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A successful automated program proof is, in software verification, the ultimate tri-
umph. In practice, however, the road to such success is paved with many failed proof
attempts. Unlike a failed test, which provides concrete evidence of an actual bug in
the program, a failed proof leaves the programmer in the dark. Can we instead learn
something useful from it?
The work reported here takes advantage of the rich information that some automatic
provers internally collect about the program when attempting a proof. If the proof
fails, the Proof2Test tool presented in this article uses the counterexample gener-
ated by the prover (specifically, the SMT solver underlying the Boogie tool used in
the AutoProof system to perform correctness proofs of contract-equipped Eiffel pro-
grams) to produce a failed test, which provides the programmer with immediately
exploitable information to correct the program. The discussion presents Proof2Test
and the application of the ideas and tool to a collection of representative examples.
KEYWORDS:
Program verification, Eiffel, AutoProof, AutoTest, Counterexample

1 INTRODUCTION

We usually seek success, but failures can be useful too. In software verification, for example, a failed test provides the
programmer with concrete, immediately actionable information about a bug, helping to fix it.
A failed attempt at a proof, on the other hand, seems at first not to help much; it does not even demonstrate that there is a bug

(and even less what that bug might be), as it could simply reflect a problem with the proof process.
The work reported here takes advantage of the power of a modern prover to make a failed proof useful too, by deriving a

failed test from it. Examples handled so far seem to confirm the potential of the approach.

1.1 Tests and proofs
This work combines tests and proofs, a combination whose benefits was not always self-evident. In fact, tests and proofs have
long been considered the warring siblings of software verification. They are characterized by dual benefits and limitations:

• Tests have, in their favor, their concreteness and relative ease of preparation. They face, however, a fundamental limitation:
successful tests, regardless of how many of them, do not guarantee the correctness of software.

• Proofs do hold that promise of correctness, when they succeed. In practice, however, the path towards a proof is arduous,
involving many intermediate steps at which the proof fails and it is hard to know what needs to be done, such as changing
the program, changing the specification, or finding a way to overcome a limitation of the proof tool.
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Proof Test
Success - Program is correct , Program works for one more case
Failure , Inconclusive, don’t know what’s wrong - Program is incorrect

TABLE 1 The different meanings of failure and success for proofs and for tests

Can the two techniques help each other by combining their respective advantages? This article proposes a specific answer,
exploiting the observation that failure has different consequences for proofs and for tests. Table 1 shows the difference.- denotes
the interesting cases, those in which we can conclusively deduce a useful property:

• Top-left entry: proof succeeds (great news, the program is correct).
• Bottom-right entry: test fails (program is incorrect, we have found a bug, less triumphal news but still concrete and useful).

The other two cases, marked ,, are disappointing since they offer little practical value:
• A successful test (top right) does not tell us that the program is correct in the general case. It is just one drop of correctness

in the ocean of possible cases.
• A failed proof (bottom left) does not tell us whether the problem is with the program, the specification, or the limitations

of the proof tool itself.
This last case, a failed proof, shaded in the table, is particularly frustrating. While a mechanically-supported program proof is
the most exciting prospect in the search for program correctness, the daily practice of attempting to prove programs consists of
getting notices of proof failure and attempting to remove the cause for the failure. It is not so different psychologically from the
practice of debugging a program, except that it is a static rather than dynamic form of debugging, using only the program text
and no executions.
Being static, this process lacks the immediacy and concreteness of a test, which (when it fails, as in the bottom-right entry)

gives the programmer a direct example of an input that causes the program to violate its specification. Programmers can exploit
such a test case as an immediately understandable indication of what needs to be fixed. In contrast, a failed proof just fails,
giving you little insight as to what is actually wrong — without even guaranteeing that the fault lies with the program (as noted,
it could be in the specification, or we might just have hit a limitation of the proof technology). The downside is that the tester (a
term meant here to denote a person, not a tool) has to devise the failing test case, often a difficult endeavor for a program that
has already achieved a first level of approximate correctness.
Proof tools, on the other hand, accumulate considerable knowledge about the program, including when they fail to prove it.

The work reported in this article consists of using that knowledge to go automatically from the disappointing bottom-left case
to the directly useful bottom-right case, a failed test, with its exploitable example of program incorrectness.

1.2 Proof2Test
The tool presented in this article, Proof2Test, automatically generates failing tests from failed proofs. The underlying prover
is AutoProof [1,2], the verifier for checking functional correctness of Eiffel [3] programs using axiomatic (Hoare-style) seman-
tics. The functional correctness of Eiffel programs is specified by contracts (such as pre- and postconditions, class and loop
invariants). When a proof fails, AutoProof’s back-end prover (the Z3 solver [4], used through Boogie [5,6]) will produce a coun-
terexample. Proof2Test exploits the information in the counterexample to generate a concrete test case. The generated test case
is directly exploitable and executable in AutoTest [7,8], a testing tool for Eiffel programs based on run-time assertion checking.
Since AutoProof and AutoTest use the same contracts for program analysis and they are both integrated in the same develop-

ment environment (Eiffel IDE), executing the test produced by Proof2Test from the failed proof can reproduce an analogous test
failure in AutoTest: the execution will raise the run-time violation of the same failed contract. The general aim is to combine the
benefits of both static and dynamic forms of verification: proofs (performed by AutoProof) and tests (performed by AutoTest).



LI HUANG, BERTRAND MEYER 3

The source code for Proof2Test and examples, as well as complementary material, are available in a GitHub repository1.
The repository contains a detailed readme.md file explaining how to run the examples and reproduce our results (or try new
examples).

1.3 Structure of the discussion
To give the reader a general understanding of the approach before introducing the theory, Section 2 illustrates an example session
of using Proof2Test. Section 3 introduces the fundamental technologies used in the Proof2Test verification framework. Section 4
describes the details of the implementation of Proof2Test. Section 5 demonstrates how Proof2Test helps diagnose failed proofs.
Section 6 evaluates the applicability of Proof2Test through a series of examples. After a review of related work in Section 7,
Section 8 describes limitations of the current state of the work and Section 9 concludes an analysis of limitations and ongoing
work to overcome them.
For readers interested in detailed results, the Appendix covers the full data for two of the sample classes; it is extracted from

a technical report [9], complementing the present article by covering all samples.

2 AN EXAMPLE SESSIONWITH PROOF2TEST

Before exploring the principles and technology behind the Proof2Test tool, we look at the practical use of the tool on a
representative example (Figure 1).
The intent of the max function in class MAX_IN_ARRAY is to return into Result the maximum element of an integer array a

of size a.count. The two postcondition clauses in lines 26 and 27 (labeled result_is_maximum and result_in_array) specify this
intent: every element of the array should be less than or equal to Result; and at least one element should be equal to Result.
When we try to verify the max function using AutoProof, verification fails and AutoProof returns the error message “Post-

condition result_is_maximum (line 26) might be violated”. Such a generic message tells us that the prover cannot establish the
postcondition, but does not enable us to find out why. We are left with hypotheses, including: incorrect loop initialization (line
10); incorrect loop exit condition (line 16); incorrect instruction in the loop body (lines 18 – 21); incorrect loop invariant (lines
12 – 14); or limitations of the prover itself (in other words, it might be that the program is correct and AutoProof is unable to
prove it).
What a programmer typically would like to see in such a case is not a general negative result, stating that the prover cannot

establish a property, but a concrete, specific result, showing that a certain input breaks the specification. In other words, a failing
test. Producing such a test is the purpose of Proof2Test. Figure 2 shows the generated test, which includes the following sequence
of steps:
• Create an instance current_object of class MAX_IN_ARRAY (line 7).
• Create an integer array a and fill it with values 0 at position 1 and 8 at index 2 (lines 8 – 9).
• Call the erroneous function max on current_object with a as argument (line 10).
Running this Proof2Test-generated test in AutoTest (the test framework for Eiffel) leads to a run-time failure where the problem-
atic postcondition result_is_maximum is violated. To explore the reason, wemay step through the call current_object.max (a):

1. The precondition (line 5 in Figure 1) evaluates to True with a.count = 2.
2. After the loop initialization (line 10), Result = 0 and i = 2.
3. All the loop invariants (lines 12 – 14) are evaluated as True with i = 2, a.count = 2, a[1] = 0, a[2] = 8, Result = 0.
4. The exit condition of the loop (line 16) evaluates to True with a.count = 2 and i = 2, forcing the loop to terminate.
5. Postcondition result_is_maximum (line 26) evaluates to False with a [1] = 0, a [2] = 8 and Result = 0, which causes

AutoTest to report a run-time exception of postcondition violation.

1https://github.com/huangl223/Proof2Test

https://github.com/huangl223/Proof2Test
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1 class MAX_IN_ARRAY
2 feature
3 max (a: SIMPLE_ARRAY [INTEGER]): INTEGER
4 require
5 a.count > 0
6 local
7 i: INTEGER
8 do
9 from

10 Result := a [1]; i := 2
11 invariant
12 2≤ i and i ≤ a.count + 1
13 ∀ j: 1 |..| (i − 1) | a [j] <= Result
14 ∃ j: 1 |..| (i − 1) | a [j] = Result
15 until
16 i = a.count
17 loop
18 if a [i] > Result then
19 Result := a [i]
20 end
21 i := i + 1
22 variant
23 a.count − i
24 end
25 ensure
26 result_is_maximum: ∀ j: 1 |..| a.count | a [j] <= Result
27 result_in_array: ∃ j: 1 |..| a.count | a [j] = Result
28 end
29 end

FIGURE 1 MAX_IN_ARRAY is a class with a function max which finds the maximum element of an integer array a; the type of
a is SIMPLE_ARRAY, a library class providing simple array features

This execution of the generated test reveals the problem: on the array created by the test, which holds its maximum value (8) in
the last element (at index 2 in a), the loop terminates too early, preventing the program from getting to that value.
This scenario and its result provide the programmer with immediate evidence (not available from the failed proof attempt) of

what is wrong with the program version of Figure 1. Any competent programmer will see right away what needs to be done to
eliminate the error: update the exit condition i= a.count (line 16) to permit onemore loop iteration, changing it to i> a.count.
This example illustrates how tests and proofs can be complementary techniques: while a successful proof conclusively shows

that the program satisfies the given specification, a failed proof does not by itself tell us what is wrong with the program; in that
case a test can bring the concrete evidence making it possible to proceed with the development process. The remaining sections
explain the technology behind this approach.

3 TECHNOLOGY STACK

Fundamental technologies used in Proof2Test include the Eiffel programming language, its libraries, the EiffelStudio IDE (devel-
opment environment including compiler and AutoTest test framework) and two analysis tools, AutoProof (static) and AutoTest
(dynamic).
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1 test_MAX_IN_ARRAY_max_1
2 local
3 current_object: MAX_IN_ARRAY
4 a: SIMPLE_ARRAY [INTEGER]
5 max_result: INTEGER
6 do
7 create current_object.default_create
8 create a.make (0)
9 a.force (0, 1); a.force (8, 2)

10 max_result := current_object.max (a)
11 end

FIGURE 2 A test case of max with input argument a[1] = 0, a[2] = 8

3.1 Eiffel
The Eiffel object-oriented design and programming language [3,10] natively supports the Design by Contract [11] methodology. An
Eiffel program consists of a set of classes. A class represents a set of run-time objects characterized by the features available on
them. Figure 3 shows an Eiffel class representing bank accounts, devised for demonstration purposes and intentionally seeded
with errors.
A class contains two kinds of features: attributes that represent data items associated with instances of the class,

such as balance and credit_limit; routines representing operations applicable to these instances, including make,
available_amount, deposit, withdraw, transfer. Routines are further divided into procedures (routines that have no
returned value) and functions (routines that return a value). Here, available_amount is a function returning an integer (denoted
by a special variable Result), and the other routines are procedures.
A class becomes a client of ACCOUNT by declaring one or more entities (attributes, local variables, formal arguments...) of

type ACCOUNT, as in a: ACCOUNT.
The value of an reference entity is void initially and can be attached to an object by using the create instruction or through

assignment of a non-void value. For example, create a.make(−100) creates a new object whose credit_limit is −100 and
attaches it to the entity a.
Programmers can specify the properties of classes and features by equipping them with contracts of the following kinds:

• Precondition (require): property that clients must satisfy whenever they call a routine; the precondition of make (line 6), for
example, requires the value of limit to be negative or 0.

• Postcondition (ensure): property that the routine (the supplier) guarantees on routine exit, assuming the precondition and
termination; for example, the postcondition of deposit states that the value of balance at the exit of the routine will be
greater than its entry value (old balance).

• Class invariant (invariant): constraint that must be satisfied by instances of the class after object creation and after every
qualified call x.r (args) to a routine of the class; for example, the class invariant of ACCOUNT (line 58) constrains the value
of available_amount to be always non-negative.

• Loop invariant (invariant): property that the loop guarantees after initialization and every iteration; for example, the loop
invariant in max (lines 12 – 14 in Figure 1) specifies what the loop has achieved (a part of the final goal) at an intermediate
iteration.

• Loop variant (variant): an integer measure that remains non-negative and decreases at each loop iteration, ensuring that the
loop eventually terminates; the loop variant of the loop in max is a.count − i (line 23 in Figure 1).
Contracts embedded in the code allow programmers to open the way to both static analysis of the program, with AutoProof,

and dynamic analysis based on run-time assertion checking, with AutoTest.
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1 class ACCOUNT create
2 make
3 feature
4 make (limit: INTEGER)
5 -- Initialize with credit limit ‘limit’.
6 require
7 limit ≤ 0
8 do
9 balance := 0; credit_limit := limit
10 ensure
11 balance_set: balance = 0
12 credit_limit_set: credit_limit = limit
13 end
14
15 balance: INTEGER
16 -- Balance of this account.
17
18 credit_limit: INTEGER
19 -- Credit limit of this account.
20
21 available_amount: INTEGER
22 -- Amount available on this account.
23 do
24 Result := balance − credit_limit
25 end
26
27 deposit (amount: INTEGER)
28 -- Deposit ‘amount’ into this account.
29 do
30 balance := balance + amount
31 ensure
32 balance_increased: balance > old balance
33 end

34 withdraw (amount: INTEGER)
35 -- Withdraw ‘amount’ from this bank account.
36 require
37 amount ≥ 0
38 amount ≤ available_amount
39 do
40 balance := balance + amount
41 ensure
42 balance_set: balance = old balance − amount
43 end
44
45 transfer (amount: INTEGER; other: ACCOUNT)
46 -- Transfer ‘amount’ to ‘other’.
47 require
48 amount ≥ 0
49 amount ≤ available_amount
50 do
51 balance := balance − amount
52 other.deposit (amount)
53 ensure
54 withdrawal_made: balance = old balance −

amount
55 deposit_made: other.balance = old other.

balance + amount
56 end
57
58 invariant
59 available_amount ≥ 0
60 end

FIGURE 3 A class (with bugs) intended to implement the behavior of bank accounts

3.2 AutoTest
AutoTest [7,8] is an automatic contract-based testing tool: it uses the contracts present in Eiffel programs as test oracles and
monitors their validity during execution. A test case in AutoTest is an argument-less procedure which calls a “target rou-
tine” (the routine to be tested) in a certain context (arguments and other objects). The context can be created manually, as
in traditional testing environments, but AutoTest can also automatically create it, using sophisticated algorithms. Figure 2
test_MAX_IN_ARRAY_max_1 shows a test case with target routine max (part of the “target class” MAX_IN_ARRAY). A test case
usually consists of the following components:

• Declaration of input variables of the target routine.
• Creation of fresh objects for the declared variables.
• Instantiation of the objects with concrete values.
• Invocation of the target routine using the instantiated variables.
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The execution of a test case in AutoTest performs run-time assertion checking for the target routine: AutoTest executes the target
routine through a qualified call 2 to the routine; during the execution of the routine call, AutoTest evaluates each of the contracts
in the routine; if any assertion is violated (evaluated to False), AutoTest terminates the execution and reports an exception of
type “contract violation”. The test leads to one of the following verdicts:

1. Passes (the execution of the test case satisfies all specifications).
2. Fails with a contract violation of the target routine.
3. Remains unresolved: the violation is not the target routine’s fault. The most important case in this category occurs when

AutoTest creates an input state that does not satisfy the target routine’s precondition. (AutoTest includes optimization
strategies to avoid this case, which teaches nothing about the correctness of the software, although it might suggest that
the routine’s precondition is too strict.)

AutoTest as described here is a test execution and management framework. AutoTest also includes automatic test case generation
mechanisms, not used in the present work.

3.3 AutoProof
AutoProof [1,2] checks the correctness of Eiffel programs against their functional specifications (contracts). Verification in
AutoProof covers a wide range of properties including whether:

• The precondition of a routine holds at the time of call.
• The postcondition of a routine holds on routine exit.
• The initialization of a loop ensures the invariant.
• That initialization leaves the variant non-negative.
• The body of a loop preserves the loop invariant (leaves it true if it was true before).
• That body leaves the variant non-negative (if it was non-negative before).
• It decreases the variant.
• A creation procedure (constructor) of a class produces an object that satisfies the class invariant.
• A qualified call x.f (.. .) finds the target object (the object attached to x) in a consistent state. AutoProof integrates two

mechanisms to verify class invariants: ownership [12] and semantic collaboration [13]. A new approach [14], avoiding any
need for programmer annotations, is currently being implemented to replace them.

AutoProof relies on Boogie and Z3 as explained next.

3.4 Boogie and Z3
When verifying an Eiffel program, AutoProof translates it into a Boogie program, then relies on the Boogie verifier to transform
this program into verification conditions for the SMT solver (Z3). The underlying theory is Dijkstra’s weakest-precondition
calculus [15].
The verification condition for a routine r of body b, precondition P and postcondition Q, is of the form

P ⇐⇒ (b wp Q) [VC]
where b wp Q, per Dijkstra’s calculus, is the weakest precondition of b for Q, meaning the weakest possible assertion such
that b, started in a state satisfying P , will terminate in a state satisfying Q. The “weak/strong” terminology for logical formulas
refers to implication; more precisely, saying that P ′ is weaker than or equal to P (and P stronger than to equal to P ′) simply

2As a reminder, a qualified call is of the form x.r(args), on a target object identified by x, as opposed to an unqualified call r(args) applying to the current object.
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expresses that P ⇐⇒ P ′. (Equivalently, if we identify P and P ′ with the set of states that satisfy the respective assertions, then
“P is stronger than P ′” means P ⊂ P ′.) Then the verification condition [VC] expresses that the precondition P of the routine is
strong enough to guarantee that the routine’s execution will yield the postconditionQ (since P is at least as strong as the weakest
possible assertion, b wp Q, guaranteeing this result).
If property [VC] is satisfied at the Boogie/Z3 level, the Eiffel routine is correct (with respect to P and Q).
The technique used by an SMT solver to prove a property such as [VC] is indirect: the solver tries to satisfy (the “S” in “SMT”)

a given logical formula — or to determine that such an assignment does not exist. So the formula on which Z3 will work is not
[VC] itself but its negation [NVC]:

¬ (P ⇐⇒ (b wp Q)) [NVC]
The proof succeeds if no variable assignment satisfies [NVC]; in other words, it is impossible to falsify the verification condition.
In the present work, we are interested in the case in which the proof does not succeed: the solver does find a variable assignment

satisfying [NVC] and hence violating [VC]. The solver has authoritatively found that the program is buggy, by disproving [VC]:
it found a set of variable values that causes the routine not to produce a final state satisfying Q.
If the goal is not only to give the programmer a simple success/failure notification about the proof, but to help the programmer

in the failure case, it is important that such a disproof be constructive: it actually identifies a failing test case. That test case
is not, however, directly usable by the programmer. Instead, it is buried in internal Z3 information and SMT-solving notation.
It is the task of Proof2Test to extract the relevant information and turn the counterexample into an actual test case that the
programmer can understand, in terms of the original programming language (Eiffel), and run. Section 4 will present the details
of the counterexample and test generation process in Proof2Test.
Listing 1 shows how the information appears internally (slightly simplified for the purposes of presentation). The notation is

the SMT-LIB format [16], common to Z3 and other SMT solvers. The goal is to express [NVC] on line 42. The previous lines
define the environment in the form of declarations of types or “sorts” (lines 1 – 2) , functions and constants3 (3 – 19), assertions
expressing typing properties (20 – 23) and assertions expressing verification conditions (24 – 42). The final line, check-sat,
directs the solver to check satisfaction of the conditions.

1 (declare−sort T@U 0)
2 (declare−sort T@T 0)
3 (declare−fun type (T@U) T@T)
4 (declare−fun type_of (T@U) T@U)
5 (declare−fun intType ( ) T@T)
6 (declare−fun TypeType ( ) T@T)
7 (declare−fun FieldType (T@T) T@T)
8 (declare−fun ACCOUNT ( ) T@U)
9 (declare−fun balance ( ) T@U)
10 (declare−fun credit_limit ( ) T@U)
11 (declare−fun Current ( ) T@U)
12 (declare−fun amount ( ) Int)
13 (declare−fun Heap@0 ( ) T@U)
14 (declare−fun Heap@1 ( ) T@U)
15 (declare−fun Succ (T@U T@U) Bool)
16 (declare−fun value ( ) Int)
17 (declare−fun Select (T@U T@U T@U) T@U)
18 (declare−fun Store (T@U T@U T@U T@U) T@U)
19 (declare−fun fun.available_amount (T@U T@U) Int)
20 (assert (= (type ACCOUNT) TypeType))
21 (assert (= (type balance) (FieldType intType)))
22 (assert (= (type credit_limit) (FieldType intType)))
23 (assert (= (type_of Current) ACCOUNT))
24 (assert (let (

3Constants are treated like functions with no arguments, declared, like other functions, in declare-fun clauses.
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25 (available_amount (fun.available_amount Heap@0 Current))
26 (old_balance (Select Heap@0 Current balance))
27 (current_balance (Select Heap@1 Current balance))
28 (state_transition (Succ Heap@0 Heap@1))
29 (update_balance (= Heap@1 (Store Heap@0 Current balance value)))
30 )
31 (let (
32 (pre (and (≥ amount 0) (≤ amount available_amount)))
33 (wp ( ⇐⇒
34 (= value (+ old_balance amount))
35 (and
36 update_balance state_transition
37 (= current_balance (− old_balance amount))
38 )
39 )
40 )
41 )
42 (not ( ⇐⇒ pre wp))
43 )
44 )
45 )
46 (check−sat)

Listing 1: SMT encodings for verifying balance_set

The SMT-LIB syntax is parenthesis-based in the Lisp style, meaning in particular that function application is in prefix form:
(f x) denotes the result of applying a function f to an argument x, which in more usual notation would be written f(x) . In
particular:

• ( ⇐⇒ x y) means x ⇐⇒ y (x implies y) in ordinary mathematical notation.
• (let a b c) (to be read as “let a be defined as b in c”) has the value of c, with every occurrence of a replaced by b.

The final condition (not ( ⇐⇒ pre wp)) on line 42 (in more usual notation: ¬ (pre ⇐⇒ wp)) corresponds to [NVC], where
wp is the the weakest precondition. The preceding lines build up auxiliary elements culminating in this definition:

• Lines 1 – 2 define the basic sorts. “Sort” is to the modeling language, SMT-LIB, what “type” is to the programming
language being modeled; as a result, a sort can describe both values and types from that programming language. Two
fundamental sorts used in models generated by Boogie are T@U (line 1), describing values in the target programming
language, and T@T, describing types in that language. The 0 in both declarations indicate the arity (number of arguments,
here zero).

• Line 3 specifies that the function type, which yields the type of a value, maps a value (T@U) to a type (T@T).
• The type_of function (line 4) relates an object reference to the object’s class. For example: Current4 is of type
ACCOUNT (line 23); amount, an integer argument of withdraw, is declared as an integer constant (line 12); balance and
credit_limit are two integer fields and defined as instances of a composite type FieldType intType (lines 21 – 22).

• Modeling the execution semantics of an object-oriented program requires modeling the behavior of the heap (where the
objects are stored) through a sequence of constants prefixed with Heap@. In this example, there are two states during
execution of withdraw: before and after the assignment balance := balance + amount, represented by Heap@0 and
Heap@1 (lines 13 – 14). Succ (line 15) specifies the relation between two successive states. The auxiliary variable value
(line 16) will contain the intermediate result of the assignment — the result of balance + amount (line 34).

4Current represents the active object in the current execution context, similar to this in Java.
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• Select and Store (lines 17 – 18) are functions for retrieving and updating the values of data fields. Select H obj fd
will give the value in field fd of object obj in heap H. Store H obj fd new is a new store obtained by replacing that
field value by new.

• Line 32 defines the precondition pre, rephrased in SMT-LIB from the original Eiffel precondition clause (require).
• Lines 24 – 30 introduce auxiliary variables.
• Lines 33 – 40 define wp, as the weakest precondition of the routine balance_set for its given two-clause postcondition (36

– 37).

4 PROOF2TEST IMPLEMENTATION

Based on the technologies described in the previous section, Proof2Test automatically generates tests from failed proofs. This
section presents the overall workflow of Proof2Test, then the details of its implementation.

4.1 Overview of the Proof2Test process
Figure 4 outlines the workflow of Proof2Test. The inputs are a Boogie program (ap.bpl), generated by AutoProof from the
input Eiffel program, and an SMT model file (ce.model), containing counterexamples from the Z3 solver. The output is a test
script (test.e) in the form of an Eiffel class. Proof2Test goes through three steps to construct a test case:
1© Collect the relevant context information from the Boogie program, including names and types of the input arguments of the
failed routine r, as well as the attributes of the classes involved in r.
2© Extract an input vector (a sequence of values of r’s input arguments) from a counterexample.
3© Write a test case to the output file test.e based on the extracted context information and input vector.

FIGURE 4 Proof2Test workflow

A proof failure in AutoProof corresponds to a contract violation for an erroneous routine of a class, which results in a counterex-
ample. In the case of multiple proof failures, the resulting model file (ce.model) contains the same number of counterexamples.
Proof2Test parses each counterexample and generates test cases respectively.
A counterexample is an execution trace (a sequence of program states) of the erroneous routine r, at the end of which the

program reaches a failed state (violating a contract element of r). Proof2Test parses the model to obtain the trace’s input vector,
from which it produces a test case for AutoTest (Section 3.2).

4.2 Extraction of input vector from counterexample
In the example of Figure 3, the routine withdraw is incorrect since its body does not ensure the postcondition balance_set (line
42). AutoProof consequently fails to prove the routine correct by obtaining, through Boogie, a counterexample from Z3. Figure
5 shows that counterexample (key parts only, slightly simplified).
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1 amount →1
2 Current →T@U!val!18
3 Heap@0 →T@U!val!17
4 Heap@1 →T@U!val!22
5 ACCOUNT →T@U!val!6
6 balance →T@U!val!7
7 credit_limit →T@U!val!8
8 value →11
9 type_of →{
10 T@U!val!18 →T@U!val!6 }

11 Succ →{
12 T@U!val!17 T@U!val!22 →True }
13 Store →{
14 T@U!val!17 T@U!val!18 T@U!val!7 11→T@U!val!22 }
15 Select →{
16 T@U!val!17 T@U!val!18 T@U!val!7 →10
17 T@U!val!17 T@U!val!18 T@U!val!8 →(− 20)
18 T@U!val!22 T@U!val!18 T@U!val!7 →11}
19 fun.available_amount →{
20 T@U!val!17 T@U!val!18 →30}

FIGURE 5 Counterexample of the proof failure of balance_set

In this example the path to a contract violation goes through only two states, called Heap@0 and Heap@1 (as defined in lines
3 and 4). The execution trace is not given explicitly but can be inferred from the differences between Heap@0 and Heap@1.
Formally, the counterexample in Figure 5 is a sequence of definitions of name-value associations, in the form name → value.
Basic values, other than integers, are of the form T@U!val!n denoting an abstract location n. For example, the value of amount
in the counterexample is 1 (line 1) and balance is stored at abstract location 7.
The initial and final heaps, Heap@0 and Heap@1, are associated (lines 3 and 4) with locations 17 and 22. To infer the execution

trace, it suffices to look at the definitions starting with line 11, which show the differences between the contents of these two
heaps by referring to T@U!val!17 and T@U!val!22.
The preceding lines define variable values (for example, balance, credit_limit).
For a function f of n arguments, the specification of the function’s value in the counterexample takes the form
a1 a2 ... an → x

b1 b2 ... bn → y

...
to mean that f(a1, a2, ... an ) = x etc. For example lines 15 to 18 give the state of both the initial heap (T@U!val!17) and the
final heap (T@U!val!22) by specifying the Select function. (As seen in Section 3.4, Select (H, obj, fd) is the value in
field fd of object obj in heap H.) This specification yields the values, in either or both heaps, of the balance and credit_limit
fields (T@U!val!7 and T@U!val!8) for the Current object (T@U!val!18). Lines 13 and 14 define a state change, in the form
of an update of the Store function: change the balance field (T@U!val!7) of the current object (T@U!val!18) in Heap@0
so that it will have the value 11 in Heap@1. In programming language terms this would be written just balance := 11 (where
balance denotes Current.balance).
To construct the input vector of withdraw from the model, it suffices to obtain the following information:
1. The initial state of the Current object (the target object of the qualified call), which includes the initial values of the two

data fields balance and credit_limit.
2. The value of the only argument amount.

On can obtain the value of amount directly (line 1), and the values of balance and credit_limit from their sym-
bolic addresses and the Select function (16 – 17). The resulting input vector for withdraw is: Current.balance = 10,
Current.credit_limit = − 20, amount = 1.

4.3 Construction of test cases based on input vectors
Once it has obtained the input vector, Proof2Test starts constructing a test case in the form of a qualified call, here
current_object.withdraw(amount). The input vector contains the values of current_object and argument amount
before the call.
Figure 6 shows the generated test case, which includes four components:
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1 test_ACCOUNT_withdraw_1
2 local
3 current_object: ACCOUNT; amount: INTEGER
4 do
5 create current_object.make(0)
6 {INTERNAL}.set_integer_field (balance, current_object, 10)
7 {INTERNAL}.set_integer_field (credit_limit, current_object, (− 20))
8 amount := 1
9 current_object.withdraw (amount)

10 end

FIGURE 6 Test case generated from the proof failure of withdraw

1. Local declaration of the target object (current_object) and input argument (amount) (line 3).
2. Creation of the target object (line 5).
3. Initialization of the target object and argument (lines 6 – 8). Since Eiffel is a strongly typed language, setting indi-

vidual fields of arbitrary objects requires using low-level mechanisms from the library class INTERNAL, such as
set_integer_field.

4. Qualified call to withdraw (line 9).

Algorithm 1 Generate a single test case based on data collected from a counterexample
1: Input: target class c, target routine r, input vector v
2: Output: a test case t
3: t := name_of_test_case(c, r) -- Construct the name for the test case
4: t_d := declare_variable(current_object)
5: t_c := create_reference(current_object) -- Declare and create current_object
6: t_i := empty_string
7: across input arguments of r as a loop
8: t_d := t_d + declare_variable(a) -- Declare each argument
9: if a is a variable of primitive type then
10: value := get_value(a, v) -- Get the value of a from v
11: t_i := t_i + assignment(a, value) -- Use assignments to instantiate primitive-type arguments
12: else
13: t_c := t_c + creation_of_reference(a) -- Create objects for reference arguments
14: t_i := t_i + instantiate_reference(a, v) -- Instantiate reference arguments according to v
15: end
16: end
17: if r is a function then
18: res := name_of_result_variable(r)
19: t_d := t_d + declare_variable(res) -- Construct a variable res to fetch r’s result
20: end
21: t := t + t_d + t_c + t_i -- Combine the clauses of declaration, creation and instantiation
22: t := t + call_routine(current_object, r, res) -- Call r with its arguments

The test generation process applies Algorithm 1. The result of the algorithm is the code of a test case t, which includes three
components: declaration clauses (t_d), creation clauses (t_c) and instructions instantiating variables (t_i).
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The algorithm loops over all the input arguments (lines 7 – 15) of r and instantiates each of them according to their types:
arguments of primitive types (INTEGER, BOOLEAN, CHARACTER and REAL) are instantiated through direct assignments (line 10)
to the corresponding values in the input vector (for example, the integer argument amount is instantiated as amount := 1);
arguments of reference types are instantiated by applying the instantiate_reference procedure (see the details in Algorithm
2) based on the input vector. Finally, the algorithm builds a call of the target routine (lines 16 – 21) with the instantiated
arguments.

Algorithm 2 instantiate_reference: instantiate a variable of reference type
1: Input: object reference o, input vector v
2: Output: text t
3: if o has an instantiated alias then
4: alias := get_alias_of_reference(o)
5: t := t + assignment(o, alias) -- Construct an assignment o := alias
6: elseif o is a variable of container type then
7: size := get_size_of_container(o, v) -- Get o’s size
8: items := get_item_of_container(o, v) -- Get o’s elements
9: from
10: i := 1
11: until
12: i ≤ size
13: loop
14: t := t + force_clause(o, items[i]) -- Use force routine to insert each of o’s elements
15: i := i + 1
16: end
17: else
18: across each field of o as f loop
19: if f is a variable of primitive type then
20: value := get_value(f, v)
21: t := set_field_clause(f, value) -- Use set_type_field function to instantiate f
22: else
23: t := instantiate_reference(f, v)
24: end
25: end
26: end

Algorithm 2 instantiates an object reference o based on the input vector v:
• Checks whether o has an alias that has been instantiated earlier.
• If so, construct a direct assignment to the earliest alias (lines 4 – 5).
• If o is an object of a container type (such as ARRAY and SEQUENCE), instantiates each of its fields (lines 6 – 16).
• If it is instead an object of a non-container reference type, instantiate its fields transitively: assign to fields of primitive

types (such as balance and credit_limit) their corresponding values in the input vector (lines 20 – 21); for fields of
reference types, apply the procedure recursively (line 23).

5 COMBINING PROOFS AND TESTS: THE PROCESS

As noted in the introduction, tests and proofs have often been considered distinct, incompatible or competing approaches to
software verification. The assumption behind the present work is that it is better to view them as complementary.
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5.1 General description

FIGURE 7 Program verification with the assistance of Proof2Test.

The verification process combining both approaches, thanks to AutoProof, AutoTest and Proof2Test, is the following,
illustrated by Figure 7 :

• Step A: Attempt the verification with AutoProof. If the verification succeeds, the process stops. The remaining steps
assume the verification failed. Figure 8 shows an example in which AutoProof is not able to prove some properties
(although it does succeed with some others).

• Step B: Run Proof2Test. The remaining steps assume Proof2Test is able to generate a failing test (if not, Proof2Test is not
helpful in this case).

• Step C: Run the test.
• Step D: use the test to attempt to correct the bug using standard testing and debugging techniques. The fix can be a change

to the code or to the contract (or occasionally both).
• Repeat the process, attempting to prove the corrected code, until the proof succeeds.

FIGURE 8 Verification result of ACCOUNT in AutoProof, with some properties proved and others not

When Proof2Test is not able to generate a failing tests (the workflow in Figure 7 terminates with “No suggestion”), there are
two possible reasons:

• the generated tests are passed, mostly due to the weakness of the specifications (loop invariants or postconditions of a
supplier routine) of the target routine; Section 6 contains a more detailed discussion of such cases.

• the program contains the data types or program constructs that are not supported by Proof2Test; in this case, the test
generation either terminates in an abnormal state (indicating a limitation of Proof2Test) or terminates normally but the
resulting tests would be incorrect and thus not compilable.
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5.2 Running the verification process: an example
Here is the application of the above process to the ACCOUNT class from Section 3.1.
Step A: run AutoProof on the class; Figure 8 already showed the result, which displays AutoProof’s inability to establish four

postconditions: balance_increased in the deposit routine, balance_set in withdraw, withdrawal_made and deposit_made in
transfer. In this case, the model file (ce.model) contains four counterexample models, each of which corresponds to a proof
failure (postcondition violation).
Step B: use Proof2Test to generate test cases, shown in Figure 9, from the four counterexamples. In the order of proof failures:
• test_ACCOUNT_deposit_1 (lines 1 – 10) corresponds to deposit’s postcondition balance_increased; it first instantiates
current_object by setting the values of the balance and credit_limit to 38 and −62 (lines 6 – 7) and then sets the
value of the input argument amount to −5 (line 8); finally it invokes a qualified call of deposit (the target routine) with
the instantiated argument (line 9).

• test_ACCOUNT_withdraw_1 (lines 12 – 21) corresponds to the proof failure of withdraw; similar to the test case of
deposit, it instantiates current_object’s two fields, balance and credit_limit, to 10 and −20, and sets the value
of amount to 1, followed by a call to withdraw.

• test_ACCOUNT_transfer_1 (lines 23 – 35) corresponds to the postcondition deposit_made of transfer; it first instan-
tiates the state of current_object (lines 29 – 30), and then initializes the two arguments of transfer, amount (line
31) and other (line 32 – 33); it then calls transfer using the two arguments.

• test_ACCOUNT_transfer_2 (lines 37 – 47) corresponds to the proof failure of postcondition withdrawal_made
of transfer; it follows the same structure of test_ACCOUNT_transfer_1: it starts with the initialization of
current_object and arguments, followed by a call to transfer; additionally, as other and current_object are
aliases (they have the same symbolic value in the counterexample model), instead of instantiating other using the
set_type_field routines, it directly assign other with current_object (line 45).

Step C: exercise the test cases in AutoTest. Figure 10 shows the testing result: among the four test cases,
test_ACCOUNT_transfer_1 passed and the other three test cases failed, raising the same postcondition violations as in the
verification result (Figure 8).
Step D: to understand the causes of the contract violations, use the debugger from EiffelStudio to step through the three

failed test cases: test_ACCOUNT_deposit_1, test_ACCOUNT_withdraw_1 and test_ACCOUNT_transfer_2. For each test
case, move forward to the line of the respective call of the target routine and advance the execution of the target routine on one
instruction at a time to observe how the program state (values of variables) evolves. Figure 11 shows the execution traces of the
three target routines:

• deposit (Figure 11 (a)): initially the balance of the Current object is 38; after execution of the assignment, balance
is set to 33 (the sum of its previous value and amount; the final state violates the postcondition balance_increased as
the value of balance (33) is smaller than its old value (38). The execution trace reveals a flaw of deposit: depositing
negative amount is permitted. To correct this error, a precondition should be added to require that the value of the input
argument amount should be non-negative.

• withdraw (Figure 11 (b)): at the initial state, amount is 1, balance is 10, credit_limit is − 20, available_amount
(the difference between balance and credit limit) is 30; the two preconditions are satisfied; after executing the assign-
ment, balance is set to 11 (the sum of its previous value and amount); at the final state, the value of old balance -
amount (9) is different with the value of balance (11), which violates the postcondition. This indicates the apparent bug:
the routine implementation (addition operation) is inconsistent with what is expected in the postcondition (subtraction
operation). Replacing the “+” with “−” is enough to correct the bug.

• transfer (Figure 11 (c)): initially, amount= 1 and available_amount is 51, which satisfies the two preconditions; after
withdrawing amount from the Current account (balance := balance−amount), balance of the Current account is
set to −3; moreover, since Current and other are aliases (they refer to the same object), balance of the other account
is also set to −3; similarly, after depositing amount to the other, the balance in both other account and Current
account are updated to −2; at the end state, the postcondition withdral_made is not satisfied. The execution trace shows
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1 test_ACCOUNT_deposit_1
2 local
3 current_object: ACCOUNT; amount: INTEGER
4 do
5 create current_object.make (0)
6 {INTERNAL}.set_integer_field (balance, current_object, 38)
7 {INTERNAL}.set_integer_field (credit_limit, current_object, (−62))
8 amount := (−5)
9 current_object.deposit (amount)

10 end
11
12 test_ACCOUNT_withdraw_1
13 local
14 current_object: ACCOUNT; amount: INTEGER
15 do
16 create current_object.make (0)
17 {INTERNAL}.set_integer_field (balance, current_object, 10)
18 {INTERNAL}.set_integer_field (credit_limit, current_object, (− 20))
19 amount := 1
20 current_object.withdraw (amount)
21 end
22
23 test_ACCOUNT_transfer_1
24 local
25 current_object, other: ACCOUNT; amount: INTEGER
26 do
27 create current_object.make (0)
28 create other.make (0)
29 {INTERNAL}.set_integer_field (balance, current_object, (−2))
30 {INTERNAL}.set_integer_field (credit_limit, current_object, (−32))
31 amount := 6
32 {INTERNAL}.set_integer_field (balance, other, (−83))
33 {INTERNAL}.set_integer_field (credit_limit, other, (−83))
34 current_object.transfer (amount, other)
35 end
36
37 test_ACCOUNT_transfer_2
38 local
39 current_object, other: ACCOUNT; amount: INTEGER
40 do
41 create current_object.make (0)
42 {INTERNAL}.set_integer_field (balance, current_object, (−2))
43 {INTERNAL}.set_integer_field (credit_limit, current_object, (−53))
44 amount := 1
45 other := current_object
46 current_object.transfer (amount, other)
47 end

FIGURE 9 Test cases for ACCOUNT
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FIGURE 10 Testing results in AutoTest: “PASS” means running the test satisfies all assertions during execution; “FAIL”
indicates the occurrence of a contract violation in the test run.

(a) Execution trace of deposit (b) Execution trace of withdraw

(c) Execution trace of transfer

FIGURE 11 Debugging failed tests in EiffelStudio: each block displays a program state (a list of variables and their values)
after executing a designated statement (starting point of a blue line); the variable will be highlighted in red when its value is
changed after executing the statement.

a erroneous scenario where the Current account is transferring money to itself. To exclude this particular case from the
execution, we can add a precondition Current ≠ other to limit that other should be an account other than Current.

These failed tests become part of the regression test suite of the target class ACCOUNT.
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6 EXPERIMENT AND EVALUATION

A preliminary evaluation of the usability of Proof2Test used the example programs of Table 2. Altogether, the experiment
involved 49 editions of 9 Eiffel programs. The report includes not only the test results but also the test generation times for both
the proofs and the tests.
The process is the following:
• Each edition results from injecting a single error into a correct program. The faults, injected manually, include:

1. Switching between + and −, ≤ and <, > and ≥.
2. Removing a clause from a loop invariant, a precondition or a postcondition.
3. Removing a statement in a routine body.
4. Swapping two subsequent statements in a routine body.
In general, the decisions of which instruction or other clause to manipulate and how to mutate operators is random, with
the goal of covering as many candidate areas as possible and creating faults that are similar to those made by programmers
in practice.

• When verifying the modified program, AutoProof fails on a single assertion of one of the following seven kinds: post-
condition violation at the end of a call; class invariant violation; precondition violation on entry to a call; loop invariant
violated after loop initialization; loop invariant not maintained by loop body; loop variant not decreased; loop variant
becoming negative.

• From each such failure, Proof2Test generates one test case.
Each row in Table 2 corresponds to an experimental task performed on a program variant, including three procedures: 1) verifi-
cation of the program in AutoProof; 2) generation of test case in Proof2Test; 3) exercising the test case in AutoTest. The SizeP
and SizeM columns provide the number of lines of the program and counterexample model. The “Proof time” column lists the
time in seconds for obtaining a proof in AutoProof, and the “Test generation time” column the time Proof2Test takes to generate
the test from the corresponding model. The last column shows the results of running the corresponding tests in AutoTest.
The examples include: 1) the class ACCOUNT introduced in Section 3.1; 2) a class CLOCK implementing a clock counting sec-

onds, minutes, and hours; 3) a HEATER class implementing a heater, adjusting it state (on or off) based on the current temperature
and user-defined temperature; 4) a class LAMP describing a lamp equipped with a switch (for switching the lamp on or off) and
a dimmer (for adjusting the light intensity of the lamp); 5) a class BINARY_SEARCH implementing binary search; 6) a class
LINEAR_SEARCH implementing linear search; 7) the class MAX_IN_ARRAY presented in Section 2; 8) a class SQUARE_ROOT for
calculating two approximate square roots of a positive integer; 9) a class SUM_AND_MAX computing the maximum and the sum
of the elements in an array. A.1 and A.2 detail the experiment results of ACCOUNT and LINEAR_SEARCH; the results for other
examples can be found in the technical report [9].
Among the 49 total test runs of the generated counterexamples, 37 failed but 12 runs passed. Ideally, we would like all

counterexample to fail execution; the discrepancy reflects a difference of the semantics for proofs and tests. If a routine r calls
a routine s:

• The proof of r relies only on the specification of s, independently of its implementation. In other words, proofs use
modular semantics.

• A test of r, in particular an execution with run-time assertion monitoring under EiffelStudio and AutoTest, must execute
r and hence must call s as it is, relying on its implementation. In other words, tests use global (non-modular) semantics.

As a consequence, assuming the prover (AutoProof) is sound, a test failure implies a proof failure but the reverse is not necessarily
true: the counterexample generated by a failed proof (based on modular semantics) might not lead to a failure when we execute
it (under non-modular semantics).
When such discrepancies arise in practice, they are typically due to a routine s with an implementation that is “correct” in

some intuitive sense (it does what the programmer informally intended) but a specification that is not complete: it does not
express all the relevant properties of the routine, which the prover would need to prove the correctness of the calling routine r.
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TABLE 2 Test generation from failed proofs on a collection of examples
Class SizeP Routine Violated assertion Failure type SizeM Proof

time (s)
Test gen.
time (s)

Test
result

ACCOUNT 97 withdraw balance_set postcondition violation 658 0.247 0.241 Fail
balance_non_negative class invariant violation 620 0.275 0.225 Fail

deposit balance_set postcondition violation 654 0.241 0.202 Fail
transfer amount ≤ 10 precondition violation 633 0.248 0.212 Fail

withdrawal_made postcondition violation 638 0.243 0.208 Fail
withdrawal_made postcondition violation 672 0.253 0.214 Pass
deposit_made postcondition violation 660 0.244 0.223 Pass

CLOCK 131 increase_hours valid_hours precondition violation 572 0.253 0.245 Fail
increase_minutes hours_increased postcondition violation 607 0.251 0.231 Fail

hours_increased postcondition violation 641 0.263 0.218 Pass
minutes_increased postcondition violation 606 0.259 0.222 Pass

increase_seconds valid_seconds precondition violation 574 0.241 0.201 Fail
hours_increased postcondition violation 647 0.243 0.219 Pass
minutes_increased postcondition violation 625 0.248 0.201 Pass
valid_minutes precondition violation 577 0.245 0.192 Fail

HEATER 73 turn_on_off heater_remains_off postcondition violation 633 0.615 0.207 Fail
heater_remains_on postcondition violation 643 0.642 0.213 Fail
heater_remains_on postcondition violation 631 0.250 0.212 Fail
heater_remains_off postcondition violation 633 0.246 0.181 Fail

LAMP 71 turn_on_off turn_off postcondition violation 728 0.250 0.194 Fail
turn_off postcondition violation 696 0.278 0.205 Fail

adjust_light from_high_to_low postcondition violation 632 0.265 0.222 Fail
from_medium_to_high postcondition violation 624 0.270 0.208 Fail

BINARY_SEARCH 50 binary_search present postcondition violation 1243 0.327 0.471 Fail
not_in_lower_part invariant not maintained 1312 0.39 0.71 Fail
not_in_lower_part invariant not maintained 1376 0.395 0.440 Fail
– variant not decreased 1370 0.325 0.398 Fail
not_in_upper_part invariant not maintained 1120 0.288 0.323 Fail
present postcondition violation 1347 0.550 0.382 Pass
not_in_lower_part invariant violated on

entry
1227 0.356 0.366 Fail

LINEAR_SEARCH 27 linear_search result_in_bound invariant violated on
entry

955 0.709 0.332 Fail
present postcondition violation 977 0.283 0.373 Fail
present postcondition violation 975 0.280 0.344 Pass
– variant being negative 976 0.279 0.312 Fail

MAX_IN_ARRAY 33 max_in_array max_so_far invariant not maintained 1104 0.288 0.282 Fail
is_maximum postcondition violation 1059 0.284 0.313 Pass
result_in_array postcondition violation 1049 0.278 0.307 Pass
is_maximum postcondition violation 1057 0.286 0.323 Fail
max_so_far invariant violated on

entry
992 0.290 0.303 Fail

i_in_bounds invariant violated on
entry

1015 0.282 0.315 Fail
SQUARE_ROOT 38 square_root – variant not decreased 648 0.258 0.192 Fail

valid_result postcondition violation 723 0.257 0.205 Pass
valid_result invariant not maintained 644 0.308 0.181 Fail
result_so_far invariant not maintained 631 0.400 0.194 Fail

SUM_AND_MAX 36 sum_and_max is_maximum postcondition violation 1402 0.301 0.336 Pass
is_maximum postcondition violation 1405 0.321 0.333 Fail
partial_sum_and_max invariant not maintained 1178 0.307 0.333 Fail
partial_sum_and_max invariant violated on

entry
1127 0.743 0.346 Fail

sum_max_non_negative invariant not maintained 1178 0.800 0.313 Fail
sum_in_range postcondition violation 1375 0.310 0.362 Fail

Total 556 14 49 44069 15.968 13.985 37/12
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The passing counterexample test runs are therefore useful, as the failing ones are, but in a different way: they usually alert the
developers to the presence of a specification in need of improvement. (This case is the most common one. There always remains
in principle the possibility of a mere limitation of the prover which – because of fundamental undecidability results — cannot
be both sound and complete. However tempting it may be to blame the prover for proof failures, in practice this theoretical
limitation seldom hits with a powerful prover such as the Boogie/Z3 combination for AutoProof: the culprit is almost always
the programmer, not the tool.)
Incomplete specifications are indeed the reason for the 12 proof failures in the experiment. For example, failures in Variant 6

and 7 of ACCOUNT are due to weakness of the postconditions of the associated calling routines, and the failure in the Variant 3
of LINEAR_SEARCH to incomplete loop invariants.
For the 37 failures for which the tests fail, the causes can be categorized as follows:
• Postcondition violation due to incorrect implementations (examples in this category include theVariant 1, 4, 5 of ACCOUNT,

and the Variant 2 of LINEAR_SEARCH).
• Precondition violation due to the inconsistency of specification between a routine and its calling routine; for example,

the failure in Variant 3 of ACCOUNT is caused by the inconsistency of specification between the routine transfer and its
calling routine deposit.

• Precondition violation of a calling routine due to a fault in its client routine; for example, the verification of Variant 1
of CLOCK (for the details of this variant, see the technical report [9]) results in a failure of the precondition of a routine
set_hours when calling it from another routine increase_hours.

• Violation of loop invariant at start of loop due to an incorrect implementation of loop initialization (see Variant 1 of
LINEAR_SEARCH as an example).

• Loop invariant not maintained due to incorrect exit condition or faults in the loop body; examples in this category include
Variant 4 of BINARY_SEARCH and Variant 1 of MAX_IN_ARRAY.

• Loop variant not decreased due to incorrect exit condition of the loop; an example in this category is Variant 1 of
SQUARE_ROOT.

• Loop variant be negative due to the incorrectness of the loop variant; an example is the Variant 4 of LINEAR_SEARCH).
In most cases, the failing test is useful: executing it yields a specific trace illustrating how the program leads to the same contract
violation that makes the proof fail. Even in cases such as Variant 2 and 5 of ACCOUNT in which the test input itself immediately
demonstrates the problem, executing the automatically generated to allows programmers to step into the debugger and understand
the issue in depth by going into step-by-step mode.
In all cases, the generated tests are important as regression tests: once the corresponding bug has been corrected, every test

should become part of the project’s regression suite, an essential tool for further development of the project.

7 RELATEDWORK

The idea of using counterexamples to generate test cases is not new, but it has been mostly applied to verification approaches
using model checking of temporal-logic specifications [17–20]. We are only aware of one existing attempt [21] (building on work on
using counterexamples for automatic program repair [22]) to apply the idea in the context of Hoare-style verification; it exploits
counterexamples produced by OpenJML [23] (a verification tool for Java programs) to generate unit tests in JUnit [24] format. The
tool described in that article needs both to generate counter-examples from an SMT server and to generate, from the JML source,
Java code instrumented to monitor some of the assertions (expressed as comments in the original code) at run-time. It then uses
the concrete tests, extracted from counterexamples, to call the code. Proof2Test does not need any extra code generation since
it uses inputs from counterexamples to call the erroneous routines, taking advantage of the built-in runtime assertion checking
mechanism of EiffelStudio. We benefit here from the integration of contracts as a basic feature of the language and environment,
rather than an add-on to a non-contract language such as Java.
KeyTestGen [25,26] is a test generation tool based on the KeY, which is an automatic proof system for Java programs [27] based

on dynamic logic. The KeyTestGen makes use of the branch information (in the form of proof trees), generated during program
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proofs, to construct path constraints with respect to different branches. It then applies an SMT solver to generate test data
that satisfy those path constraints. As a result, the produced tests cases cover different program branches (paths). In contrast,
Proof2Test aims to produce tests that can reproduce the proof failures at run time; it directly exploits counterexamples that are
available in cases of proof failures and thus requires no extra SMT solving process.
In line with the objective of helping verification engineers understand the reasons of proof failures, many approaches have

been proposed to provide a more user-friendly visualization of counterexample models: Claire et al. [6] developed the Boogie
Verification Debugger (BVD), which can interpret a counterexample model as a static execution trace (a sequence of abstract
states). BVD has been applied in Dafny [28] and VCC [29]. David et al. [30] transformed the models back into a counterexample
trace comprehensible at the original source code level (SPARK) and display the trace using comments. Similarly, Stoll [31]
implemented a tool that translates the models into programs understandable at the Viper source code level [32]. Chakarov et al. [33]
transformed SMT models to a format close to the Dafny syntax. Instead of providing a static diagnosis trace, the Proof2Test
approach is able to present a “dynamic” trace, through execution of tests produced based on themodels, which allows verification
engineers to produce a program trace leading to a failing run-time state. Verification engineers can even use a debugger to step
through the test, observing the faulty behaviors at their own pace. We find this approach more appropriate since every software
developer is used to working with a debugger.
Another way of facilitating proof failures diagnosis is to generate of useful counterexamples: Polikarpova et al. [34] developed

a tool Boogaloo, which applied symbolic execution to generate counterexamples for failed proofs of Boogie programs. Boogaloo
displays the resulting counterexamples in the form of valuations of relevant variables, similar to the intermediate result of the
present work after the step “extraction of input data from the model” in Section 4. Likewise, Petiot et al. [35,36] developed STADY
that produces failing tests for the failed assertions using symbolic execution techniques. Their approach is also referred to
testing-based counterexample synthesis: they first translated the original C program into programs suitable for testing (run-time
assertion checking), and then applied symbolic execution to generate counterexamples (input of the failing tests) based on the
translated program. Unlike that approach, Proof2Test exploits the original programs, that are inherently amenable to run-time
assertion checking and thus requires no additional program transformation. Furthermore, our approach directly makes use of
the counterexample models produced by the underlying provers and no extra counterexample generation process is performed.
However, their approach is more fine-grained than ours as they can distinguish between specification weaknesses failures and
prover limitations failures.
Other facilities for diagnosing proof failures: Müller et al. [37] implemented a Visual Studio dynamic debugger plug-in for

Spec#, to reproduce a failing execution from the viewpoint of the prover. This approach creates a variation of the original
program for debugging, based on a modular verification semantics: the effect of the iteration of a loop is represented by the
corresponding values in the counterexample. Tschannen et al. [38] proposed a “two-step” approach to narrow down the reasons of
proof failures: it compares the proof failures with those of its variant where called functions are inlined and loops are unrolled,
which allows to discern failures caused by specification weaknesses and failures resulting from inconsistency between code and
contract. However, inlining and unrolling are limited to a given number of nested calls and explicit iterations.
Some recent approaches share the present work’s vision of combining static and dynamic techniques to make verification

more usable. Julian et al. [39] proposed a combination of AutoProof and AutoTest at a higher level, where the two tools were
integrated in the Eiffel IDE to avail the complementarity of proof and testing. On one hand, for those programming features
currently not supported by AutoProof (such as the code that relies on external precompiled C functions), testing can be used to
check the correctness of routines. On the other hand, proof can be used to analyze the code that can not be tested (e.g., deferred
functions that have no implementations). Collaborative verification [40] is also based on the combination of testing and static
verification, and on the explicit formalization of the restrictions of each tool used in the combination. The Proof2Test approach
also complements the limitations of proof techniques with testing, with a particular purpose to improve user experience in
understanding proof failures. However, it does not integrate the results of the two different techniques.

8 LIMITATIONS

The results obtained in this study rely on a specific combination of technologies (section 3): Eiffel as the programming language,
contract-equipped programs, and the AutoProof tool stack relying on Boogie, itself based on the Z3 SMT solver.
That last brick is the easiest to replace since Proof2Test relies not on the specifics of Z3 but on its SMT-LIB interface, which

current SMT solvers generally share.
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More generally, the setup assumes a Hoare-style verification framework (of which Boogie is but one example), and a language
that supports the corresponding constructs (preconditions, postconditions, class invariants). Examples of such languages include
the JML (Java Modeling Language) [41] extension of Java, the Spark [42] extension of Ada, and the Spec# [43] extension of C#.
We have not studied the possible application of the ideas to completely different verification frameworks, based for example on
abstract interpretation or model checking.
The current version of Proof2Test is subject to the following limitations:
• It does not support the more advanced parts of the Eiffel system, in particular generic classes.Data structures are limited

to arrays and sequences.
• It generates tests for individual routines (methods). There is no mechanism at this point to generate tests for an entire

program.
These limitations will need to be removed for Proof2Test to be applicable to industrial-grade programs.

9 CONCLUSION AND FUTUREWORK

The key assumption behind this work is that program proofs (static) and program tests (dynamic) are complementary rather
than exclusive approaches. Software verification is hard; we should take advantage of all techniques that help. Proofs bring the
absolute certainties that tests lack, but are abstract and hard to get right; tests cannot guarantee correctness but, when they fail,
bring the concreteness of counterexamples, immediately understandable to the programmer and opening up the possibility of
using well-understood debugging tools. Relying on the seamless integration of AutoProof and AutoTest in the Eiffel method
and the EiffelStudio environment, Proof2Test attempts to leverage the benefits of both.
From this basis, work is proceeding in various directions:
• Cover the language constructs and types that (as noted in section 8) are not yet handled.
• Generate failing tests when the tests from Proof2Test are successful or non-executable.
• Make Proof2Test (currently a separate tool) a part of the EiffelStudio tool suite, at the same level of integration as

AutoProof and AutoTest.
• Extend the scope of the work to include support for more intricate specifications, such as class invariants and assertions

involving ghost states.
• On the theoretical side, develop a detailed classification of proof failures and possible fix actions with correspondence to

their categories.
• On the empirical side, perform a systematic study of the benefits of the proposed techniques for verification non-experts.

As it stands, we believe that Proof2Test advances the prospect of an effective approach to software verification combining the
power of modern proving and testing techniques.
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APPENDIX: DETAILED RESULTS FOR SELECTED PROGRAMS

The detailed results and analysis of applying Proof2Test to the sample classes listed in the article appear in a technical report [9].
The material in this Appendix, extracted from that report, covers classes ACCOUNT and LINEAR_SEARCH.
All runs took place on a Windows 11 machine with a 2.1 GHz Intel 12-Core processor and 32 GB of memory. AutoProof or

Proof2Test was the only computationally-intensive process running during the experiments. Version numbers for the underlying
techology are: EiffelStudio 22.05; Boogie 2.11.1.0; Z3 4.8.14. On average, AutoProof ran for 0.326 seconds for each program;
Proof2Test ran for 0.285 each test generation, with each test generation run producing one test case, from a single counterexample
model.

A.1 Results for class ACCOUNT
Below shows a correct version of the ACCOUNT class, which includes a set of features representing basic operations on bank
account: deposit (line 51), withdraw (line 64), and transfer (line 77). Figure 12 displays its verification result, which
suggests a complete functional correctness. To demonstrate how Proof2Test can generate tests from proof failures, different
faults are introduced into the correct version, resulting in 5 faulty variants.

1 class

2 ACCOUNT

3
4 create

5 make

6
7 feature {NONE} -- Initialization

8 make

9 -- Initialize empty account.

10 note

11 status: creator
12 do

13 balance := 0

14 credit_limit := 0

15 ensure

16 balance_set: balance = 0

17 credit_limit_set: credit_limit = 0

18 end

19
20 feature -- Access

21
22 balance: INTEGER
23 -- Balance of this account.

24
25 credit_limit: INTEGER
26 -- Credit limit of this account.

27
28 available_amount: INTEGER
29 -- Amount available on this account.

30 note

31 status: functional
32 do

33 Result := balance − credit_limit

34 end

35
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36 feature -- Basic operations

37
38 set_credit_limit (limit: INTEGER)
39 -- Set ‘credit_limit’ to ‘limit’.

40 require

41 limit_not_positive: limit ≤ 0

42 limit_valid: limit ≤ balance

43 do

44 credit_limit := limit

45 ensure

46 modify_field ([‘‘credit_limit’’, ‘‘closed’’], Current)
47 credit_limit_set: credit_limit = limit

48 end

49
50
51 deposit (amount: INTEGER)
52 -- Deposit ‘amount’ in this account.

53 require

54 amount ≥ 0

55 do

56 balance := balance + amount

57 ensure

58 modify_field ([‘‘balance’’, ‘‘closed’’], Current)
59 balance_increased: balance ≥ old balance

60 balance_set: balance = old balance + amount

61 end

62
63
64 withdraw (amount: INTEGER)
65 -- Withdraw ‘amount’ from this account.

66 require

67 amount_not_negative: amount ≥ 0

68 amount_available: amount ≤ available_amount

69 do

70 balance := balance − amount

71 ensure

72 modify_field ([‘‘balance’’, ‘‘closed’’], Current)
73 balance_set: balance = old balance − amount

74 balance_decrease: balance ≤ old balance

75 end

76
77 transfer (amount: INTEGER; other: ACCOUNT_1)
78 -- Transfer ‘amount’ from this account to ‘other’.

79 note

80 explicit: wrapping
81 require

82 amount_not_negative: amount ≥ 0

83 amount_available: amount ≤ available_amount

84 other ≠ Current

85 do

86 withdraw (amount)
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87 other.deposit (amount)
88 ensure

89 modify_field ([‘‘balance’’, ‘‘closed’’], [Current, other])
90 withdrawal_made: balance = old balance − amount

91 deposit_made: other.balance = old other.balance + amount

92 end

93
94 invariant

95 credit_limit_not_positive: credit_limit ≤ 0

96 balance_non_negative: balance − credit_limit ≥ 0

97 end

FIGURE 12 Verification result of ACCOUNT in AutoProof: all routines are verified successfully (highlighted with green), which
indicates that implementations of those routines are correct with respect to their specifications.

Variant 1 of ACCOUNT

∙ Fault injection: at line 73, change the postcondition balance_set from “balance = old balance − amount” into
“balance = old balance + amount”.

∙ Resulting failure: as shown in Figure 13(a), the fault results in a violation of postcondition balance_set of the withdraw
procedure.

∙ Cause of the failure: the implementation of withdraw (which deduces balance by amount) and specification (which requires
the increment of balance by amount) is inconsistent.

∙ Proof time: 0.247 sec
∙ Test generation time: 0.241 sec
∙ Resulting test case: Figure 14 shows the test case generated from the failure— it calls withdrawwith input balance = 11797,
credit_limit =−1, and amount = 11798;

∙ Testings result: running the test case, as shown in Figure 13(b), raises an exception of violation of balance_set, which maps
to the same failure in AutoProof.

∙ Comment: the value of the test input does not contain specific meaning to the failure; as the failure is caused by inconsistency
between implementation and specification, executing the withdraw procedure with any valid test input (which satisfies the
precondition) would raise the same contract violation as in the proof.
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(a)

(b)

FIGURE 13 (a) Verification result of ACCOUNT_1 in AutoProof; (b) Testing result of test_ACCOUNT_1_withdraw_1 in
AutoTest

1 test_ACCOUNT_1_withdraw_1

2 local

3 current_object: ACCOUNT_1
4 amount: INTEGER_32
5 do

6 create current_object.make
7 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, current_object, 11797)
8 -- current_object.balance = 11797

9 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, current_object, (−1))
10 -- current_object.credit_limit = (-1)

11 amount := 11798

12 current_object.withdraw (amount)
13 end

FIGURE 14 Test from the failed proof of balance_set

Variant 2 of ACCOUNT

∙ Fault injection: at line 68, remove the precondition amount_available of withdraw.
∙ Resulting failure: as shown in Figure 15(a), the class invariant balance_non_negative (line 96), which states that the balance
(represented by balance − amount) should not be negative, is violated. (Note that a class invariant which is supposed to hold
at the entry and exit of every routine.)

∙ Cause of the failure: the precondition of withdraw is too weak; there should be a precondition to constrain the amount
permitted in a withdrawal operation.

∙ Proof time: 0.275 sec
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(a)

(b)

FIGURE 15 (a) Verification result of ACCOUNT_2 in AutoProof; (b) Testing result of test_ACCOUNT_2_withdraw_1 in
AutoTest

1 test_ACCOUNT_2_withdraw_1

2 local

3 current_object: ACCOUNT_2
4 amount: INTEGER_32
5 do

6 create current_object.make
7 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, current_object, 0)
8 -- current_object.balance = 0

9 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, current_object, 0)
10 -- current_object.credit_limit = 0

11 amount := 1

12 current_object.withdraw (amount)
13 end

FIGURE 16 Test case from failed proof of balance_non_negative

∙ Test generation time: 0.225 sec
∙ Resulting test case: Figure 16 shows the test case from Proof2Test, which calls withdraw with input — balance = 0,
credit_limit = 0, amount = 1.

∙ Testings result: running the test case in raises the failure of invariant balance_non_negative (same failed contract in the
proof) as shown in Figure 15(b).

∙ Comment: the test input itself immediately demonstrates the problem – when there is no money left in the account, withdrawal
operation should be forbidden; the executable test, however, is still useful in this case: programmers can still choose run the
test and switch to the debugging mode to see how it fails step by step; the test can also be a part of the test suite for regression
testing in later development stages.
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(a)

(b)

FIGURE 17 (a) Verification result of ACCOUNT_3 in AutoProof; (b) Testing result of test_ACCOUNT_3_withdraw_1 in
AutoTest

Variant 3 of ACCOUNT

∙ Fault injection: after line 54, add a precondition amount ≤ 10 for deposit to strengthen the precondition.
∙ Resulting failure: as shown in Figure 17(a), the injected fault results in a failure of transfer — it does not satisfy the new
precondition amount ≤ 10 when calling deposit.

∙ Cause of the failure: the inconsistency of specification between a supplier routine deposit and its client routine transfer:
when the precondition of a routine is changed, its client routine should be changed accordingly. In this example, the upper
limit of transfer should be consistent with the upper limit of deposit. In other words, the amount of money in a transfer
operation should not exceed the maximum amount that is permitted in a deposit operation.

∙ Proof time: 0.248 sec
∙ Test generation time: 0.212 sec
∙ Resulting test case: Figure 18 shows the test case from Proof2Test, which calls transfer with input —
Current.balance =−2147483599, Current.credit_limit =−2147483632, amount = 33, other.balance = 7719,
other.credit_limit =−2147481211.

∙ Testings result: running the test case in raises the failure of precondition violation amount ≤ 10 of deposit (same failure in
the proof), as shown in Figure 17(b).

∙ Comment: during the execution of the test, when the program calls other.deposit from transfer, the input for deposit
is amount = 33, which violates the precondition of deposit and demonstrates the problem.
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1 test_ACCOUNT_3_transfer_1

2 local

3 current_object: ACCOUNT_3
4 amount: INTEGER_32
5 other: ACCOUNT_3
6 do

7 create current_object.make
8 create other.make
9 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, current_object, (−2147483599))
10 -- current_object.balance = (-2147483599)

11 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, current_object, (−2147483632))
12 -- current_object.credit_limit = (-2147483632)

13 amount := 33

14 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, other, 7719)
15 -- other.balance = 7719

16 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, other, (−2147481211))
17 -- other.credit_limit = (-2147481211)

18 current_object.transfer (amount, other)
19 end

FIGURE 18 Test case generated by Proof2Test

Variant 4 of ACCOUNT

∙ Fault injection: at line 56, change the body of deposit from “balance := balance + amount” into
“balance := balance − amount”.

∙ Resulting failure: as shown in Figure 19(a), the postcondition balance_set is violated.
∙ Cause of the failure: this failure is similar to the failure in Variant 1, which results from the inconsistency between the
implementation of deposit and its postcondition.

∙ Proof time: 0.241 sec
∙ Test generation time: 0.202 sec
∙ Resulting test case: Figure 20 shows the test case from Proof2Test, which calls deposit with input — balance = 28101,
credit_limit = 0, amount = 1.

∙ Testings result: as shown in Figure 19(b), running the test raises an exception of postcondition violation of balance_set, which
corresponds to the same failure in the proof.

∙ Comment: this Variant of ACCOUNT is similar to Variant 1; the values in the test input does not contain any specific meaning;
running deposit with any valid test input would lead to the same contract violation.
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(a)

(b)

FIGURE 19 (a) Verification result of ACCOUNT_4 in AutoProof; (b) Testing result of test_ACCOUNT_4_withdraw_1 in
AutoTest

1 test_ACCOUNT_4_deposit_1

2 local

3 current_object: ACCOUNT_4
4 amount: INTEGER_32
5 do

6 create current_object.make
7 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, current_object, 28101)
8 -- current_object.balance = 28101

9 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, current_object, 0)
10 -- current_object.credit_limit = 0

11 amount := 1

12 current_object.deposit (amount)
13 end

FIGURE 20 Test case from failed proof of balance_set

Variant 5 of ACCOUNT

∙ Fault injection: at line 87, remove the precondition other ≠ Current of transfer.
∙ Resulting failure: as shown in Figure 21(a), the fault injection leads to the violation of postcondition withdrawal_made when
verifying transfer.

∙ Cause of the failure: the precondition of transfer is too weak; it should exclude the case where an account transfers money
to itself.

∙ Proof time: 0.243 sec
∙ Test generation time: 0.208 sec
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(a)

(b)

FIGURE 21 (a) Verification result of ACCOUNT_5 in AutoProof; (b) Testing result of test_ACCOUNT_5_withdraw_1 in
AutoTest

1 test_ACCOUNT_5_transfer_1

2 local

3 current_object: ACCOUNT_5
4 amount: INTEGER_32
5 other: ACCOUNT_5
6 do

7 create current_object.make
8 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, current_object, (−2147481210))
9 -- current_object.balance = (-2147481210)

10 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, current_object, (−2147482752))
11 -- current_object.credit_limit = (-2147482752)

12 amount := 1542

13 other := current_object

14 current_object.transfer (amount, other)
15 end

FIGURE 22 Test case from failed proof of withdrawal_made

∙ Resulting test case: Figure 22 shows the test case, which calls transfer with input — balance =−2147481210,
credit_limit =−2147482752, amount = 1542, and other is an alias of Current (line 13).

∙ Testings result: as presented in Figure 21(b), running the test case raises the failure of violation of postcondition
withdrawal_made of transfer, which is the same as the proof failure in AutoProof.
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(a)

(b)

FIGURE 23 (a) Verification result of ACCOUNT_6 in AutoProof; (b) Testing result of test_ACCOUNT_6_withdraw_1 in
AutoTest

Variant 6 of ACCOUNT

∙ Fault injection: at line 73, remove the postcondition balance_set of withdraw.
∙ Resulting failure: as shown in Figure 23(a), the injected fault results in the violation of postcondition withdrawal_made when
verifying transfer.

∙ Cause of the failure: the postcondition of withdraw is incomplete — not strong enough to represent the functionality of
withdraw; as a result, when reasoning about the correctness of its client routine transfer, the prover is not able to establish
the postcondition withdrawal_made of transfer, which is related to the functionality of withdraw.

∙ Proof time: 0.253 sec
∙ Test generation time: 0.214 sec
∙ Resulting test case: Figure 24 shows the test case, which calls transfer with input — Current.balance =−2147475928,
Current.credit_limit =−2147475929, amount = 0, other.balance = 0, and other.credit_limit = 0

∙ Testings result: as shown in Figure 23(b), the execution of the test terminates with no contract violation; this is because
when verifying a client routine, AutoProof uses the postconditions of the involved supplier routines, instead of their bod-
ies, to represent their functional behaviors; in this example, as the postcondition of withdraw does not strong enough to
express its functionality (balance should be deduced by amount), AutoProof fails to establish the corresponding postcondi-
tion withdrawal_made of transfer; in other words, the counterexample, from which the test input is extracted, is not a real
“counterexample”; but the successfulness of the testing result reveals the weakness of specifications in the relevant routines.
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1 test_ACCOUNT_6_transfer_1

2 local

3 current_object: ACCOUNT_6
4 amount: INTEGER_32
5 other: ACCOUNT_6
6 do

7 create current_object.make
8 create other.make
9 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, current_object, (−2147475928))
10 -- current_object.balance = (-2147475928)

11 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, current_object, (−2147475929))
12 -- current_object.credit_limit = (-2147475929)

13 amount := 0

14 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, other, 0)
15 -- other.balance = 0

16 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, other, 0)
17 -- other.credit_limit = 0

18 current_object.transfer (amount, other)
19 end

FIGURE 24 Test case generated by Proof2Test

Variant 7 of ACCOUNT

∙ Fault injection: at line 60, remove the postcondition balance_set of deposit.
∙ Resulting failure: the injected fault, as shown in Figure 25(a), results in the violation of postcondition deposit_made when
verifying transfer.

∙ Cause of the failure: similar to the previous failure (in Variant 6), this failure of transfer is due to the weakness of the
postcondition of its supplier class deposit – the postcondition is not strong enough to represent the functionality of deposit.

∙ Proof time: 0.244 sec
∙ Test generation time: 0.223 sec
∙ Resulting test case: Figure 26 shows the test from Proof2Test, which calls transfer with input — Current.balance = 0,
Current.credit_limit = 0, amount = 0, other.balance = 0, and other.credit_limit =−7720.

∙ Testings result: as shown in Figure 25(b), execution of the test case terminates with no exception raised; similar to the failure
in Variant 6, as the postcondition of the supplier routine deposit is too weak to describe its functional behavior (balance
should be increased by amount), AutoProof fails to establish the postcondition deposit_made of transfer, requiring that
balance of the other object should be increased by amount.
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(a)

(b)

FIGURE 25 (a) Verification result of ACCOUNT_7 in AutoProof; (b) Testing result of test_ACCOUNT_7_withdraw_1 in
AutoTest

1 test_ACCOUNT_7_transfer_1

2 local

3 current_object: ACCOUNT_7
4 amount: INTEGER_32
5 other: ACCOUNT_7
6 do

7 create current_object.make
8 create other.make
9 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, current_object, 0)
10 -- current_object.balance = 0

11 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, current_object, 0)
12 -- current_object.credit_limit = 0

13 amount := 0

14 {P_INTERNAL}.set_integer_field_ (‘‘balance’’, other, 0)
15 -- other.balance = 0

16 {P_INTERNAL}.set_integer_field_ (‘‘credit_limit’’, other, (−7720))
17 -- other.credit_limit = (-7720)

18 current_object.transfer (amount, other)
19 end

FIGURE 26 Test case from the failed proof of deposit_made

A.2 Results for class LINEAR_SEARCH
The LINEAR_SEARCH class, which is displayed below, implements a function that returns the index of a given integer ‘value’
in an integer array ‘a’ using linear search starting from beginning of the array; if the ‘value’ is not found in ‘a’, the function
returns the value “a.count + 1” (a.count represents the number of elements in a). Figure 27 shows the verification result of
LINEAR_SEARCH, which indicates the complete correctness of its functionality. 4 variants of LINEAR_SEARCH are produced
based on the correct version and are discussed below.
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1 class

2 LINEAR_SEARCH

3
4 feature -- Basic operations

5 linear_search (a: SIMPLE_ARRAY [INTEGER]; value: INTEGER): INTEGER
6 require

7 array_not_empty: a.count > 0

8 do

9 from

10 Result := 1

11 invariant

12 result_in_bound: 1≤ Result and Result ≤ a.count + 1

13 not_present_so_far: across 1|.. | (Result − 1) as i all a.sequence [i] ≠ value end

14 until

15 Result = a.count + 1 or else a [Result] = value

16 loop

17 Result := Result + 1

18 variant

19 a.count − Result + 1

20 end

21 ensure

22 result_in_bound: 1≤ Result and Result ≤ a.count + 1

23 present: a.sequence.has (value) = (Result ≤ a.count)
24 found_if_present: (Result ≤ a.count) implies a.sequence [Result] = value

25 first_from_front: across 1|.. | (Result − 1) as i all a.sequence [i] ≠ value end

26 end

27 end

FIGURE 27 Proof result of LINEAR_SEARCH in AutoProof
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(a)

(b)

FIGURE 28 (a) Verification result of LINEAR_SEARCH_1 in AutoProof; (b) Testing result of
test_LINEAR_SEARCH_1_linear_search_1 in AutoTest

Variant 1 of LINEAR_SEARCH

∙ Fault injection: at line 10, change the loop initialization from “Result := 1” into “Result := 0”.
∙ Resulting failure: as shown in Figure 28(a), the injected fault leads to the violation of the loop invariant result_in_bound
at the entry of the loop (after loop initialization).

∙ Cause of the failure: incorrect implementation of loop initialization.
∙ Proof time: 0.709 sec
∙ Test generation time: 0.332 sec
∙ Resulting test case: Figure 29 shows the test case from Proof2Test, which calls linear_search with input extracted from
the corresponding counterexample: a[1] = 0, a[2] = 0, value = (−2147475929).

∙ Testings result: as shown in Figure 28(b), execution of the test case raises an exception of violation of loop invariant
result_in_bound, which corresponds to the same proof failure.

∙ Comment: the test is useful as its execution demonstrates a specific case where the program goes to a failure state, violating
the same contract as in the proof failure; the values in the test input, however, is not that meaningful to this failure, as running
the program with any valid input would cause the same contract violation.
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1 test_LINEAR_SEARCH_1_linear_search_1

2 local

3 current_object: LINEAR_SEARCH_1
4 a: SIMPLE_ARRAY[INTEGER_32]
5 value: INTEGER_32
6 linear_search_result: INTEGER_32
7 do

8 create current_object

9 create a.make_empty
10 a.force(0, 1)
11 a.force(0, 2)
12
13 value := (−2147475929)
14 linear_search_result := current_object.linear_search (a, value)
15 end

FIGURE 29 Test case from failed proof of result_in_bound

Variant 2 of LINEAR_SEARCH

∙ Fault injection: at line 12, change the left part of the exit condition from “Result = a.count + 1” into “Result = a.count”.
∙ Resulting failure: as shown in Figure 30(a), the injected fault results in the violation of the postcondition present.
∙ Cause of the failure: incorrect exit condition (the condition for a loop to terminate).
∙ Proof time: 0.283 sec
∙ Test generation time: 0.373 sec
∙ Resulting test case: Figure 31 shows the test case, which calls linear_search with input extracted from the corresponding
counterexample: a[1] = 0, a[2] = 0, value = (−2147475282)

∙ Testings result: as shown in Figure 30(b), execution of the test case raises an exception of violation postcondition present,
which corresponds to the same proof failure.

∙ Comment: during the execution of the test, the program terminates after 1 iteration with Result = 2; this leads to the violation
of the postcondition present— in the equality expression, the left-hand segment a.sequence.has (value) is false, as value
does not match to any element of the input array a, while the right-hand segment Result ≤ a.count is true (Result = 2 and
a.count = 2).
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(a)

(b)

FIGURE 30 (a) Verification result of LINEAR_SEARCH_2 in AutoProof; (b) Testing result of
test_LINEAR_SEARCH_2_linear_search_1 in AutoTest

1 test_LINEAR_SEARCH_2_linear_search_1

2 local

3 current_object: LINEAR_SEARCH_2
4 a: SIMPLE_ARRAY [INTEGER_32]
5 value: INTEGER_32
6 linear_search_result: INTEGER_32
7 do

8 create current_object

9 create a.make_empty
10 a.force(0, 1)
11 a.force(0, 2)
12
13 value := (−2147475282)
14 linear_search_result := current_object.linear_search (a, value)
15 end

FIGURE 31 Test case from failed proof of present

Variant 3 of LINEAR_SEARCH

∙ Fault injection: at line 13, remove the loop invariant not_present_so_far.
∙ Resulting failure: as shown in Figure 32(a), the injected fault causes the violation of the postcondition present.
∙ Cause of the failure: weakness/incompleteness of loop invariant.
∙ Proof time: 0.280 sec
∙ Test generation time: 0.344 sec
∙ Resulting test case: Figure 33 shows the test case from Proof2Test, which calls linear_search with input: a[1] = 0,
a[2] =−2147462410, value =−2147462410.
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(a)

(b)

FIGURE 32 (a) Verification result of LINEAR_SEARCH_3 in AutoProof; (b) Testing result of
test_LINEAR_SEARCH_3_binary_search_1 in AutoTest

1 test_LINEAR_SEARCH_3_linear_search_1

2 local

3 current_object: LINEAR_SEARCH_3
4 a: SIMPLE_ARRAY[INTEGER_32]
5 value: INTEGER_32
6 linear_search_result: INTEGER_32
7 do

8 create current_object

9 create a.make_empty
10 a.force(0, 1)
11 a.force((−2147462410), 2)
12
13 value := (−2147462410)
14 linear_search_result := current_object.linear_search (a, value)
15 end

FIGURE 33 Test case from failed proof of present

∙ Testings result: as shown in Figure 32(b), execution of the test case does not raise any exception.
∙ Comment: when trying to verify postcondition present, the prover uses the loop invariant, instead of the loop body, to
represent the behaviors of the loop; if the loop invariant is not strong enough to express the functionality of the loop, as in this
example, the prover is not able to establish the relevant postcondition; in this case, the counterexample (from which the test is
extracted) is not a real “counterexample”, as it does not reveal the fault in the implementation; the passing test indicates that
the proof failure is caused by the weakness of the auxiliary specification (the loop invariant), not the implementation.
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(a)

(b)

FIGURE 34 (a) Verification result of LINEAR_SEARCH_4 in AutoProof; (b) Testing result of
test_LINEAR_SEARCH_4_binary_search_1 in AutoTest

Variant 4 of LINEAR_SEARCH

∙ Fault injection: change the loop variant at line 19 from “a.count − Result + 1” into “a.count − Result − 1”.
∙ Resulting failure: as shown in Figure 34(a), the injected faults leads to the violation that “the integer variant component at
iteration 1 may be negative”.

∙ Cause of the failure: incorrect loop variant.
∙ Proof time: 0.279 sec
∙ Test generation time: 0.312 sec
∙ Resulting test case: Figure 35 shows the test case from Proof2Test, which calls linear_search with input extracted from
the corresponding counterexample.

∙ Testings result: as shown in Figure 34(b), execution of the test case raises an exception related to loop variant expression,
which corresponds to the same failure in the verification.

∙ Comment: the test is useful as it is able to show how the value of variant varies at each iteration; the values in the test input,
however, is not that meaningful, as any other valid test input will have the same effect.
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1 test_LINEAR_SEARCH_4_linear_search_1

2 local

3 current_object: LINEAR_SEARCH_4
4 a: SIMPLE_ARRAY[INTEGER_32]
5 value: INTEGER_32
6 linear_search_result: INTEGER_32
7 do

8 create current_object

9 create a.make_empty
10 a.force(0, 1)
11 a.force(0, 2)
12 a.force(0, 3)
13 a.force(0, 4)
14 a.force((−2147482506), 5)
15
16 value := (−2147482505)
17 linear_search_result := current_object.linear_search (a, value)
18 end

FIGURE 35 Test case from failed proof of “variant may be negative”
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