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SUMMARY

Performance bugs are known to be a major threat to the success of software products. Performance tests aim
to detect performance bugs by executing the program through test cases and checking whether it exhibits a
noticeable performance degradation. The principles of mutation testing, a well-established testing technique
for the assessment of test suites through the injection of artificial faults, could be exploited to evaluate and
improve the detection power of performance tests. However, the application of mutation testing to assess
performance tests, henceforth called performance mutation testing (PMT), is a novel research topic with
numerous open challenges. In previous papers, we identified some key challenges related to PMT. In this
work, we go a step further and explore the feasibility of applying PMT at the source-code level in general-
purpose languages. To do so, we revisit concepts associated with classical mutation testing, and design
seven novel mutation operators to model known bug-inducing patterns. As a proof of concept, we applied
traditional mutation operators as well as performance mutation operators to open-source C++ programs. The
results reveal the potential of the new performance-mutants to help assess and enhance performance tests
when compared to traditional mutants. A review of live mutants in these programs suggests that they can
induce the design of special test inputs. In addition to these promising results, our work brings a whole new
set of challenges related to PMT, which will hopefully serve as a starting point for new contributions in the
area.
Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Performance bugs are programming errors that can cause a significant performance degradation like
excessive memory consumption [1] or energy leaks [2, 3]. Performance bugs affect to key non-
functional properties of programs such as execution time or memory consumption. These types of
bugs are very harmful and common in released software programs [4], causing poor usability and
waste of resources. This might lead to a loss of users, loss of money or, in the worst case, loss of

∗Correspondence to: Escuela Superior de Ingeniería, Avda. de la Universidad de Cádiz 10, 11519 Campus Universitario
de Puerto Real, Spain. Email: pedro.delgado@uca.es

Copyright © 0000 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]



2 P. DELGADO-PÉREZ, A. B. SÁNCHEZ, S. SEGURA, I. MEDINA-BULO

human lives, e.g., a self-driving car not braking in time. For example, recent studies [5, 6] show that
40% of the users will leave a website that takes more than 3 seconds to load, 8% of them will stop a
purchase in a poor performing site, or 79% will be less likely to purchase again on the same site if
they are dissatisfied with their visit in terms of performance. Therefore, performance bugs require
full attention to increase the loyalty of users and the safety of systems.

Compared to functional faults, performance bugs are significantly harder to detect and require
more time and effort to be fixed [3]. This is partly due to the lack of test oracles, that is, mechanisms
to decide whether the performance of the program with a given input is acceptable i.e., the oracle
problem [7, 8]. For instance, Nistor et al. [3] analyzed 210 performance bugs from three mature open
source projects and concluded that “better oracles are needed for discovering performance bugs”.
In contrast to functional bugs, performance bugs do not usually produce wrong results or crashes
in the program under test and therefore they cannot be detected by simply inspecting the program
output. Furthermore, performance indicators are by nature non-deterministic and can vary among
executions due to numerous factors, such as the device hardware, configuration settings, or the
current workload [9]. For example, suppose a mobile shopping app that consumes 30Mb of memory:
Is this the expected performance? How much memory should it be considered as a performance
bug? These types of questions are typically answered by using execution profilers [1, 10, 11] or
performance tests [12, 13]. Performance bugs can also be detected by searching for bug-inducing
patterns identified in previous versions of the target or related programs [7, 14, 15, 16]. Applying
performance tests is crucial to gain confidence that the developed systems are free of performance
faults, that is, deviations with respect to the specification in terms of performance. Note that this is
different from program optimization [2, 17], whose goal is to improve the performance of a program
to achieve a less consuming version. Despite the relevance of this issue, we have identified a lack of
mechanisms to guide the assessment and improvement of performance tests.

Mutation testing is a fully-fledged testing technique for the assessment and improvement of test
suites. In mutation testing, multiple faulty versions of the target program, so-called mutants, are
generated by applying mutation operators. Each mutant is generated by applying a syntactic change
to the original program. Those mutants are then executed against the test suite to evaluate its fault-
revealing capability. Some mutants may not change the semantics of the program and are called
semantically-equivalent mutants. Telling whether a mutant is equivalent is an undecidable problem,
which currently represents one of the major obstacles for the wide-spread adoption of mutation
testing [18]. Catalogs of mutation operators have been proposed in most popular programming
languages. However, mutation testing has mostly been applied for functional testing, remaining its
applicability to performance testing as a promising open research topic. Previous papers that relate
mutation testing and performance have defined domain-specific mutation operators in Android [19]
or model-based mutation operators [20, 21, 22]. There is also some incipient work in studying the
applicability of traditional mutation operators to address non-functional properties [23]. We only
found a paper that introduces the idea of using mutations to derive test suites for estimating the
worst-case execution time [24]. To the best of our knowledge, the classical approach of mutation
testing has not yet been applied with the intention of injecting mutations at the source-code level
that affect the performance of the program.

In previous short papers [25, 26], we have explored the potential benefits and limitations of the
application of mutation testing at the performance level, what we called performance mutation
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testing (PMT). Analogously to classic mutation testing, the goal of PMT is to generate variants of
the original program (performance-mutants), where each variant models a performance bug, e.g.
one that causes a noticeable degradation of the execution time of the program. These artificial faulty
programs could then be used to assess and improve the effectiveness of performance tests. However,
our initial findings suggest that PMT presents unique problems that make it far more challenging
than mutation testing at the functional level. For example, contrary to functional mutation testing,
mutants in PMT should exhibit a certain performance degradation while preserving the semantics
of the original program. Interestingly, this means that semantically-equivalent mutants are actually
the target of PMT, rather than an obstacle, as in traditional mutation. This could lead to problems
with compiling optimization techniques, for example, which could automatically undo performance
mutations if they detect that the original program and the mutant are equivalent [27].

In this article, we give a step forward in studying the feasibility of PMT. In particular, we
first propose seven performance mutation operators based on classical performance bug patterns
identified in the literature [7, 1, 10, 15, 16, 17, 19, 28, 29]. Then, we evaluate their effectiveness
in assessing the fault-detection capability of test suites in three real-world C++ programs. This
required us to revisit the concept of valid, killed, alive and equivalent mutants. Among other results,
we found that the new operators present greater potential to model useful performance faults than
traditional operators. In particular, over 80% of performance-mutants generated in the programs
under test (194 out of 241) were not detected by the test suite accompanying these applications based
on functionality. This is a positive aspect for performance-mutants because, by definition, mutants
used in PMT are expected to preserve the internal state of the program. In contrast, the percentage
of traditional mutants that are not detected by the functional test suite is much lower (42.7%), which
means that more than half of traditional mutants are directly discarded when applying PMT. We
illustrate the usefulness of performance-mutants with specific examples extracted from the code
of the programs under test. Finally, we give evidence that most of the proposed mutations are not
invalidated by the optimizations implemented in compilers, a necessary condition for the feasibility
of this approach.

The structure of the paper is as follows. Section 2 reviews the state of the art with regard to
performance bugs and mutation testing. Section 3 motivates our work describing the challenges
in PMT and Section 4 presents the research questions. The definition of performance mutation
operators is addressed in Section 5. Section 6 describes the experimental evaluation and Section 7
shows and discusses respectively the results of the experiments to answer the research questions.
Section 8 and 9 respectively present threats to validity and surveys related work focused on mutation
testing and non-functional properties. Finally, Section 10 presents the conclusions and pending
research questions to tackle in the future.

2. BACKGROUND

In the following subsections, we briefly describe the main terms used throughout the article.
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2.1. Performance bugs

A performance bug arises when a program produces the correct result but its behavior suffers a
noticeable degradation in terms of performance [7, 16]. Therefore, a performance bug can be defined
as a programming error that causes a significant performance degradation mainly due to the overuse
of computational resources like execution time [30], memory [1] and energy [2, 3]. As an example,
consider the real performance bug found in Groovy, illustrated in Figure 1. Lines 4-7 are only
meaningful when the array argTypes is null or empty. However, those lines are always executed,
wasting computation resources. To fix this, an if condition was added in line 3 to avoid lines 4-7
being executed unnecessarily [29].

According to the work by Jin et al. [7], there is a variety of common root causes that
frequently lead to performance bugs, which include the inefficient combination of function calls, the
unnecessary use of functions in certain contexts or synchronization issues. Well-tested applications
such as Microsoft SQLServer, Apache HTTPD, and Mozilla Firefox, among others, are affected
by hundreds of performance bugs [4, 3]. Performance bugs can cause latency, a security breach
in software systems and a disproportionate waste of computation resources. For these reasons, we
have to pay special attention to detecting these kinds of issues and refactoring the code to achieve a
version that meets the performance requirements of our system.

There exist widely-used techniques to detect and fix performance problems such as the supervised
execution with profilers [1, 10, 11] or the use of bug detection strategies that exploit known root
causes for the appearance of performance bugs [7, 14, 15, 16]. However, performance bugs have
usually been overlooked in traditional testing because they are more difficult to expose and detect
than functional bugs since the former ones do not usually cause fail-stop symptoms [7]. The first
meaningful studies on performance testing date back to the 90s [12]. Even though the interest in
this field is growing in the last years [13, 28, 31, 32, 33], there is a lack of mechanisms to assess
and improve the effectiveness of performance tests and it is acknowledged that most sophisticated
performance testing strategies are required [8]. Considering all the above performance aspects, the
detection of performance bugs presents numerous challenges to be addressed.

1 C l a s s [ ] a rgTypes = . . .
2 f o r ( I t e r a t o r i = methods . i t e r a t o r ( ) ; i . hasNext ( ) ; ) {
3 + if (!(argTypes == null) && !(argTypes.length == 0)) break;// FIX
4 MethodNode mn = ( MethodNode ) i . n e x t ( ) ;
5 boolean i s Z e r o A r g = ( a rgTypes == n u l l | | a rgTypes . l e n g t h == 0 ) ;
6 boolean match =mn . getName ( ) . e q u a l s ( methodName ) && i s Z e r o A r g ;
7 i f ( match ) re turn true ;
8 }

Figure 1. Real performance bug found in Groovy [29].

2.2. Mutation testing

Mutation testing is a structural testing method that aims to assess and improve the efficacy of test
suites in discovering faults [18]. To do that, this technique injects faults (i.e., mutations) through a
number of predefined rules (i.e., mutation operators) that help us to measure the adequacy of a test
suite detecting them. Each of the new versions of the program, known as mutants, are then executed
against the test suite to produce an output, in the same way as the original program. When a test case
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detects a mutant (i.e., the output of the mutant differs from the output of the original program), it is
said that the mutant has been killed. Otherwise, the mutant remains alive. Ideally, a good mutation
operator should produce mutants which are not easy to detect so that they can reveal weaknesses
in a test suite. In contrast, it should minimize the generation of equivalent mutants (i.e., there is no
input that can reveal the mutation). The problem of equivalent mutant identification together with
the great number of mutants that can be produced are two stumbling blocks to a wider application
of mutation testing.

This testing technique has been used in the past for testing software at different levels. Mutation
testing has been applied to many programming languages at unit testing level (e.g., Java [34],
C++ [35], C# [36] or PHP [37], among many others), and has also been used at the integration
level [38]. Additionally, we can find several works that propose the use of mutation testing at the
specification level in applications such as web services [39], finite state machines [40] or timed
automata [33, 41].

3. PROBLEM STATEMENT

The problem behind performance mutation testing (PMT) can be defined as finding a set of mutation
operators that allow to assess and improve the fault-detection effectiveness of performance tests.
Each mutation operator should perform a change in the source code of the program that causes
a noticeable performance degradation while preserving the functionality of the original program.
In this work, we transplant the application of traditional mutation testing to this new domain in
order to assess the quality of performance tests: just like functional tests assess the compliance of
the program with the functional requirements, performance tests indicate how close the program
is to satisfy the non-functional specification. Since such specifications are not typically available,
performance tests assess if the program under test deviates from the expected performance i.e.,
observing a significant performance degradation. Hence, the goal is to create faulty versions of the
program which are close to the correct version of the program, in line with the two classic hypotheses
behind mutation testing: the Competent Programmer Hypothesis and the Coupling Effect [42]. The
former, also called Finite Neighborhood Hypothesis [43], assumes that programmers are competent,
and therefore they tend to write programs close to the ideal version. In this new domain, it is
important to clarify that this ideal version is not the optimal program in terms of performance (where
program optimization techniques may be helpful) but one that does show the expected performance.
The latter, i.e., the Coupling Effect, states that tests that are adequate to identify bugs introduced by
simple changes should also be able to detect more complex faults. In this article, we hypothesize
that these principles hold for PMT as they do for functional mutation testing on the basis of existing
works in the literature describing performance bugs. For instance, Jin et al. [7] found that most of
the studied performance bugs could be fixed through simple changes.

It could be argued that a simple way to introduce performance bugs is to insert harmless delays
(e.g., Thread.sleep(100)) or to force unnecessary resource consumption (e.g., generation of unused
objects) at convenient points in the program. However, although such a naive approach may be
helpful in certain cases, it may not represent the types of faults introduced by programmers. Jin et
al. [7] conducted an empirical study of 109 real-world performance bugs and concluded that almost
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50% of performance bugs require both inputs with special characteristics and large-scale inputs to
manifest. Similarly, Liu et al. [15] studied 70 real-world performance bugs in Android applications
and found that bugs required a certain sequence of inputs to be perceived. Therefore, we assume
that the performance bugs introduced with mutation should ideally mimic typical performance bugs
made by programmers rather than simply synthetically consuming resources along the program.

In what follows, we define the classical terms related to mutation testing used throughout the
article from a performance testing perspective, namely:

1. Performance-mutant. A variant of the original program where a syntactic change is
introduced in the code to degrade the performance of the program. Those performance-
mutants preserving the semantics of the original program are referred to as valid performance-
mutants, while those changing the functionality will be labeled as invalid. The execution of
the functional test suite on a performance-mutant is not a sufficient condition to determine
whether that mutant is valid because the used test suite might not be complete enough to
reveal a change in the functionality. Therefore, a performance-mutant that is not detected by
the functional test suite is referred throughout the article to as potentially valid. Only a manual
review can determine this condition with certainty.

2. Killed performance-mutant. A performance-mutant is killed if the tests can detect a
noticeable performance degradation with respect to the performance observed in the original
program. In this article, we use different thresholds to decide when a mutant is killed (cf.
Section 6.2).

3. Alive performance-mutant. A performance-mutant is alive if it is not detected by our
performance tests, but it is possible to design a feasible test input that uncovers the
performance bug. By feasible we mean that the test input used to reveal the mutation is
realistic for the program under test in a production environment. For instance, it could be
the case that a performance mutation increased the execution time each time a line was read
from a file: the more lines, the higher the degradation. However, that file may have a fixed
number of lines not large enough to reveal the performance mutation in practice, and that
situation should be assessed by the tester.

4. Equivalent performance-mutant. A performance-mutant is equivalent if there is no test
input that can detect a noticeable increment between the observed performance in the original
program and the mutant. Again, this definition depends on two factors: the thresholds and the
feasibility of test inputs.

5. Performance mutation score. This metric allows assessing the fault-revealing capability of
performance tests, measured as the ratio of killed performance-mutants to non-equivalent
performance-mutants. By increasing this score, we improve the quality of the test suite and
gain confidence that our software is free of performance bugs.
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4. RESEARCH QUESTIONS

In this paper, we seek to evaluate the viability to apply PMT by defining domain-independent
mutation operators (therefore, applicable to most programming languages) to assess and improve
non-functional test suites. Namely, we aim at answering the following research questions in relation
to PMT:

Research question 1: How feasible is to define domain-independent performance mutation
operators?

In this study, we aim at identifying some useful bug patterns to lead to plausible performance
bugs (i.e., patterns that can potentially degrade the performance of the program), and studying their
applicability in real-world programs.

Some recent papers have suggested the possibility of using traditional mutation operators in
relation to performance [23, 25, 44]. By introducing traditional operators in our study, we want
to shed light on whether these standard operators can model performance bugs or there is an actual
need to incorporate new operators. To study the feasibility of using traditional operators for PMT,
we address the following research question:

Research question 2: What percentage of mutants generated by traditional operators can
model performance bugs?

Even if traditional operators produce effective mutants for our purpose, it is interesting to know
whether the new mutation operators focused on performance are more effective than their traditional
counterparts. Therefore, we aim to answer the following question:

Research question 3: How many performance-mutants do performance mutation operators
generate and how often do these mutants change the functional behavior?

Once those performance-mutants have been executed against the test suite, we want to know
whether those valid performance-mutants are able to cause a perceptible performance degradation
and the kind of test inputs required to detect them. This is the aim of the next question:

Research question 4: Are the defined performance operators able to model some noticeable
performance degradation?

Finally, in a previous work we noted the connection between PMT and the optimizations
implemented in compilers. More specifically, we observed that both compiler optimizations and
performance mutations seek to preserve the functionality of the program and, therefore, the
transformations carried out by the former could potentially undo the latter. As a result, we complete
the study with the following question:

Research question 5: Can optimizations performed by compilers revert the mutations
injected with performance mutation operators?
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5. PERFORMANCE MUTATION OPERATORS

In order to address RQ1, we first looked for real performance bug patterns that would inspire us to
define performance-related mutation operators. Thus, we describe a set of mutation operators that
exploit common causes of performance degradation observed in the literature. We also studied the
conditions under which these operators can be applied in order to generate valid mutants.

To reduce the complexity of the problem, this feasibility study focuses on general-purpose
language features and non-concurrent programs (mutations could lead to synchronization issues).
In particular, we defined a total of seven performance mutation operators, all of them affecting basic
programming features which are present in most general-purpose programming languages (e.g.,
loops, conditional statements, containers, objects, etc.). In general, it should be possible to adapt
these mutation operators to the concrete syntax of each specific language. Indeed, some of these
operators have been defined on the basis of domain-specific operators (e.g., Android applications).

In most cases, the application of traditional mutation testing is straightforward as we only have
to circumvent the generation of invalid mutants (i.e., mutants that are not grammatically correct).
This fact is different in the case of PMT since, as previously explained, performance mutants
should degrade one or more non-functional properties of the program under test while preserving its
functionality. In order to achieve both objectives at the same time, it is often necessary to preprocess
the source code. This can help prevent trivial situations that are known to alter the program
semantics. To illustrate this, consider the example in Figure 2 of a performance-mutant generated
by the mutation operator Swap of Operands in Condition or SOC (later defined in Section 5.4). This
operator swaps the order of the conditions in a conditional statement with the aim of forcing to
always evaluate the most time-consuming condition.

O r i g i n a l code : Mutant code :

i f ( o b j && obj−>method ( ) ) { i f ( obj−>method ( ) && o b j ) {
. . . . . .

} }

Figure 2. Example of SOC mutant.

As shown, this mutation will cause a functional issue when obj is null since we cannot invoke a
method on a null object. We tackle this issue by means of the definition of proper preconditions for
our mutation operators. It is important to remark at this point that the preconditions seek to avoid
the injection of performance mutations that modify the functionality of the program, but we cannot
always guarantee that the semantics is preserved.

For each mutation operator, we next describe its motivation, definition, an example, and a set
of preconditions for its application. Table I summarizes the main characteristics of the mutation
operators that have been defined.

5.1. RCL: Removal of Stop Condition in Loop

Motivation: According to Jin et al. [7] a Skippable function bug pattern happens when a function
is invoked but it is unnecessary given the calling context. Similarly, sometimes we could configure
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Table I. Summary of performance mutation operators: source, abbreviation, category or main language
features targeted, main performance property affected and need for preconditions.

Source Operator Category Performance issue Preconditions

[5, 28] RCL Loop perturbation Execution time X
[15] URV Method call Execution time X
[8, 9] MSL Object generation; Memory consumption X

Conditional statement; Execution time
Loop perturbation

[5] SOC Conditional statement Execution time X
[19, 27] HWO Method call Execution time
[9, 14] CSO Object generation Memory consumption
[9, 17] MSR Collections Memory consumption

a loop to stop when a certain condition is met, thus saving some unnecessary iterations that do
not affect the outcome of the program. With regard to this, Nistor et al. [29] identified a family of
performance bugs associated with a loop and a condition that have CondBreak fixes, i.e., bugs that
can be fixed by adding a condition inside the loop. Figure 1 shown in Section 2 depicts an example
of this kind of performance bug.
Definition: Inspired by this bug pattern, the RCL operator removes a stop condition in a loop so
that the loop keeps iterating until another condition is satisfied. This is achieved by different means,
namely 1) removing a break statement, 2) delaying a return statement with true or false, 3) removing
a condition that uses a boolean variable expressly defined to stop the execution of the loop when the
stop condition is met.
Example: The following code snippet shows the third option to apply the RCL operator. The mutant
removes the second condition (!b) from the while loop, making the program to iterate while the first
condition evaluates to true (i < n). However, the loop could skip some iterations in the moment that
l[i] == 1.

O r i g i n a l code : Mutant code :

bool b = f a l s e ; bool b = f a l s e ;
whi le ( i < n && !b ) { whi le ( i < n ) {

. . . . . .
i f ( l [ i ] == 1) i f ( l [ i ] == 1)

b = t rue ; b = t rue ;
. . . . . .

} }

Preconditions: The RCL performance-mutant can be generated when there are other conditions
that can stop the loop at some point. This happens when the controlling expression of the loop is not
empty (case 1 and 2) or when there is more than one condition in the controlling expression of the
loop (case 3).

5.2. Unnecessary Recalculation of Values (URV)

Motivation: Olivo et al. [16] found some situations where a program repeatedly iterates over a data
structure that has not been modified between successive traversals. For instance, they identified the
so-called ExtremeVal performance bug, which appears when the maximum or minimum element of
a collection is calculated multiple times even though the collection never changes [16].
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Definition: With the aim of generalizing the type of bug described in the motivation, the URV
operator forces the recalculation of values previously computed. In more detail, this operator seeks
for variables defined to store the value returned by an invocation to a method. Then, the variable is
deleted and each reference to that variable is replaced by an invocation to the same method so that
the computation performed by this method is repeated.
Example: The following fragment of code shows the deletion of the min variable and the
replacement of the references to that variable by calls to the minValue function, forcing the
recalculation of the minimum value of v1 2 × n times.

O r i g i n a l code : Mutant code :
i n t min = minValue ( v1 ) ;
f o r ( i n t i =0 ; i <n ; i ++){ f o r ( i n t i =0 ; i <n ; i ++){

i f ( v2 [ i ] > min ) i f ( v2 [ i ] > minValue(v1) )
v2 [ i ] = min ; v2 [ i ] = minValue(v1) ;

} }

Preconditions: The URV performance-mutant can be generated when (1) there is a variable that
stores a computed value and it is referenced more than once (case of equivalence), and (2) the
variable that stores the computed value and the variables involved in its computation do not change
between the point of the computation and the references to the variable.

5.3. Move/Copy Statement into Loop (MSL)

Motivation: Xu et al. [1] observed situations where many temporary objects were generated in a
loop simply to provide a simple service (e.g., to assign a value to the fields of other objects). Yan
et al. [10] also found that Never-Used and Rarely-Used Allocations (that is, objects that are created
but hardly referenced) appear surprisingly often.
Definition: Based on the above performance bugs, the MSL operator searches for parts of the code
where new objects are generated before a loop statement. The operator then moves the object
creation statement into the loop. In this way, the performance-mutant generates many temporary
objects inside the loop instead of just one. Additionally, this operator moves conditional statements
placed before loops’ openings into the loops. This mutation can cause a significant degradation
when the condition involves the execution of a costly operation that is repeated many times.

In some situations, MSL has to copy the object or statement instead of moving it in order to
preserve the syntax of the language. For instance, the if condition cannot be moved inside a loop
when the conditional statement is an if/else statement; in that case, the if/else statement is preserved
but the if condition is copied inside the loop.
Example: This example represents the mutation of moving an object creation statement inside a
loop. In the performance-mutant, a new instance o1 is generated in each iteration, which results in
the creation of many objects and the consequent waste of resources.

O r i g i n a l code : Mutant code :

Foo o1 ; f o r ( i n t i = 0 ; i < n ; i ++){
f o r ( i n t i = 0 ; i < n ; i ++){ Foo o1;

v [ i ] = v [ i ] + o1 . g e t F i e l d ( ) ; v [ i ] = v [ i ] + o1 . g e t F i e l d ( ) ;
} }
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Preconditions: The MSL performance-mutant can be generated when (1) the constructed object
is not modified inside the loop, (2) none of the variables involved in the construction of the object
changes inside the loop, (3) a conditional statement invokes at least one method or function, that is,
the condition does not perform trivial operations (equivalence case), and (4) none of the variables
involved in the conditions of the if statement changes inside the loop.

5.4. Swap of Operands in Condition (SOC)

Motivation: In cases where we have a multiple condition, the condition that takes more time to be
evaluated is normally placed in the last position. This can avoid the evaluation of the most time-
consuming condition depending on the result of the first lighter conditions.
Definition: Considering the Skippable function bug pattern (see operator RCL) and reminding us
of the traditional operator COR (Conditional Operator Replacement), the SOC operator forces the
evaluation of a condition that might not be necessary depending on the result of other conditions.
Thus, the SOC operator swaps the operands in a condition linked by a binary logical operator (&&

and ||) so that the most time-consuming condition is evaluated regardless of the other conditions.
Example: This example represents the compulsory evaluation and execution of the most costly
method within the multiple conditions. As it can be seen in the original program, the invocation to
costlyMethod can be saved when the condition a != 1 evaluates to true.

O r i g i n a l code : Mutant code :

i f ( a != 1 | | costlyMethod() ) { i f ( costlyMethod() | | a != 1 ){
. . . . . .

} }

Preconditions: The SOC performance-mutant can be generated when (1) the condition invokes at
least one method or function, that is, the condition does not perform trivial operations (case of
equivalence), and (2) the most costly condition does not depend on the lighter conditions, such as
in Figure 2.

5.5. Simulation of Heavy-Weight Operation (HWO)

Motivation: The study by Ongkosit and Takada [28] defines a list of potentially blocking operations
in Android applications, such as bitmap processing and the access to network, storage, and
databases. Linares-Vásquez et al. [19] defined three mutation operators to inject a long delay in
some specific situations in Android applications too, like the insertion of a delay in the GUI listener
thread. In general, some operations are more time-consuming than others and they can be especially
problematic when they are contained in third-party libraries. That is, they can lead to developers’
workload misunderstandings or they can vary the performance of a program depending on the
context or the updates [10].
Definition: The HWO operator injects a delay t right after each invocation to methods in third-
party libraries and known heavy-weight operations (storage access, network connection...) so that
workload issues can be revealed. By default, the value of the delay t could be correlated with the
execution time of the original program.
Example: This example shows the insertion of a delay, in the form of sleep operation, just after a
call to a costly method.
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O r i g i n a l code : Mutant code :

costlyMethod(a1, a2); costlyMethod(a1, a2);
sleep_for(std::chrono::seconds(t));

Preconditions: No preconditions are required by the HWO operator.

5.6. Creation of Short-lived Objects (CSO)

Motivation: The idea behind the View Holder pattern is to reuse previously recycled items instead
of generating new objects [15]. Similarly, the motivating example in Figure 1 in the study by Yan et
al. [10] shows that in some situations we can reuse a single object across multiple calls to the same
method.
Definition: Inspired by the works exposed in the motivation, the CSO operator forces the generation
of a new object every time a method is called instead of reusing an already created object. In detail,
this operator targets the methods that receive an object as a parameter, which is used and returned by
the same method. Then, the operator generates a clone of such objects, producing new short-lived
objects inside the method every time the method is invoked.

Additionally, some languages provide other mechanisms to avoid the repetition of tasks that
should be performed only once. Therefore, this operator could be adapted to generate more
performance-mutants depending on the language of the application.
Example: This example represents the redundant creation of an object instance, f2, when the
existing object f could be used.

O r i g i n a l code : Mutant code :

Foo m u l t i p l y ( Foo f , i n t n ) { Foo m u l t i p l y ( Foo f , i n t n ) {
re turn f . getNumber ( ) * n ; Foo f2(f);

} re turn f2 . getNumber ( ) * n ;
}

Preconditions: No preconditions are required by the CSO operator.

5.7. Memory Space Reservation (MSR)

Motivation: Sometimes, the initial capacity of collections is not appropriate for the number of
elements stored. Using small initial sizes can lead to frequent resize operations. In contrast, the
pre-allocation of a collection at the maximal number of elements results in very low utilization.
Definition: Based on the Never-Used and Rarely-Used Allocations bug pattern [10] and on the
causes of low utilization of collections [17], the MSR operator allocates less or more space for
dynamic collections. This operator modifies a collection with dynamic allocation to shrink or expand
the reservation space for elements to simulate both cases. The value of the size increase t should be
configured in the latter case.
Example: The example represents the two ways of applying the MSR operator: the space allocation
for vector v is reduced to 1 (first case), and it is increased by a factor of t, being t > 1 (second case).

O r i g i n a l code : Mutant code :

v e c t o r <Foo> v ( INIT_SIZE ) ; v e c t o r <Foo> v ( 1 ) ;
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O r i g i n a l code : Mutant code :

v e c t o r <Foo> v ( INIT_SIZE ) ; v e c t o r <Foo> v ( INIT_SIZE * t ) ;

Preconditions: No preconditions are required by the MSR operator.

6. EVALUATION

In this section we describe the test subjects, the process followed to classify the mutants and the
experimental procedure used to analyze the feasibility of applying PMT.

6.1. Subjects under test

We selected 3 open-source projects in C++ that are distributed with functional test suites. Namely:

• TinyXML2 [45] (Txm): An efficient parser of XML files that can be integrated into other C++
programs to read and write XML documents. It contains 2,620 lines of code (LOC).

• XmlRPC++ [46] (Rpc): An XML-RPC protocol implementation to incorporate client-server
communication through HTTP support into C++ applications. LOC: 2,194.

• Dolphin [47] (Dph): A navigational file manager used by KDE desktop applications. We have
focused on the class KFileItemModel, which allows loading items of a directory. LOC: 2,771.

These programs were compiled and executed on a server running the operative system Ubuntu
14.04 and 32GB of RAM memory.
For the evaluation of PMT with traditional mutation operators (RQ2), we selected the same subset
of traditional operators that López et al. [23] proposed to optimize the code by reusing equivalent
mutants:

• Arithmetic Operator Replacement (AOR).
• Relational Operator Replacement (ROR).
• Assignment Shortcut Replacement (ASR).

We used the mutation tool MuCPP [35] for C++ programs to apply these traditional operators. In
the case of performance-mutants (RQ3 and RQ4), they were inserted manually into the programs
due to the challenging task of automating these operators. To do so, in a first step, and having in
mind each of the performance operators, we reviewed the code of the case studies searching for all
the potential mutation locations. In a second phase, we analyzed in depth the list of locations and
discarded those that did not meet the preconditions associated with these operators. Then, we applied
the operators manually in the remaining locations to create the performance-mutants. Finally, we
compiled the mutants to ensure that there were no invalid ones due to errors in the manual injection
of mutations.

For the evaluation of the relation between PMT and compiler optimizations (RQ5), we applied the
technique known as Trivial Compiler Equivalence or TCE [27]. This technique allows the automated
detection of two equivalent programs when, as a result of the optimizations performed by compilers,
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the binary files of both programs turn out to be identical. In our work, we use the compiler gcc, a
reliable compiler for all standards-compliant programs, to compare the binary files of the original
program and the performance-mutants. The compiler invalidates a performance-mutant when there
is no difference between its binary files and the ones of the original program.

6.2. Experimental setup

This evaluation seeks to analyze the feasibility of applying PMT using both traditional and
performance mutation operators. As a proof of concept, we focused on the execution time as
the measurable non-functional property to assess the generated mutants. The approach should
extrapolate to other properties like memory by using proper profilers that help detect significant
deviations in the memory usage when compared to the original program.

We reused the functional test suite developed for these programs and we adapted it to work
as a performance test suite. To do that, we executed the original program 30 times and recorded
the average execution time of each test case. These recorded times acted as test oracles in our
experiments by adding new time-related assertions. In particular, we followed the steps described
below:

1. First, we executed the functional test suite on each generated mutant. This allowed us to
discard the mutants that were killed by the functional test suite and therefore were obviously
not valid for PMT, since they did not preserve the semantics of the program. The remaining
mutants, the ones used in our study, were labeled as potentially valid (see Section 3).

2. Then, we executed each test case on each potentially valid mutant, and recorded the execution
time of each test case individually. This step was repeated 30 times to get the average time of
each test case in each of these mutants.

3. Finally, we compared the mean time of each test case in the original program and each mutant.
In this way, we could classify the mutants into killed and alive depending on whether they
increased the execution time in any of the test cases.

In order to determine whether each mutant was killed or not we performed a hypothesis statistical
test. Specifically, for each subject program and mutant, we stated a null and alternative hypothesis.
The null hypothesis (H0) states that there is not a statistically significant difference between the
execution times of the original program and the mutant, while the alternative hypothesis (H1) states
that the execution time of the mutant is higher than the execution time of the original program and
such difference is statistically significant. Specifically, a mutant is killed when the execution time of
at least one test case is statistically higher compared with the execution time of that test case against
the original program. Statistical tests provide a probability (named p-value) ranging in [0, 1]. We
used three different widely used p-value thresholds, namely 0.01, 0.05 and 0.1 under which results
are considered to be statistically significant and are sufficient to reject the null hypothesis. Since the
execution times collected do not follow a normal distribution (according to Shapiro-Wilk normality
test), we used the Mann-Whitney U test for the analysis. Finally, we performed a manual review of
the mutants that remained alive with p-value<0.1, in order to know how many of them were valid
and whether we could find meaningful mutants.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



PERFORMANCE MUTATION TESTING 15

Interruptions in the execution of a mutant caused by timeouts are normally easy to detect using
either functional or non-functional test suites. Also, we cannot know whether the mutation will
finally cause a change in the behavior. Therefore, we discarded those mutants causing a timeout in
our evaluation.

7. RESULTS

In the following subsections, we report the results and how they answer the research questions:

7.1. RQ1: Injection of performance mutations

Table II shows the number of performance mutations that were injected in the subjects under
test based on the performance mutation operators defined in Section 5. The results are divided
by mutation operator and program. As it can be seen, all mutation operators could be applied in
the conducted experiment, being Dolphin the program in which more mutations were injected.
Additionally, all operators could be applied in two of these three programs (CSO and MSR did
not lead to any mutants in TinyXML2). The mutation operators URV, SOC and HWO were the most
prolific operators, while we did not find many situations to apply CSO and MSL.

Table II. Performance-mutants divided by program and performance mutation operator

Program RCL URV MSL SOC HWO CSO MSR Total

Txm 11 10 2 9 7 - - 39
Rpc 10 25 1 23 13 1 2 75
Dph 9 41 4 34 12 11 16 127

Total 30 76 7 66 32 12 18 241

Regarding the application of the performance operators in these programs, we should remark the
following particular cases:

• Operator HWO: TinyXML2 reads and writes XML files using specific operations of a library to
that end. Dolphin emits Qt signals† to intercommunicate objects. Finally, XmlRPC++ makes
use of libraries to operate with sockets for client-server communication. The invocation to
these functions has been the target of HWO. We set a generic delay of 1 second for these
applications.

• Operator MSR: Dolphin employs Qt dynamic containers and sometimes the program reserves
memory for them through specific methods. Similarly, XmlRPC++ reserves memory for
strings. This operator focuses on those operations. We set the value t = 2 (i.e., we double
the reserved size).

• Operator CSO: Dolphin and XmlRPC++ contain some methods that use static variables to
reuse information between calls to the same method. These locations are the target of this
operator.

†http://doc.qt.io/qt-5/signalsandslots.html
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Answer to RQ1: How feasible is to define domain-independent performance mutation operators?
We have been able to define 7 mutation operators based on reported performance bugs in the
literature. Most of these operators require to preprocess the code to avoid the generation of some
mutants that are known to alter the semantics of the program. Some other operators may require
the configuration of some parameters prior to their application, as in the case of HWO and MSR.
Examples of performance-mutants based on all these mutation operators have been found in the
three real-world programs, especially in the case of URV and SOC. The research questions RQ3
and RQ4 will explore whether these mutants can actually be useful to improve performance tests.

7.2. RQ2: Analysis of traditional mutants

Table III presents the results of the execution of traditional mutants to evaluate the test suite from
a non-functional perspective. The table shows the number of generated mutants and how many of
them are potentially valid mutants for PMT, and how many of them are killed and alive using the
different thresholds of degradation. Recall that we removed mutants that raised the timeout, so the
sum of killed and alive is not the same as the number of potentially valid mutants. The table also
reports the mutants found as valid when the mutants that remained alive with p-value<0.1 were
manually reviewed.

From 587 mutants generated in the three programs, 251 mutants passed the first step, that is,
only 42.7% of the mutants survived the functional test suite execution. These results are graphically
shown in Figure 3 divided by mutation operator. Taking into account that using traditional operators
is costly, this low percentage is a detriment to the application of PMT using this set of operators.

Table III. Classification of mutants generated by the set of traditional operators (Mut.), potentially valid (Pot.
valid), killed and alive mutants with p-value<0.1, p-value<0.05 and p-value<0.01, and valid mutants in the

set of alive mutants with p-value<0.1 once these mutants were manually reviewed.

Prog.
Pot. valid p-value<0.1 p-value<0.05 p-value<0.01

Mut. # % Killed Alive Killed Alive Killed Alive Valid

Txm 173 51 29.5% 7 41 4 44 0 48 6
Rpc 231 112 48.5% 65 17 58 24 45 37 0
Dph 183 88 48.1% 78 5 77 6 60 23 0

Total 587 251 42.7% 150 63 139 74 105 108 6

As expected, the number of killed mutants decreases as the threshold increases. In total, from
the 105 mutants killed considering the most lenient threshold (p-value<0.1), 45 of them appear
as surviving mutants with the most stringent one (p-value<0.01). We reviewed the live mutants
(threshold 0.1) to analyze these mutants qualitatively. That set of live mutants accounts for 25.1%
of the potentially valid mutants (63 out of 251). Even though it is difficult to determine whether
these mutants are valid or not, it is likely that the functional test suite lacks specific test cases or
asserts that are able to reveal most of these live mutants (57 out of 63). Indeed, it is also likely that
many of the 150 killed mutants could also be detected using a better functional test suite. It is also
remarkable that 30 mutants were detected with a timeout in XmlRPC++, which probably occurs
because the mutation impedes the client-server communication.

We only found a few mutants from the set of alive mutants with p-value<0.1 that we believe that
do not change the functional behavior. Figure 4 shows an example of one of those mutants generated
by the mutation operator ROR in TinyXML2. As illustrated, the mutation causes the program to
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Figure 3. Number of mutants generated and potentially valid mutants by traditional mutation operator

allocate memory even when the number of elements to be stored (cap) is equal to the memory
currently allocated (_allocated).

1 void E n s u r e C a p a c i t y ( i n t cap ) {
2 - if ( cap > _allocated ) {
3 + if ( cap /*ROR*/>= _allocated ) {
4 i n t n e w A l l o c a t e d = cap * 2 ;
5 T* newMem = new T [ n e w A l l o c a t e d ] ;
6 memcpy ( newMem , _mem , s i z e o f ( T)* _ s i z e ) ;
7 . . .

Figure 4. ROR mutant in TinyXML2

This situation is similar to the one identified by López et al. [23], where the change of relational
operator produces that a skippable operation is executed.

Answer to RQ2: What percentage of mutants generated by traditional operators can model
performance bugs? The three traditional operators selected (AOR, ROR and ASR) generate a large
number of mutants, but only 42.7% of them are not detected by the functional test suite. Even
though there is a considerable number of mutants that increased the execution time, a review of the
live mutants reveals that few traditional mutations can really model meaningful performance bugs.
As expected, these mutations appear in rare instances that are tied to the semantics of the program.

7.3. RQ3: Analysis of performance-mutants

Table IV shows the results of the execution of performance-mutants in a similar fashion to Table III.
At first sight, the most remarkable fact is that 80.5% of the generated performance-mutants passed

the functional test suite (in contrast to 42.7% of the traditional mutants) . The number of mutants
generated with these 7 performance operators is not so high as with the 3 traditional operators (241
vs 587 mutants), which is a positive aspect in mutation testing.
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Table IV. Classification of performance-mutants generated by the set of performance mutation operators
(Mut.), potentially valid (Pot. valid), killed and alive mutants with p-value<0.1, p-value<0.05 and p-
value<0.01, and valid mutants in the set of alive mutants with p-value<0.1 once these mutants were

manually reviewed.

Prog.
Pot. valid p-value<0.1 p-value<0.05 p-value<0.01

Mut. # % Killed Alive Killed Alive Killed Alive Valid

Txm 39 24 61.5% 11 9 8 12 4 16 8
Rpc 75 56 74.6% 24 24 17 31 3 45 20
Dph 127 114 89.8% 105 4 101 8 68 41 4

Total 241 194 80.5% 140 37 126 51 75 102 32

Figure 5. Number of mutants generated and potentially valid mutants by performance mutation operator

The tendency regarding killed mutants is similar to that of traditional mutants. The percentage
of live traditional mutants is higher than the percentage of live performance-mutants except for
the threshold p-value<0.01 (50.7% vs 57,6%). A review process reveals that 32 out of those 37
performance-mutants that remained alive with p-value<0,1 do not change the functional behavior,
and should be plausibly useful mutants to generate new test inputs. These numbers suggest that
these performance-mutants are more difficult to detect than traditional ones, and may require
special test scenarios beyond the ones typically designed to build functional test suites, which
is in line with the observations in the literature (see Section 3). Only a few mutants change the
functionality of the program. For example, a SOC mutation in XmlRPC++ swaps two invocations to
the method nextTagIs, which modifies the value of the input-output parameter offset (see Figure 6).
The program expects to find the tag PARAMS before PARAM in the response (<params><param>).
This mutation alters the semantics because the first call to nextTagIs updates the offset to the position
of the tag PARAM, which makes impossible to find the tag PARAMS after that.

Figure 5 presents a more detailed classification of the performance-mutants by mutation operator.
The operator MSR was the only mutation operator where all the mutants generated are potentially
valid for PMT, while SOC is the one that more frequently alters the semantics of the program.

Answer to RQ3: How many performance-mutants do performance mutation operators generate and
how often do these mutants change the functional behavior? The number of performance-mutants
generated by the 7 performance operators defined is less than half of the mutants produced by
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1 bool XmlRpcClient : : p a r s e R e s p o n s e ( XmlRpcValue& r e s u l t )
2 i n t o f f s e t = 0 ;
3 . . .
4 - if ((XmlRpcUtil::nextTagIs(PARAMS_TAG,_response,&offset) &&
5 XmlRpcUtil::nextTagIs(PARAM_TAG,_response,&offset) ...)
6 + if ((XmlRpcUtil::nextTagIs(PARAM_TAG,_response,&offset) &&
7 XmlRpcUtil::nextTagIs(PARAMS_TAG,_response,&offset)) ...)
8 . . .
9 }

Figure 6. SOC mutant in XmlRPC++

the 3 traditional operators (241 vs 587 mutants). In principle, over 80% of those performance-
mutants do not change the functionality, which nearly doubles the percentage of potentially valid
traditional mutants. A manual review of the performance-mutants that survived the execution of the
non-functional test suite with p-value<0.1 reveals that a high percentage of those mutants (86.5%)
preserves the semantics of the program.

7.4. RQ4: Qualitative analysis of significant performance mutations

In the previous section, we manually reviewed the mutants that were alive with threshold p-
value<0.1, and counted the number of them that could be classified as valid. In this section, we
assess those mutants qualitatively in order to detect potentially helpful performance-mutants, even
though we cannot say with certainty whether these mutants could be meaningful for testers of these
programs.

There are several reasons why these mutants survived the test suite execution. Some of them
simply require a test scenario that executes a fragment of code to reveal the performance issue.
Some others can only be identified when executed on other platforms. For instance, XmlRPC++
applies some operations with sockets which are specific for Windows systems. However, in general,
most of these mutants would require special and large-scale inputs to be detected.

Below, we describe some of the reviewed mutants that can cause noticeable performance failures.

URV mutant: The method shown in Figure 7 returns the value of an attribute with a given name
in an XML element. If such an attribute does not exist or its value is different from the one expected,
it returns 0. Since the method has to check for these conditions, the attribute is first searched by its
name and saved in a reference variable a (line 3). The search by name is performed by the method
FindAttribute and it requires to iterate the list of attributes and compare their names with the one
specified. In this mutant, each reference to the variable a is replaced by a call to FindAttribute, which
result in three searches instead of one (lines 6, 10 and 12).

Thanks to the above mutant, we found that a test case that processed an XML file with a long list
of attributes in its elements was missing to detect this performance issue. This is a clear example of
the kind of inputs that would be required to reveal these issues.

MSR mutant: The fragment shown in Figure 8 presents a list (QList) of objects KUrl (line 4).
The size of the list is known in advance (itemCount) and the code reserves memory for that number
of elements. The mutant disregards the prediction of the elements that will be appended (line 5),
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1 c o n s t char * XMLElement : : A t t r i b u t e ( c o n s t char * name , c o n s t char * v a l u e ) c o n s t
2 {
3 - const XMLAttribute* a = FindAttribute( name );
4 + /* URV */ //const XMLAttribute* a = FindAttribute( name );
5 - if ( !a ) {
6 + if ( !FindAttribute( name ) ) {
7 re turn 0 ;
8 }
9 - if ( !value || XMLUtil::StringEqual( a->Value(), value )) {

10 + if ( !value || XMLUtil::StringEqual( FindAttribute( name )->Value(), value )) {
11 - return a->Value();
12 + return FindAttribute( name )->Value();
13 }
14 re turn 0 ;
15 }

Figure 7. URV mutant in TinyXML2

thereby causing a repetitive allocation of the data (resize operations) as the number of elements
appended increases (line 8).

1 void KFi le I temModel : : r e s o r t A l l I t e m s ( ) {
2 . . .
3 c o n s t i n t i t emCount = c o u n t ( ) ;
4 QList <KUrl > o l d U r l s ;
5 - oldUrls.reserve(itemCount);
6 + /* MSR */ oldUrls.reserve(1);
7 f o r e a c h ( c o n s t I t emData * i temData , m_itemData ) {
8 o l d U r l s . append ( i temData −>i t em . u r l ( ) ) ;
9 }

10 . . .
11 }

Figure 8. MSR mutant in Dolphin

This mutant should lead to the design of a test case that calls the method resortAllItems() when
there is a large number of items in m_itemData.

RCL mutant: The code fragment presented in Figure 9 shows an interesting mutant generated
by the operator RCL. The code shows a loop that looks for a specific entity to print a pattern. Once
the entity has been found, the break statement avoids useless iterations. The mutant removes that
statement, which leads to a performance issue when the method is called many times or if there are
many entities.

1 void XMLPrinter : : P r i n t S t r i n g ( c o n s t char * p , bool r e s t r i c t e d ) {
2 . . .
3 f o r ( i n t i =0 ; i <NUM_ENTITIES ; ++ i ) {
4 i f ( e n t i t i e s [ i ] . v a l u e == *q ) {
5 P r i n t ( "&%s ; " , e n t i t i e s [ i ] . p a t t e r n ) ;
6 - break;
7 + /* RCL */
8 }
9 }

10 . . .
11 }

Figure 9. RCL mutant in TinyXML2
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SOC mutant: The method hasMember shown in Figure 10 searches for a member with a given
name provided that the object is of type TypeStruct. The mutation swaps the check of the two
conditions (name and type). This mutant forces the method to search for the member in a map
container regardless of the type, thus increasing the execution time.

1 bool XmlRpcValue : : hasMember ( c o n s t s t d : : s t r i n g& name ) c o n s t
2 {
3 - return _type == TypeStruct && _value.asStruct->find(name) != _value.asStruct->end();
4 + /* SOC */ return _value.asStruct->find(name) != _value.asStruct->end() && _type == TypeStruct;
5 }

Figure 10. SOC mutant in XmlRPC++

This mutant should lead to the design of a test case that invokes this method several times from a
XmlRpcValue object with _type different to TypeStruct and with the map container previously filled
with several members.

Answer to RQ4: Are the defined performance operators able to model some noticeable performance
faults? Yes. Even though we have found some performance-mutants that seem trivial to kill, we have
also found some exemplary mutants extracted from the subjects under test that illustrate the kind of
performance issues caused by the new mutation operators, and we have proposed new test scenarios
to improve the current test suites.

7.5. RQ5: Compiler optimizations

Table V shows the results of the application of Trivial Compiler Equivalence (TCE) to performance-
mutants. We may recall that the objective was to check whether the optimizations performed by the
compiler undo some of the changes introduced by the performance mutation operators. In particular,
we compiled with no optimization settings and with the highest optimization level supported by the
gcc compiler (-O3). As it can be seen, the results are similar in both cases: 8 mutants are reverted
with the default option altogether in the three programs, and 10 mutants with level -O3. We have
to note that the two performance-mutants reverted in TinyXML2 and all but the CSO mutant in
XmlRPC++ corresponded to the same circumstance: the mutation was injected into a fragment of
code that is activated in Windows systems through a preprocessor directive. Therefore, they were
reverted by the compiler because we executed the experiments on a server running Ubuntu.

As a result, there are only two performance-mutants (generated by URV and SOC) invalidated
by the compiler when applying the optimization level -O3. Figure 11 shows the reverted mutant
generated by SOC, which swaps two similar conditions.

1 f o r ( i n t i = 0 ; i <= maxIndex ; ++ i ) {
2 . . .
3 - } else if (newFirstChar >= QLatin1Char(’0’) && newFirstChar <= QLatin1Char(’9’)) {
4 + } else if (newFirstChar <= QLatin1Char(’9’) && newFirstChar >= QLatin1Char(’0’)) {
5 . . .
6 }
7 . . .
8 }

Figure 11. SOC mutant in Dolphin
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Table V. Number of mutants reverted by the compiler applying no optimization settings (None) and the
highest optimization level (-O3). The results are divided by mutation operator and program under test.

Operator
Txm Rpc Dph

None -O3 None -O3 None -O3

RCL - - - - - -
URV - - - 1 - -
MSL - - - - - -
SOC - - - - - 1
HWO 2 2 5 5 - -
MSR - - - - - -
CSO - - 1 1 - -

Total 2 2 6 7 0 1

Answer to RQ5: Can optimizations performed by compilers revert the mutations injected with
performance operators? Only a couple of performance-mutants generated by the operators SOC
and URV are invalidated applying TCE. These two mutants are only reverted by the compiler when
an optimization level is set. There are also some other mutations injected by the operators HWO and
CSO that are not useful in our experiments because we use Ubuntu and these mutations can only be
activated in Windows systems through preprocessor directives.

7.6. Additional remarks

The number of killed mutants was low in the experiments compared to traditional mutation,
especially as the threshold increased. The fact that we adapted test suites focused on the functional
aspect to work as performance test suites has probably prevented a higher number of performance-
mutants from being initially detected. An interesting aspect regarding equivalence in PMT is that
the number of equivalent performance-mutants depends on the threshold. A coarse adjustment
of the threshold could lead to many potentially valid mutants. However, with a fine-grained
threshold, equivalent performance-mutants should not be frequent, which is a positive aspect in
mutation testing. This factor also depends on the accuracy of the methods to measure the assessed
performance properties. Additionally, and following the RIP model proposed by Ammann and
Offutt [48], once the program has been infected (which in PMT implies a noticeable increase in
the measured non-functional properties), the cases where that infection does not propagate to the
output should be rare. In other words, it is unlikely that the effects of the infection are masked after
the execution of the mutated statement, which is a possible cause for the appearance of equivalent
mutants in traditional mutation testing.

Several papers in the past have evaluated the significance of mutation testing when applied in real
scenarios [49, 50]. These studies have been mostly performed using known traditional operators.
Under the assumption that the hypotheses behind traditional mutation testing hold for PMT (see
Section 3), we could expect that the benefits of applying the mutation-based approach hold for this
new domain. However, we are still distant from being able to support this claim. First, we need to
assess the level of automation that can be reached; then, only experiments with real case studies
could give evidence of the ability of mutation-adequate performance tests to find performance bugs.
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8. THREATS TO VALIDITY

Internal validity:

The injection of performance mutations in the experimental evaluation has been done in a manual
way, which is error-prone. We have proceeded with care to generate all possible performance-
mutants taking into account the constraints of each operator. Despite the manual injection of
mutants, we have followed a systematic process consisting of four steps in the hope that it can
be reproduced by any testers. Also, live performance-mutants have been reviewed manually to
determine whether they could model interesting performance issues, being this process also prone
to errors. We could have generated new test cases to kill performance-mutants. However, that would
require both a deep knowledge of the program under test and the generation of large-scale inputs,
which are not easy to design. There is the possibility that some of the mutants that survived the
test suite could be detected with new functional test cases, but this would require the design of an
adequate test suite, which would be a hard and time-consuming task.

Construct validity:

As mentioned earlier, the output of the executions in terms of time consumption is not deterministic
and can be affected by the current computer workload or the specific characteristics of the machine.
To mitigate this threat, we have compared 30 executions of each test case on the original program
and each mutant.Additionally, we have performed a statistical analysis of the execution times and we
have used three different thresholds (p-values). More complex methods could be used, like the ones
proposed by Reichelt and Kühne [9]. However, the methods that require many executions would
make the application of the technique excessively expensive.

External validity:

The aim of our evaluation was to assess the feasibility of the definition and application of domain-
independent performance operators, as this is the first evaluation of such operators at the source-
code level as far as we know. As a proof of concept, we have used and analyzed three test subjects
coded in C++ language. Further experiments are required to know whether these results hold in
other programs and programming languages. Also, we have used a subset of traditional operators
in the evaluation, but there is the possibility that other traditional operators could be useful for
PMT. Nevertheless, we have focused on three widely-used traditional operators that, additionally,
have been proposed to optimize the code in terms of performance in a related work [23]. We
have applied gcc as the compiler to observe whether performance mutations could be reverted by
compiler optimizations, as this is the more widely-used compiler for C++ programs. However, new
experiments should be conducted with compilers for other programming languages.
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9. RELATED WORK

9.1. Specification-based mutation operators

Mutation operators to test for timely behavior have been defined by Nilsson et al. [20] and AbouTrab
et al. [51]. These operators mutate time constraints set in timed automata, where most of them focus
on modifying the time boundaries of these constraints (i.e., increase or reduce each time property by
a delta). Later, Lindstrom et al. [33] suggested to set the delta individually for each mutant generated
with the operators defined by Nilsson et al. [20]; depending on the situation, a high delta would lead
to the generation of trivial mutants (i.e., detected with simple test cases) and a low delta would lead
to the creation of many equivalent mutants. Temple et al. [21] proposed the generation of variants
of the program, called morphs, that modify the properties of software product lines and that can
result in performance issues. Finally, Vega et al. [22] have recently performed a review focused on
model-based mutation testing for timed systems.

9.2. Domain-specific mutation operators

A first strategy used to address the detection of performance bugs is the insertion of delays to
test the responsiveness of applications [30]. However, the most common strategy to detect and fix
bugs is to study real cases of bugs found in existing projects. This analysis can reveal patterns in
the code that usually lead to this kind of bugs (i.e., bug patterns). Such bug patterns can then be
automatically detected by means of rule-based detection using static analysis. Bug patterns related
to the functional behavior have been collected by Pan et al. [14]. Similarly, bug patterns related
to the performance behavior have been proposed by Jin et al. [7], Liu et al. [15], and Ongkosit
and Takada [28] for Android applications. Recently, Linares-Vásquez et al. [19] defined a complete
taxonomy of Android-related and Java-related performance bugs, which includes a subcategory of
non-functional requirements.

All these studies have something in common: either they are focused on a specific language
or context (such as Android [15] or desktop GUI applications [11]) or they describe specific
bug patterns. For instance, Jin et al. [7] found that the function random should not be used by
concurrent threads and that the function aggregateTransact should replace the invocations
to doTransact when they are inside loops. While detecting and fixing these situations in the
code can avoid specific performance issues, focusing only on these concrete cases is not effective
in performance testing because we may miss some other kind of bugs that cause significant
degradation. Additionally, the findings in that study are not applicable to other languages since
those rules focus on specific functions only available in Java.

9.3. Traditional mutation operators to address non-functional properties

Program optimization to identify and fix some known performance issues is the target of a large
body of research, from the diagnosis of energy inefficiency [2] to the improvement of the memory
footprint [17]. Mutations have also been applied for optimization purposes. Langdon et al. [44]
focused on software refactoring through genetic programming to optimize the performance of a
program. Recently, López et al. [23] proposed using classical mutation operators applicable to
different programming languages to find mutants with better non-functional aspects. However, the
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experiments in this paper show that it is unlikely that we can aspire to have a lot of useful mutants if
we keep applying the same mutation operators that we have used so far to mimic behavioral faults.
Indeed, the ratio of effective mutants may decrease as we add more traditional mutation operators,
which is a problem taking into account the high cost of applying mutation testing. As a result of this
issue, Sánchez et al. [26] suggested the use of an evolutionary algorithm to guide the search towards
useful traditional mutants for the refinement of performance tests.

A recent research work presented by Lisper et al. [24] introduced the concept of targeted mutation,
which aims at non-functional properties. This approach outlines the idea of introducing mutants
to guide the generation and augmentation of test suites to be used for estimating the worst-case
execution time. In contrast, our work pursues the definition and application of specific mutation
operators affecting non-functional properties, such as the memory consumption or execution time
among others.

There are some other works related to extra-functional properties that generate mutants with the
sole aim of altering the system’s functionality. For instance, Aichernig et al. [41] also focused on
timed automata but changing different aspects of the syntax of the model instead of their time
properties. Also, Wu et al. [52] proposed a set of mutation operators related to memory with the
classical goal of perturbing the functional behavior of the program.

10. CONCLUSION AND FUTURE WORK

In this work, we have investigated the possibility to extend the current state of the art regarding
mutation testing to evaluate and improve performance tests. The main finding of our study is that
classical methods used in functional testing are not really effective when it comes to assess and
improve non-functional tests, and that specific mutation operators and mechanisms to evaluate the
outputs are necessary to successfully apply performance mutation testing. In particular, we have
defined and evaluated seven new performance mutation operators that have highlighted the need
for new performance tests. However, an analysis of a larger set of traditional operators would be
desirable to confirm this finding, including those operators that usually produce a high number of
equivalent mutants.

As far as we know, there are not many works that have tackled this research line, so much work
lies ahead regarding the possible definition of new performance operators and the selection of the
most effective ones. Also, its real effectiveness in practice and in different domains, or the best
methods to detect performance issues associated with different non-functional properties should
be further explored. Another challenge for future work is the automation of these performance
operators. Static analysis techniques, used in other mutation tools like MuCPP [35], could be
useful in a basic version of these operators. In a more advanced version, a data-flow analysis
technique could be required to apply the preconditions required for some of these operators. LLVM’s
analysis passes [53] could be helpful to collect important information before applying the mutations.
However, it is still unknown how costly such a method would be and whether it would compensate
the number of mutants that would be actually avoided in real scenarios. Another point to consider
is that it is unlikely that the effects of a mutation in PMT are masked, that is, most mutations should
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propagate to the output. As such, it is reasonable to think that the combination of mutations in high-
order mutation could be more effective than first-order mutation. New experiments that compare
both techniques could shed light about this issue in the future.
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