
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Speeding up Test Execution with Increased Cache Locality

Citation for published version:
Stratis, P & Rajan, A 2018, 'Speeding up Test Execution with Increased Cache Locality', Software Testing,
Verification and Reliability, vol. 28, no. 4. https://doi.org/10.1002/stvr.1671

Digital Object Identifier (DOI):
10.1002/stvr.1671

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Software Testing, Verification and Reliability

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1002/stvr.1671
https://doi.org/10.1002/stvr.1671
https://www.research.ed.ac.uk/en/publications/820c704c-7fcb-4362-aa3f-dfec79506e0e


SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 0000; 00:1–24
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Speeding up Test Execution with Increased Cache Locality

Panagiotis Stratis, Ajitha Rajan

School of Informatics, University of Edinburgh UK

SUMMARY

As the scale and complexity of software increases, the number of tests needed for effective validation
becomes extremely large. Executing these large test suites is expensive, both in terms of time and energy.
Cache misses are a significant contributing factor to execution time of software. We propose an approach
that helps order test executions in a test suite in such a way that instruction cache misses are reduced. We
also ensure that the approach scales to large test suite sizes.
We conduct an empirical evaluation with 20 subject programs and test suites from the SIR repository,
EEMBC suite and LLVM Symbolizer, comparing execution times and cache misses with test orderings
maximising instruction locality versus a traditional ordering maximising coverage and random permutations.
We also assess overhead of algorithms in generating the orderings that optimise cache locality. Nature of
programs and tests impact the performance gained with our approach. Performance gains were considerable
for programs and test suites where the average number of different instructions executed between tests was
high. We achieved an average execution speedup of 6.83% and a maximum execution speedup of 17% over
subject programs with differing control flow between test executions. Copyright © 0000 John Wiley &
Sons, Ltd.

Received . . .

1. INTRODUCTION

-Testing to ensure the software meets its requirements is a notoriously hard and time consuming
process, often representing 50% of the cost of software development [1]. As the scale and
complexity of software increases, the number of tests needed for effective validation becomes
extremely large, slowing down development and hindering programmer productivity with time
consuming test runs. This is frequently encountered in Test-driven development (TDD) [2], a
popular development practice adopted by companies like Microsoft, IBM and Google [3], [4] that
requires developers to first write a test that fails before writing any new functional code. Increasing
numbers of tests present a challenge for both, test generation and test execution, that make up a
large fraction of the overall testing cost [5, 6]. Automating test input generation to reduce cost has
received a lot of attention in the literature [7]. Reducing time and cost of test execution, on the other
hand, has received little attention. Existing solutions in the literature reduce the total number of tests
to be executed. This, however, can impact fault finding capability negatively [8, 9]. In this paper, we
focus on reducing test execution time while retaining its effectiveness in fault finding.

Copyright © 0000 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]



2

Cache Effects on Execution Time. Applications in the present day are primarily memory speed
rather than processor speed bounded, owing to rapid advances in processor performance. Cache
misses are a significant consideration for memory speed [10, 11]. Powerful cache optimizations
are crucial to improving the cache behavior and increasing the execution speed of these programs.
Cache misses are reduced by increasing the locality of memory references [12], for both data and
instructions. Well known optimisations include loop transformations [13, 14, 15], such as loop tiling
and fusion, procedure reorderings and code layout optimisations [16, 17, 18].

Cache Locality Applied to Test Execution. Existing literature has only considered improving
data/instruction locality over single program runs. Enhancing cache locality across program runs
has previously not been considered and is an entirely novel contribution. We first proposed the idea
of improving instruction locality across program test runs in [19]. The motivation for considering
this optimisation was because of the observation that in program testing, we execute the same
program several times (albeit with a different test data) increasing the chances of seeing repeated
instruction sequences. We hypothesized that the knowledge of common instruction sequences
between test cases can be used to help improve the performance of the instruction cache and,
potentially, the entire test suite execution.

1.1. Recent work

Our approach proposed in [19] permuted tests in a test suite such that distance between neighbouring
test runs is minimised. Distance is measured as number of different instructions between test runs.
Permuting this way ensures that tests with similar instruction sequences will be executed in close
succession, improving the chances of reusing cached instructions. We conducted a preliminary
evaluation using 4 programs and associated test suites from the SIR repository [20]. We checked
if the order in which tests are executed affects total execution time of test suite. We found that order
of test execution matters, with significant time differences between worst and best permutations.

We also compared execution time of the optimised order to the distribution of execution times
over 2000 random permutations of tests in the suite. Their optimised permutation outperformed a
large fraction of random permutations with significant performance gains over the average and worst
permutation.

1.2. Our contributions

The contributions in this paper, different from [19], are summarised as follows,

1. Overhead and Approximation: We conduct a detailed analysis of overhead incurred by the
optimisation proposed in [19]. This was not discussed in our previous paper. We found the
overhead of the existing algorithm to be significant. In this paper, we use an approximate
algorithm to reduce overhead.

2. Empirical Evaluation: We compare execution times, cache misses and overhead, using
programs from different benchmark families, between our original algorithm in [19] and the
proposed approximation.

3. We do the following additional analyses in our empirical evaluations,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



3

• Compare with Branch Coverage Ordering: We compare execution times of the
locality optimised orders with a well known greedy branch coverage ordering. We also
compare results of the optimised ordering with random permutations of tests.

• Cache Misses: We examine whether execution using locality optimised order reduces
cache misses, and if the reduction in cache misses is associated with a corresponding
reduction in execution time.

4. Guideline: Analysis of program and test suite features that are favourable for speedup gains
using the proposed cache locality optimisation.

We found that the approximation algorithm proposed in this paper scales better than the original
algorithm in [19] for large test suites and incurs a much smaller overhead. The execution speedup
of test suite ordered with the approximation algorithm over branch coverage ordering was a
maximum of 13%. We also confirmed that the execution speedups with both the approximation and
original orderings were associated with a corresponding reduction in the number of cache misses.
Performance gains were considerable for programs and test suites where the average distance
between test runs was high.

The paper is organised as follows. Section 2 provides background on cache locality and related
work. Section 3 presents the algorithms and implementations of our approach. Our experimental
setup and subject programs are described in Section 4. Performance gains with respect to execution
time for the different test suite orderings is presented in Section 5. Overhead of original and
approximate locality ordering algorithms is analysed in Section 6. We present further analysis and
a guideline to using our approach in Section 7.

2. BACKGROUND AND RELATED WORK

Present day modern applications require a vast amount of memory in order to meet their data
requirements. Additionally, processor speeds have become much faster than memory speeds. As
a result, execution times of many applications are memory speed, rather than processor speed
bounded [21]. To help bridge the speed gap, memory systems are organised as a hierarchy with
multiple layers of fast cache memory. CPU caches comprise of an instruction cache to speed up
executable instruction fetch, and a data cache to speed up data fetch and store. Caches play a key
role in minimizing the access latency and main memory bandwidth demand. Caches operate by
retaining the most recently used data. If the processor reuses the data quickly, cache hits occur.
Conversely, if it reuses the data after a long time, intervening data can evict the data from the cache,
resulting in a cache miss. Cache misses cause the CPU to stall and in many applications result in a
significant penalty in execution time [10, 11].

Cache misses have been shown to be inversely proportional to the locality of memory references
during program execution [22]. Temporal locality is achieved by minimizing the time between
references of the same memory address, i.e. the reuse of the same data within a small time frame.
Spatial locality, on the other hand, is achieved when memory accesses which are close in time are
also close in physical storage location. In terms of cache memory design, fetching large blocks of
data (cache lines) when a cache miss occurs has the potential to increase spatial locality. However,
this approach may have a negative effect on temporal locality since there is no guarantee that the

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



4

additional data of the fetched cache line will be useful. Predictors and pre-fetch buffers have been
proposed by the research community in a attempt to improve spatial locality without compromising
temporal locality [23].

Compiler researchers have proposed the use of reuse distance as a metric to approximate cache
misses [24]. Beyls et al. [25] state reuse distance of a memory access as “the number of accesses to
unique addresses made since the last reference to the requested data”. In a fully associative cache
with n lines, a reference with reuse distance d < n will hit, and with d ≥ n will miss. The concept
of cache re-use has primarily been used in the context of data locality.

In the early 1990s, compiler optimisations were proposed to improve the cost of executing
loops [26, 14]. These optimisations improve locality of data references in loops through:

• Loop permutations - If possible, change the sequence of loop iterations so that the iteration
which enhances data reuse is placed innermost [27].

• Loop tiling - Iterations are reordered so that outer loop iterations are executed without waiting
for the iterations of inner loops to complete execution. By this way, the distance reuse of data
associated with the outer loops is decreased.

• Loop fusion - Multiple loops are merged under one.

• Loop distribution - Independent statements inside a single loop are separated into multiple,
single-statement loops.

• Variable padding - Inter-variable padding refers to adjusting variable base addresses while
intra-variable padding refers to modifying the size of data arrays. Both techniques are used
heavily in compilers and have been identified to be effective in minimizing conflict misses in
loops [27].

Procedure re-ordering and code layout optimisations are available in the literature for improving
instruction spatial locality. Chang et al. [28] use dynamic profiling in conjunction with function
inlining in an attempt to position instructions in such a way that spatial instruction locality is
maximised. Chen et al. [29] propose a co-location technique for functions and basic blocks which
are visited sequentially for achieving greater spatial locality.

Temporal locality of instructions has not been considered before, especially since existing
optimisations are over a single execution of the program with little chance of repeated instruction
sequences*. Temporal locality across mutliple executions was first proposed by us in [19]. Our
approach presented in [19] is not meant to compete with the existing work on compiler or code
layout optimisation. Instead, it is best if they are used together since we aim to improve temporal
locality of instructions across several executions, while existing work improves temporal/spatial
locality of data and spatial locality of instructions within a single execution.

Over the last decades, research community has focused on discovering ways for reducing the
number of test cases. Code coverage metrics are being used by industry and academia to describe
the degree to which a program is tested by a test suite [30]. These criteria are frequently encountered

∗Unless the instructions occur within a for loop, in which case existing loop transformations help improve locality.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



5

in regression [31] and black-box [32, 33, 34] testing where the number of test cases can become
intractable for non-trivial software. Numerous optimisation techniques have been proposed which,
based on coverage criteria, attempt to reduce the number or the size of the test cases. Test
suite minimisation [35] refers to the systematic removal of test cases while ensuring that the
test suite satisfies a set of test requirements. Test case prioritization [36] is less aggressive than
test suite minimisation. Instead of removing test cases, it ranks them based on how much they
contribute towards achieving a certain criteria, such as structural code coverage. Finally, test case
reduction [37] examines each test case in isolation and attempts to remove redundant behaviour.

The main idea behind existing optimisation techniques is to achieve high coverage with as few
test cases as possible. However, reducing the size or selecting a subset of tests in a test suite has
been shown to also reduce its fault-finding capability [38]. Additionally, as systems become larger
and more complex, the number of test cases needed for achieving acceptable levels of coverage is
still very large [39]. Our approach reduces the execution time of a test suite by permuting and not
removing any test cases therefore it retains the original fault-finding capability of the test suite.
Our methodology can also be applied to already minimized test suites to futher improve their
performance.

3. APPROACH

To maximise temporal re-use of instructions across test executions, our approach in [19] minimised
the distance between tests, where the distance between two tests, Ti and Tj , is defined as:‘

D(Ti, Tj) =
#basic-blocks different between Ti and Tj

Total #basic-blocks visited by all tests
(1)

For scalability reasons, basic blocks were used instead of instructions. Using this distance metric,
we performed nearest neighbour analysis in order to produce a test permutation where the distance
between subsequent tests is minimized. Algorithm 1 illustrates the optimisation approach from [19],
that includes changes that we recently implemented to improve efficiency. The approach in [19]
used set difference of visited basic blocks for computing the distance between tests. We changed
this to use hamming distance by representing the set of visited basic blocks as binary vectors. These
changes are captured in Steps 2 and 3. Steps 1 to 3 dynamically analyse test executions and computes
the distance matrix. The remaining steps implement nearest neighbour analysis. The starting test is
the one with the most unvisited neighbours.

This optimisation algorithm is quadratic in complexity with respect to number of tests. The main
computational bottleneck is the calculation of the distance matrix which has N2

2 complexity for
a test suite with N tests. We found in our evaluation in Section 6 that the optimisation algorithm
from [19] was unable to scale beyond 14K tests.

To allow the optimisation to be scalable, we implemented an approximate nearest neighbour
algorithm which builds a multi-probe locality-sensitive hashing (LSH) index [40, 41] instead of
calculating the full distance matrix. LSH is a technique for grouping points in high-dimensional
space into buckets based on some distance measure (in our case the hamming distance). LSH uses
special hash functions that map neighbouring objects in high dimensional space into approximately

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



6

Input: N tests, P program, Thr defining cutoff distance between tests to be considered
neighbours

Output: List R with the permuted sequence of the N tests
1: For 1 ≤ i ≤ N , run each test Ti on P and record the set of visited basic blocks for each {BTi}

as well as the set of basic blocks visited cumulatively by the test suite {BTS}.
2: For 1 ≤ i ≤ N , combine each {BTi} with {BTS} in order to create a binary vector {BVi} of

equal length for each test with each bit representing a basic block.
3: ∀i, j ∈ {1, N}, build a N ×N distance matrix of Ti to Tj such that D(Ti, Tj) is the hamming

distance of {BVi} and {BVj}.
4: From the distance matrix, select a starting test T as the one that is not visited and has the most

unvisited neighbours (i.e. D(Ti, Tj) < Thr).
5: Set this to currentT, mark it as visited, and insert it into the end of list R.
6: If currentT has no unvisited neighbours, go to Step 9.
7: Pick the neighbour that is not visited and has the least distance from currentT.
8: Go to step 5.
9: If there are unvisited test runs in the distance matrix go to step 4.

10: Output R as the permuted sequence of tests.
Algorithm 1: Algorithm from [19] for Optimised order

neighbouring objects in low dimensional space (neighbouring objects are mapped into the same hash
bucket with high probability). Multi-probe LSH is a space efficient LSH that reduces the number
of hash tables needed for search accuracy [40]. Our approximation is illustrated in Algorithm 2.
Steps 1 and 2 are identical to the original algorithm but instead of computing the distance matrix,
we construct a multi-probe LSH index. We pick a starting test at random and build an order using
approximate nearest neighbour queried from LSH index until the index is empty.

Input: N tests, P program
Output: List R with the permuted sequence of the N tests

1: For 1 ≤ i ≤ N , run each test Ti on P and record the set of visited basic blocks for each {BTi}
as well as the set of basic blocks visited cumulatively by the test suite {BTS}.

2: For 1 ≤ i ≤ N , combine each {BTi} with {BTS} in order to create a binary vector {BVi} of
equal length for each test with each bit representing a basic block.

3: Construct a multi-probe locality-sensitive hashing index {LSH} from the set of data points
{BVi}, i ∈ 1, N .

4: Select a random starting T from the {LSH} index.
5: Set this to currentT, remove it from {LSH}, and insert it into the end of list R.
6: If {LSH} is empty, go to step 9.
7: Query the {LSH} in order to get the approximate nearest neighbour of currentT.
8: Go to step 5.
9: Output R as the permuted sequence of tests.

Algorithm 2: Approximated order - Approximate nearest neighbour analysis

3.1. Implementation

We implemented our approach in C++11. Our implementation follows from Algorithms 1, 2 and is
illustrated in Figure 1.

3.1.1. Test Analysis. For mapping each test to the set of its visited basic blocks we used Intel’s
Pin tool [42]. Pin is an instrumentation-based dynamic analysis framework which allows the

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



7

Dynamic 
Analysis

Nearest 
Neighbour 
Analysis

Test 1

Test 2

Test 3

Test 4

Test 2

Test 4

Test 1

Test 3

 

 

 

 

Distance
Matrix

Computation

Intel Pin Tool

Our Optimization Tool in C++11

Approximate 
Nearest 

Neighbour 
Analysis 

(LSH)

Test 2

Test 4

Test 3

Test 1

Our Approximation Tool in C++11/FLANN

Set of visited 
basic blocks 
for each test 

case

Figure 1. Implementation

development of customized dynamic program analysis tools (a.k.a Pintools). We developed a
Pintool that records visited basic blocks for a program execution. Given a C/C++ program and
its corresponding tests, our implementation will execute each test independently and dynamically
analyse it with our Pintool.

3.1.2. Test Distance Calculation - Revised Implementation. The implementation in [19] used the
standard C++ library function std::set symmetric difference for computing the distance between
two tests. However, upon profiling, we found that this function does not scale adequately with
respect to the size of visited basic blocks sets. We, therefore, decided to replace the set symmetric
difference operation with hamming distance between std::bitsets, which is semantically equivalent
in our context and has been shown to be very fast in C++ [43]. With this improved implementation
using bitsets, the overhead of the original optimisation algorithm from [19] was significantly
lower.

3.1.3. Approximate Nearest Neighbour. For locality sensitive hashing we used the C++
implementation of FLANN [44], a library for performing fast approximate nearest neighbour
searches in high dimensional spaces. In our configurations, we had 12 hash tables and the length of
the key in these tables was 20.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



8

4. EXPERIMENT

We conduct our experiments over programs from different application domains to assess the
following,

1. Performance - Execution time of Test Suite. We use four different types of test suites in our
evaluation for performance:

• Opt- Test suite ordered according to the optimisation from [19], Algorithm 1.
• Approx - Test suite ordered using our approximation, Algorithm 2.
• BC - Test suite ordered greedily by an existing test adequacy measure. We use branch

coverage in our evaluation since it is a widely used structural coverage metric [45]. It is worth
noting that we do not reduce the test suite size based on branch coverage. We assume all tests
in the suite need to be executed, so we only permute the tests based on branch coverage. The
algorithm itself is a brute-force algorithm which re-orders the test cases in such a way that the
highest branch coverage is achieved as quickly as possible, during the execution of the test
suite. We start from the test case that covers the most branches. We then choose the next test
case as the one that covers most of the remaining branches. We repeat this selection until all
visited branches are covered. Any remaining tests are added at the end of the permutation in
their default order.

• Random - We randomly permute the tests in the test suite. We generate 2000 such random
permutations. This is done for programs in the SIR benchmark [20] and LLVM Symbolizer.
We do not generate random permutations for programs in EEMBC benchmark [46] since
the size of test suites are large, 70K tests. Execution time for large number of random
permutations becomes impractical for such large test suites.

We also assess the reduction in the number of cache misses as a result of the optimisations.

2. Overhead of Optimisation. We assess the overhead for computing the optimised and
approximated permutations with respect to increasing numbers of tests in a test suite.

4.1. Subject Programs

We assess performance and overhead over the following programs:

SIR - We use 11 programs from the SIR repository for our experiment. Programs include lexical
analysers, priority schedulers, a search utility, stream text editor, a statistics program, and an
aircraft collision avoidance system. Most SIR programs are accompanied by 100 to 5500 tests.
Space is the only subject program in SIR with a moderately large test suite - 13585 tests. We
ran the existing test suite associated with each of the SIR programs for our experiment.

EEMBC - We use the Embedded Microprocessor Benchmark Consortium (EEMBC) that provides
a diverse suite of benchmarks for microprocessors, micro-controllers and embedded devices.
We use 8 EEMBC benchmarks – 3 from the automotive domain (AutoBench) and 5 from the
Telecommunications domain (TeleBench) of EEMBC. AutoBench is a benchmark collection
for evaluating the performance of microprocessors and microcontrollers in automotive

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



9

applications, and programs used in our experiment include an angle-to-time converter, a pulse-
width modulator and a road speed calculator. The other 5 EEMBC benchmarks come from the
telecommunications domain and comprise a convolutional encoder, a bit allocator, a viterbi
decoder, a signal correlation program and a fast fourier transformer. For each of the 8 EEMBC
programs, we randomly generated 70000 tests.

LLVM Symbolizer - Finally, we conducted our experiment on an LLVM tool [47], the
llvm-symbolizer which takes as input arbitrary object files along with addresses and
returns the corresponding source code locations. This tool utilizes debug info sessions and the
symbol table of the input object file. We generated 432 tests which are a combination of object
files from well known programs (including SIR and EEMBC) along with a set of randomly
generated addresses.

Table I provides further information on the size of the different subject programs, in terms of average
number of executed instructions, and the size of the test suite used.

Subject Description Size (Avg. Exec. Instrucs.) #Tests Repository
concordance Utility for word indicies 3.6e+06 744 SIR
grep Search utility 2.57e+06 470 SIR
printtokens Lexical analyser 6.27e+03 4130 SIR
printtokens2 Lexical analyser 9.08e+03 4115 SIR
replace Pattern matching and substitution 1.28e+04 5542 SIR
schedule Priority scheduler 5.64e+03 2642 SIR
schedule2 Priority scheduler 1.49e+04 2710 SIR
sed Stream text editor 5.36e+06 358 SIR
space Interpreter for ADL 6.16e+04 13585 SIR
tcas Aircraft collision avoidance system 2.23e+02 1608 SIR
totinfo Statistics computation 1.89e+04 1052 SIR
autcor00 Cross correlation of signals 6.25e+04 70000 EEMBC
conven00 Convolutional encoding 5.99e+04 70000 EEMBC
fft00 Fast Fourier transforms 2.97e+05 70000 EEMBC
fbital00 Bit allocation 7.74e+04 70000 EEMBC
viterb00 Viterbi decoding 5.19e+05 70000 EEMBC
a2time01 Angle-to-time conversion 5.92e+03 70000 EEMBC
puwmod01 Pulse-width modulation 1.33e+06 70000 EEMBC
rspeed01 Road speed calculation 2.18e+07 70000 EEMBC
llvm-symbolizer Address to source code conversion 1.70e+06 432 LLVM

Table I. Subject programs used in our experiment

4.2. Measurement

We run our experiments using a desktop computer powered by an Intel Core 2 Duo E8400 processor
at 3 GHz, 32KB of Instruction Cache, and 32 KB of L1 Data Cache. The machine runs Ubuntu
Server 14.04 with Linux kernel 3.16.0.33. For increased accuracy, we disable any non-critical
services on the Ubuntu server while benchmarking. We measure the execution time of the algorithms
and program test runs using the Unix time command. We report the time the under-profile program
was running on the CPU (user statistic).

5. PERFORMANCE RESULTS

For each of the different benchmarks – SIR, EEMBC and LLVM Symbolizer, we report
performance, using execution time, of the different test suites mentioned in Section 4 – Opt,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



10

Table II. Histogram frequencies of execution time for Opt, Approx, BC, Random Test Suites for 11
SIR programs

Approx, and BC. For SIR programs and the LLVM Symbolizer, owing to smaller size of their test
suites, we also report execution times of 2000 random permutations of their test suites (Random).

5.1. SIR

Comparison of the four different types of test suites – Opt, Approx, BC, and Random, for
the 11 programs in the SIR benchmark † is shown in Table II. Histogram frequencies for the 2000
random permutations, and 100 runs of each of Opt, Approx and BC are shown. The vertical
dashed line shows the median execution time over the distribution for each of the four different
types of test suite. We do not show standard deviation, since we found that the execution times for

†Our earlier work [19] discussed results using only Opt and Random test suites for 4 of the 11 SIR programs shown
here (replace, sed, tcas, totinfo).

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



11

all subject programs over the random test permutations were not normally distributed. We confirmed
this by running chi-squared goodness of fit test, and the p-values for all programs were 0 (rejecting
the null hypothesis that they are normally distributed). To compare independent samples of test
suite execution times without assuming normal distribution, we use a non-parametric test, Mann-
Whitney-Wilcoxon test, with a one-sided research hypothesis that helps us check whether execution
time observed using one test suite type is less than the execution times observed using a different
test suite type.

Observations on Random. It can be seen from the plots in Tables II that execution times clearly
vary across random test permutations. The extent to which execution times vary is different for
each program and associated random tests. Differences between the best and worst permutation
execution times ranged from 9% to 29% across SIR programs. The differences observed over
random permutations can be attributed to test distances being distributed over a wide range for
these programs. Test suites for these programs were such that there were clusters of tests with low
distances between them, i.e. they execute similar control flow paths. Distances between tests across
clusters were high. As a result, random permutations that change the ordering of tests within a cluster
will have little effect on the instruction locality. and those that changed the order across clusters will
have a negative effect on instruction locality. The size and number of clusters will determine the
magnitude of this effect.

Comparison across test suites. It is evident that for all programs, median performance of
Opt does better than the majority of the random permutations and is very close to the best
performing random permutation (left extreme of the blue curve). Opt executes faster than 90%
of the random permutations for most SIR programs. As observed earlier, test suites for these
programs have clusters of tests with low distances within, and high distances across clusters. The
permutation algorithm for Opt ensures that tests within clusters are executed in close succession,
effectively leveraging the instruction locality between them. We believe this is the primary reason
for outperforming a large majority of random permutations. Approx also performs comparably
to Opt on all programs, differences between their medians is between 0.5% to 2%. Among the
test suite orderings, BC typically tends to be worst performing, achieving lesser than the median
Random performance across all SIR programs. We believe this can be attributed to the insensitivity
of the BC ordering to instruction similarity between tests and, as a result, incurs an increased
number of instruction cache misses. We confirm this with the results from cache misses discussed
in Section 5.4. For concordance, although median BC is worst performing, all 4 different test
suite orderings are very close in their execution times. Opt ordering was only faster by 1.6% over
BC. This is because the number of instructions executed per test for concordance exceeds cache
size. Since multiple test executions cannot fit in the cache, it is not possible to improve instruction
locality across tests with Opt and Approx orderings for this program.

Statistical Analysis As mentioned earlier, we use the Mann-Whitney-Wilcoxon test, with a one-
sided research hypothesis to compare execution times of the different test suite orderings. We find
that our results give reasonable evidence to support the following claims at 0.05 significance level,

1. Opt executes faster than {BC, Approx} for all 11 SIR programs.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



12

Figure 2. Comparison of execution times for Approx,BC for 8 EEMBC programs

2. Approx executes faster than BC for all 11 SIR programs.

3. Opt executes faster than Random on 10 SIR programs, excluding grep.

4. Approx executes faster than Random on 10 SIR programs, excluding grep.

grep did not reject the null hypotheses for claims 3 and 4 above, since there was a significant
fraction of random permutations that ran slightly faster than Opt and Approx. The difference
in execution times for the different test suite orderings is very small owing to low test distances
observed in grep.

For all SIR programs, we could not accept the hypothesis that Random executions were faster
than BC at 5% statistical significance. This is not surprising as a significant number of random
permutations had slower executions than BC, as seen from the histogram frequencies in Table II.

5.2. EEMBC

Each of the subject programs in the EEMBC benchmark were accompanied by 70K randomly
generated tests. Each test suite execution took more than 6.5 hours to execute. In the interest of
keeping execution times practical, we did not run 2000 random permutations (Random) of each
test suite. Additionally, we find that the overhead incurred with generating Opt ordering was
prohibitive for test suites with 70K tests. Overhead of algorithms for Opt and Approx is discussed
in Section 6. As a result, we restrict the performance discussion for EEMBC programs (with 70K
tests each) to comparison of orderings generated by Approx and BC, as shown in Figure 2.

Approx versus BC. As can be seen in Figure 2, Approx and BC are comparable in performance,
with Approx being slightly faster than BC. Differences in execution times are in the range of
0.50% to 3% across all 8 EEMBC programs. This may seem surprising after the results observed
over SIR programs. However, on further investigation, we find that these results are to be expected.
The difference in executed instructions between tests in the suite is negligible over all programs,
implying similar visited basic blocks. We measured the distances among tests in the suite to confirm
this and we found the average test distance (as a percentage of the total number of executed
instructions by the full test suite) was in the range of 0.8% to 3% across EEMBC programs. As
a result, orderings exhibit little difference since they all achieve similar locality. In comparison,
average test distance for SIR programs was in the range of 8% to 39%.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



13

Figure 3. Histogram frequencies of execution time for Opt, Approx, BC, Random Test Suites for
LLVM Symbolizer

5.3. LLVM Symbolizer

For LLVM Symbolizer, as with SIR, we generated all four different types of test suites –
Opt, Approx, BC, Random. Figure 3 depicts the histogram frequencies for 2000 Random

permutations and 100 runs of each of Opt, Approx and BC. LLVM Symbolizer showed
significant execution speedup with both Opt (17%) and Approx (13%) relative to BC. Furthermore,
Opt outperformed 98% of the Random permutations, while Approx outperformed 88%. Median
Opt performance was better than median Approx by 4%.

Mann-Whitney-Wilcoxon test comparing test suite execution times supported the following
claims with very high statistical significance, at the 0.000001 significance level (p-values were of
the order of E-07 or lower),

1. Opt executes faster than {Random, BC, Approx}.

2. Approx executes faster than {Random, BC}.

3. Random executes faster than BC.

Performance gains observed over LLVM Symbolizer is highest across all benchmarks in our
experiment. The superior speedup was a result of high distances between test runs in the test suite.
This is further discussed in Section 7.

5.4. Conformance with Cache Miss Rate

The premise in locality orderings (Opt and Approx) is that they will reduce the number of
instruction cache misses by increasing cache locality. This in turn will translate to faster, or reduced,
execution time. We checked this premise for both Opt and Approx orderings. Cache miss rate
was measured by running Cachegrind that is a part of Valgrind [48] on the subject programs.
We find that the reduction in execution times closely follows reduction in cache misses, for the
optimised orderings, relative to BC, over the subject programs. For instance, for replace in
the SIR benchmark, with the Opt ordering, cache miss rate reduction was 18.31% compared to
BC, and execution was faster by 10.14%. With the Approx ordering, cache miss rate reduced by
14.12% with respect to BC, and execution was 8.46% faster. Table III contains the speed-up and
the instruction cache miss rates for all the SIR programs. For fbital00 in EEMBC, cache miss

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



14

rate reduced by 0.9% and execution time by 0.5% using the Approx ordering, when compared
to BC. Unsurprisingly, cache miss rate reduction for all EEMBC programs were very small. LLVM
Symbolizer achieved a more significant reduction in cache misses, 14.8% and 12% with Opt

and Approx orderings, respectively. Corresponding speedup in execution was 17% and 13% with
both orderings.

Subject Speed-Up (%) Inst. Cache Miss Rate Speed-Up (%) Inst. Cache Miss Rate
Approx/BC Reduction(%) Approx/BC Opt/BC Reduction(%) Opt/BC

concordance 1.31 1.97 1.76 2.05
grep 4.66 2.63 5.57 2.65
printtokens 8.00 5.49 9.18 5.37
printtokens2 9.30 5.75 10.14 7.68
replace 8.46 14.12 10.39 18.31
schedule 4.76 2.80 6.13 2.76
schedule2 4.59 2.48 4.98 2.38
sed 5.29 3.22 6.26 3.01
space 3.14 1.11 3.61 1.15
tcas 1.17 0.50 2.58 1.1
totinfo 3.76 1.87 4.36 1.76

Table III. Speed-Up vs Cache Miss Rate Reduction for SIR Programs.

5.5. Impact of Data Locality

The proposed approach exploits instruction locality across tests, for the whole test suite. A natural
question that may arise is, why not data locality across tests? Data locality optimisations involve
re-using data and values; in the context of test executions, this implies re-using state and values
of variables across test cases. Typically, after each test execution, saved state is cleaned up before
starting the next test. Introducing saved state between tests introduces a previously absent data
dependency that can compromise the correctness of the test suite. Safer data locality optimisations
that only operate on global data, that is meant to be shared across tests, has limited potential since
global data, typically, comprise a very small percentage of the total data read and written during test
execution.

Although the proposed optimisations operate across tests, existing optimisations for instruction
and data locality within each test execution are still applicable, as mentioned in Section 2 and it is
best if the optimisations are used together. We test this hypothesis by combining our optimisation
across test executions with an existing data locality optimisation within each test execution. We use
the Polly data locality loop optimiser [49] in LLVM for optimisations within each execution. We
combined each of Opt, Approx and BC, with Polly, and measured their execution time. Polly

operates on the -O3 optimization level in which the compiler tries to optimize code very heavily
for performance. It includes all the optimizations from the previous levels (-O1 and -O2) plus
some more which involve space-speed tradeoffs. All three Polly-optimized permutations executed
significantly faster (10% to 35%) when compared to their non-Polly counterparts. However, the
speedups for Approx vs BC and Opt vs BC were largely unchanged between the Polly and
non-Polly case. The above results indicate that our approach remains useful when combined with
existing data locality optimisations, that operate within a single execution. Speedup observed is
more when combined with existing optimisations.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



15

5.6. Summary

It is clear from the performance results for programs in SIR, EEMBC and LLVM Symbolizer that
the order in which tests are executed affects execution time. The nature of programs and tests, in
terms of range of distances between tests, determines the magnitude of the effect. The differences
between worst and best random permutation ranged between 9% to 29% over SIR programs and
27% over LLVM symbolizer. Opt ordering executes fastest when compared to Random,BC and
Approx orderings. However, it does not scale to large test suite sizes as discussed in Section 6.
Approx ordering gave comparable execution times to Opt over all benchmarks and, in addition,
is capable of scaling to large test suite sizes. Maximum speedup with Approx, relative to BC, was
observed with LLVM Symbolizer (13%) that had high average distance between test runs. Least
gains were observed with programs from the EEMBC benchmark that are compute-intensive with
limited variation in control-flow (largely sequential). Tests, as a result, execute similar basic blocks
with low distances between the different test runs. The scope for speedup with locality ordering is
limited for such programs since there is little change in instruction locality achieved. Finally, we
confirmed that the execution speedup of locality orderings, Opt and Approx, closely correspond
to the reduction in instruction cache miss rates.

6. OVERHEAD RESULTS

In this Section, we discuss the overhead incurred in executing the algorithms for Opt and Approx
orderings. For Opt ordering, we use the efficient implementation using std::bitsets mentioned
in Section 3, rather than the implementation in [19]. We compare overhead (time taken) for the
two orderings relative to increasing number of tests until maximum test suite size is reached. The
overhead for producing Random permutations is negligible since it simply involves randomising the
order of test ids. For BC, there is an overhead in monitoring branches that have been executed and
then permuting the tests based on branches covered. However, as this overhead is well understood
in existing literature [50], we choose to report the overhead of only our algorithms.

6.1. SIR

It is clear from Table IV that overhead of the algorithm to generate Opt ordering grows quadratically
with the number of tests over all SIR programs. We limited our analysis to the maximum number of
tests available in the repository for each program. For the replace program, for instance, overhead
for Opt starts at 0.44 seconds for 554 tests and increases rapidly to 84.55 seconds for 10 times more
tests. Overhead of Approx on the other hand, increases more slowly, only incurring 3.3 seconds
for 5540 tests. This is observed uniformly over all SIR programs. Comparing the overhead of the
two orderings we find overhead of Opt is significantly larger than that of Approx when number of
tests is large. Considering the full test suite for all programs, Opt overhead is greater than Approx
overhead by 28% (for sed) to 2462% (for replace). For subject programs, grep and sed,
absolute value of Opt overhead is very small (< 0.25 secs) since the maximum number of tests
executed with these programs is small (less than 500). At such sizes, Opt overhead is 28% (sed)

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



16

Table IV. Overhead for generating Opt, Approx orderings for increasing number of tests over 11 SIR
programs

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



17

and 53% (grep) more than Approx, which is better than for other programs with larger numbers
of tests.

Smaller overhead with Approx. Using Approx, rather than Opt, results in considerable
overhead reductions across all programs. Overhead of executing the Approx algorithm when
compared to test suite execution time is negligible for 4 of the 10 SIR programs with small test
suite sizes. Overhead is 0.4 to 1.8 times test suite execution time for all other programs, except
space where it is 7 times as much. space has the largest test suite with 13.5K tests, however
the average executed instructions and total test suite execution time is small. As a result, the impact
of Approx overhead is more significant. Overhead for programs and test suites with significantly
longer execution times is discussed in the following Section.

6.2. EEMBC

Overhead of Opt and Approx for EEMBC benchmarks is shown in Table V for an increasing
number of tests, upto 70K. We found that the Opt algorithm does not scale beyond 14K tests
(runs out of memory). The Approx algorithm, on the other hand, does scale to the maximum test
suite size of 70K tests, for all 8 programs. The average Approx overhead, across programs, as a
fraction of the total execution time for 70K tests is 22.6%. Overhead of our ordering algorithm can
be further reduced by running it on GPUs. We found a reduction of over 5 times in the overhead
when running the Approx algorithm for autcor00 with 70K tests on a NVIDIA GeForce GTX
660M with 384 CUDA cores. The overhead of the Approx algorithm varies significantly across
the EEMBC benchmarks ranging from 3000 to 8000 seconds. We also found that the benchmarks
from the automotive domain (a2time01, puwmod01 and rspeed01) have a smaller overhead
for Approx (around 3000 seconds) when compared to the telecommunication benchmarks (4500
to 8000 seconds). We identified the reason for this difference to be the total number of basic blocks
visited collectively by each benchmark’s test suite. In our implementation, this number defines
the size of the binary vector used to represent the visited basic blocks for each test case. For the
telecommunications benchmarks the total number of visited basic blocks is significantly larger than
automotive benchmarks. As a result, the approx algorithm has to operate on a much larger volume
of data which in turn leads to increased overhead for these benchmarks.

6.3. LLVM Symbolizer

The overhead incurred over LLVM Symbolizer is illustrated in Figure 4. For Opt, overhead ranged
from 0.0004 seconds (43 tests) to 0.17 seconds (432 tests) which represents 3.7% of the full test
suite execution time. For Approx, overhead was in the range of 0.001 seconds to 0.28 seconds
(5.8% of execution time). Overhead for Approx is higher than Opt when the number of tests is
small. The time taken to build LSH index in Approx is more significant with small test suites. It
is, however, worth noting that overhead of Approx increases at a slower rate than Opt as test suite
sizes get larger (owing to lower algorithmic complexity). Opt overhead can become prohibitive for
large test suites, as observed over EEMBC programs.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



18

Table V. Overhead for generating Opt, Approx orderings for increasing number of tests over 8 EEMBC
programs

Figure 4. Overhead for generating Opt, Approx orderings for increasing number of tests for LLVM
Symbolizer

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



19

Figure 5. Test Distance versus Time Improvement for Approx ordering over BC

Overhead - Offline and Amortised. The ordering algorithms, whether it be Approx or Opt,
can be performed offline (before a test suite is deployed), avoiding costly overhead during test
execution phase. Additionally, the ordering, once generated, can be re-used for future test suite
runs. It is common practice in embedded devices to periodically run in-situ test suites and this is
further emphasized by practices like test-driven development [51].

6.4. Summary

Overhead of Opt is quadratic in size of test suite and does not scale beyond 14K tests for EEMBC
programs. Overhead of Approx is considerably smaller and scales well to large test suites (70K
tests for EEMBC). We found overhead could be further reduced with the use of GPUs. Additionally,
ordering algorithms can be performed offline and overhead need not be incurred during actual test
suite execution.

7. DISCUSSION

Our results in Sections 5 and 6 indicate that Opt and Approx orderings targeting cache locality
result in faster execution times, than a conventional ordering like BC, but with varying magnitudes
for the different subject programs. In this Section, we analyse reasons for this and present a metric
that can be used to help predict gains and to make informed decisions on whether to apply the
locality orderings.

Figure 5 shows average Test Distance (TD), and execution time improvements (speedup) of
Approx over BC with full test suites for each subject program. Recall that Opt ordering does
not scale for EEMBC programs with large test suites, so we only analyse the results for Approx.
TD between two tests is computed as a fraction using Equation 1, number of different instructions
between the two tests over total executed instructions by a test suite. For a test suite of size N , the
distance matrix between tests is a square matrix (Tij is symmetric to Tji) with diagonal entries being
0. The number of test distances that are computed in such a matrix is N2/2−N . For each subject
program, we average over all such test distances to get the X-axis in Figure 5.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



20

We find that average TD is positively correlated with Approx execution time improvement,
r = 0.76. We do not include concordance program in this computation since a single test
execution exceeds cache size and our current approach is not suited for such executions. Applying
our approach to test executions that exceed cache size is discussed in future work.

Average TD is a good indicator of execution speedups that can be achieved with Approx

ordering when test executions fit in the cache. A higher average TD indicates the differences in
instructions executed by tests in the test suite is higher. Ordering for instruction cache locality has
a higher impact on performance gains for such test suites since it ensures that tests with high TD
between them are not executed in succession, avoiding cache misses that result from the difference.
LLVM Symbolizer has the highest average TD among subject programs of 42% and also the highest
speedup with Approx of 13%. Test suites with low average TD contain tests that execute largely
the same set of instructions (similar control flow). This is often seen in programs, such as those
in the EEMBC suite, that are largely sequential in their control flow with only a few control flow
statements. As a result, any order will have high instruction locality. Opt and Approx orderings
will not result in any significant improvements for such programs and test suites. For our subject
programs, we found that when average TD was low (≤ 2%), execution speedup was correspondingly
low (≤ 2%).

Recommendations. Based on the results over our subject programs, we recommend the Approx
ordering of tests in a test suite since it achieves (1) Comparable execution speedups to Opt, and
(2) Scales well to large numbers of tests, as opposed to Opt. Overhead of Approx is less than
that of Opt for large test suites and can be further reduced by running the algorithm on GPUs. For
subject programs whose executions fit in the cache, we found average TD serves as a good guide
for determining whether Approx ordering will result in reasonable performance improvements.

7.1. Threats to Validity

We see two threats to the external validity of our experiment based on the selection of programs,
and choice of test suites.

We chose programs in our study that are industry standard and well-maintained like the EEMBC
benchmarks, well-tested and widely-used open source programs like the LLVM Symbolizer and
SIR benchmarks. Most programs in our study were also such that their execution fit in the cache.
As a result, our results may only generalize to program executions satisfying this constraint. The
challenge and potential solution in applying locality ordering for executions that do not fit in the
cache is discussed in Section 7.2.

Another threat to external validity relates to the test suites used in our study. We used existing
test suites for the SIR programs and randomly generated test suites that are controlled for test suite
size for the EEMBC programs and LLVM Symbolizer. We cannot claim that the test suites we used
are necessarily representative of all possible test suites. Additional research is needed to assess the
performance of locality ordering with different test generation frameworks and with hand-written
tests.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



21

7.2. Future Work

The effectiveness of locality orderings, as with compiler optimisation techniques, depends on the
characteristics of the program and tests. Size of the program, distances between test runs, number
of tests, cache size, will all have a significant effect on the speedup achieved with our approach. For
programs whose executions exceed cache size, locality ordering of tests will have little effect since
mutliple executions do not fit in the cache. We discuss this challenge and a potential solution that we
plan to pursue in our future work. We also discuss our approach in a parallel test execution setting.

Scaling with Size of Program. As program execution size increases, instruction locality across
test runs becomes a challenge since the cache may not accommodate all the instructions from
a single program run, resulting in capacity misses. To tackle this challenge, we plan to explore
splitting programs into segments that fit in the cache. For instance, say we split a program P into
four segments, S1, S2, S3, and S4, such that each segment fits in the cache. We run all tests on
segment S1 storing the results, and then we run all tests on segment S2 using the results from S1

and so forth. Storing and reading intermediate results from the segment run of a test in order to
execute the successor segment can be overlapped with the execution of other tests on that segment,
reducing the potential bottleneck it may cause. This is a classic pipelining problem which has a well
known solution with respect to instructions. We plan to suitably adapt existing ideas for instructions
to segments. Running permuted tests on the segments rather than the whole program may help
leverage instruction locality for large programs. We will explore the merits of this approach in our
future work.

Running Tests in Parallel. It is often the case that test suites with large numbers of tests are
not run sequentially on a single processor, and are, instead, launched simultaneously on multiple
processors. To achieve this, the test suite is split into groups (or collections) and each group of tests
is executed on a different processor. The algorithm for permuting tests, based on instruction locality,
works by creating groups of tests with low distances within them. Every time we pick a new starting
test (Step 4 in Opt and Approx algorithms), we start a new group. We could, therefore, easily
apply our approach to create and launch groups of tests, with potentially higher instruction locality,
on multiple processors. We believe the locality optimised ordering approach holds promise of time
savings for executions on multiple processors; we will evaluate this hypothesis in our future work.

8. CONCLUSION

We presented an approach for ordering tests to increase cache locality across test executions. The
presented approach is an approximation of ordering presented in [19]. We conducted empirical
evaluations to assess execution speedups using the original approach and approximation relative to
random orderings and a greedy ordering for branch coverage. We used programs from SIR, EEMBC
benchmarks and an LLVM Symbolizer.

Our evaluations revealed that ordering test executions to maximise instruction locality reduces
cache misses and speeds up execution. The nature of programs and tests, in terms of range of
distances between test executions, determine the magnitude of the effect. The differences between

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



22

worst and best random permutation execution times ranged from 9% to 29% over SIR programs
and 27% for LLVM Symbolizer, providing evidence that order matters for test executions. Among
the different orderings, Opt executed fastest but could not scale beyond 14K tests for EEMBC
programs with 70K tests. Approx, on the other hand, could scale to large numbers of tests and
performed comparably to Opt. Overhead in generating Approx ordering is considerably lower
than the overhead for Opt for large test suite sizes. Execution speedup with Approx over BC was
a maximum of 9% for SIR programs, 3% over EEMBC and 13% over LLVM Symbolizer. Based on
our results, it is clear that increasing instruction locality with Approx ordering can help speedup
execution of test suites. For programs whose executions fit in the cache, average test distance can
be used as a guide for determining whether Approx ordering will result in reasonable performance
gains.

REFERENCES

1. Harrold MJ. Testing: a roadmap. Proceedings of the Conference on the Future of Software Engineering, ACM,
2000.

2. Beck K. Test-driven development: by example. Addison-Wesley Professional, 2003.
3. Nagappan N, Maximilien M, Bhat T, Williams L. Realizing quality improvement through test driven development:

results and experiences of four industrial teams. Empirical Software Engineering 2008; 13(3).
4. Maximilien EM, Williams L. Assessing test-driven development at ibm. Proceedings. 25th ICSE, IEEE, 2003.
5. Young M. Software testing and analysis: process, principles, and techniques. John Wiley & Sons, 2008.
6. Rajan A, Sharma S, Schrammel P, Kroening D. Accelerated test execution using gpus. ACM/IEEE ASE’14, 2014.
7. Bertolino A. Software testing research: Achievements, challenges, dreams. Future of Software Engineering, IEEE

Computer Society, 2007; 85–103.
8. Heimdahl MPE, Devaraj G. Test-suite reduction for model based tests: Effects on test quality and implications for

testing. ASE, 2004.
9. Inozemtseva L, Holmes R. Coverage is not strongly correlated with test suite effectiveness. Proceedings of the 36th

ICSE, ACM, 2014.
10. Tiwari V, Malik S, Wolfe A, Lee MC. Instruction level power analysis and optimization of software. VLSI Design,

1996. Proceedings., Ninth International Conference on, 1996; 326–328, doi:10.1109/ICVD.1996.489624.
11. Vijaykrishnan N, Kandemir M, Irwin M, Kim H, Ye W. Energy-driven integrated hardware-software optimizations

using simplepower. Computer Architecture, 2000. Proceedings of the 27th International Symposium on, 2000; 95–
106.

12. Denning PJ. The locality principle. Communications of the ACM 2005; 48(7):19–24.
13. Beyls K, D’Hollander E. Refactoring for data locality. Computer 2009; 42(2):62–71.
14. Carr S, McKinley KS, Tseng CW. Compiler optimizations for improving data locality, vol. 28. ACM, 1994.
15. Grosser T, Zheng H, Aloor R, Simbürger A, Größlinger A, Pouchet LN. Polly-polyhedral optimization in llvm.

Proceedings of the First International Workshop on Polyhedral Compilation Techniques (IMPACT), vol. 2011,
2011.

16. Ramirez A, Barroso L, Gharachorloo K, Cohn R, Larriba-Pey J, Lowney G, Valero M. Code layout optimizations
for transaction processing workloads. ACM SIGARCH Computer Architecture News, vol. 29, ACM, 2001; 155–164.

17. Hwu WmW, Chang PP. Achieving high instruction cache performance with an optimizing compiler. ACM
SIGARCH Computer Architecture News, vol. 17, ACM, 1989; 242–251.

18. Chen JB, Leupen BD. Improving instruction locality with just-in-time code layout. Proceedings of the USENIX
Windows NT Workshop, 1997; 25–32.

19. Stratis P, Rajan A. Test case permutation to improve execution time. Automated Software Engineering (ASE), 2016
31st IEEE/ACM International Conference on, IEEE, 2016; 45–50.

20. Do H, Elbaum SG, Rothermel G. Supporting controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering: An International Journal 2005; 10(4):405–435.

21. Gupta P, Lin S, McKeown N. Routing lookups in hardware at memory access speeds. INFOCOM’98. Seventeenth
Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, IEEE,
1998; 1240–1247.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



23

22. Ghosh S, Martonosi M, Malik S. Cache miss equations: An analytical representation of cache misses. Proceedings
of the 11th international conference on Supercomputing, ACM, 1997; 317–324.

23. Lewchuk WK. Prefetching data using profile of cache misses from earlier code executions Apr 4 2000. US Patent
6,047,363.

24. Pyo C, Lee K, Han H, Lee G. Reference distance as a metric for data locality. High Performance Computing on the
Information Superhighway, 1997. HPC Asia’97, IEEE, 1997; 151–156.

25. Beyls K, D’Hollander E. Reuse distance as a metric for cache behavior. Proc. of the IASTED Conf. on Parallel and
Distributed Computing and Systems, vol. 14, 2001; 350–360.

26. Wolf ME, Lam MS. A data locality optimizing algorithm. ACM Sigplan Notices, vol. 26, ACM, 1991; 30–44.
27. McKinley KS, Carr S, Tseng CW. Improving data locality with loop transformations. ACM Transactions on

Programming Languages and Systems (TOPLAS) 1996; 18(4):424–453.
28. Chang PP, Mahlke SA, Chen WY, Hwu WMW. Profile-guided automatic inline expansion for c programs. Software:

Practice and Experience 1992; 22(5):349–369.
29. Chen Y, Patel JM. Efficient evaluation of all-nearest-neighbor queries. Data Engineering, 2007. ICDE 2007. IEEE

23rd International Conference on, IEEE, 2007; 1056–1065.
30. Gay G, Rajan A, Staats M, Whalen M, Heimdahl MP. The effect of program and model structure on the effectiveness

of mc/dc test adequacy coverage. ACM Transactions on Software Engineering and Methodology (TOSEM) 2016;
25(3):25.

31. Rothermel G, Harrold MJ, Dedhia J. Regression test selection for c++ software. Software Testing Verification and
Reliability 2000; 10(2):77–109.

32. Beizer B. Black-box testing: techniques for functional testing of software and systems. John Wiley & Sons, Inc.,
1995.

33. Rajan A. Coverage metrics for requirements-based testing. University of Minnesota, 2009.
34. Rajan A. Coverage metrics to measure adequacy of black-box test suites. 21st ASE, IEEE, 2006; 335–338.
35. Yoo S, Harman M. Pareto efficient multi-objective test case selection. Proceedings of the 2007 international

symposium on Software testing and analysis, ACM, 2007; 140–150.
36. Elbaum S, Malishevsky AG, Rothermel G. Test case prioritization: A family of empirical studies. IEEE transactions

on software engineering 2002; 28(2):159–182.
37. Jones JA, Harrold MJ. Test-suite reduction and prioritization for modified condition/decision coverage. IEEE

Transactions on software Engineering 2003; 29(3):195–209.
38. Heimdahl MP, George D. Test-suite reduction for model based tests: Effects on test quality and implications for

testing. Proceedings of the 19th IEEE international conference on Automated software engineering, 2004; 176–185.
39. Li N, Praphamontripong U, Offutt J. An experimental comparison of four unit test criteria: Mutation, edge-pair,

all-uses and prime path coverage. Software Testing, Verification and Validation Workshops, 2009. ICSTW’09.
International Conference on, IEEE, 2009; 220–229.

40. Lv Q, Josephson W, Wang Z, Charikar M, Li K. Multi-probe lsh: efficient indexing for high-dimensional similarity
search. Proceedings of the 33rd international conference on Very large data bases, VLDB Endowment, 2007; 950–
961.

41. Slaney M, Casey M. Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal
Processing Magazine 2008; 25(2):128–131.

42. Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K. Pin: building
customized program analysis tools with dynamic instrumentation. Acm sigplan notices, vol. 40, ACM, 2005; 190–
200.

43. Pieterse V, Kourie DG, Cleophas L, Watson BW. Performance of c++ bit-vector implementations. Proceedings
of the 2010 Annual Research Conference of the South African Institute of Computer Scientists and Information
Technologists, ACM, 2010; 242–250.

44. Muja M, Lowe DG. Fast matching of binary features. Computer and Robot Vision (CRV), 2012 Ninth Conference
on, IEEE, 2012; 404–410.

45. Baluda M, Denaro G, Pezze M. Bidirectional symbolic analysis for effective branch testing. IEEE Transactions on
Software Engineering 2016; 42(5):403–426.

46. Poovey J, Levy M, Gal-On S, Conte T. A benchmark characterization of the eembc benchmark suite. Micro, IEEE
2009; PP(99):1–1, doi:10.1109/MM.2009.50.

47. Lattner C, Adve V. Llvm: A compilation framework for lifelong program analysis & transformation. Code
Generation and Optimization, 2004. CGO 2004. International Symposium on, IEEE, 2004; 75–86.

48. Nethercote N, Seward J. Valgrind: a framework for heavyweight dynamic binary instrumentation. ACM Sigplan
notices, vol. 42, ACM, 2007; 89–100.

49. Polly LLVM library. http://polly.llvm.org/index.html.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



24

50. Tikir MM, Hollingsworth JK. Efficient instrumentation for code coverage testing. ACM SIGSOFT Software
Engineering Notes, vol. 27, ACM, 2002; 86–96.

51. Ebert C, Jones C. Embedded software: Facts, figures, and future. Computer 2009; 42(4).

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr


