difference at α = 0.05)
(MFF = Maximum coverage fault finding, RFF = Random fault finding, Cv = % Increase in coverage over

random, Sz = Test suite size)
Blocked Blocked-Pair Blocking

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz
Accountsubtype 0.19 0.06 31.9% 2.06 0.14 0.04 35.0% 2.16 0.09* 0.05* 29.5% 2.00

Alarmclock 0.92 0.34 54.0% 1.99 0.92 0.32 13.3% 2.20 0.29* 0.20* 81.4% 2.06
Clean 0.0 0.07 34.7% 1.93 0.0 0.10 0.0% 2.71 0.0 0.08 46.9% 2.3

Groovy 0.67* 0.64* 151.0% 3.72 0.63* 0.59* 182.4% 3.86 0.63 0.51 206.5% 3.4
Piper 0.00* 0.02* 0.0%* 1.0 0.39 0.03 13.9% 2.07 0.25 0.02 30.0% 1.96

Producerconsumer 0.21* 0.23* 5.4% 1.17 0.63 0.50 0.0%* 4.31 0.52 0.29 38.0% 2.13
Stringbuffer 0.78 0.53 168.4% 2.36 1.0 0.87 6.1% 6.50 0.97 0.62 209.5% 3.06

Twostage 0.92 0.16 431.9% 3.14 0.92 0.1 15.3% 3.2 0.92 0.1 405.0% 3.1
Wronglock 0.24* 0.26* 7.4% 1.0 0.21 0.35 3.1%* 1.0 0.26* 0.33* 2.3%* 1.0

Def-Use Follows LR-Def
MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.13 0.3 22.0% 2.99 0.24 0.06 7.1% 1.92 0.23 0.03 1.9% 1.87
Alarmclock 0.92 0.30 23.4% 3.51 0.52 0.26 62.3% 2.03 0.2* 0.27* 49.6% 2.01

Clean 1.0 0.04 5.2% 2.0 0.03* 0.08* 111.7% 1.28 0.03* 0.07* 14.3% 1.03
Groovy 0.35* 0.43* 5.3% 3.0 0.26 0.45 59.1% 3.02 0.30* 0.38* 6.3% 2.09
Piper 0.0* 0.02* 0.5% 1.13 0.70 0.09 13.0% 3.54 0.01* 0.03* 2.8% 1.78

Producerconsumer 1.0 0.36 4.1% 2.0 0.5* 0.5* 24.7% 3.71 1.0 0.31 5.9% 2.30
Stringbuffer 0.33 0.56 6.2% 2.33 1.0 0.83 238.1% 4.46 0.4* 0.30* 14.3% 1.4

Twostage 0.92 0.13 8.3% 2.92 0.92 0.07 374.5% 2.92 0.03* 0.03* 72.3% 1.19
Wronglock 0.34* 0.46* 19.5% 2.14 0.34* 0.35* 0.0%* 1.0 0.28* 0.33* 5.9% 2.0

PSet Sync-Pair
MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.36* 0.44* 29.4% 6.6 0.21 0.0 8.1% 1.87
Alarmclock 0.92 0.4 35.0% 5.20 0.53 0.26 14.9% 2.04

Clean 1.0 0.11 11.4% 2.93 0.06* 0.06* 8.7% 1.30
Groovy 0.33* 0.4* 6.8% 3.0 0.41* 0.46* 52.0% 3.02
Piper 0.43 0.06 5.1% 1.94 0.64 0.03 53.6% 3.49

Producerconsumer 1.0 0.4 6.3% 2.34 0.5* 0.38* 30.4% 3.72
Stringbuffer 1.0 0.76 7.3% 3.0 1.0 0.74 38.7% 4.35

Twostage 0.92 0.06 26.8% 2.92 0.92 0.07 66.6% 2.92
Wronglock 0.46 0.60 47.3% 2.96 0.31* 0.30* 0.0%* 1.0

see that while not every coverage metric is highly effective for all programs, all coverage metrics
do appear to have value. Thus, it is worthwhile to use concurrency coverage metrics (in addition to
test suite size) as methods for estimating the concurrency fault detection effectiveness of a testing
process.

Per RQ2, however, we also would like to quantify the ability of test suites to quickly achieve high
levels of concurrency coverage. To do this, for each program and coverage metric, we compared
test suites of maximum achievable coverage, generated using a greedy algorithm described in
Section 3.2.3, against random test suites of equal size. Our expectation is that if a metric is a
reasonable target for test case generation, holding the method of test case generation constant while
reducing generated test executions to construct small, high coverage test suites should result in more
effective test suites than pure random test case generation.

We began by formulating hypothesis H: test suites satisfying maximum achievable coverage will
outperform random test suites of equal size in terms of fault detection. We evaluated H for each
combination of program and coverage metric using a two-tailed bootstrapped paired permutation
test, a non-parametric statistical test that calculates the probability p that two paired sets of data
come from the same population [33]. The null hypothesis H0 is that test suites achieving maximum
achievable coverage are equally as effective as random test suites of equal size.

For each combination of coverage metric and object (per mutant for mutation objects), there
are 100 test suites generated to achieve maximum achievable coverage (hereafter referred to as
maximum coverage) (see Section 3.2.3). Each test suite was paired with a randomly selected test
suite of equal size. Following this, the permutation test was applied using 250,000 permutations
for each p-value [33]. Following the test, we computed the average fault detection when using test
suites reduced to achieve maximum coverage, the average relative improvement in coverage over
random test suites, and the average fault detection for the random test suites.

19



M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(a) Arraylist

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(b) Boundedbuffer

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

Blocked BlockedPair Blocking DefUse Follows LRDef PSet SyncPair

(c) Vector

Figure 10. Maximum fault detection, greedy versus random, across mutants. MFF = maximum fault finding,
RFF = random fault finding.

Table VI lists the results of this analysis for objects with only a single fault. (Note that fault
detection is the ratio of test suites detecting the fault to the total number of test suites.) Figure 10
plots the fault detection for greedily reduced test suites and random test suites of equal size across
mutants as a boxplot. The column MFF represents the fault detection for the reduced test suites for
each object and coverage metric studied, and the column RFF represents fault detection for random
test suites of equal size. Figure 11 plots the relative increase in coverage when using greedy reduced
tests suites over randomly generated test suites of equal size.

Our analysis results imply that achieving high coverage generally yields not only statistically
significant, but also practically significant increases in fault detection: large, often twofold or more
increases can be observed. For example, for the Clean object with the Def-Use coverage metric,
the average fault detection of maximum coverage achieving test suites is generally higher (up to 25
times higher) than that of randomly generated test suites.

We can see a similar tendency for mutation object Arraylist. For the Arraylist object, the mean
fault detection of maximum achievable test suites of every coverage metric is higher than or equal
to the highest fault detection of corresponding randomly generated test suites.

Note that, for the Boundedbuffer object, the reduced test suites with respect to a coverage metric
provide useful results although their correlations with fault detection are low. In contrast, LR-Def
displays moderate to high correlations in fault detection as shown in Table IV, but the reduced test
suites with respect to LR-Def do not have higher fault detection than randomly generated test suites
in most cases.

20



Bloc
ked

Bloc
ked

Pair

Bloc
kin

g

DefU
se

Foll
ow

s

LRDef
PSet

Syn
cP

air
0

10
20
30
40
50
60

R
el

at
iv

e
C

ov
er

ag
e

Im
p.

(%
)

(a) Arraylist

Bloc
ked

Bloc
ked

Pair

Bloc
kin

g

DefU
se

Foll
ow

s

LRDef
PSet

Syn
cP

air
0

50

100

150

200

R
el

at
iv

e
C

ov
er

ag
e

Im
p.

(%
)

(b) Boundedbuffer

Bloc
ked

Bloc
ked

Pair

Bloc
kin

g

DefU
se

Foll
ow

s

LRDef
PSet

Syn
cP

air
0

20

40

60

80
R

el
at

iv
e

C
ov

er
ag

e
Im

p.
(%

)

(c) Vector

Figure 11. Relative improvement in coverage, greedy versus random, across mutants

We were surprised, however, that there were object/coverage metric pairs for which reduction to
maximize coverage had a negative impact on the fault detection effectiveness of the testing process.
For example, for Wronglock, test suites reduced to satisfy Blocked-Pair found the fault 21% of the
time, as compared to 35% when using random test suites of equal size.

The case in which Def-Use was applied to Stringbuffer was more surprising. Here we see greedily
reduced test suites detecting the fault 33% of the time on average, relative to the 56% detection rate
for randomly reduced test suites of equal size. As we demonstrate in Section 4.6, however, when
achieving maximum coverage for complex coverage metrics, there exist several difficult-to-cover
test requirements that are satisfied only by specific test executions that do not necessarily detect a
fault (see Table X). During greedy test suite reduction, these executions must be selected to achieve
maximum coverage, and are thus useless with respect to fault detection, but always present. We
hypothesize that this is the cause of this unusual behavior.

4.5. Effect of Combining Concurrency Coverage Metrics

In the previous subsections, we demonstrated that while every coverage metric has a meaningful
value as a predictor of fault detection effectiveness and also as a target for test generation, there is
strong variation in the relative usefulness of the coverage metrics for both purposes across target
programs. This implies that identifying a single proposed concurrency coverage metric to use for
testing an arbitrary target program may be unrealistic.

One possible solution for addressing this variability is to combine complimentary concurrency
coverage metrics, mitigating the shortfalls of each [14, 16]. To determine whether this solution is
effective, we created and studied the effectiveness of six combined coverage metrics. The rationale
for selecting these metrics was detailed in Section 3.1.1, but in short these combinations were viewed
as most likely to yield improvements over the original metrics.

4.5.1. Combined Coverage Metrics as Predictors. We begin by examining the effectiveness of our
combined metrics as predictors of testing effectiveness. In Table VII and Figure 12, we present
the correlation of coverage and fault detection effectiveness of the combined coverage metrics
as compared to the original metrics they are derived from. Based on these results, we see that
the combined metrics are a mixed bag in terms of improvements. Across the single fault objects,

21



Table VII. Correlations over combined metrics: Each cell contains coverage & fault finding correlation. CM
= combined metric correlation.

Blocked-Pair+Def-Use Blocked-Pair+PSet Follows+Def-Use
CM Blocked-Pair Def-Use CM Blocked-Pair PSet CM Follows Def-Use

Accountsubtype 0.61 0.39 0.60 0.59 0.39 0.57 0.60 0.28 0.60
Alarmclock 0.60 0.52 0.56 0.65 0.52 0.59 0.52 0.66 0.56

Clean 0.38 0.73 0.96 0.21 0.73 0.83 0.73 0.17 0.96
Groovy 0.56 0.50 0.45 0.55 0.50 0.48 0.51 0.52 0.45
Piper 0.59 0.62 0.07 0.48 0.62 0.67 0.62 0.59 0.07

Producerconsumer 0.31 0.17 0.57 0.15 0.17 0.30 0.17 0.21 0.57
Stringbuffer 0.46 0.67 0.43 0.61 0.67 0.87 0.67 0.44 0.43

Twostage 0.92 0.94 0.92 0.88 0.94 0.96 0.94 0.88 0.92
Wronglock 0.53 0.12 0.53 0.58 0.12 0.58 0.53 0.0* 0.53

Follows+PSet Sync-Pair+Def-Use Sync-Pair+PSet
CM Follows PSet CM Sync-Pair Def-Use CM Sync-Pair PSet

Accountsubtype 0.58 0.28 0.57 0.60 0.28 0.60 0.58 0.28 0.57
Alarmclock 0.25 0.66 0.59 0.27 0.19 0.56 0.55 0.19 0.59

Clean 0.20 0.17 0.83 0.07 0.09 0.96 0.66 0.09 0.83
Groovy 0.52 0.52 0.48 0.51 0.52 0.45 0.52 0.52 0.48
Piper 0.63 0.59 0.67 0.61 0.62 0.07 0.67 0.62 0.67

Producerconsumer 0.11 0.21 0.30 0.26 0.11 0.57 0.14 0.11 0.30
Stringbuffer 0.66 0.44 0.87 0.66 0.66 0.43 0.74 0.66 0.87

Twostage 0.92 0.88 0.96 0.90 0.96 0.92 0.96 0.96 0.96
Wronglock 0.58 0.0* 0.58 0.53 0.0* 0.53 0.58 0.0* 0.58

in 26 of the 54 combinations of combined metrics and objects, the combined metric achieves a
correlation equal to or higher than the highest correlation observed from its composite original
metrics. Typically in these cases the gains over the highest correlation observed from an original
metric is small, but in some cases the gains over the lowest performing metric are quite high. For
example, in the case of the Arraylist object, the lowest correlation in the combined coverage metric
is upgraded from the original coverage metrics, whereas the highest correlation still remains. In the
case of the Wronglock object, only data access metrics are effective predictors of fault detection,
with all pairwise synchronization based metrics achieving no higher than an 0.12 correlation.
Similar behavior also occurs for the Accountsubtype object. In these scenarios, the failure of
synchronization based metrics is masked by the inclusion of data access metrics (notably PSet,
which per Section 4.2 we found to be the single most effective original metric overall). For the
Wronglock and Accountsubtype objects, the all combined coverage metrics shows the moderate
correlations (0.53 ∼ 0.58 for Wronglock, and 0.58 ∼ 0.61 for Accountsubtype).

In the opposite scenario, however, where synchronization based metrics outperform data access
metrics in terms of correlation, results are more mixed. For example, the combination of Def-Use to
Follows results in a moderate correlation of 0.52, but this is a small drop from the original metrics’
respective correlations of 0.56 and 0.66. In fact, examining our original suggestion of PSet, we find
that for 23 of the 24 combinations of combined metrics including PSet and single fault objects,
PSet’s correlation is within 0.05 of the combined correlation, and for 17 combinations it is equal to
or greater than PSet’s correlation.

More concerning are scenarios where combinations of metrics significantly reduce the
correlation. For example, in the case of Follows+PSet, the combined metric often performs far
worse than either metric alone (e.g., Alarmclock, Clean, Producerconsumer all show the correlation
dropping by 50%). Similar scenarios can be seen when using other combinations as well. Thus,
while it is true that in some cases a combination of metrics can be a better predictor than single
metrics alone, we cannot offer a general recommendation, as there are also many cases where
combinations are less effective predictors.

4.5.2. Combined Metrics as Test Case Generation Targets. While having more effective predictors
of testing effectiveness is useful, we are also interested in having more effective test case generation
targets. In Table VIII and Figure 13 we present the fault detection results for test suites achieving
the maximum achievable coverage for the single fault objects and for the mutation testing objects,
respectively. In Table IX we present the relative improvement in fault detection when using
combined coverage metrics over the original coverage metrics for the single fault objects.

22



Bloc
ked

Pair
+

DefU
se

-F
F

Bloc
ked

Pair
+

DefU
se

-S
Z

Bloc
ked

Pair
+

PSet-
FF

Bloc
ked

Pair
+

PSet-
SZ

Foll
ow

s+

DefU
se

-F
F

Foll
ow

s+

DefU
se

-S
Z

Foll
ow

s+

PSet-
FF

Foll
ow

s+

PSet-
SZ

Syn
cP

air
+

DefU
se

-F
F

Syn
cP

air
+

DefU
se

-S
Z

Syn
cP

air
+

PSet-
FF

Syn
cP

air
+

PSet-
SZ

Size
-F

F
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

C
or

re
la

ti
on

(a) Arraylist

Bloc
ked

Pair
+

DefU
se

-F
F

Bloc
ked

Pair
+

DefU
se

-S
Z

Bloc
ked

Pair
+

PSet-
FF

Bloc
ked

Pair
+

PSet-
SZ

Foll
ow

s+

DefU
se

-F
F

Foll
ow

s+

DefU
se

-S
Z

Foll
ow

s+

PSet-
FF

Foll
ow

s+

PSet-
SZ

Syn
cP

air
+

DefU
se

-F
F

Syn
cP

air
+

DefU
se

-S
Z

Syn
cP

air
+

PSet-
FF

Syn
cP

air
+

PSet-
SZ

Size
-F

F
0.0
0.1
0.2
0.3
0.4
0.5
0.6

C
or

re
la

ti
on

(b) Boundedbuffer

Bloc
ked

Pair
+

DefU
se

-F
F

Bloc
ked

Pair
+

DefU
se

-S
Z

Bloc
ked

Pair
+

PSet-
FF

Bloc
ked

Pair
+

PSet-
SZ

Foll
ow

s+

DefU
se

-F
F

Foll
ow

s+

DefU
se

-S
Z

Foll
ow

s+

PSet-
FF

Foll
ow

s+

PSet-
SZ

Syn
cP

air
+

DefU
se

-F
F

Syn
cP

air
+

DefU
se

-S
Z

Syn
cP

air
+

PSet-
FF

Syn
cP

air
+

PSet-
SZ

Size
-F

F

0.0
0.2
0.4
0.6
0.8

C
or

re
la

ti
on

(c) Vector
Figure 12. Correlations across mutants, combined metrics. FF = fault finding, SZ = test suite size.

Table VIII. Maximum Achievable Coverage Test Suite Statistics, Combined Metrics

(* = Not statistically significant difference at α = 0.05)
(MFF = Maximum coverage fault finding, RFF = Random fault finding, Cv = % Increase in coverage over

random, Sz = Test suite size)
Blocked-Pair+Def-Use Blocked-Pair+PSet Follows+Def-Use

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz
Accountsubtype 0.15 0.40 18.8% 3.28 0.36* 0.46* 23.7% 6.85 0.17* 0.28* 13.6% 3.12

Alarmclock 0.92 0.30 22.4% 3.88 0.92 0.45 32.0% 5.56 0.92 0.35 19.7% 4.32
Clean 1.0 0.18 11.6% 3.72 1.0 0.23 26.8% 4.16 1.0 0.11 4.1% 2.22

Groovy 0.65* 0.60* 17.3% 3.99 0.69* 0.58* 23.8% 4.00 0.30 0.41 10.0% 3.00
Piper 0.4 0.01 4.3% 2.06 0.7 0.02 18.7% 2.10 0.68 0.06 12.7% 3.59

Producerconsumer 1.0 0.60 8.2% 4.61 1.0 0.69 20.7% 4.83 1.0 0.55 7.4% 4.01
Stringbuffer 1.0 0.87 26.7% 6.89 1.0 0.89 69.0% 6.9 1.0 0.79 12.2% 4.38

Twostage 0.92 0.13 22.5% 3.76 0.92 0.16 228.0% 3.73 0.92 0.11 15.1% 2.92
Wronglock 0.34* 0.43* 17.7% 2.17 0.54* 0.56* 40.6% 2.97 0.41* 0.42* 17.1% 2.16

Follows+PSet Sync-Pair+Def-Use Sync-Pair+PSet
MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz

Accountsubtype 0.36* 0.47* 19.3% 6.64 0.21 0.35 13.4% 3.14 0.4* 0.42* 18.5% 6.68
Alarmclock 0.92 0.46 13.6% 5.93 0.92 0.41 0.9%* 4.38 0.92 0.53 27.1% 6.00

Clean 1.0 0.08 9.5% 2.97 1.0 0.11 0.9% 2.17 1.0 0.07 7.6% 2.93
Groovy 0.46* 0.42* 15.7% 3.0 0.38* 0.46* 10.1% 3.01 0.33* 0.39* 14.6% 3.02
Piper 0.68 0.03 48.3% 3.57 0.70 0.08 18.9% 3.56 0.68 0.1 16.0% 3.53

Producerconsumer 1.0 0.55 52.5% 4.13 1.0 0.43 15.8% 3.99 1.0 0.55 10.5% 4.22
Stringbuffer 1.0 0.80 54.8% 4.56 1.0 0.72 12.8% 4.52 1.0 0.82 15.8% 4.61

Twostage 0.92 0.13 111.2% 2.92 0.92 0.09 0.0% 2.92 0.92 0.10 29.9% 2.92
Wronglock 0.52* 0.61* 41.6% 2.97 0.32 0.46 17.6% 2.14 0.48 0.6 43.0% 3.01

The results show that for every object and for every combined coverage metric, the fault detection
effectiveness of the reduced test suite with respect to a combined coverage metric is higher than or

23



Table IX. Relative Improvement in Fault Detection Using Combined Metrics

(* = Not statistically significant difference at α = 0.05)
Blocked-Pair+Def-Use Blocked-Pair+PSet Follows+Def-Use

Blocked-Pair Def-Use Blocked-Pair PSet Follows Def-Use
Accountsubtype 5.2%* 11.1%* 147.3% 0.0%* 0.0%* 27.7%*

Alarmclock 0.0%* 0.0%* 0.0%* 0.0%* 76.4% 0.0%*
Clean inf% 0.0%* inf% 0.0%* 3150.0% 0.0%*

Groovy 2.4%* 84.7% 8.4%* 104.5% 14.2%* 0.0%*
Piper 1.9%* inf% 78.4% 62.5% 0.0%* inf%

Producerconsumer 56.6% 0.0%* 56.6% 0.0%* 100.0% 0.0%*
Stringbuffer 0.0%* 195.4% 0.0%* 0.0%* 0.0%* 195.4%

Twostage 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*
Wronglock 60.7% 0.0%* 153.5% 18.3%* 20.0%* 20.0%*

Follows+PSet Sync-Pair+Def-Use Sync-Pair+PSet
Follows PSet Sync-Pair Def-Use Sync-Pair PSet

Accountsubtype 50.0% 0.0%* 0.0%* 55.5%* 85.7% 8.3%*
Alarmclock 76.4% 0.0%* 71.4% 0.0%* 71.4% 0.0%*

Clean 3150.0% 0.0%* 1344.4% 0.0%* 1344.4% 0.0%*
Groovy 71.4% 36.3%* 0.0%* 8.6%* 0.0%* 0.0%*
Piper 0.0%* 58.9% 9.5%* inf% 5.9%* 58.9%

Producerconsumer 100.0% 0.0%* 100.0% 0.0%* 100.0% 0.0%*
Stringbuffer 0.0%* 0.0%* 0.0%* 195.4% 0.0%* 0.0%*

Twostage 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*
Wronglock 51.1% 13.3%* 2.4%* 0.0%* 53.6% 5.0%*

equal to that of an orignal coverage metric. Naturally, the fault detection for a given coverage metric
can only remain the same or increase by combining it with another metric (the concurrency coverage
metrics studied, like typical sequential coverage metrics, are monotonic). Therefore, the existence
of improvements is not especially interesting.

Instead, we wish to determine whether combinations either offer improvements over both metrics
simultaneously, indicating a clear improvement in fault detection for some objects and indicating
less variability in the effectiveness of the metric as a test generation target; or alternatively, whether
combinations offer improvements over each metric in different scenarios. In other words, we wish
to determine whether, for some combined metric A+B, improvements are found over only A for one
object, while improvements are found over only B for some other object.

Based on Table IX, we can see that statistically significant examples of both types of
improvements exist. For example, when applying the Blocked-Pair+PSet coverage metric over the
Piper object, improvements over PSet and Blocked-Pair of 62.5% and 78.4% exist.

Additionally, for the Follows+Def-Use combination, we can see that for both Alarmclock and
Clean, the combined metric is an improvement over Follows by 76.4% and 3150.0%, while for the
Piper and Stringbuffer objects it is a comparable improvement over Def-Use. Similar patterns can
be seen for all other combinations of metrics, indicating that the combined metrics do frequently
reduce variability as compared to the use of individual metrics.

This reduction in variability is further illustrated by examining the fault detection rates for
original test suites (Section 4.4). While the fault detection effectiveness across combined metrics are
consistent within each object, the fault detection effectiveness for original metrics sometimes vary
strongly across metrics. For example, within pairwise metrics (i.e., those used to create combined
metrics) test suites generated for the Clean object vary in average fault detection from 0.0 to 1.0
as shown in Table VI, while the average fault detection for combined metrics is always 1.0. Other
objects exhibit similar behavior.

As noted in Section 4.4, there is no best original metric to use as a test case generation target.
However, several combined metrics when used as test case generation targets always produce, on
average, higher fault detection than any single original metric (excluding fault detection values
which are not statistically significant). In fact, every combined metric containing PSet exhibits this
behavior. Note that these test suites are typically larger than those generated solely from original
metrics, but given the small size of all test suites (less than seven tests on average), this seems
acceptable.

24



M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

BlockedPair +
DefUse

BlockedPair +
PSet

Follows +
DefUse

Follows +
PSet

SyncPair +
DefUse

SyncPair +
PSet

(a) Arraylist

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

BlockedPair +
DefUse

BlockedPair +
PSet

Follows +
DefUse

Follows +
PSet

SyncPair +
DefUse

SyncPair +
PSet

(b) Boundedbuffer

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

M
FF

RFF
M

FF
RFF

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t
D

et
ec

ti
on

BlockedPair +
DefUse

BlockedPair +
PSet

Follows +
DefUse

Follows +
PSet

SyncPair +
DefUse

SyncPair +
PSet

(c) Vector

Figure 13. Maximum fault detection, greedy versus random, across mutants, combined metrics. MFF =
maximum fault finding, RFF = random fault finding.

This result also supports our conjecture that there are other factors that influence testing
effectiveness beyond those that the concurrency coverage metrics studied capture (see Section 5.2).

In summation, while the predictive value of combined metrics differs from that of original metrics
in ways that is not necessarily positive or negative, combined metrics as test case generation targets
— in particular those metrics based on a combination of PSet with a pairwise, synchronization
metric — are clearly superior to any original metric studied.

4.6. Effectiveness of Difficult-to-cover Test Requirements

Our analysis has clearly demonstrated that increasing coverage levels of the presented concurrency
coverage metrics tends to result in practically significant increases in fault detection effectiveness.
Nevertheless, this does not necessarily imply that all test requirements are worth the effort required
to cover them. Per RQ4, we would like to determine whether difficult-to-cover test requirements
— those that are satisfied by only a small percentage of tests — yield fault detection gains beyond
those found in the other, easier to cover test requirements. This is key to establishing if specialized
techniques which target hard to cover test requirements are likely to yield improvements in fault
finding (akin to techniques for covering branches in structural coverage metrics).

First, we begin by establishing that difficult-to-cover test requirements exist. In Figure 14, we plot,
for each covered test requirement, the percentage of test executions covering the requirement, i.e.,
difficulty of covering the test requirement (Figure 18 for all objects, in Section 6). Requirements

25



0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

. Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(a) Accountsubtype

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(b) Alarmclock
0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(c) ArrayList

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(d) Boundedbuffer
0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(e) Vector

Figure 14. Relative difficulty of covering individual coverage requirements for four single fault objects and
all mutation objects. Coverage requirements are sorted according to difficulty percentile. Requirements
covered by the fewest number of executions are leftmost on the x-axis; requirements covered by the
largest number of executions are rightmost. Y-axis indicates the percentage of executions which cover the

requirement.

have been ordered from least likely to be covered, to mostly likely to be covered. (The x-axis
represents the difficulty percentile, i.e., at 40% the requirement plotted is easier than 40% of all
requirements and more difficult than 60%.) For each object and coverage criteria, there exists
significant variation in the difficulty of covering test requirements – most objects contain several
requirements that are covered by few executions (less than 1%), with most test executions being
relatively easily covered (with greater than 10% covering the test executions).

Having established that difficult-to-cover test requirements exist, we would like to determine
whether these test requirements are, on average, particularly effective at detecting faults. Towards
this, in Table X we present the average fault detection of test executions covering difficult-to-cover
requirements (defined as the 10% most difficult requirements to cover) as compared to other test
requirements. We selected the 10% threshold as it frequently resulted in one or fewer test executions
being selected, while larger thresholds were too easy to cover to be considered “difficult”. Note that
“NA” indicates that the number of requirements was less than 10, i.e. there was no bottom 10%.

Here we see that in some instances there does appear to be a practically and statistically significant
difference in the fault detection rate of test executions satisfying difficult-to-cover test requirements
relative to other test requirements. For example, for the Arraylist object, difficult-to-cover test
requirements of all coverage metrics are better than other test requirements, with the relative
differences in fault detection effectiveness ranging from 91.5% to 942.4%. Clearly, for many objects,
the effort needed to satisfy difficult-to-cover requirements is potentially worthwhile.

In other cases, however, the relative difference between difficult-to-cover and easy-to-cover test
requirements is either practically marginal (for example for the Vector where differences are small
and often close to zero) or not statistically significant (for example the Groovy and Stringbuffer
object). Given these results, it is difficult to draw any conclusions concerning the value of difficult-
to-cover requirements in testing a particular program. In some cases the extra effort is clearly
unlikely to be rewarded as the relative differences are minor. On the other hand, in many cases

26



Table X. Fault detection effectiveness for difficult and easy to cover test requirements. DFF = difficult-to-
cover fault finding, EFF = easy-to-cover fault finding, % = % increase in average fault finding for DFF over

EFF coverage requirements.

(* = Not Statistically Significant at p = 0.05)
Blocked Blocked-Pair Blocking

DFF EFF % DFF EFF % DFF EFF %
Arraylist 0.75 0.05 1259.3% 0.15 0.08 91.5% 0.46 0.04 942.4%

Boundedbuffer 0.19* 0.30* 0.0%* 0.23* 0.26* 0.0%* 0.17* 0.26* 0.0%*
Vector 0.13* 0.10* 31.8%* 0.06 0.08 0.0% 0.10* 0.09* 2.9%*

Accountsubtype 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%*
Alarmclock NA NA NA 1.0* 0.28* 254.9%* NA NA NA

Clean NA NA NA 0.0* 0.0* 0.0%* 0.0* 0.0* 0.0%*
Groovy 0.34* 0.23* 46.5%* 0.34* 0.23* 47.6%* 0.34* 0.23* 50.2%*
Piper NA NA NA 0.47* 0.04* 978.3%* NA NA NA

Producerconsumer NA NA NA 0.31 0.17 79.8% 0.21* 0.18* 18.8%*
Stringbuffer NA NA NA 0.79* 0.50* 58.7%* 0.88* 0.49* 77.5%*

Twostage 1.0 0.10 854.7% 1.0* 0.21* 356.1%* 1.0 0.25 294.7%
Wronglock NA NA NA NA NA NA NA NA NA

Def-Use Follows LR-Def
DFF EFF % DFF EFF % DFF EFF %

Arraylist 0.10 0.05 106.1% 0.19 0.06 181.5% 0.18 0.04 345.5%
Boundedbuffer 0.39 0.30 30.0% 0.28* 0.25* 11.3%* 0.21 0.29 0.0%

Vector 0.04 0.07 0.0% 0.04 0.06 0.0% 0.11* 0.10* 19.5%*
Accountsubtype 0.07* 0.07* 5.3%* 0.07* 0.07* 0.0%* 0.07* 0.07* 0.0%*

Alarmclock 0.14* 0.16* 0.0%* 1.0* 0.17* 464.2%* 0.21 0.11 90.9%
Clean 0.5* 0.03* 1490.9%* 0.0* 0.00* 0.0%* 0.0* 0.03* 0.0%*

Groovy 0.23 0.21 8.1% 0.19* 0.22* 0.0%* 0.22* 0.21* 2.9%*
Piper 0.01 0.01 0.0% 0.19* 0.08* 123.5%* 0.01 0.02 0.0%

Producerconsumer 0.32* 0.18* 69.9%* 0.35 0.18 93.8% 0.67 0.19 248.3%
Stringbuffer 0.0 0.30 0.0% 0.0* 0.40* 0.0%* 0.16* 0.32* 0.0%*

Twostage 0.75 0.04 1611.9% 1.0* 0.19* 407.4%* 0.03 0.04 0.0%
Wronglock 0.28* 0.26* 4.7%* NA NA NA 0.29* 0.26* 10.3%*

PSet Sync-Pair
DFF EFF % DFF EFF %

Arraylist 0.16 0.06 176.5% 0.19 0.06 181.5%
Boundedbuffer 0.35* 0.32* 10.8%* 0.28* 0.25* 11.3%*

Vector 0.07 0.08 0.0% 0.04 0.06 0.0%
Accountsubtype 0.09 0.07 19.9% 0.07* 0.07* 0.0%*

Alarmclock 0.48* 0.26* 82.7%* 1.0* 0.17* 464.2%*
Clean 0.5* 0.02* 2289.7%* 0.0* 0.00* 0.0%*

Groovy 0.23* 0.21* 7.5%* 0.19* 0.22* 0.0%*
Piper 0.18 0.01 867.2% 0.19* 0.08* 123.5%*

Producerconsumer 0.39 0.19 107.2% 0.35 0.18 93.8%
Stringbuffer 0.5* 0.30* 65.5%* 0.0* 0.40* 0.0%*

Twostage 1.0 0.10 839.7% 1.0* 0.19* 407.4%*
Wronglock 0.31 0.27 13.0% NA NA NA

the relative difference is quite large, but (due to the small number of test requirements) not
statistically significant. Thus it appears that studies with objects which produce larger numbers
of test requirements are required to better address this question. We discuss the implications of this
for concurrent test case generation approaches in the next section (see Section 5.4).

5. DISCUSSION

Our results have addressed our original research questions as follows. Per RQ1 and RQ2, we have
shown that for every coverage metric, for some programs (1) the metric is a moderate, independent
predictor of fault detection, and (2) the testing process can be made more effective by using test
suites that achieve maximum coverage instead of random test suites of equal size.

In short, we have provided evidence that existing concurrency coverage metrics can be useful.
Consequently, testers can use concurrency coverage metrics as part of their testing process with

27



confidence, either to estimate testing effectiveness, or as a goal for the testing process. Furthermore,
testing researchers can justify as worthwhile the effort spent developing tools and techniques based
on concurrency coverage metrics.

Nevertheless, the variation in the relative effectiveness of coverage metrics raises issues
concerning how to apply these metrics in practice. Additionally, the generally moderate levels of
correlation and fit observed hint that while these metrics appear effective, improvements to these
metrics are both possible and desirable.

Towards addressing this variability and to better understand how test generation should be
approached to improve fault detection, we proposed and addressed research questions RQ3 and
RQ4. Per RQ3, we have seen that using two coverage metrics combined can, in some cases, improve
the reliability of coverage metrics as estimators of testing effectiveness and particularly as test
generation targets. Per RQ4 we have shown that at least in some cases, satisfying difficult-to-cover
test requirements often returns meaningful improvements in fault detection. These results provide
some guidance how test generation for concurrency testing can be improved with respect to the
resulting fault detection rates.

In the remainder of this section, we discuss the practical implications of the study and highlight
additional areas of research that we believe should be explored.

5.1. Practical Implications for Testers

Following a study of several coverage metrics, the question every tester naturally asks is: which
metric should I use? Examining the correlation with fault detection (Table IV and Figure 7) and
the fault detection effectvieness of maximum test suite result (Table VI and Figure 10), we see that
if a tester must select a single “best” metric, PSet seems to be the only possible choice. For seven
objects among nine single fault objects, PSet coverage’s correlation with fault detection is over
0.57. PSet always achieved a greater correlation with fault detection than size (S-FF). Additionally,
the reduced test suites with respect to PSet achieve higher fault detection than random test suites
of equal size for six objects, and achieve lower fault detection than random test suite for only one
object (Wronglock). PSet is clearly not ideal in many scenarios – Def-Use was similarly effective as
a generation target for Boundedbuffer while requiring fewer test executions and Blocking was more
effective as a generation target for Groovy – but on the whole it was consistently effective as both a
predictor and for test case generation.

With respect to the other metrics, our results suggest basic guidelines. Recall from Table II the
coverage metric properties of singular/pairwise. Comparing the results for singular and pairwise
metrics while holding the other metric property (synchronization/data access) constant reveals two
patterns.

First, the fault detection for maximum coverage test suites for pairwise metrics tends to be equal
to or higher than when using singular metrics. Thus as test case generation target, it is preferable
to select pairwise metrics. Second, pairwise metrics generally have higher correlation with fault
detection and more reliable overall tendency across programs than singular metrics. For every single
fault object, the correlation of Blocked-Pair is higher than or equal to the correlations of its singular
versions Blocked and Blocking. In contrast, LR-Def often shows as high correlations as Def-Use
or PSet do. But, the maximum test suites of LR-Def shows significantly less fault detection than
Def-Use and PSet, which indicates its practical limitation.

Of course, as noted previously, pairwise metrics have more requirements, and thus require more
test executions to achieve maximum coverage. Nevertheless, the stronger correlation between
pairwise coverage metrics and fault detection indicates that even if maximum coverage is not
possible (e.g. for budget reasons), investing effort into satisfying a pairwise coverage metric is
preferable to investing the same effort into satisfying a singular metric. At a minimum, even if
we can easily satisfy a singular metric, we recommend achieving as much coverage as possible with
pairwise metrics, as that is very likely to uncover faults beyond those uncovered when satisfying the
singular metric.

The above advice relates to the previously proposed individual metrics. Based on the results given
in Section 4.5 related to RQ3, if we are primarily interested in selecting a test generation target, we

28



would do well to use combined metrics. While the correlations for combined metrics, shown in
Table VII, are not always improvements over those for the original metrics, fault detection rates
for test suites achieving maximum coverage are typically improved. In particular, we recommend
a metric combining PSet and a pairwise synchronization coverage metric (e.g., Follows), as this
provides a somewhat reliable testing estimator and more effective test generation target than any
of the original metrics used. As with the move from singular to pairwise metrics, this increases the
number of requirements (being a combination of two pairwise metrics), but as shown in Table VIII,
for the systems studied the size of the resulting test suites is not significantly larger than the size of
suites defined over the original metrics.

A final note: for some objects, there was a large difference in fault detection depending on the code
constructs (synchronization/data access) used to define the metrics. For example, when using data
access based coverage metrics with Wronglock, the correlation with fault detection was roughly four
times that of synchronization based metrics. However, for Piper the opposite was true; data-access
based metrics show poor fault detection in the reduced test suites. Even among combined metrics,
which are intended to reduce these variations by combining metrics based on different constructs,
this behavior was still observed, for example, Follows+PSet as compared to Blocked-Pair+PSet for
the Arraylist and Boundedbuffer systems.

We found this surprising: while in theory such behavior can also exist between foundationally
different sequential coverage metrics (e.g., metrics defined over def-use pairs versus those defined
over branch constructs), in our experience such dramatic differences do not occur in practice.

5.2. Limitations of Existing Concurrency Metrics

As noted, in some cases the concurrency coverage metrics explored exhibited low correlation with
fault detection and/or poor fit during linear regression. These results stand in sharp contrast to results
related to sequential coverage criteria, where for example much better linear regression fit has been
achieved using only test suite size and coverage levels, with adjusted R2 values over 0.90 being
typical [17, 18]. In contrast, we observed few adjusted R2 values greater than 0.8, indicating that
a great deal of effectiveness is unaccounted for by test suite size and coverage. By uncovering
additional factors that contribute to fault detection effectiveness, we may be able to improve our
concurrency coverage metrics and testing techniques.

As an initial step towards this, we extended our linear regression analysis to consider two
additional factors: the probability of a delay being inserted (PB), and the length of the delay inserted
(DL) (see Section 3.2.2). These factors were controlled for during test execution, and have been
observed to impact the effectiveness of concurrent testing in previous work [13, 15]. We then
repeated our regression analysis, selecting the model with the highest fit for each combination of
coverage metric and program.

Following this, we compared each selected model’s fit against the same model with PB and DL
omitted as explanatory variables. We found that while sometimes the improvement when using
PB and DL as explanatory variables was small (< 0.01), often the improvement was significant: the
average relative increase in adjusted R2 was 50.5% (maximum 814%) and the average improvement
in adjusted R2 was 0.05 (maximum 0.37). In some cases, PB and DL account for the bulk of the
predictive power; for example, for Alarmclock the best adjusted R2 for the (usually effective) PSet
metric increased from 0.45 to 0.78, an improvement of 75.1%.

We believe these results highlight the need to further improve concurrency coverage metrics to
provide better guidance to testers and testing techniques. Ideally, a coverage metric should perfectly
capture the effectiveness of the testing process, providing a highly accurate estimate of testing
effectiveness, upon which techniques for improving coverage can be built. At a minimum, we would
like concurrency coverage metrics to be better predictors than PB and DL, as the most effective set
of parameters — much like the metrics explored — varies unpredictably depending on program.

5.3. Relationship Between Metric Effectiveness and Fault Type

One potential factor that may account for the variability in testing is the types of faults present.
Concurrency faults, in contrast to sequential faults — which can take nearly any form — are errors

29



Table XI. Relation between Fault Types and Concurrency Coverage Metrics

Fault type Study object
Coverage metrics of Coverage metrics of
highest correlation w/ highest fault detection
fault detection with maximum test suites

Stringbuffer PSet (LR-Def) Blocked-pair, Follows, PSet,

Atomicity Sync-pair

violation Twostage
PSet, Sync-Pair, (Blocked, Blocked, Blocked-Pair,
Blocked-Pair, Blocking, Def-Use, Blocking, Def-Use, Follows,
Follows, LR-Def, Sync-Pair) PSet, Sync-Pair

Accountsubtype Def-Use Follows
Data race Alarmclock Blocked Blocked, Blocked-pair,

Def-Use, PSet
Wronglock PSet NA

Deadlock Clean Def-Use (Blocked-Pair, LR-Def, PSet) Def-Use, PSet

(with wait) Groovy Follows, Sync-Pair Blocking
Piper PSet Follows

Order violation Producerconsumer Def-Use Def-Use, LR-Def, PSet

in specific constructs: for example, data races, e.g., unsynchronized accesses to a shared variable
with at least one write operation, and deadlocks, e.g., incorrect synchronization orders such as
wait(m) after notify(m). Thus, detecting these faults can be easier or more difficult depending
on the metric used, as different metrics focus on different code constructs.

To investigate this, in Table XI we again present the best metrics, as measured by correlation
and the effectiveness of maximum coverage test suites, for each object grouped by the type of fault
present. The best metrics with respect to correlation are presented in the third column, while the
best metrics with respect to fault detection rate for maximum achievable coverage test suites are
presented in the fourth column (”NA” indicates no metric was better than random with statistical
significance) ¶. In the case of ties for best, all metrics are presented. Furthermore, in the case of
correlation, all metrics achieving high correlation (> 0.7) are listed in parentheses. Note that we
present only the single fault objects as the type of faults present are already known from previous
work [22, 23, 24]; when using mutation operators, we cannot be certain of the type of fault without
a large amount of effort, an infeasible task for each mutant. Additionally, note that this (like the
previous subsection) is an exploratory ad-hoc analysis; additional work will be required to verify
the observations made.

Our expectation was that if the test requirements of a coverage metric M are formulated over
constructs matching those involved with fault type T , metric M should perform well over objects
of exhibiting fault type T . For example, we expected that Def-Use and PSet should perform well
over objects exhibiting data race and atomicity violations, as the test requirements generated by
these coverage metrics are based upon data access operations. We also expected that Blocked-Pair,
Follows, and Sync-Pair metrics should perform well on objects exhibiting deadlock faults, as the
test requirements of these coverage metrics are based on lock operations.

As shown in Table XI, there is no clear relationship between the fault type and the most effective
coverage with respect to correlation. For example, for data race faults, Def-Use, Blocked, and PSet
have the highest correlations on Accountsubtype, Alarmclock, Wrongclock, respectively. Indeed,
even the best type of metric (synchronization/data access) varies depending on the program. Clearly,
there is no best coverage metric for any fault type.

We see similar results with respect to fault detection effectiveness for maximum coverage test
suites. For example, for deadlock faults, Def-Use and PSet have the highest fault detection with
maximum test suites for Clean. However, for Groovy and Piper, Blocking and Follows have the
highest fault detection with maximum achievable coverage test suites, respectively. Again, not only
is there no best metric, there is no best type.

¶To select the best metric with respect to fault detection, we exclude coverage metrics whose fault detection is not
statistically significantly different than randomly generated test suites of equal size

30



(a) a correct execution that covers a Sync-Pair test require-
ment ⟨b2, b1⟩

(b) an execution that covers a Sync-Pair test requirement
⟨b2, b1⟩, which raises a deadlock

Figure 15. Two execution scenarios of Clean

One possible reason why we observed no relationship between fault type and concurrency
coverage metrics is because test requirements for concurrency coverage metrics do not capture
concurrency faults precisely. To better understand why, consider Figure 15. In the figure, (a) and
(b) show two executions that cover Sync-Pair requirement ⟨b2, b1⟩ (i.e., a synchronization block
b2 happens before a b1) where b2 is a synchronized block of Thread2 (lines 11 to 14) containing
notifyAll(m) and b1 is a synchronized block of Thread1 (lines 2 to 5) containing wait(m).
Since wait(m) and notifyAll(m) should be used inside a synchronized block on m, we
expect to detect the deadlock caused by calling wait(m) after notify(m) by covering the test
requirements for Sync-Pair coverage, including ⟨b2, b1⟩. However, no test requirement for Sync-Pair
coverage is guaranteed to capture the deadlock situation precisely, as shown in Figure 15. In this
case, both Figure 15(a) and (b) cover ⟨b2, b1⟩, but only Figure 15(b) raises a deadlock.

These type of issues with concurrency coverage metrics again highlight the need to better
understand how to capture what represents effective testing. Additionally, they help explain why
using multiple concurrency coverage criteria, per Section 4.5, can be an effective strategy to improve
fault detection.

31



5.4. Implications for Concurrent Test Case Generation Research

Work on test case generation methods for concurrency testing is an active — but relative to work on
sequential testing — young area of research. In sequential test case generation, several techniques
focus on methods for satisfying difficult-to-cover test requirements (e.g. symbolic execution, genetic
approaches), and many, if not most approaches center around a single metric, branch coverage.
In contrast, current approaches to concurrent test generation have little ability to target specific
difficult-to-cover requirements, and the coverage metric used to evaluate these approaches has not
been standardized.

Given this, it seems reasonable to consider whether, as in sequential testing, effort to develop
new techniques for covering difficult-to-cover requirements is warranted, and if so what coverage
metric(s) should be targeted. We have already largely addressed the latter question above in
Section 5.1: PSet, combined with any of three pairwise, synchronized metrics already proposed,
offers the most consistently high levels of fault detection. As noted previously in Section 4.3 and 5.3,
however, there exist additional factors that current concurrency coverage metrics fail to capture.
Thus, future work on concurrent test generation could be greatly improved by first considering how
we can better (or perhaps more consistently) capture effective concurrent testing as a metric.

The answer to the former question — whether to target difficult test requirements — is similarly
ambiguous. Given our results for RQ4, it seems that while in some cases difficult requirements do
offer improved fault detection relative to other requirements (e.g. for the Arraylist object), in most
cases no statistically significant improvements were found. Nevertheless, no statistically significant
decreases in fault detection were observed, and thus if a test generation method could be found
that increased the likelihood of satisfying difficult requirements, it would certainly improve testing
effectiveness. Of course, the details of any new technique — specifically, whether the technique
would slow the overall rate of test case generation — would determine whether it represents an
improvement over existing approaches; there is little doubt that the potential to improve fault
detection via targeting of difficult requirements exists.

6. CONCLUSION

In this work, we have evaluated the relationship between eight previously proposed concurrency
coverage metrics and fault detection effectiveness using twelve concurrent programs drawn from
previous work in concurrency testing. We observed moderate correlations between coverage and
fault detection effectiveness, established via linear regression that each coverage metric has a
predictive value separate from test suite size, and found statistically and practically significant
increases in fault detection effectiveness when using test suites reduced to achieve maximum
coverage relative to random test suites of equal size. In addition, we confirmed that combinations
of these coverage metric provide more reliable performance across different programs, particularly
with respect to test generation, and that difficult-to-cover test requirements may be particularly
effective with respect to fault detection. These results demonstrate that existing concurrency
coverage metrics — in particular combinations of PSet and a pairwise synchronization based
coverage metrics — can be effective metrics for evaluating concurrency testing effectiveness, and
thus provide key evidence supporting the construction of techniques based on these metrics.

Nonetheless, while each metric explored was useful in some contexts, the predictive and test case
generation value of each metric, even combined metrics which were proposed specifically to avoid
this variation, often varied considerably from program to program, indicating that more work in
this area is required. We hope to explore methods for improving these metrics in the future and
encourage others to do the same.

REFERENCES

1. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T. Eraser: A dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems (TOCS) 1997; 15(4).

32



2. Engler D, Ashcraft K. RacerX: effective, static detection of race conditions and deadlocks. Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2003.

3. Hong S, Kim M. Effective pattern-driven concurrency bug detection for operating systems. Journal of Systems and
Software (JSS) 2013; 86(2).

4. Bron A, Farchi E, Magid Y, Nir Y, Ur S. Applications of synchronization coverage. Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2005.

5. Lu S, Jiang W, Zhou Y. A study of interleaving coverage criteria. Proceedings of the Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering(ESEC/FSE), 2007.

6. Trainin E, Nir-Buchbinder Y, Tzoref-Brill R, Zlotnick A, Ur S, Farchi E. Forcing small models of conditions on
program interleaving for detection of concurrent bugs. Proceedings of the Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (PADTAD), 2009.

7. Yang CD, Souter AL, Pollock LL. All-du-path coverage for parallel programs. Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), 1998.

8. Tracey N, Clark J, Mander K, McDermid J. An automated framework for structural test-data generation.
Proceedings of the IEEE International Conference on Automated Software Engineering (ASE), 1998.

9. Godefroid P, Klarlund N, Sen K. DART: Directed automated random testing. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI) 2005; .

10. Pacheco C, Lahiri SK, Ernst MD, Ball T. Feedback-directed random test generation. Proceedings of the
International Conference on Software Engineering (ICSE), 2007.

11. Cadar C, Dunbar D, Engler D. KLEE: unassisted and automatic generation of high-coverage tests for complex
systems programs. Proceedings of the USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2008.

12. Edelstein O, Farchi E, Nir Y, Ratsaby G, Ur S. Multithreaded Java program test generation. Proceedings of the Joint
ACM-ISCOPE Conference on Java Grande (JGI), 2001.

13. Křena B, Letko Z, Vojnar T, Ur S. A platform for search-based testing of concurrent software. Proceedings of the
Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD), 2010.

14. Wang C, Said M, Gupta A. Coverage guided systematic concurrency testing. Proceedings of the International
Conference on Software Engineering (ICSE), 2011.

15. Hong S, Ahn J, Park S, Kim M, Harrold MJ. Testing concurrent program to achieve high synchronization coverage.
Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), 2012.

16. Hong S, Staats M, Ahn J, Kim M, Rothermel G. The impact of concurrent coverage metrics on testing effectiveness.
Proceedings of the IEEE International Conference on Software Testing, Verification and Validation (ICST), 2013.

17. Andrews JH, Briand LC, Labiche Y, Namin AS. Using mutation analysis for assessing and comparing testing
coverage criteria. IEEE Transactions on Software Engineering (TSE) Aug 2006; 32(8).

18. Namin AS, Andrews JH. The influence of size and coverage on test suite effectiveness. Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), 2009.

19. Zhu H, Hall P, May J. Software unit test coverage and adequacy. ACM Computing Surveys (CSUR) 1997; 29(4).
20. Tasiran S, Keremoglu ME, Muslu K. Location pairs: a test coverage metric for shared-memory concurrent

programs. Empirical Software Engineering (ESE) 2012; 17(3).
21. Xu Z, Kim Y, Kim M, Rothermel G, Cohen M. Directed test suite augmentation: Techniques and tradeoffs.

Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE), 2010.
22. Dwyer MB, Person S, Elbaum SG. Controlling factors in evaluating path-sensitive error detection techniques.

Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE), 2006.
23. Park CS, Sen K. Randomized active atomicity violation detection in concurrent programs. Proceedings of the ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE), 2008.
24. Nistor A, Luo Q, Pradel M, Gross TR, Marinov D. BALLERINA: automatic generation and clustering of efficient

random unit tests for multithreaded code. Proceedings of the International Conference on Software Engineering
(ICSE), 2012.

25. Sherman E, Dwyer MB, Elbaum S. Saturation-based testing of concurrent programs. Proceedings of the Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering(ESEC/FSE), 2009.

26. Yu J, Narayanasamy S. A case for an interleaving constrained shared-memory multi-processor. Proceedings of the
Annual International Symposium on Computer Architecture (ISCA), 2009.

27. Bradbury JS, Cordy JR, Dingel J. Mutation operators for concurrency Java (J2SE 5.0). Workshop on Mutation
Analysis (MUTATION), 2006.

28. Do H, Rothermel G. A controlled experiment assessing test case prioritization techniques via mutation faults.
Proceedings of the IEEE International Conference on Software Maintenance (ICSM), 2005.

29. Stoller SD. Testing concurrent Java programs using randomized scheduling. Proceedings of the International
Workshop on Runtime Verification (RV), 2002.

30. Burckhardt S, Kothari P, Musuvathi M, Nagarakatte S. A randomized scheduler with probabilistic guarantees of
finding bugs. Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2010.

31. Nagarakatte S, Burckhardt S, Martin MMK, Musuvathi M. Multicore acceleration of priority-based schedulers for
concurrency bug detection. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2012.

32. Park S, Lu S, Zhou Y. CTrigger: exposing atomicity violation bugs from their hiding places. Int’l Conf. Arch. Supp.
Prog. Lang. Oper. Sys. (ASPLOS), 2009.

33. Kvam P, Vidakovic B. Nonparametric Statistics with Applications to Science and Engineering. Wiley, 2007.
34. Mallows C. Some comments on Cp. Technometrics 1973; .

33



APPENDIX

Here we present complete versions of figures which were truncated, for readability, in Section 4.

34



0 200 400 600 800 1000

Test Suite Size

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Accountsubtype

0 200 400 600 800 1000

Test Suite Size

40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Alarmclock

0 200 400 600 800 1000

Test Suite Size

50

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(c) Clean

0 200 400 600 800 1000

Test Suite Size

20
30
40
50
60
70
80
90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(d) Groovy

0 200 400 600 800 1000

Test Suite Size

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(e) Piper

0 200 400 600 800 1000

Test Suite Size

50

60

70

80

90

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(f) Producerconsumer

0 200 400 600 800 1000

Test Suite Size

20

40

60

80

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(g) Stringbuffer

0 200 400 600 800 1000

Test Suite Size

5

10

15

20

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(h) Twostage

0 200 400 600 800 1000

Test Suite Size

65
70
75
80
85
90
95

100

A
vg

.C
ov

er
ag

e
(%

)

Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(i) Wronglock

Figure 16. Size versus coverage, all single fault objects

35



50 60 70 80 90 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(a) Accountsubtype

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(b) Alarmclock

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(c) Clean

20 40 60 80 100

Coverage (%)

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(d) Groovy

50 60 70 80 90 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(e) Piper

40 50 60 70 80 90 100

Coverage (%)

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(f) Producerconsumer

0 20 40 60 80 100

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(g) Stringbuffer

0 5 10 15 20 25

Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(h) Twostage

50 60 70 80 90 100

Coverage (%)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
vg

.F
au

lt
D

et
ec

ti
on

Blocked
BlockedPair
Blocking

DefUse
Follows
LRDef

PSet
SyncPair

(i) Wronglock

Figure 17. Coverage versus fault detection effectiveness, all single fault objects

36



0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

. Blocked
BlockedPair
Blocking
DefUse
Follows
LRDef
PSet
SyncPair

(a) Accountsubtype

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(b) Alarmclock
0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(c) Arraylist

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(d) Boundedbuffer
0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(e) Clean

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(f) Groovy
0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(g) Piper

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(h) Producerconsumer
0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(i) Stringbuffer

0 20 40 60 80 100

Trace #

0
10
20
30
40
50
60
70

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(j) Twostage
20 40 60 80 100

Trace #

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(k) Wronglock

0 20 40 60 80 100

Trace #

0

20

40

60

80

100

%
C

ov
er

in
g

R
eq

.

Blocked
BlockedPair
Blocking
DUR
Follows
LRDEF
PSet
SyncPair

(l) Vector

Figure 18. Percentage of test executions covering test requirements, sorted, all single fault and mutation
objects

37


