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Abstract

We revisit the problem of real-time verification with dense time dynamics using timeout and
calendar based models, originally proposed by Dutertre and Sorea, and simplify this to a finite state
verification problem. To overcome the complexity of verification of real-time systems with dense time
dynamics, Dutertre and Sorea, proposed timeout and calender based transition systems to model
the behavior of real-time systems and verified safety properties using k-induction in association
with bounded model checking. In this work, we introduce a specification formalism for these models
in terms of Timed Transition Diagrams and capture their behavior in terms of semantics of Timed
Transition Systems. Further, we discuss a technique, which reduces the problem of verification
of qualitative temporal properties on infinite state space of (a large fragment of) these timeout and
calender based transition systems into that on clockless finite state models through a two-step process
comprising of digitization and canonical finitary reduction. This technique enables us to verify safety

invariants for real-time systems using finite state model-checking avoiding the complexity of infinite
state (bounded) model checking and scale up models without applying techniques from induction
based proof methodology. Moreover, we can verify liveness properties for real-time systems, which
is not possible by using induction with infinite state model checkers. We present examples of Fischer’s
Protocol, Train-Gate Controller, and TTA start-up algorithm to illustrate how such an approach can
be efficiently used for verifying safety, liveness, and timeliness properties specified in LTL using
finite state model checkers like SAL-smc and Spin. We also demonstrate how advanced modeling
concepts like inter-process scheduling, priorities, interrupts, urgent and committed location can be
specified as extensions of the proposed specification formalism, that can be subjected to the proposed
two step reduction technique for verification purposes.

Keywords: Real-Time Systems; Timeout and Calendar Model; Clockless Model; Finite State Verifi-
cation
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1 Introduction

Real-time systems are an important class of mission critical systems, which have been well studied
for their design, implementation, performance and verification. Modeling and verification of real-time
systems in dense time domain is an important problem area that evoked lot of research interest in the
recent past. Because of the fact that the state space of real-time systems with continuous dynamics is
uncountable, modeling and verification of them is rather difficult, in particular using explicit state model
checkers. Many formalisms have been used to model and verify real-time systems. Notable among them
are different kinds of timed transition models [Alu99, HMP92b], timed process algebras [BeJ91, DaS95,
NiS94], and real-time logics [AlH91, BMN00].

In [DuS04a], Dutertre and Sorea, considered verification of a train-gate controller modeled as a
timed automata. Though they could specify the timed automata model in terms of state transition
system in infinite state model checker SAL [MOR04], it however did not to produce the desired results.
In particular, the clock variables occurring in timed automata would be updated in arbitrarily small
increments leading to infinite trajectories during which the discrete state remained idle. This made
proof of safety properties by k-induction quite hard, and sometimes impossible. The fact that the
traditional semantics of timed automata allows several time steps to occur in succession is an obstacle
in proving properties by k-induction.

To address this problem the same authors proposed timeout and calender based transition mod-
els, [DuS04a, DuS04b], originally from discrete event simulation, to represent the behavior of timed
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triggered systems with dense time dynamics. These models are amenable to general-purpose verification
environments, like SAL in which state machines and their compositions can be specified. In this modeling
approach, each process in the system has a timeout that holds the time when the next discrete transition
of the process would happen, and there is a global data structure, called calendar, which stores future
events (message delivery) and the time points at which these events are scheduled to occur. During the
time progress transition, time is advanced to the minimum of timeouts of processes, or to the least time
point at which a message will be delivered in future, whichever is less. Further, Dutertre and Sorea, used
this calendar based model along with timeouts for individual processes to model TTA startup protocol in
SAL [DuS04b]. Using bounded model checking, they proved a safety property by k induction. However,
these proofs using k-induction do not usually scale up well; a safety property often cannot be proved
at induction depth 1. Sometimes safety properties are not at all inductive and need the support of
auxiliary lemmas. In [DuS04b], a safety property for the TTA startup algorithm with only 2 nodes has
been proved by using 3 additional lemmas. A verification diagram based abstraction method proposed
in [Rus00] has been used to prove the same safety (invariant) property for scaled up models (upto 10
nodes). However, liveness properties still remain beyond the scope of this approach.

While only safety properties can be verified on these models with dense time, discrete time mod-
eling of the same can help verify liveness and timeliness properties, and also help scale up proofs
for safety properties. It turns out that verification of a real-time system in dense domain is equivalent
to verifying the system in discrete domain if both the behavior of the system captured by the model
and the properties considered are digitizable [HMP92a]. It can be shown that if the timeout updates
are not restricted to (0, 1)-intervals, then similar to the timed transition system of [HMP92a] (refer to
theorem 2 therein), transition systems for timeout and calendar based models also give rise to digitizable
behaviors (computations). Also verification of qualitative properties like safety and liveness, in dis-
crete time domain is equivalent to verifying these properties in dense time domain (refer to proposition
1 in [HMP92a]).

Techniques like bounded model checking [MRS03, DuS04a] can be useful for detecting bugs during
the verification process even in discrete domain, where one systematically searches for counterexamples of
length bounded by some integer k. The bound k is increased until a bug is found, or some pre-computed
completeness threshold is reached. Unfortunately, it is usually very expensive to compute completeness
thresholds. Also these thresholds may be too large to effectively explore the bounded search space.
Additionally, such completeness thresholds may be absent for many infinite-state systems. A finite state
modeling of the system can help exploring the state space much easily. Examples of finite state model
checkers are Spin [Hol93], SAL-smc solvers [DuS04a] etc. Spin has been used to finitely model TTA
startup algorithm using a clockless calendar based model [SMR07]. In terms of scalability, finite state
verification of TTA in Spin is almost comparable to the verification of TTA based on verification diagram
oriented abstraction method [DuS04b]. Moreover, liveness properties can be verified in this framework.

In this work, we aim to carry out a finite state modeling and verification on timeout and calendar
models without continuously varying clocks. As there are drawbacks of those models earlier proposed
from the point of view of design considerations, like absence of formally defined syntactic models and
associated semantics, we slightly deviate from them. We consider the specification framework of timed
transition diagrams and extend it to formalize timeout and calendar based models as timeout and calendar
based transition diagrams and their behavior in terms of semantics of transition systems. The benefits
that we derive from using this formalization are many-fold. Our framework of timeout transition diagrams
inherits most of the properties of classical timed transition system introduced in [HMP92b]. Most of
the techniques, like digitization that can be applied to these timed transition systems are applicable to
our formalization also. This can be also used to model time-triggered systems and reason about them.
Finally we use this formal modeling framework to reduce continuous time verification problem to discrete
time finite state verification, albeit under some restrictions. Towards that, we use a two step technique
comprising of digitization and finitary reduction (a schematic diagram of this technique is shown in
Figure 1). We show that the computations of timeout and calendar models are digitizable provided the
timeout increments are not restricted to (0, 1)-interval. As LTL properties are qualitative and hence, are
digitizable, verification of LTL properties on timeout and calendar models in dense time is equivalent to
that in discrete time. The next step is to reduce this problem into an equivalent finite state verification
problem. We could not directly proceed to extract finite state models from dense time models, since
the latter models are inherently infinite (and dense) and hence it is not possible to render them finite
even by bounding the variables. Also note that such a modeling cannot be directly subjected to finite
state verification since for timeout and calendar based models, global time and timeouts always increase.
Nonetheless, we propose a finitary reduction technique which effectively reduces the infinite state timeout
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Discrete-time verification of timeout 

and calendar-based models for 

qualitative properties. 

Dense-time verification of timeout 

and calendar-based models for 

qualitative properties. 

Digitization 

Finitary Reduction 

Finite-state modeling of timeout 

and calendar-based models and 

verification of qualitative properties. 

Figure 1: A two-step verification process

and calendar based transition systems with discrete dynamics into a finite state transition system. We
achieve this by using a clockless modeling technique which effectively strips the model of the global clock
and keeps track of the relative updation of timeouts, and restricts the values of variables/timeout updates
to bounded domains. We demonstrate by examples, how such a modeling approach can be efficiently
used for verifying safety, liveness, and timeliness properties using finite state model checkers, SAL-smc
and Spin. We also highlight the scalability of such models for verification purposes by comparing the
performance of such models under dense time and finite state modeling. A preliminary version of this
paper appeared in [SMR07].

The remainder of the paper is organized as follows. In the next section, we briefly discuss the
timeout and calendar based modeling as presented in [DuS04a, DuS04b]. In Section 3, we present the
formalization of these models in terms of timeout transition diagrams and their behavior in terms of
the semantics of transition systems. We discuss the technique of digitization in Section 5 and present
our first step of reduction of dense-time verification problem to integral time verification problem. In
Section 6, we describe the finitary reduction technique and subsequently, formalize it in terms of clockless
modeling. We present experimental results in Section 7. A few extensions of our framework are described
in Section 8 followed by concluding remarks in Section 9.

1.1 Related Work

There have been earlier attempts to model and verify time-triggered systems using extensions of finite
state model checkers, e.g., Spin. Spin [Hol93] is a tool for automatically model checking distributed
systems, but it does not allow explicit representation for time. There are mainly two attempts for
extending Spin with time. Real-time extension of Spin (RT-Spin [TrC96]) is one such attempt, that
makes use of timed Buchi automata [AlD94] with real-valued clocks as a modeling framework. However,
this formalism is incompatible with the partial order reduction which is supported by Spin. Another is the
work on DT-Spin [BoD98a, BoD98b], which allows one to quantify (discrete) time elapsed between events,
by specifying the time slice in which they occur. DT-Spin is compatible with the partial order reduction
and has been used to verify industrial protocols, like, AFDX Frame management protocol [SaR06a]
and TTCAN [SaR06b]. Nonetheless, systems with asynchronous communication with bounded delays
between components cannot be modeled directly by using the kind of asynchronous channels that Spin
provides, since there is no explicit provision to capture message transmission delays. A possible way is
to model each channel as a separate process with delay as a state variable. In [BoD98a], the channels in
the example of PAR protocol have been implemented in the same way. But for systems with relatively
large number of components and high degree of connectivity among them, modeling channels in this way
is difficult, and hence state space explosion becomes an unavoidable problem.

The concept of clockless modeling has been introduced in [Pik05]. In that Pike builds on the work
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of [DuS04a] and proposes a new formalism called Synchronizing Timeout Automata (STA) to reduce
the induction depth k required for k-induction. He introduces a clockless semantics for STA so that
the resulting transition system does not involve a clock. STA in effect, describes the overall system
architecture in terms of timeout transition system introduced in [DuS04a]. A closer analysis of the SAL
model for the example of Train-Gate Controller presented in [Pik05], reveals that the considered model
is not deadlock free. This is because the model fails to specify the timeout updation rules precisely for
the transitions leading to a waiting state. When a process is waiting for an external signal, its timeout
should be set to a value greater than the current value of the timeouts of the senders of the expected
signal. This kind of modeling errors could possibly be eliminated with a suitable modeling framework
such as the one proposed in this paper.

To our knowledge, the first attempt to convert TA to untimed TA is taken up in [AlD94]. Building
upon these, in [ChH04] the authors discuss how a special kind of model for specifications written in
Duration Calculus (DC) [CHR91] can be generated in which, DC formulas would correspond to regular
expressions over a state of special symbols. The models for DC formulas contain discrete states and
digitization of continuous states, thereby enabling reasoning in a single framework of both discrete and
continuous time. Applying discretization on the continuous component of real-time systems, these models
could be further translated into Promela models for verification experiments using SPIN.

2 Timeout and Calendar-based Real-Time Models

In this section we briefly discuss the timed automata [AlD94], timeout, and calendar-based models
introduced earlier in [DuS04b].

2.1 Timed Automata

Timed automata (TA) was introduced by Alur et al. in [AlD94] as a clock based model for specifying
real-time system designs. TA is widely used for modeling and verification of real-time systems. Many
tools are available for analyzing timed automata e.g., UPPAL [BDL04], Kronos [Bozga], Rabbit [BLN03].
For further details on TA, the reader is referred to [AlD94].

2.2 Timeout Transition Model

Dutertre and Sorea [DuS04a, DuS04b] used timeout based modeling to formally verify real-time systems
using k−induction in SAL model checker. A Timeout Transition Model (TTM), which is a model of
the combined system behavior, contains a finite set of timeouts and a global clock variable t. Timeouts
define the time points when discrete transitions will be enabled in the future. The clock variable t keeps
track of the current time. In practice a typical real-time system may contain a number of processes.
Every process is associated with one timeout which records the future point of time when the next
discrete transition for the process is scheduled to occur. Transitions in this model are classified into two
types: time progress transitions and discrete transitions. In time progress transition, t (time) advances
to the minimum valued timeout(s). Discrete transition occurs when t is equal to the minimum valued
timeout(s). If there are more than one processes, which have their timeouts equal to the minimum value,
one of them is randomly chosen and corresponding discrete transition occurs updating the value of the
timeout for the selected process. Timeout based modeling approach is suited to model systems where the
processes communicate via shared variables or the communication between the processes is a rendezvous
one.

2.3 Calendar Transition Model

Interprocess communication delay during message transfers cannot be modeled using timeout based
modeling because delays are beyond the control of individual processes. Addition of an event calendar,
a globally shared data structure, is proposed as a convenient way to model such delays [DuS04b]. This
model is called Calendar Transition Model (CTM). A calendar is a set of bounded size of the form
C = {〈e1, t1〉, . . . , 〈er, tr〉}, where each event ei is associated with the time point ti when it is scheduled
to occur. There is fundamental difference between a clock and a calendar in the sense that while the
former measures the time elapse since its last reset, the latter stores expected delivery delays for all
undelivered messages. Asynchronous communication with bounded delay can be easily modeled by
using calendar as a global data structure. When a message is transmitted by a process, it is added to the

5



calendar as an event ei to occur at time ti, where ti denotes the expected delivery time for the message.
On receiving the message, the event is removed from the calendar. Thus at any state, the calendar C can
be seen as a set of messages that have been sent but are yet to be received with corresponding expected
delivery delays.

2.4 Limitation of Existing Formalisms

Timed automata is one of the most frequently used formalism for specifying real-time system designs.
However as it turns out that for systems with asynchronous communication with bounded delays between
components TA does not offer any efficient means of specification. Two possible choices have been
considered in literature. First choice is to use state variables for encoding the behavior of asynchronous
channels however without any explicit provision to capture message transmission delays. Second choice
is to model each channel as a separate TA with delay as a state variable. However with relatively large
number of components and high degree of connectivity among them, modeling channels in this way is
difficult, and state space explosion becomes an unavoidable problem. UPPAAL [BDL04], which can
model TA, has the same problem when it is used to model asynchronous communications with bounded
delays - every channel has to be modeled as a separate TA capturing the message transmission delays.

On the other hand, although TTM and CTM are expressive enough to capture a range of behaviors
associated with time triggered systems including asynchronous communication delays, they however have
two specific design limitations:

• These models are not well suited for actual system design purpose since they describe the behavior
of the combined system without (explicitly) specifying the design of the modular components.

• Absence of formally defined syntactic design models corresponding to these transitions systems
would demand that additional correctness measures are put in place because for verification pur-
poses actual designs models need to be (manually) interpreted and translated into these transition
systems as per the underlying system dynamics and on discovering an error during verification,
such errors need to comprehended by a designer, and subsequently, translated back into his design
for a remedial action.

Keeping in view of such limitations in the existing specification formalisms, we will next define and
elaborate using examples a new timeout based formalism, which can effectively overcome these barriers.

3 Formalization of Timeout and Calendar based Models

In [HMP92b] an abstract model of timed transition system was proposed which could represent a wide
variety of behaviors of the timed execution of concurrent processes. In this section we adapt and extend
the Timed Transition System (TTS) described therein to represent timeout and calendar based models.
Further we describe their associated semantics in terms of state transition systems.

3.1 Timeout based Timed Transition Model

3.1.1 Syntax

A Timeout based Model (ToM) is represented as

P : {θ}[P1||P2|| . . . ||Pn].

Each process Pi is a sequential non-deterministic process having τi as its local timeout and Xi as a set of
local timing variables. Local timing variables are used for determining the relative delay between events.
A shared variable {t} represents the global clock. The operator “||” denotes parallel composition. The
formula θ, called the data pre-condition of P , restricts the initial values of variables in

U = {t} ∪ T ∪ X ∪Var ,

where the set of all timeouts is T = {τ1, τ2, . . . , τn}, and X =
⋃
i Xi. The set Var = (G ∪ L1∪L2∪. . .∪Ln)

is the set of other state variables. The variables in G are globally shared among all the processes while
Li contains variables local to process Pi. Let fVar be the set of computable functions on Var .

Each process Pi is represented using a timeout transition diagram (TTD), which is a finite directed
graph with a set of nodes Loci = {li0, li1, . . . , limi}, called locations. The entry location is li0. There are two
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kinds of edges in the graph of a process Pi: Timeout edges and Synchronous Communication edges. Edge
definitions involve an enabling condition or guard ρ, which is a boolean-valued function or a predicate.

Timeout Edges: A timeout edge (lij , ρ ⇒ 〈τi := updatei, γ, f〉, lik) in the graph of the process Pi is
represented as

lij
ρ ⇒〈τi:=updatei,γ,f〉−→ lik,

where updatei specifies the way timeout τi is to be updated on taking a transition on the edge when the
guard ρ evaluates to true. γ ⊆ Xi specifies the local timing variables which capture value of the clock t
while taking transition on the edge. This value may be used during future transitions while estimating
relative delay w.r.t. this transition. f ∈ fVar manipulates the state variables in G ∪ Li.

updatei is defined using the rule:

updatei = k1 | k2 | ∞ | max(M)

where l+ z ≺ k1 ≺′ m+ z′ for ≺,≺′∈ {<,≤} and k2 � l+ z for �∈ {>,≥}; z, z′ := t|w and l,m ∈ N are
non negative integer constants specifying the lower and upper limits for a timeout increment interval1,
and w ∈ Xi is a local timing variable. The variable z makes such an interval relative to the occurrence
of specific events. M is the set of all the integer constants that are used to define the upper limit of
different timeouts for different processes in the system. max(M) returns the maximum of all the integers
in M.

Constraints on k1, k2 specify how new value of timeout τi should be determined based upon the
current value of the clock t and/or w, which would have captured the value of t in some earlier tran-
sition. Setting a timeout to ∞ tends to capture the requirement of indefinite waiting for an external
signal/event. The selection of the timeout value using max(M) is used to capture the situation where
the next discrete transition of a process may happen at any time in the future, for example, the process
may be in a sleeping mode and can wake up at any future point of time.

Synchronous Communication Edges: Rendezvous communication between a pair of processes (Ps, Pr)
is represented by having an edge pair (es, er) s.t. es ∈ Ps and er ∈ Pr and

es : lsj
ρ ⇒〈ch!m,τs:=updates,γ,g〉−→ lsk

er : lrj
True ⇒〈ch?m̄,τi:=updater,γ

′,h〉−→ lrk

where ch is the channel name, m ∈ Li is the message sent, and m̄ ∈ Lr the message received, and
g, h ∈ fVar are the computable functions.

3.1.2 Semantics

With a given ToM
P : {θ}[P1||P2|| . . . ||Pn]

we associate the following transition system SP = (V,Σ,Σ0,Γ), referred to as timeout based clocked
transition system (TCTS) where,

1. V = U ∪ {π1, . . . , πn}. Each control variable πi ranges over the set Loci ∪ {⊥}. The value of πi
indicates the location of the control for the process Pi and it is ⊥ (undefined) before the start of
the process.

2. Σ is the set of states. Every state σ ∈ Σ is an interpretation of V, that is, it assigns values to clock
variable t, every timeout variable in T , timing variables in X , state variables in Var , and control
variables π1, . . . , πn, in their respective domains. For x ∈ V, let σ(x) denote its value in state σ.

3. Σ0 ⊆ Σ is the set of initial states such that for every σ0 ∈ Σ0, θ is true in σ0 and σ0(πi) =⊥ for
each process Pi.

4. Γ = Γe ∪ Γ+ ∪ Γ0 ∪ Γsyn comm is the set of transitions. Every transition ν ∈ Γ is a binary relation
on Σ defined further as follows:

1This interval mimics the delay interval marking an edge in the original timed transition diagrams

7



Entry Transitions: Γe, the set of entry transitions contains an entry transition νie for every process Pi.
In particular, ∀σ0 ∈ Σ0,

νie ≡ (σ0, σ
′) ∈ Γe ⇔

 1. ∀x ∈ U : σ′(x) = σ0(x)
2. ∀τ ∈ T : σ′(t) ≤ σ′(τ)
3. σ0(πi) = ⊥ and σ′(πi) = li0

Time Progress Transition: The first kind of edges ν+ ∈ Γ+ are those where the global clock is increased
to the minimum of all timeouts. In particular,

ν+ ≡ (σ, σ′) ∈ Γ+ ⇔


1. σ(t) < min{σ(T )}
2. ∀τ ∈ T : σ′(τ) = σ(τ)
3. ∀x ∈ X : σ′(x) = σ(x)
4. ∀i : σ′(πi) = σ(πi)
5. σ′(t) = min{σ(T )}

Timeout Increment Transition: For the second kind of edges νi0 ∈ Γ0 the global clock equals the minimum
of timeouts. Also if an edge in the TTD for process Pi connects source location lij to target location lik
and is labeled by the instruction ρ⇒ 〈τi := updatei, γ, f〉, then

νi0 ≡ (σ, σ′) ∈ Γ0 ⇔



1. ρ holds in σ
2. σ′(t) = σ(t)
3. If σ(τi) = σ(t)

thenσ′(τi) = updatei > σ(τi)
elseσ′(τi) = σ(τi)

4. ∀x ∈ γ : σ′(x) = σ(t) and
∀x ∈ X \ γ : σ′(x) = σ(x)

5. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)

6. σ(πi) = lij and σ′(πi) = lik

If updatei = k1 s.t. l + z ≺ k1 ≺ m + z′, then updatei arbitrarily selects a value δ such that
[l + σ(z) ≺ δ ≺ m + σ(z′)] ∧ [δ > σ(τi)] and returns δ. If updatei = k2 s.t. k2 � l + z, then updatei
arbitrarily selects a value δ such that [δ � l+ σ(z)] ∧ [δ > σ(τi)] and returns δ. If updatei =∞, updatei
returns the largest possible constant defined as per the design of the system. If updatei = max(M),
updatei nondeterministically selects any integer δ in [0,M + 1], where M is the maximum of all the
integers in M returned by max(M). The local timing variables in γ ⊆ Xi for process Pi are assigned
the current value of global clock on timeout increment transition, while the other local timing variables
in the system retain their old values before this transition. The variables in γ are thus used to capture
the delay between two events.

Synchronous Communication: For a pair of processes Ps, Pr having synchronous communication edges
(es, er) as defined before, νsrsyn comm ∈ Γsyn comm exists such that:

νsrsyn comm ≡ (σ, σ′) ∈ Γsyn comm ⇔



1. ρ holds in σ
2. σ′(t) = σ(t)
3. σ′(τs) = updates > σ(τs) and

σ′(τr) = updater > σ(τr)
4. ∀x ∈ (γ ∪ γ′) : σ′(x) = σ(t) and
∀x ∈ X \ (γ ∪ γ′) : σ′(x) = σ(x)

5. σ′(m̄) = σ(m)
6. ∀v ∈ G ∪ Ls : σ′(v) = g(σ(v))
∀v ∈ G ∪ Lr : σ′(v) = h(σ(v))
∀v ∈ Var \ (G ∪ Ls ∪ Lr) : σ′(v) = σ(v)

7. σ(πs) = lsj , σ(πr) = lrj and
σ′(πs) = lsk, σ

′(πr) = lrk

This semantic model defines the set of possible computations of the ToM P as a (possibly infinite) set
of state sequences ξ : σ0 → σ1 → . . ., which starts with some initial state σ0 in Σ0 and follows with
consecutive edges in Γ, i.e., ∀i.(σi, σi+1) ∈ Γ. Let [|SP |] be the set of all these computations of a ToM P
as defined by its TCTS SP .
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3.2 Calendar Based Timed Transition Model

3.2.1 Syntax

Next we capture bounded message transfer delay associated with an asynchronous communication. To-
wards that the ToM is extended with a calendar data structure. A calendar is a linear list of bounded
size, where each element of the list contains the following information: message, sender id, receiver id,
and expected delivery time. Assuming C to denote the calendar array, a globally shared object, we set

U = {t} ∪ T ∪ X ∪Var ∪ C

Sending a message in a TTD of process Pi is represented using the following edge:

lij
ρ⇒〈send(m,i,Ω),τi:=updatei,γ,f〉−→ lik,

where Ω ⊆ R×Λ, R ⊆ {1, 2, . . . n} is the index set for the processes and Λ is the set of expected message
delays. send(. . .) specifies that a message m is to be sent to each of the processes Pr with expected
delivery time of λr where (r, λr) ∈ Ω. On taking a transition on this edge an entry { m, i, r, λr} is added
to C for each (r, λr) ∈ Ω.

Receiving of the corresponding message is represented in the TTD for each of the processes Pr,∀ r ∈ R
using the following edge:

lrj
True⇒〈receive(m,i,r),τr:=updater,γ,g〉−→ lrk,

where receive(. . .) specifies that a message m sent by process Pi is to be received by the process Pr. On
taking a transition on this edge, the entry {m, i, r, λr} is deleted from C.

3.2.2 Semantics

Given a calendar C, we assume that the set of delays for all undelivered messages at any state σ can be
found using the function

∆ : σ(C)→ 2N

Again Γ = Γe ∪ Γ+ ∪ Γ0 ∪ Γsyn comm ∪ Γasyn comm is the set of transitions in the calendar based clocked
transition system (CCTS). Both Γe (set of Entry Transition) and Γsyn comm (Synchronous Communica-
tion) are same as in TCTS defined earlier. The definitions for the edges in Time Progress Transition
(Γ+) and those for Timeout Increment Transition (Γ0) are modified using calendar C as follows:

Time Progress Transition: The first kind of edges ν+ are those where the global clock is increased to
the minimum of all the timeouts and message delays. In particular,

ν+ ≡ (σ, σ′) ∈ Γ+ ⇔


1. σ(t) < min{σ(T ) ∪∆(σ(C))}
2. ∀τ ∈ T : σ′(τ) = σ(τ)
3. ∀x ∈ X ∪Var : σ′(x) = σ(x)
4. ∀i : σ′(πi) = σ(πi)
5. σ′(t) = min{σ(T ) ∪∆(σ(C))}

Timeout Increment Transition: For the second kind of edges νi0 where global clock equals the minimum
of all the timeouts and message delays, we have: if an edge in the TTD of process Pi connects source
location lij to target location lik and is labeled by the instruction ρ⇒ 〈τi := updatei, γ, f〉, then

νi0 ≡ (σ, σ′) ∈ Γ0 ⇔



1. ρ holds in σ
2. σ′(t) = σ(t)
3. If [σ(t) = min{σ(T )}] ∧ [σ(τi) = σ(t)]

thenσ′(τi) = updatei > σ(τi)
elseσ′(τi) = σ(τi)

4. ∀x ∈ γ : σ′(x) = σ(t) and
∀x ∈ X \ γ : σ′(x) = σ(x)

5. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)

6. σ(πi) = lij and σ′(πi) = lik
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We additionally define new transitions corresponding to send() and receive() to capture asynchronous
communication:

Send Transition: If there is an edge in process Pi, which connects source location lij to target location lik
and is labeled by the instruction ρ⇒ 〈send(m, i,Ω), τi := updatei, γ, f〉, then we have the corresponding
edge νisend ∈ Γasyn comm, which adds |Ω| cells to the calendar array C:

νisend ≡ (σ, σ′)⇔



1. ρ holds in σ
2. σ′(t) = σ(t)
3. σ′(τi) = updatei > σ(τi)
4. ∀x ∈ γ : σ′(x) = σ(t) and
∀x ∈ X \ γ : σ′(x) = σ(x)

5. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)

6. ∀(r, λr) ∈ Ω : σ′(C) := σ(C) ∪ {m, i, r, λr}
7. σ(πi) = lij and σ′(πi) = lik

Receive Transition: If there is an edge in process Pr, which connects source location lrj to target location
lrk and is labeled by the instruction True ⇒ 〈receive(m, i, r), τr := updater, γ, g〉, then we have the
corresponding edge νrreceive ∈ Γasyn comm, which deletes the entry {m, i, r, λr} from the calendar array
C when the clock t reaches λr:

νrreceive ≡ (σ, σ′)⇔



1. ∃{m, i, r, λr} ∈ σ(C) s.t. σ(t) = λr
2. σ′(t) = σ(t)
3. σ′(τr) = updater > σ(τr)
4. ∀x ∈ γ : σ′(x) = σ(t) and
∀x ∈ X \ γ : σ′(x) = σ(x)

5. ∀v ∈ G ∪ Lr : σ′(v) = g(σ(v)) and
∀v ∈ Var \ (G ∪ Lr) : σ′(v) = σ(v)

6. σ′(C) := σ(C) \ {m, i, r, λr}
7. σ(πr) = lrj and σ′(πr) = lrk

Similar to the case of TCTS, this semantic model also defines the set of possible computations of the
calendar based ToM as a (possibly infinite) set of state sequences starting with some initial state in Σ0

and following consecutive edges in Γ. Let [|SP |] be the set of all these computations of a calendar based
ToM P as defined by its CCTS SP .

Models for Time: It remained unspecified as to what would be the underlying model of time for
clock, timeouts etc that appear in the definitions of TCTS and CCTS. There are two natural choices for
time, the set of non-negative integers N (discrete time) or the set of non-negative reals R (dense time).
Given the model of time as TIME , let [|SP |]TIME be the set of all the computations of a ToM (or calendar
based ToM) P as defined by its TCTS (or CCTS) SP .

When we consider that the underlying model of time as R, we need to add the following non-zenoness
condition to ensure effective time progress in the model. There must not be infinitely many time progress
(or timeout increment) transitions effective within a finite interval. Formally,

nonzenoness:
∀ξ : σ0 → σ1 → . . . ∈ [|SP |]R.∀δ ∈ R.∃i ≥ 0.σi(t) > δ

3.3 Parametric Processes

We consider the case of finite family of processes specified in a parametric way. A completely parametric
process family would be specified as

{θ}[{P (i)}i=Ni=1 ]

where N ≥ 1 is some finite positive integer and θ = θ1 ∧ . . .∧ θN such that θi (1 ≤ i ≤ N) initializes the
variables for the ith copy of the process. Process P (i) could be a TTD or a calender based TTD.

The semantic interpretation of such parametrically specified process family is given by first flattening
the specification as

{θ}[P (1)|| . . . ||P (N)]
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(lock 6= 0 ∧ τi = t)
⇒ 〈τi := k|k > t〉

(lock = 0 ∧ τi = t) ⇒
〈τi := k|k < t+ d1〉

(τi = t) ⇒
〈τi = k|k > t+ d2, lock := i〉

(lock 6= i ∧ τi = t) ⇒
〈τi := k|k > t〉

(lock = i ∧ τi = t) ⇒
〈τi := k|k > t,

in critical := in critical + 1〉

(τi = t) ⇒
〈τi := k|k > t, lock := 0,

in critical := in critical − 1〉

1

Figure 2: TTD for the ith process in the Fischer’s Protocol

and then applying the semantics presented before as per the case of P (i) being a TTD or a calendar
based TTD.

Such parametric specification can be generalized to a homogeneous set of process families as

{θ}[{P (i1)}i1=N1
i1=1 || . . . ||{P (il)}il=Nlil=1 ]

where N1, . . . Nl are some finite positive integers and θ = θ1 ∧ . . . ∧ θl such that θi = θi1 ∧ . . . ∧ θiNi
initializes the variables for the ith process family. The term homogeneous arises because processes in all
the process families should uniformly be either TTDs or calender based TTDs. We do not consider the
case of hetrogeneous set of process families, where processes across different process families might be
different. Similar to the case of a single parametric process family, the generalized process family can be
interpreted by flattening the process specification.

4 Examples

Following two examples would illustrate the expressiveness and effectiveness of the proposed timeout and
calendar based modeling framework.

4.1 Fisher’s Mutual Exclusion Protocol

Fischer’s protocol is a well studied protocol to ensure mutual exclusion among real time concurrent
processes. Let there be n processes P1, . . . , Pn trying to access shared resources in a real-time fashion to
be discussed later. A process Pi is initially idle (Sleeping state), but at any time, may begin executing
the protocol provided the value of a global variable lock is 0 and then move to Wait state. There it can
wait up to maximum of d1 time units before assigning the value i to lock and moving to Trying state.
It may enter the Critical section after a delay of at least of d2 time units provided the value of lock is
still i. Otherwise it has to move to Sleeping state. Upon leaving the Critical section, it re-initializes lock
to 0. There is another global variable, in critical, used to keep count of the number of processes in the
critical section. The auto-increment (auto-decrement) of the variable is done before a process enters the
Critical section (leaves the Critical section). Mutual exclusion is ensured if d1 < d2. The timeout-based
TTD of the ith process Pi executing Fischer’s protocol is shown in Figure 2.

4.2 TTA Startup Algorithm

The TTA startup algorithm can be formalized using the calendar based model described above. This
algorithm executes on a logical bus meant for safety-critical application in both automotive and aerospace
industries. In a normal operation, N processors or nodes share a TTA bus using a TDMA schedule. The
goal of the startup algorithm is to bring the system from the power-up state, in which the processors are
not synchronized, to the normal operation mode in which all processors are synchronized and follow the
same TDMA schedule.
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                 (t = w) ⇒           

〈send(cs_frame, i, (R ×{λ1})) 

τi := t + τi
cs
〉 

   Init Listen 

  Active 

     (t =τi) ⇒ 〈send(cs_frame, i, (R ×{λ1})),  

                            τi := t + τi
cs

 , w〉 

             True⇒ 

  〈receive(i_frame, j, i),  

       τi := t + τ
round

 〉 

 

True⇒〈receive(cs_frame, j, i), τi := t +τ
round

〉 

         True⇒ 

〈receive(i_frame, j, R),  

     τi := t + τ
round

 〉 

                      (t = τi)⇒ 

   〈send(i_frame, i, (R ×{λ2})), τi := t〉 

(t =τi)⇒ 〈τi := t + τi
listen

 〉 

True⇒〈receive(cs_frame, j, i),  

              τi := t + τi
cs

 〉 

ColdStart 

Figure 3: Calendar-based TTD for the ith node in TTA Startup algorithm

In TTA startup algorithm each node i ∈ {1 . . . N} has two unique timeout parameters, τ listeni and
τ csi , for listen and coldstart states respectively. These are defined as follows:

τ listeni = 2τ round + τstartupi ,

τ csi = τ round + τstartupi

where τ round represents the TDMA round duration and τstartupi denotes the duration between the start
of a TDMA cycle and the time when the slot for node i starts. If τ denotes the duration of each slot
then

τ round = Nτ, τstartupi = (i− 1)τ

When a node is powered-on, it performs some internal initialization, and transits to the Listen state.
In this state it listens for the unique duration τ listeni to determine if there is a synchronous set of nodes
communicating on the medium. The nodes which are in the Active state are already synchronized, and
periodically transmit i-frames that carry the TDMA cycle structure. If a node in the Listen state receives
such an i-frame, it adjusts its state to the frame contents and is thus synchronized with the set of already
synchronous nodes. If the above does not happen, there are two possibilities. Each node listens for
a cold-start message (cs-frame) from another node indicating the beginning of the cold-start sequence;
cs-frames are similar to i-frames but carry a protocol state suggested by the sending node. When a node
completes the reception of a cs-frame, it enters the Coldstart state and resets its local clock to δcs (that is
the transmission duration of the cs-frame). Thus, all nodes that received the cs-frame have synchronized
local clocks (within system tolerances, including the propagation delay). Each node that receives neither
an i-frame nor a cs-frame during the Listen phase enters the Coldstart state on its listen timeout, resets
its local clock to 0 and broadcasts a cs-frame. Thus, after the transmission of the cs-frame (δcs later),
the local clock of the sending node is also synchronized to the local clocks of the set of receiving nodes.

Each node in the coldstart state waits for reception of another cs-frame or i-frame until its local clock
reaches the value of its individual cold-start timeout. If it receives such a frame it synchronizes on its
contents and enters the Active state; if not, it resets its local clock and again broadcasts a cs-frame. No
further collision can occur at this point, because cold-start timeouts have a strict order and that is why
no two nodes that caused a collision can collide again. The listen timeout of any node is greater than
coldstart timeout of any node. No node which has come in the Listen state after the collision cannot
move to the Coldstart state before the collision is resolved. For further details of startup protocol, we
refer the reader to [StP02].

The calendar based TTD of the ith node is depicted in Figure 3. In TTA startup algorithm, all the
communications are asynchronous and hence, message delivery delays, which are finite and specified by
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the designer have to be taken into account for correct operation of the protocol. The timeouts τ listeni

and τ csi represent how much time a node spends in Listen state and Coldstart state respectively, if no
external signal is received. The timeout τ round denotes the time a node spends in Active state before
sending its next massage. Ri = {1, . . . , N} \ {i} represents the set of nodes except the sender i that are
required to receive the message in the network. We use λi’s to denote the message delivery time for the
corresponding send events. In TTA, message delivery times for all the receivers are considered to be the
same, and that is why we have considered a single variable λi to represent that delay.

5 Verification Results for Digitization

In literature the verification problem for real-time systems assumes two descriptions of real-time behavior,
implementation I and specification S, and poses the question whether I implements/satisfies S. The
implementation language LI describes systems and behavior over time while the specification language
LS describes the timing requirements of the system. The verification obligation involves presenting
algorithms and/or proof rules that facilitate a formal argument that a particular implementation meets
the requirement of a particular system under some particular assumption of semantics of computation
and time. Assuming C and T to be mathematical models of computation and time respectively, the
real-time verification problem parameterized by (C, T,LI ,LS) states: does the implementation of the
system I, given as an expression of LI meet the specification φ given as an expression of LS , with respect
to the semantical assumption (C, T ), written as

I |=?
(C,T ) φ

In particular, we would consider two important instances of the real-time verification problem - one with
an integral model of time and one with a dense model of time. In the following, we assume TTS as the
implementation language and linear time temporal logic (LTL) as the specification formalism.

5.1 Timed Sequences

We shall adopt discrete trace model (using the terminology from [HMP92a, Bos99]) as a mathematical
model of computation. By discrete trace model one can capture the behavior of a system as an infinite
sequence of snapshots of the global system state at certain times. We assume our time domain TIME
has a total ordering ≤ defined on it. We define an observation to be a pair (σi, Ti), where σi is a state
and Ti ∈ TIME. A timed state sequence η = (σ, T ) is an infinite sequence η : (σ0, T0) → (σ1, T1) →
(σ2, T2) → · · · of observations2. Further, the infinite sequence Ti ∈ T of time stamps in η satisfy (i)
monotonicity: Ti ≤ Ti+1 for all i ≥ 0, and (ii) progress: time progresses, for all T ∈ TIME, Ti ≥ T for
some i ≥ 0.

Now onwards, we shall work with dense-time models when TIME = R and integral-time models
when TIME = N. A timed state sequence under dense-time model will be referred to as precisely timed
and under integral-time model as digitally timed.

Let us denote the set of all timed state sequences over the TIME domain as TSSTIME . A real-time
property is a subset of TSSTIME . Every real-time system S defines a real-time property, denoted as [|S|],
which is the set of all timed state sequences of S. Also, every real-time specification φ defines a real-time
property [|φ|], the set of real-time sequences that satisfy φ.

Now let us formulate the real-time verification problem. We say a real-time system S satisfies the
specification φ, written as

S |=TIME φ

if and only if
[|S|]TIME ⊆ [|φ|]TIME

Consider a dense-time property ΠR ⊆ TSSR, a set of of timed state sequences over R. Its clock-
independent semantics N(ΠR) is the subset of digitally timed state sequences in ΠR, i.e., N(ΠR) =
ΠR∩TSSN. In [HMP92a], it is shown that clock-independent semantics is not very adequate for reasoning
about dense time. As a remedy of this, another approximate semantics was introduced, which was called
digitization.

2Note that any ξ ∈ [|SP |] (previously defined) essentially defines a timed state sequence. This is because, states in ξ have
implicit representation for time stamps as σ0(t), σ1(t), . . ., which are otherwise explicitly present in the definition of η as
T0, T1, . . .
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The following definitions will be useful for our subsequent discussions. For any timed state sequence
η = (σ, T ), we introduce it untime operation η− as its state component σ. Also, ηi = (σi, T i), for i ≥ 0,
denotes the timed state sequence that results from η by deleting the first i observations (note, η0 = η).

5.2 Digitization

Given x ∈ R and ε ∈ (0, 1], we define [x]ε = bxc if x ≤ bxc+ ε, otherwise [x]ε = dxe3. Given a precisely
timed sequence η = (σ, T ) and ε ∈ (0, 1], we define the ε-digitization [η]ε = (σ, [T ]ε) of η be the digitally
timed sequence

(σ0, [T0]ε)→ (σ1, [T1]ε)→ · · · ,
For any dense-time property Π (a set of timed sequences over dense time) let

[Π] = {[η]ε | η ∈ Π and ε ∈ (0, 1]},

which is a digitization of Π. We write [η] instead of [{η}].
We state some concepts from [HMP92a]. Let Π be a dense-time property. Π is closed under digitization

iff for all η ∈ TSSR, η ∈ Π implies [η] ⊆ Π. Π is closed under inverse digitization iff [η] ⊆ Π implies η ∈ Π,
for all η ∈ TSSR. Finally, Π is digitizable iff it is closed under both digitization and inverse digitization,
i.e., η ∈ Π iff [η] ⊆ Π for all η ∈ TSSR. We state the following important result (see [HMP92a]).

Fact 5.1 Assume a real-time system S whose dense-time semantics [|S|]R is closed under digitization,
and a specification φ whose dense-time semantics φR is closed under inverse digitization. Then in order
to prove S |=R φ it suffices to check if S |=N φ.

A dense-time property Π is said to be qualitative if η ∈ Π implies η′ ∈ Π for all precisely timed sequences
η and η′ with identical state components (i.e., η− = η′−).

Fact 5.2 [HMP92a] Every qualitative property is digitizable.

5.3 Digitization of Timeout and Calendar based Transition Systems

Recall a TCTS is S = (V,Σ,Σ0,Γ) (we drop the subscript P because we assume the ToM P is implicit)
where V is a set of variables, Σ a set of states, Σ0 ⊆ Σ a set of initial states and Γ a set of transitions.
We would like to show that the computations for this transition system are digitizable. Our approach
follows [Bos99].

A run of S over a timed state sequence η : (σ0, T0)→(σ1, T1)→· · · is a sequence of pairs of S of the

form ζ : (σ0, ν0)
T1→ (σ1, ν1)

T2→ · · · where σi denotes the state and νi the mapping of variables in U in
state σi and further, it satisfies the following conditions:

1. (initiation:) σ0 ∈ Σ0 and ν0(t) = T0, ∀i ≥ 0.ν0(πi) =⊥, t ∈ V, πi ∈ V.

2. (consecution:) for i ≥ 1 there is an edge (σi−1, σi) ∈ Γ = (Γe ∪Γ+ ∪Γ0 ∪Γsyn comm) such that the
following hold:

• if (σ0, σ1) ∈ Γe then T0 = ν0(t) ≤ ν1(t) = T1 and ∀τ ∈ T . σ1(τ) ≥ T1.

• if (σi−1, σi) ∈ Γ+ then Ti−1 = νi−1(t) < min{σi−1(T )} = νi(t) = Ti.

• if (σi−1, σi) ∈ Γ0 then Ti−1 = νi−1(t) = νi(t) = Ti.

• if (σi−1, σi) ∈ Γsyn comm then Ti−1 = νi−1(t) = νi(t) = Ti.

3. (time progress:) for any real number T there exists an i ≥ 0 such that Ti > T .

We say that η ∈ TSSTIME is time-consistent (for S) if S has a run over it. In the sequel we consider
only time-consistent behaviors η ∈ [|S|]TIME of S, i.e., η ∈ [|S|]TIME iff there is run over η. If TIME = N
then we get integral behavior of TCTS. Now it is obvious that time at state j ≥ 1 in a given run, is given
by νj(t) = Tj . We define ε-digitization of the mapping νj for any variable x ∈ U ⊆ V as 〈νj(x)〉ε = [ν(x)]ε.

Given a computation ζ : (σ0, ν0)
T1→ (σ1, ν1)

T2→ · · · its ε-digitization is the computation [ζ]ε :

(σ0, 〈ν0〉)ε)
[T1]ε→ (σ1, 〈ν1〉)ε

[T2]ε→ · · · , where 〈νj〉ε for j ≥ 1 are defined above, and 〈ν0(t)〉ε = [T0]ε.

3where b·c and d·e are the floor and ceiling rounding operations on real numbers respectively
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Now we need to analyze the extent to which the set of dense-time computations of a TCTS are closed

under digitization. Suppose ζ : (σ0, ν0)
T1→ (σ1, ν1)

T2→ · · · is a run of S over η. For digitization, [ζ]ε
would be a run of S over [η]ε. We have 〈ν0(t)〉ε = [T0]ε. Observe if Ti−1 = Ti then [Ti−1]ε = [Ti]ε. When
Ti−1 < Ti, except for the case of 0 < (Ti − Ti−1) < 1, we have [Ti−1]ε < [Ti]ε. So, if there is an edge
(σi−1, σi) ∈ Γ and (Ti = Ti−1) ∨ (Ti ≥ Ti−1 + 1), there would be an edge (〈σi−1〉ε, 〈σi〉ε) in Γ under [ζ]ε.
Also we can ensure time progress for [ζ]ε. Hence:

Fact 5.3 The set of dense-time computations of a TCTS are closed under digitization if and only if all
timeout increments are at least 1 time unit.

The result above indicates a precise characterization for the digitization for a TCTS. All timeout
increments in (0, 1) result into a TCTS, which are not closed under digitization and therefore cannot be
model checked for all LTL properties under discrete time dynamics.

A similar argument can be used to show that the dense computations of a (digitizable) calendar based
clocked transition system (CCTS) are also closed under digitization.

5.4 Linear Temporal Logic

Let us briefly describe propositional linear temporal logic [Pnu77], more popularly known as LTL. The
vocabulary of LTL consist of a set P of atomic propositions. The formulas of LTL are built using boolean
connectives, next operator © and until operator U as follows:

φ ::= p | ¬φ |φ1 ∧ φ2 | © φ |φ1Uφ2, p ∈ P

The other temporal operators can be introduced as abbreviations, e.g., Fφ =̂ True U φ,Gφ =̂ ¬F¬φ.
The formulas of LTL can be interpreted over timed state sequences whose states are from Σ such

that each state in Σ gives rise to an interpretation for propositions in P. Let η = (σ, T ) be a timed state
sequence with σi ∈ Σ for i ≥ 0. The satisfaction relation η |= φ is defined inductively as follows:

η |= p iff σ0 |= p;
η |= ¬φ iff η 6|= φ;

η |= φ1 ∧ φ2 iff η |= φ1 and η |= φ2

η |=©φ iff η1 |= φ and T1 ≥ T0,
η |= φ1Uφ2 iff ∃i ≥ 0.∃α ∈ N.ηi |= φ2, where

Ti ≥ T0 + α, and ∀j.0 ≤ j < i.ηj |= φ1.

For a LTL-formula φ, let the set [|φ|]TIME ⊆ TSSTIME contain all timed state sequences η over the time
domain TIME such that η |= φ. Thus, [|φ|]R is the analog dense-time property for the formula φ. Note
that for any specification φ expressed in LTL, [|φ|]R is closed under inverse digitization. To see this consider
two timed sequences η and η′ with identical state components. Suppose η |= φ, i.e., η ∈ [|φ|]R. Now the
proof is by induction on the structure of φ. At the induction stage, we only consider the case φ = φ1Uφ2.
Now η |= φ1Uφ2 iff for some i ≥ 0, α ∈ N, ηi |= φ2, where Ti ≥ T0 + α, and ηj |= φ1 for all 0 ≤ j < i.
By induction hypothesis, we have η′i |= φ2 and η′j |= φ1. Since, T ′i ≥ T ′0, there exists some α′ ∈ N such
that T ′i ≥ T ′0 + α′. Therefore η′ |= φ and hence η′ ∈ [|φ|]R.

5.5 An Integral Verification Problem

We conclude this section with this important observation. Given a TCTS or CCTS S, corresponding to
a timeout-based or a calender-based model and a specification formula φ in LTL we may check S |=R φ
by verifying whether S |=N φ. In the next section we shall try to further simplify this problem.

6 Clockless Modeling

A finite state model-checker like Spin [Hol93] uses finite state automata to model the behavior of concur-
rent processes in distributed systems. The combined execution of a system of asynchronous processes is
described as a product of automata each of which models an individual process. The product automaton
is finite if the number of processes, message channels, number of messages in a channel, and the range
of values for various variables are finite in the automaton for each individual process.
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Though timeout and calendar based models can be used to efficiently capture dense time semantics
without using a continuously varying clock, it is difficult to use these models for finite state model
checking, even though we have seen that in most of the cases the verification problem reduces to an
integral one thanks to digitization. The difficulty arises from the fact that the value of the global clock
t and the values of the timeout variables in T diverge and thus are not bounded by a finite domain.
Unlike TA there is no provision of resetting the global clock or timeouts in these models, as a result of
which the timeout and calendar based models cannot be directly used for finite state model checking.

We propose a finitary reduction technique, which is formalized in terms of clockless modeling and
semantics in the next section. This technique effectively reduces the timeout and calendar based tran-
sition systems with discrete dynamics into finite state systems, which, in turn, can be expressed and
model checked by finite state model checkers. The assumption of discrete time as the underlying model
is particularly relevant to cases where we are left with integral verification problem exploiting digitization
results.

From the semantics of the timeout based systems it is clear that to implement time progress transition,
a special process is required to increase the global clock to the minimum of timeouts, when each of the
timeout values is strictly greater than the current value of the clock. A process Pi waits until its timeout
is equal to global clock, and when it is so, Pi takes the discrete transition and updates its own timeout
according to the specified updation rule. We model this special process, which is responsible for time
progress transition in such a way that it does not explicitly use the clock variable and prevents the
timeout variables from growing infinitely. We call this process as time progress.

The process time progress is implemented as follows. When the global clock is less than all the
timeouts no discrete transition is possible in the system. In such a situation, time progress finds out the
minimum of all the timeouts in T and scales down all these timeouts in T by this amount. In this way
at least one of the timeouts becomes zero. The guards of the processes are defined in such a way that
the processes wait until their timeouts become zero. When it happens the process updates its timeout
and does other necessary jobs.

If update function always increments the timeouts by a finite value then it is guaranteed that the
value of a timeout will always be in a finite domain. But in some cases it is possible that a timeout may
take any value in the future. In those cases, the value of the timeout is taken as the largest possible
value defined by the system. This approach can also be extended for the calendar based models as well.

The discussion above is formalized in terms of “clockless” modeling as below:

6.1 Timeout based Models: Clockless Modeling

6.1.1 Clockless Syntax

In order to capture the effect of finite state reduction in a timeout model, we restrict the set U and
redefine updatei as follows:

U = T ∪ X ∪Var .

update−i is given by the following rule:

update−i = k1 | k2 | ∞| max(M),

where l− z ≺ k1 ≺′ m− z′ for ≺,≺′∈ {<,≤} and k2 � l− z for �∈ {>,≥}; z, z′ := w|0 and l,m ∈ N are
non negative integer constants. For any z ∈ U let σ−i (z) stand for the value of the variable z in (clockless)
state σ−i . Note that update−i is different from the update function updatei for clocked transition system
in the sense that this one updates the timeouts in bounded domain.

6.1.2 Clockless Semantics

For clockless modeling of timeout based models we associate a transition system S−P = (V−,Σ−,Σ−0 ,Γ−),
where V− = V \ {t} is a set of variables, Σ− a set of clockless states, Σ−0 ⊆ Σ− initial clockless states
(defined in an analogous manner as for clocked transition systems) and Γ− a set of clockless transitions.
We remark that given a timeout based model, the set of states Σ for clocked transition system and the
set of states Σ− for clockless transition system are exactly similar modulo the assignment of the global
clock variable t. The same is true for initial states too. Note Γ− = Γ−e ∪ Γ−+ ∪ Γ−0 ∪ Γ−syn comm, while

Γ−e is identical to Γe for clocked transitions, we shall only define Time Progress Transition Γ−+, Timeout
Increment Transition Γ−0 , and Synchronous Communication Transition Γ−syn comm by modifying the same
for the clocked timeout transition system as defined earlier.
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Time Progress Transition: The edges ν+ are redefined such that all the timeouts are decremented by
the minimum of the current timeout values. In particular,

ν+ ≡ (σ−, σ′−) ∈ Γ−+ ⇔


1. min{σ−(T )} > 0
2. ∀τ ∈ T : σ′−(τ) = σ−(τ)−min{σ−(T )}
3. ∀x ∈ X ∪Var : σ′−(x) = σ−(x)
4. ∀i : σ′−(πi) = σ−(πi)

Timeout Increment Transition: For the edges νi0, if there is an edge in the TTD for process Pi connecting
source location lij to target location lik and is labeled by the instruction ρ⇒ 〈update−i , γ, f〉, then

νi0 ≡ (σ−, σ′−) ∈ Γ−0 ⇔



1. ρ holds in σ−

2. If σ−(τi) = 0 then
σ′−(τi) = update−i > 0

elseσ′−(τi) = σ−(τi)
3. ∀y ∈ γ : σ′−(y) = σ′−(τi) + σ−(y) and
∀x ∈ X \ γ : σ′−(x) = σ−(x)

4. ∀v ∈ G ∪ Li : σ′−(v) = f(σ−(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′−(v) = σ−(v)

5. σ−(πi) = lij and σ′−(πi) = lik

Observe that update−i is a slight modification of updatei. If update−i = k1 s.t. l − z ≺ k1 ≺ m − z′,
then update−i arbitrarily selects a value δ such that l − σ−(z) ≺ δ ≺ m − σ−(z′). If update−i = k2 s.t.
k2 � l − z, then update−i arbitrarily selects a value δ such that δ � l − σ−(z), else if update−i = ∞,
then it selects the largest possible constant defined by the system and returns δ. If update−i = max(M),
update−i nondeterministically selects any integer δ in [0,M + 1], where M is the maximum of all the
integers inM. Unlike the local timing variables appearing in γ in a (clocked) ToM, these timing variables
incrementally capture the value of next timeout in a clockless ToM. An observant reader can see that
the relative delay captured by these local timing variables between events are same in both those models.

Synchronous Communication For a pair of processes Ps, Pr having edges (es, er) :

νsrsyn comm ≡ (σ−, σ′−) ∈ Γ−syn comm ⇔



1. ρ holds in σ−

2. σ′−(τs) = update−s > σ−(τs)
σ′−(τr) = update−r > σ−(τr)

3. ∀y ∈ (γ) : σ′−(y) = σ′−(τs) + σ−(y), and
∀y′ ∈ (γ′) : σ′−(y′) = σ′−(τr) + σ−(y′) and
∀x ∈ X \ (γ ∪ γ′) : σ′−(x) = σ−(x)

4. σ′−(m̄) = σ−(m)
5. ∀v ∈ G ∪ Ls : σ′−(v) = g(σ−(v)), and
∀v ∈ G ∪ Lr : σ′−(v) = h(σ−(v)) and
∀v ∈ Var \ (G ∪ Lr ∪ Ls) : σ′−(v) = σ−(v)

6. σ−(πs) = lsj , σ
−(πr) = lrj and

σ′−(πs) = lsk, σ
′−(πr) = lrk

6.2 Calendar based Models: Clockless Modeling

6.2.1 Clockless Syntax

Similar to the ToM, calendar based models can also be defined in a clockless manner. However we restrict
the set U to,

U = T ∪ X ∪Var ∪ C,
where update−i is defined using same rule as in the case of clockless ToM.

6.2.2 Clockless Semantics

Similar to the clockless ToM, we can define a transition system for clockless calendar based models. Here
we need to modify the Time Progress, Timeout Increment, Send, and Receive Transitions as defined
earlier for CCTS. Synchronous Communication transition is similar to the one for timeout based model
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with clockless semantics.

Time Progress Transition: The first kind of edges ν+ are redefined so that all the timeout and cal-
endar delay entries are decremented by the minimum of all timeouts and the message delays in calendar.
In particular,

ν+ ≡ (σ−, σ′−) ∈ Γ−+ ⇔


1. min{σ−(T ) ∪∆(σ−(C))} > 0
2. ∀τ ∈ T : σ′−(τ) = σ−(τ)−min{σ−(T ) ∪∆(σ−(C))}
3. ∀λ ∈ ∆(σ−(C)) : σ′−(λ) = σ−(λ)−min{σ−(T ) ∪∆(σ−(C))}
4. ∀x ∈ X ∪Var : σ′−(x) = σ−(x)
5. ∀i : σ′−(πi) = σ−(πi)

Timeout Increment Transition: For the second kind of edges νi0, if there is an edge in process Pi connecting
source location lij to target location lik and is labeled by the instruction ρ⇒ 〈τi := update−i , γ, f〉, then

νi0 ≡ (σ−, σ′−) ∈ Γ−0 ⇔



1. ρ holds in σ−

2. If min{σ−(T )} = σ−(τi) = 0
then σ′−(τi) = update−i > 0

else σ′−(τi) = σ−(τi)
3. ∀y ∈ γ : σ′−(y) = σ′−(τi) + σ−(y) and
∀x ∈ X \ γ : σ′−(x) = σ−(x)

4. ∀v ∈ G ∪ Li : σ′−(v) = f(σ−(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′−(v) = σ−(v)

5. σ−(πi) = lij and σ′−(πi) = lik

Send Transition: If there is an edge in process Pi, which connects source location lij to target location lik
and is labeled by the instruction ρ⇒ 〈send(m, i,Ω,Λ), update−i , γ, f〉, then we have corresponding edge
νisend which adds |Ω| cells to the calendar array C:

νisend ≡ (σ−, σ′−)⇔



1. ρ holds in σ−

2. If min{σ−(T )} = σ−(τi) = 0
then σ′−(τi) = update−i > 0

else σ′−(τi) = σ−(τi)
4. ∀y ∈ γ : σ′−(y) = σ′−(τi) + σ−(y) and
∀x ∈ X \ γ : σ′−(x) = σ−(x)

5. ∀v ∈ G ∪ Li : σ′−(v) = f(σ−(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′−(v) = σ−(v)

6. ∀(r, λr) ∈ Ω : σ′−(C) := σ−(C) + {m, i, r, λr}
7. σ−(πi) = lij and σ′−(πi) = lik

Receive Transition: If there is an edge in process Pr, which connects source location lrj to target location
lrk and is labeled by the instruction True ⇒ 〈receive(m, i, r), γ, f〉, then we have corresponding edge
νrreceive which deletes the cell containing {m, i, r, λr} from the calendar array C:

νrreceive ≡ (σ−, σ′−)⇔



1. ∃{m, i, r, λr} ∈ σ−(C) s.t. λr = 0
2. σ′−(τr) = update−r > 0
3. ∀y ∈ γ : σ′−(y) = σ′−(τi) + σ−(y) and
∀x ∈ X \ γ : σ′−(x) = σ−(x)

4. ∀v ∈ G ∪ Lr : σ′−(v) = f(σ−(v)) and
∀v ∈ Var \ (G ∪ Lr) : σ′−(v) = σ−(v)

5. σ′−(C) := σ−(C) \ {m, i, r, λr}
6. σ−(πr) = lrj and σ′−(πr) = lrk

Thus the clockless semantics defines a possible clockless computation ξ− of TCTS/CCTS as a sequence
of states σ−0 , σ

−
1 , · · · .

6.3 LTL formulas for Clockless Models

A remark about the LTL formulas that would be verified against clockless models, is in order. These
formulas will not involve the global timing variable t. The LTL formulas will be built using finitely many
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atomic propositions (constraints), which may be defined in terms of state variables for which the possible
combinations of valuations needs to be finite.

Assuming that typical arithmetic constraints are defined in terms of variables in U (as defined before
for clockless timeout and calender models), let us now define a point-wise or event based semantics for
LTL formulas based on its classical semantics [CGP99]. A model for a LTL formula would consist of a
sequence of states of the form

σ0, σ1, · · · ,
such that each state σi gives a boolean interpretation (true, false) to the propositions, and non-negative
integer valued interpretation to the timeout variables in T , timing variables in X , and state variables
in Var , all of which are bounded above by some positive integer constant. In a state σi, let us assume
σi(v) to be the value of v ∈ U . Considering an example of an arithmetic constraint as tj − tk ≥ c, where
tj , tk ∈ T ∪ X and c an integer constant, the satisfaction relation |= can be defined as

σi |= p iff σi(p) = true

σi |= tj − tk ≥ c iff σi(tj)− σi(tk) ≥ c
σi |= ¬φ iff σi 6|= φ
σi |= φ ∨ ψ iff σi |= φ or σi |= ψ
σi |=©φ iff σi+1 |= φ
σi |= φUψ iff ∃k > i. σk |= ψ and ∀j.i ≤ j < k. σj |= ψ

In terms of these LTL formulas, using Clockless ToM, one can essentially verify all those qualitative
properties of the associated real-time system, which are otherwise prohibitively difficult to do using the
clocked ToM models and timed temporal logics. This is because clockless models preserve the qualitative
behavior of the clocked models and LTL can effectively specify these properties. As the valuations of
the variables in the clockless models are bounded, the clockless models effectively give rise to finite state
behaviors. Indeed, we can also estimate the approximate size of the clockless TCTS having direct bearing
on the time complexity of its LTL model-checking. Assume a clockless ToM with n parallel processes
with k local timing variables. Let the valuations of timeouts and timing variables be bounded above
by M = max(M). Also let the sizes of the clockless TTDs of these processes are bounded by D. In
terms of these, the size of the clockless TTS could be bounded by F = O(max{Mn+kDn, |Γ−|}), using
asymptotic notation. This, in turn implies that complexity of model checking such clockless TTS for a
LTL formula φ would be O(F2|φ|) [VaW86].

6.4 Clockless Models (Bi-)Simulate Clock Models

In this section we will show that clockless models (bi-)simulate clock models with respect to LTL for-
mulas. Let us consider a ToM P and its TCTS SP = (V,Σ,Σ0,Γ) and also the clockless ToM P− and
corresponding timeout based clockless transition system S−P = (V−,Σ−,Σ−0 ,Γ−); both of them modeling
the same system. Given a computation ξ : σ0→σ1→· · · over SP let us generate a clockless computation
as a sequence of states σ−0 , σ

−
1 · · · over S−P as follows:

• Initial states correspond:
∀τ ∈ T . σ−0 (τ) = σ0(τ),
∀x ∈ X . σ−0 (x) = σ0(x),
σ−0 (πi) = σ0(πi) =⊥ .

• Entry transition: if (σ0, σ1) ∈ Γe then
1. ∀τ ∈ T .σ−1 (τ) = σ1(τ),
2. ∀x ∈ X .σ−1 (x) = σ1(x),
3. σ−1 (πi) = σ1(πi) = li0

• Time progress transition: if (σi−1, σi) ∈ Γ+ then
1. ∀τ ∈ T .σ−i (τ) = σi(τ)−min{σi−1(T )},
2. ∀x ∈ X .σ−i (x) = σi(x),
3. ∀i.σ−i (πi) = σi(πi).
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• Timeout increment transition: if (σi−1, σi) ∈ Γe (which is labeled by the instruction ρ ⇒ 〈τi :=
update−i , γ, f〉) then

1. if σ−i−1(τi) = 0 then σ−i (τi) = update−i , else σ−i (τj) = σi(τj)
2. ∀x ∈ γ.σ−i (x) = min{σi−2(T )}+ σi−1(x),
3. ∀x ∈ X \ γ.σ−i (x) = σi−1(x),
4. ∀i.σ−i (πi) = σi(πi).

where update−i is defined in P−.

• Synchronous communication: if (σi−1, σi) ∈ Γsyn comm then

1. σ−i (τs) = σi(τs) and σ−i (τr) = σi(τr)
2. ∀x ∈ X .σ−i (x) = σi(x)
3. σ−i (m̄) = σi(m̄) and σ−i−1(m) = σi−1(m)
4. ∀v ∈ G ∪ Ls : σ−i (v) = σi(v) and ∀v ∈ G ∪ Lr : σ−i (v) = σi(v)
∀v ∈ Var \ (G ∪ Ls ∪ Lr) : σ−i (v) = σi(v)

5. σ−i−1(πs) = σi−1(πs) = lsj , σ
−
i−1(πr) = σi−1(πr) = lrj and

σ−i (πs) = σ−i (πs) = lsk, σ
−
i (πr) = σi(πr) = lrk

Check that σ−0 ∈ Σ−0 and ∀i.(σ−i−1, σ
−
i ) ∈ Γ−. It is clear ξ− = σ−0 →σ−1 → . . . forms a clockless computation

over S−P . We can associate a mapping Tr : Σ × Σ → Σ− parameterized by an entry transition as
follows. Fix two states, σ0 ∈ Σ0, σ1 ∈ Σ, such that (σ0, σ1) ∈ Γe. Call γ = (σ0, σ1). Then define
Trγ(σ0, σ0) = σ−0 ,Trγ(σi, σi−1) = σ−i , ∀i ≥ 1.

We say that computations ξ : σ0σ1 . . . in SP and ξ− : σ−0 σ
−
1 . . . in S−P correspond if and only if there

exists Trγ : Σ × Σ → Σ− such that σ−0 = Trγ(σ0, σ0) and for every i ≥ 0, σ−i = Trγ(σi, σi−1), where
γ = (σ0, σ1). Let σ ∈ Σ and σ− ∈ Σ− be two states and there be a computation in SP which starts in σ.
Then it is easy to see that there exists a corresponding computation in S−P beginning with σ− [CGP99].

We consider LTL formulas consisting of propositions and variables appearing in clockless transition
system of S−P . Assume σ ∈ Σ and σ− ∈ Σ− are two states such that Trγ(σ, σ′) = σ− for some σ′ ∈ Σ
and some entry transition γ. Then for any LTL formula φ, σ− |= φ implies σ |= φ (using the semantics
of LTL formulas as discussed in Section 6.3). This can be proved using the induction on the structure of
φ. Finally, S−P |= φ implies SP |= φ. This is in some sense, we can say S−P simulates SP [CGP99]. Thus
it is enough to verify properties on the clockless transition system S−P instead of on SP .

Similar results can be established for calendar-based clocked transition system (CCTS) also. In fact
a reverse mapping cane be defined too. To see this let us assume ξ− = σ−0 , σ

−
1 . . . to be a clockless

computation over S−. Now generate a sequence of states σ0, σ1 . . . as follows.

• σ0(t) = min{σ−0 (T )},∀τ ∈ T .σ0(τ) = σ−0 (τ),∀x ∈ X .σ0(x) = σ−0 (x), σ0(πi) = σ−0 (πi) =⊥.

•

if (σ−0 , σ
−
1 ) ∈ Γe then


1. ∀τ ∈ T .σ1(τ) = σ−1 (τ),
2. ∀x ∈ X .σ1(x) = σ−1 (x),
3. σ1(πi) = σ−1 (πi) = li0,
4. σ1(t) = σ−1 (t) = σ−0 (t)

•

if (σ−i−1, σ
−
i ) ∈ Γ+ then


1. ∀τ ∈ T .σi(τ) = σi−1(τ),
2. ∀x ∈ X .σi(x) = σi−1(x),
3. ∀i.σi(πi) = σ−i (πi),
4. σi(t) = min{σi−1(T )}.

•

if (σ−i−1, σ
−
i ) ∈ Γe then


1. if σ−i (τi) = 0 then σi(τi) = updatei, else σi(τj) = σi−1(τj)
2. ∀x ∈ X .σi(x) = σi−1(x),
3. ∀i.σi(πi) = σ−i (πi),
4. σi(t) = σi−1(t)
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•

if (σ−i−1, σ
−
i ) ∈ Γsyn comm then



1. σi(τs) = σ−i (τs) and σi(τr) = σ−i (τr)
2. ∀x ∈ X .σi(x) = σ−i (x)
3. σi(m̄) = σ−i (m̄) and σi−1(m) = σ−i−1(m)
4. ∀v ∈ G ∪ Ls : σi(v) = σ−i (v) and ∀v ∈ G ∪ Lr : σi(v) = σ−i (v)
∀v ∈ Var \ (G ∪ Ls ∪ Lr) : σi(v) = σ−i (v)

5. σi−1(πs) = σ−i−1(πs) = lsj , σi−1(πr) = σ−i−1(πr) = lrj and

σ−i (πs) = σ−i (πs) = lsk, σ
−
i (πr) = σi(πr) = lrk,

6. σi(t) = σi−1(t).

Clearly, ξ : σ0→σ1→· · · is a computation over S. Associate a mapping Tr′ : Σ− → Σ with this such
that Tr′ : σ−i 7→ σi,∀i. Let us try to compose these two mappings. Note that Tr ◦Tr′ = id,Tr′ ◦Tr = id
where id is an identity mapping. This implies that Tr is a bijective mapping and (Tr)−1 = Tr′.

Define a relation B ⊆ Σ× Σ− as follows: for two states s ∈ Σ and s− ∈ Σ− we have B(s, s−) if and
only if s− = Tr(s). Assume s and s− satisfy the same atomic propositions. Also observe that

• for every state s1 ∈ Σ : (s, s1) ∈ Γ there exists s−1 ∈ Σ− : (s−, s−1 ) ∈ Γ− such that s−1 = Tr(s1),
i.e., B(s−, s−1 ).

• for every state s−1 ∈ Σ− : (s−, s−1 ) ∈ Γ− there exists s1 ∈ Σ : (s, s1) ∈ Γ such that s1 = (Tr)−1(s−1 ),
i.e., B(s−, s−1 ).

Hence B is a bisimulation relation between S and S−. Finally, we can see for this bisimulation relation B,
for every initial state s0 ∈ Σ in S there is an initial state s−0 ∈ Σ− in S− such that cB(s0, s

−
0 ). In addition,

for every initial state s−0 ∈ Σ− in S− there is an initial state s0 ∈ Σ in S such that B(s0, s
−
0 ). Hence

S and S− are bisimulation equivalent [CGP99]. Since bisimulation equivalent structures preserve LTL
formulas [CGP99] we shall be dealing with clockless timeout based models for our verification purposes.

7 Experimental Evaluation

In this section we illustrate finite state verification of real-time systems through clockless modeling on
three real-time protocols introduced earlier - Fisher’s Mutual Exclusion Protocol, TGC, and TTA startup
protocol. We perform finite state model checking of these protocols by Spin and SAL-smc model checkers.
For applying our technique we assume that the timeout increments of these protocols are more than one
time unit. We carry out our experiments on a machine with 2.26GHz Intel Core 2 Duo processor,
3 MB shared level 2 cache and 2GB 1066MHz DDR3 SDRAM, running MAC OS X Version 10.5.7.
For experimentation with Spin, we use XSpin graphical interface. To verify a property prop for a SAL
specification model.sal we use the following SAL command:

sal-smc -v 3 model prop –enable-dynamic-reorder

Here enable-dynamic-reorder is a flag used with SAL-smc that enables dynamic reordering of BDD vari-
ables.

7.1 Fischer’s Mutual Exclusion Protocol

A clockless model of the Fisher’s mutual exclusion protocol is depicted in Figure 4. We consider the
following safety property for Fischer’s protocol, “no more than one processor can be in the critical
region at any time”. The property is frequently referred as mutual exclusion property. This can be
represented in LTL as:

�(in critical ≤ 1)

To verify the safety property for Fischer’s mutual exclusion protocol in Spin we used exhaustive
verification and bitstate hashing technique available in Spin, in both the cases keeping the the option of
partial order reduction turned on. By exhaustive verification technique, we could verify models containing
only upto 4 nodes. Bitstate hashing enabled us to verify the same property for models with upto 6
nodes. Table 1 illustrates the computational resources and time required to prove the safety property
for Fischer’s mutual exclusion protocol using bitstate hashing technique.

We perform clockless modeling of Fischer’s protocol in SAL language. Table 2 presents the number of
states visited and time required to prove the mutual exclusion property. We have been able to verify
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(lock 6= 0 ∧ τi = 0) ⇒
〈τi := k|k > 0〉

(lock = 0 ∧ τi = 0) ⇒
〈τi := k|k < d1〉

(τi = 0) ⇒
〈τi = k|k > d2, lock := i〉

(lock 6= i ∧ τi = 0) ⇒
〈τi := k|k > 0〉

(lock = i ∧ τi = 0) ⇒
〈τi := k|k > 0,

in critical := in critical + 1〉

(τi = 0) ⇒
〈τi := k|k > 0, lock := 0,

in critical := in critical − 1〉

1

Figure 4: Clockless model for the ith processor in the Fischer’s Protocol

Table 1: Computational resources required for verification of the Fischer’s Protocol using bitstate hashing

Property N # States # States # Transitions Memory Time
Stored Matched (MB) (sec)

2 563 463 1026 8.501 0.1
3 18220 29625 47845 8.598 0.11

Safety 4 667995 1716011 2384003 44.383 5.01
5 21373206 75073507 96446713 395.366 203.09
6 36720364 1.4129329e+08 1.7801365e+08 1722.014 908.56

Table 2: States explored and time required to verify mutual-exclusion property by SAL-smc for Fischer’s
protocol

# Nodes # States Time # Nodes # States Time
Explored (sec) Explored (sec)

2 468 0.15 10 1.189e12 69.9
3 7968 0.30 11 1.697e13 213.76
4 124760 1.40 12 2.417e14 196.36
5 1.876e6 2.35 13 3.438e15 2767.91
6 2.760e7 3.84 14 4.885e16 21731.91
7 4.010e8 12.43 15 6.935e17 4516.85
8 5.786e9 23.04 16 9.839e18 10376.53
9 8.306e10 44.604 17 – –
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 c2  c0  c1 

                          True⇒  
      〈ch?exit, τc := k | 0 ≤ k ≤ 10〉    

True⇒ 〈ch?approach,  
  τc := k | 0 ≤ k ≤ 10〉    

      (τc = 0)⇒ 〈ch1!raise,τc := ∞〉             (τc = 0)⇒ 〈ch1!lower,τc := ∞〉    
                      Controller 

t1 

t0 

t2 

    (τt = 0)⇒  〈τt := k | 0 ≤ k ≤ 50-x〉    

               (τt = 0)⇒ 
     〈ch!exit, τt := k | k > 0〉   

             Train 

(τt = 0)⇒ 〈ch!approach,  
(τt := k | 20 ≤ k ≤ 50), x〉    

g1 g0 

g2 g3 

                True⇒ 〈ch1?lower,  τg := k | 0≤ k < 10〉    

(τg = 0)⇒ 
             〈τg := ∞〉    

    True⇒〈 ch1?raise, τg := k | 10≤ k ≤ 20〉    

(τg = 0)⇒ 
           〈τg := ∞〉    

                   Gate 

Figure 5: Clockless model for Train-Gate Controller

the mutual exclusion property for Fischer’s protocol with 16 processors in around 3 hours (except the
model for 14 nodes, which took around 6 hours). We tried to verify the protocol for 17 and 18 nodes,
and in both the cases, verification ran for more than 7 hours. We did not go for higher number of nodes.

The Fisher’s protocol has been verified under dense time for the same mutual exclusion property
in [DuS04a]. A direct attempt to prove the property by k-induction with induction depth up to 15 fails
for even 2 processors. However, using a sequence of lemmas it was possible to prove the property by
induction at depth 1 for upto 13 processors for the same SAL specification (Table 3.1 of [DuS04a]). The
property was also proved by induction by a sequence of lemmas for a different SAL specification for a
maximum number of 53 processors (Table 3.5 of [DuS04a]).

To compare the performance and scalability of our verification approach with UPPAAL, we verified
Fischer’s mutual exclusion protocol available with UPPAAL distribution. The UPPAAL model is based
on the framework of timed automaton. The mutual exclusion property could be verified successfully
for up to 12 nodes. For 13 nodes, the verification process did not stop even in 7 hours. In verification
with UPPAAL, the TA is reduced to the zone automata which are finite representations of infinite
state systems. Although both our clockless verification scheme and UPPAAL’s zone automata based
verification are based on abstracting an infinite system to a finite one, this experimental result shows
that our technique is more scalable than UPPAAL, while using SAL-smc model checker.
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Table 3: Computational resources and time required for verification of the Train-Gate Controller under
exhaustive verification

Properties # States # States # Transitions Memory Time
Stored Matched (MB) (sec)

Safety 246236 422596 668832 47.947 1.50
Timeliness 253500 415484 668984 50.389 1.58

Table 4: States explored and time required to verify safety and timeliness properties by SAL-smc for
TGC

Properties # States Time
Explored (sec)

Safety 1.123e6 5.24
Timeliness 4.807e5 2.41

7.2 Train-Gate Controller

A clockless model of TGC is depicted in Figures 5.For the TGC example as discussed before, we consider
safety and timeliness properties for verification. The safety property says: When the Train crosses
the line, the Gate should be down. The property is expressed in LTL as:

�((t state = t2)⇒ (g state = g2))

where, t state denotes different states of the Train, and it is t2, when it comes into the crossing, g state
denotes different states of Gate, and is g2, when the Gate is down.

Timeliness property, in general ensures that the time between two states will by bounded by a
particular value. We can find many timeliness properties in this example. We select an important
one, “the time between the transmission of the approach signal by the Train and when the Gate is down
should not be more than 20 time units”. To verify this property we use two auxiliary flags, flag1 and
flag2 in our model. When the first event occurs flag1 is set as true. When the second event happens,
flag2 is set as true and flag1 is reset to false.

A global variable time diff initially set to 0, captures the time between the instants when two flags are
set. During every discrete transition between the two discrete transitions of interest, minimum timeout
value is added to time diff . The timeliness property is then specified as follows, “the value of time diff
never goes above 20”. This is expressed in LTL as,

�(time diff ≤ 20)

In Table 3, we illustrates computational resources and time required to prove the safety and the
timeliness properties for TGC by Spin model checker. Both the properties have been proved by
exhaustive verification keeping the the option of partial order reduction turned on.

We verify the safety and timeliness properties for TGC by SAL-smc, and the result is shown in
Table 4.

It may be noted that dense time verification of the safety property for TGC took 46.15 sec-
onds [DuS04a]. This was proved by k-induction at depth 14 using SAL-inf-bmc.

7.3 TTA Startup Algorithm

Figure 6 depicts the clockless model for the TTA startup algorithm as discussed before in the Section 4.2.
We consider the following safety property, “whenever any two nodes are in their active state the nodes
agree on the slot time”. For two nodes participating in the startup process, the corresponding LTL
property is given below:

�((p1 ∧ p2) ∧ (q1 ∧ q2) ⇒ ♦(r ∧ s)),
where p1 ≡ (pc[0] = state active), p2 ≡ (pc[1] = state active), q1 ≡ (time out[0] > 0), q2 ≡ (time out[1] >
0), r ≡ (time out[0] = time out[1]), s ≡ (slot[0] = slot[1]). Also, pc[i] denotes the current state of the
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   Init Listen 

  Active 

           (τi = 0)⇒  

〈send(cs_frame, i, (R ×{λ1})),  

                   τi := τi
cs

 〉 

(τi = 0) ⇒        

〈send(cs_frame, i, (R ×{λ1})), 

τi := τi
cs

 〉 

             True⇒                     

  〈receive(i_frame, j, i),  

τi := τ
round

 〉 

 

True⇒〈receive(cs_frame, j, i), τi := τ
round

 〉 

True⇒ 〈receive(i_frame, j, i), 

                τi := τ
round

 〉 

(τi = 0)⇒ 

〈send(i_frame, i, (R ×{λ2})), τi := τ
round

 〉 

(τi = 0)⇒ 〈τi := τi
listen

 〉 

True⇒〈receive(cs_frame, j, i),  

τi := τi
cs

 〉 

ColdStart 

Figure 6: Clockless model for the ith processor in TTA Startup algorithm.

ith node, time out[i] denotes the timeout of the ith node, and slot[i] denotes the current time slot viewed
by the ith node. state active characterizes the synchronized state of a node.

The safety property ensures that when the nodes are in active state, then they are indeed synchro-
nized. But it does not address the question whether all the nodes will be eventually synchronized or not.
To ensure that this happens, it is specified in the form of the following liveness property, “eventually
all the nodes will be in active state and continue to do so”. This liveness property for two nodes can
be specified in LTL as follows:

♦�((pc[0] = state active) ∧ (pc[1] = state active))

To verify the safety and the liveness property for TTA startup in Spin, we use both exhaustive
verification and bitstate hashing techniques with partial order reduction availed. By exhaustive verifica-
tion technique, the safety property can be verified for TTA models containing upto 5 nodes, and the
liveness property can be verified upto 4 nodes. Bitstate hashing enables us to verify both the properties
for models with upto 9 nodes. For 10 nodes, the verification does not terminate even in 4 hours. Table 5
illustrates the computational resources and time required to prove the safety and liveness properties
for TTA Startup protocol using bitstate hashing technique.

In Table 6 we describe the number of states and time required to prove the safety and liveness

properties for the TTA Startup protocol using SAL-smc. We have been able to verify both safety

and liveness properties for TTA startup protocol for upto 8 nodes in around 1 hour. Let us contrast
our verification effort with the dense time modeling and verification of the same protocol reported
in [DuS04a, DuS04b]. Using bounded model checking the same safety property was proved for only
2 nodes by k-induction at depth 8, that too using 3 auxiliary lemmas (the proof failed for 3 nodes).
However, the invariant can be strengthened by constructing an abstraction of the transition systems
using a verification diagram-based approach [Rus00], and subsequently the property was verified for
upto 10 nodes.

8 Extension of Timeout and Calendar based Models

In this section we extend our model to incorporate other modeling concepts like inter-process scheduling,
priorities and interrupts, and urgent and committed locations. These extensions will be illustrated using
ToM as a base model, however they can be easily adapted for calendar based ToM also. Also note
that the digitization result presented in Section 5.3, and the finitary reduction and associated clockless
modeling proposed in Section 6 are applicable to these extended models as well because the additional
components defined in these (extended) models are independent of the variables present in the base
model and therefore, do not affect the underlying semantics of the base model.
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Table 5: Computational resources and time required to verify safety and liveness property by bitstate
hashing technique in Spin for TTA Startup

Properties N # States # States # Transitions Memory Time
Stored Matched (MB) (sec)

2 487 143 630 8.501 0.01
3 6142 6490 12632 8.501 0.05
4 217852 483497 701349 8.501 1.46
5 4126813 13188075 17314888 8.501 34.72

Safety 6 16508262 62593403 79101665 8.501 165.46
7 34442659 1.2702415e+08 1.6146681e+08 8.501 364.99
8 40175448 2.4473144e+08 2.8490689e+08 8.598 665.63
9 41008029 1.2976237e+09 1.3386317e+09 8.598 4390.17
2 725 1036 2481 8.501 0.04
3 8305 21980 38562 8.501 0.12
4 249439 1149753 1648373 8.501 3.75
5 4339737 28293352 36972211 8.501 83.32

Liveness 6 12678951 1.1096373e+08 1.3851011e+08 8.501 314.08
7 20128894 2.0273546e+08 2.4108713e+08 8.501 531.80
8 25361336 3.4848047e+08 3.8927174e+08 8.598 936.05
9 40305514 2.307274e+09 2.3482827e+09 8.598 7039.02

Table 6: Computational resources required to verify safety and liveness property by SAL-smc for the
TTA Startup

# Nodes # States Time (Safety Time (Liveness
Property) (sec) Property) (sec)

2 68 0.34 1.18
3 485 0.63 3.28
4 5297 2.75 10.56
5 76345 13.11 48.31
6 1331650 77.23 563.82
7 26872795 4044.31 742.90
8 615902175 3440.63 3101.26
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8.1 Modeling Inter-Process Scheduling

So far, we have considered models capturing true parallelism with non-determinism. However, in some
cases the ability of a system to meet real-time constraints crucially depends on the number of processors
that are available and also, on the process scheduling algorithm. Thus, we need to distinguish between
the models of multiprocessing and multiprogramming. We show how ToM can be extended to include
fixed number of programs that are executed by time sharing, on a single processor. Subsequently we use
our framework to model priorities and interrupts for a general distributed multiprogramming system.
These are motivated by the framework of multiprogramming system introduced in [HMP92b].

A Multiprogramming Timeout based Model (MToM) P has the form

{θ}[(P11||| . . . |||P1l1)||(P21||| . . . |||P2l2)|| . . . ||(Pm1||| . . . |||Pmlm)],

where each process Pi1 . . . Pili , 1 ≤ i ≤ m is a sequential non-deterministic process as we have seen before.
By Pα|||Pβ we mean processes Pα and Pβ share a single processor and are executed on one transition at a
time according to some scheduling policy. Thus there are m groups of processes in the above MToM such
that all the processes in a group share the same processor, e.g., the processes P11 . . . P1l1 would execute
on the first processor. Processes in different groups running on different processors execute concurrently
as in the case of ToM defined in Section 3.1.1. A special case of synchronous communication needs
special care because both the processes need to be simultaneously active: If process Pij and Pi′j′ have a
synchronous communication, these processes must be executing on different processors, that is, i 6= i′.

For example, [(P11|||P12|||P13)||(P21|||P22)] is the model of a system with five processes running on
two processors. The first three processes share the first processor and next two the second processor. A
synchronous communication can take place between two processes only when these processes belong to
different groups.

A timed transition system SP = (V,Σ,Σ0,Γ) can be associated with an MToM also. The key
difference now is that V contains additional processor control variables µ1, . . . , µm, such that µi ranges
over {1, . . . , li,⊥}, i.e., V = U ∪ {µ1, π11, . . . , π1l1} ∪ {µ2, π21, . . . , π2l2} ∪ . . .∪ {µm, πm1, . . . , πmlm}. The
processor control variables assume the value ⊥ before the processor starts executing the processes in
a group. Thereafter, the control of the process Piµi resides at the location πµi executing on the ith

processor. In other terms, only the process Piµi is active on the ith processor, while all other processes
Pij , j 6= µi are suspended. When the execution of the process Piµi is suspended as per the scheduling
policy, in future it can only resume at the last suspended location πiµi .

For simplicity, we will next consider the case of a single processor, that is m = 1 and will drop the
subscript 1 in the notations e.g., µ would stand for µ1 and πj for π1j . Let us now discuss some of
the transitions that would additionally occur in this framework. For example, Γ will contain a set of
scheduling transitions, Γsch.

A scheduling policy determines the set of scheduling transitions. We consider only scheduling policies
with a single entry transition, that is enabled on all states. The entry transition is assumed to be enabled
on the initial states, and activates non-deterministically one of the competing processes. A very popular
and simple scheduling policy is based on greedy scheduling. According to which, a process, currently
in the control of the processor, continues to remain active until all its transition are disabled, when
an arbitrary (other) process with an enabled transition takes over. More flexible scheduling strategies
can be implemented by incorporating explicit scheduling instruction resume(s), where s ⊂ {1, . . . , n}
determines a subset of processes. The scheduling operation resume(s) suspends the currently active
process, Pi and activates, nondeterministically, one of the processes Pj , with j ∈ s. A scheduling edge
in the process Pi will be represented as:

lij
ρ ⇒〈resume(s),[l,m]〉−→ lik

Where [l,m], l < m specifies (optional) delay which the scheduling operation may take between l and m
time units. Such an edge introduces an additional transition in Γ, and grouped in Γsch as follows:

νsch ≡ (σ, σ′) ∈ Γsch ⇔


1. ρ holds in σ
2. σ′(t) = σ(t) + δ
3. ∀y ∈ V \ {µ, πi} : σ′(y) = σ(y)
4. σ(µ) = i and σ′(µ) ∈ s
5. σ(πi) = lij and σ′(πi) = lik

Where δ is a randomly selected constant such that l ≤ δ ≤ m. To add, a suspend(i, j) operation, which
suspends a process Pi and activates process Pj , can also be defined as resume({1 ≤ j ≤ m | i 6= j}), that
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is, the instruction suspend(i, j) delegates the control from the currently active process Pi to the process
Pj . In practice, processes Pi and Pj could have some operational relationship with each other, e.g., Pi
is the parent process, which spawns Pj as its its child process, goes into waiting state and activates Pj .
On termination Pj may hand over the control back to Pi using the operation resume({i}).

8.2 Modeling Priorities and Interrupts

We will next discuss how interrupts can be handled by way of introducing static priorities with global
preemption semantics. Priorities will be represented using non negative integers and will be assigned
to every transition such that lower value would be interpreted as higher priority. During execution a
transition with the highest priority at any time point is selected and current process would be suspended if
the ready process having the transition with the highest priority happens not to be the current process. A
Multiprogramming Timeout based Model (MToM) P with priority is one in which a priority is associated
with every transition in the timed transition systems for P . Using priorities it is possible to design a
simple, static scheduling strategy without resorting to explicitly constructing a scheduler.

As an example, in a ToM, an extended timeout edge e : (lij , ρe ⇒ 〈τi := updatei, γ, f,pe〉, lik) in the
graph of the process Pi would be represented as

e : lij
ρe ⇒〈τi:=updatei,γ,f,pe〉−→ lik,

where an additional parameter pe ∈ N is the priority associated with the transition e. All other edges
e.g., synchronous communication and asynchronous communication would be extended similarly.

Accordingly, we extend the semantics also. For the prioritized timeout edges, a transition with the
highest priority is allowed by adding it in Γ0 in the following way.

Prioritized Timeout Increment Transition: Collect all those extended timeout edges e for which corre-
sponding transitions are enabled in the current state σ, that is, ρe holds in σ. Let Enσ be the set of
these enabled edges. Now select those timeout edges eh ∈ Enσ, which have the highest priority, i.e.,
∀e′ ∈ Enσ.ph ≤ pe′ . Add transition νh ≡ (σ, σ′) in Γ0 such that:

νh ≡ (σ, σ′) ∈ Γ0 ⇔



1. ρh holds in σ
2. σ′(t) = σ(t)
3. If σ(τi) = σ(t)

thenσ′(τi) = updatei > σ(τi)
elseσ′(τi) = σ(τi)

4. ∀y ∈ γ : σ′(y) = σe(t) and
∀x ∈ X \ γ : σ′(x) = σ(x)

5. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)

6. σ(πi) = lij and σ′(πi) = lik
7. σ′(µ) = i

If there are multiple enabled edges with the same highest priority, their corresponding transitions are
non deterministically interleaved.

The remaining all other transitions can also be extended similarly. Under such extended syntax and
semantics, an interrupt can be modeled as an edge having relatively high priority than other enabled
transitions:

eint : (lij , T rue ⇒ 〈τi := updatei, f,pint〉, lik)

where updatei specifies the delay in interrupt processing and f specifies the steps in interrupt processing.
Note pint is such that ∀σ ∈ Σ.∀e ∈ Enσ.pint ≤ pe.

8.3 Modeling Urgent Location and Committed Location

In UPPAAL there are three different types of locations: normal locations, urgent locations and committed
locations [BDL04]. In a normal location time can progress, but in urgent and committed locations time
is not allowed to proceed. Moreover, there is a subtle difference between urgent and committed locations.
Urgent locations can be interleaved with the normal locations, but a committed location has to be followed
by its immediate successor. The requirement of considering a location to be urgent or committed arises
out of the nature of the application being modeled in UPPAAL. For example, committed locations are
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used to model atomic behaviors in multi-way synchronizations and atomic broadcasting in real-time
systems [BGK02].

In timeout and calendar based models, we model an urgent or a committed location in the following
way. For all the incoming edges to the the urgent or committed location in process Pi, updatei is set to
current time t, and in case of clockless modeling updatei is set to 0.

If a process in a system has a committed location, we introduce a boolean variable committed flag
in the set of global variables G. For all the incoming edges to a committed location, committed flag is
set to 1 (part of f) and for incoming edges to a non-committed state one is not allowed to set the flag
to 1. The guard ρ for a transition following a committed location is always True and committed flag is
reset during this transition. For all the transitions except those following the committed locations, the
existing guard ρ is replaced by ρ ∧ (committed flag 6= 1). This will not allow any other process to take
a discrete transition when a process is in a committed state.

9 Conclusion and Further Work

In this work we have considered the well-known problem of real-time verification with dense time dy-
namics using timeout and calendar based models and proposed a technique to simplify this to a finite
state verification problem. Towards this, we define a specification formalism for these models as timeout
transition diagrams with associated transition system semantics. Next, we proposed a two-step reduction
technique for rendering these models amenable to finite state verification under discrete dynamics. Our
experimental results bring out the advantages gained by this technique over infinite state modeling and
verification. Experiments on Fisher’s protocol and TTA startup protocol highlight that the verification
technique scales reasonably well. Further, liveness properties can be verified in this framework, which
is beyond the capability of infinite state verification. Though in [DuS04a], it has been reported that
verification of Fischer’s protocol can be scaled up to 53 nodes, the verification process involved find-
ing out auxiliary lemmas manually, which is a non-trivial process. On the other hand our finite state
verification, though could not be scaled to this extent, is nonetheless simple and straight-forward. The
verification effort involves only modeling the protocols faithfully. SAL offers a number of tools for finite
state verification, for example, SAL-sim, SAL-path-finder and SAL-deadlock-checker, which help quite a lot
in the verification process. Such tool support is yet not available for infinite state verification. Moreover,
one can use any finite state verification engine of choice using our framework.

We limited our attention to the qualitative temporal properties that exclusively corresponds to LTL
formulas. However, the proposed reduction technique is amenable to any specification logic which is
closed under inverse digitization including branching time temporal logics CTL or CTL∗.

The effectiveness of the proposed finitary reduction technique can be further scaled up by integrating
it with additional abstraction techniques to verify parametric systems, with arbitrary but finite number
of identical processes. Säıdi and Lesens [LeS97] presented an algorithm for automatically constructing
abstraction for such systems to verify safety properties. The (0, 1,∞) counter abstraction method
proposed in [PXZ02] deals with the verification of liveness properties by abstracting a parameterized
system of unbounded size into a finite-state system. The proposed formalism can be further optimized by
considering timeouts as shared variables among processes, so that timeout updation rules could specify
new timeout values based upon those of other processes in the system. This optimization would increase
the level of synchronization between component processes and would hopefully scale up the models.

In the larger perspective it can be said that for most of the timeout and calendar based models (i.e.,
for which timeout updates are not restricted to (0, 1)-interval) verification of LTL properties with dense
time dynamics reduces to finite state modeling and verification of the same properties. In industrial
designs, this could offer a significant advantage as it is easier for practitioners to use finite state model
checkers to model and verify timed systems.

Decidability and complexity theoretic aspects of the reachability analysis on these models is an im-
portant research direction for further investigation. A comparison of expressiveness of ToM (or calender
based ToM) with other known formal models of real-time systems including Timed Automata [Alu99],
Timed Petri Nets [Jia98], and Timed Process Algebras [BeJ91] would shed light on the comparative
strength of these models for practical purposes. For example, these comparisons could reveal other prop-
erties desirable of a modeling framework including compositionality, robustness against clock drifts, and
may demonstrate the difficulty of modeling timeout models using these models as compared to ToM.

Acknowledgment Indranil Saha and Suman Roy did most of this work when they were with HTS
Research, Bangalore.
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