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Symbolic execution of 
oating-pointcomputations ?
Bernard Botella a, Arnaud Gotlieb b;�, Claude Michel caTHALES Airborne Systems 2 av. Gay-Lussac 78851 Elancourt Cedex, FRANCEbIRISA / INRIA Campus Beaulieu 35042 Rennes cedex, FRANCEcI3S-CNRS 930, route des Colles, BP 154, 06903 Sophia Antipolis cedex,FRANCEAbstractSymbolic execution is a classical program testing technique which evaluates a se-lected control 
ow path with symbolic input data. A constraint solver can be usedto enforce the satis�ability of the extracted path conditions as well as to derive testdata. Whenever path conditions contain 
oating-point computations, a commonstrategy consists of using a constraint solver over the rationals or the reals. Unfor-tunately, even in a fully IEEE-754 compliant environment, this leads not only toapproximations but also can compromise correctness: a path can be labelled as in-feasible although there exists 
oating-point input data that satisfy it. In this paper,we address the peculiarities of the symbolic execution of program with 
oating-point numbers. Issues in the symbolic execution of this kind of programs are care-fully examined and a constraint solver is described that supports constraints over
oating-point numbers. Preliminary experimental results demonstrate the value ofour approach.Key words: Symbolic execution, Floating-point computations, Automatic testPreprint submitted to STVR 15th June 2005



data generation, Constraint solving
1 IntroductionStructural testing is usually required to �nd a test set that activates con-trol 
ow paths that cover a selected testing criterion (e.g. all statements,all branches, ...). Introduced by King in the context of Software Testing [1],symbolic execution consists in statically evaluating statements of a programto �nd a test datum that activates a given control 
ow path. Input variablesare replaced by symbolic input data and each statement of the path is eval-uated by replacing internal references with an expression over the symbolicinput data. Symbolic execution computes so-called path conditions that areconstraints on the symbolic input data that characterize the selected path.Solving the path conditions permits input data to be obtained that activatethe path. As only input values are generated, such an approach relies on theavailability of an oracle. An oracle is just a procedure that checks the com-puted outcomes and produces a testing verdict. Symbolic execution can beused to address the path feasibility problem [2,3]. When the constraint setequivalent to the path conditions is unsatis�able, then the selected path isshown to be infeasible. Note, however, that �nding all the infeasible paths ofa program is a classical undecidable problem [4]. Symbolic execution has beenused in numerous applications, such as automatic structural test data gen-eration [5,6,7,8,9,10,11], mutation-based testing [12], program specialization? This work is partially supported by the FNS granted project V3F� Corresponding author.Email address: Arnaud.Gotlieb@irisa.fr (Arnaud Gotlieb).2



[13], parallelizing compilers [14], program and property proving [15,16], justto name a few.Issues in 
oating-point computations. It is well known that reasoningover the reals or the rationals leads to some inconsistencies when the resultsare directly mapped over to the 
oating-point numbers [17]. In such a case,even in an environment which complies to the IEEE-754 standard for binary
oating-point arithmetic [18], the symbolic execution of a program path whichinvolves 
oating-point variables can produce not only inexact results but alsoincorrect ones. For example, consider the C program given in Fig.1 and thesymbolic execution of path 1!2!3!4. The associated path conditions canbe written as fx > 0:0; x + 1:0e12 = 1:0e12g. It is trivial to verify that theseconstraints do not have any solution over the reals or the rationals and asolver over the reals like the IC library of the Eclipse Prolog system [19] willimmediately detect this. However, any IEEE-754 single-format 
oating-pointnumbers of the closed interval [1:401298464324817e � 45; 32767:9990234] isa solution of these path conditions. Hence, a symbolic execution tool work-ing over the reals or the rationals will declare this path as being infeasiblealthough this is clearly incorrect. Conversely, consider the path conditionsfx < 10000:0; x + 1:0e12 > 1:0e12g which could easily be extracted by thesymbolic execution of path 1!2!3!4 of program foo2 of Fig.2. All the re-als of the open interval (0, 10000) are solutions of these path conditions.However, there is no single 
oating-point value able to activate the path1!2!3!4. Indeed, for any single 
oating-point number xf in (0, 10000),we have xf + 1:0e12 = 1:0e12 1 . Hence the path 1!2!3!4 is actually infea-sible although a symbolic execution tool over the reals or the rationals would1 This behaviour is called the addition absorption.3




oat foo1(
oat x) f
oat y = 1:0e12, z ;1. if (x > 0:0)2. z = x+ y ;3. if (z == y)4. . . .Figure 1. Program foo1

oat foo2(
oat x) f
oat y = 1:0e12, z ;1. if (x < 10000:0)2. z = x+ y ;3. if (z > y)4. . . .Figure 2. Program foo2have declared it as feasible.This kind of behaviour can be obtained with any of the available solvers overthe reals or the rationals. These solvers use a Linear Programming algorithmas in the clpr or in the clpq framework, or interval propagation with 
oating-point numbers to bound the reals such as in Ilog Solver, Eclipse IC [19],RealPaver [20] or Interlog [21,22]. The key issue here is that these solversobey to mathematical rules which do not hold for 
oating-point arithmetic.As a matter of fact, 
oating-point arithmetic is quite poor. For example, with
oating-point numbers, x + (y + z) is not in general equal to (x + y) + z.Moreover, interval propagation based solvers assume that if z = x + y thenx = z � y. Unfortunately, due to rounding operations, this does not hold for
oating-point arithmetic.Such problems might be seen as unavoidable. By contrast, this paper intro-duces the techniques required to correctly handle these kinds of issues. Ourapproach is based on the following two steps:� In a �rst step, complex expressions over the 
oating-point numbers aretranslated into equivalent relations which capture all the semantics of the
oating-point operations; these relations are binary or ternary constraints4



over the 
oating-point numbers.� In a second step, a solver dedicated to 
oating-point numbers is used to solvethe resulting constraints; this solver handles these constraints according tothe semantics of 
oating-point arithmetic.For example, consider again the path conditions extracted from Fig.1 andassume that the initial domain of variable x is [�INF;+INF ]. The �rst con-straint x > 0:0 reduces the interval of x to [1:401298464324817e� 45;+INF ],the lower bound of which is the smallest non-zero positive number that can berepresented in IEEE single-format 
oating-point arithmetic. Then, the secondconstraint x+1:0e12 = 1:0e12 reduces 2 the domain of x to [1:401298464324817e�45; 32767:9990234]. In this example, all the values of the resulting interval aresolutions of the path conditions. Hence, it su�ces to take any of the sin-gle 
oating-point of this interval to �nd a test datum that activates path1!2!3!4 of the foo1 program. However, this is not generally the case andone must resort to enumeration to �nd a solution.Contributions of the paper. This paper introduces new techniques to sym-bolically execute programs which involve 
oating-point computations. The pa-per extends the theoretical work of Michel [23] on the design of exact projec-tion functions of constraints over the 
oating-point numbers. Practical detailson how to build correct and e�cient projection functions over 
oating-pointintervals are given. The paper covers not only arithmetic operators but alsocomparison and format-conversion operators. FPSE, a symbolic execution toolfor ANSI C 
oating-point computations, has been developed to validate theproposed approach. This paper describes its design and implementation and2 In IEEE-754 single-format, the constant 1:0e12 is interpreted as 999999995904.5



reports some initial experimental results. Note, however, that the paper doesnot address the general problem of testing 
oating-point computations. Inparticular, it does not study the di�cult problem of obtaining a correct (butnot necessarily exact) oracle in the presence of 
oating-point computations.Contents. Section 2 brie
y recalls the main principles of symbolic execu-tion and reviews how several symbolic execution tools handle the problem of
oating-point computations. Section 3 explains the essence of the IEEE-754standard for binary 
oating-point arithmetic and indicates the limitations ofthe proposed approach. Section 4 presents the design of e�cient projectionfunctions over 
oating-point variables. Section 5 explains how to deal withsymbolic values such as in�nities. Section 6 describes FPSE and reports someexperimental results. Finally, the last section describes directions for furtherwork.
2 Related workOnly a few studies deal with 
oating-point computations in the Software Test-ing community. According to our knowledge, the only directly related work isthat of Miller and Spooner [24]. Thirty years ago, they studied how to gener-ate automatically 
oating-point test data for imperative programs. Their workopened the door for execution-based test data generation methods which doesnot su�er of the above mentioned problems. However, their approach makesonly use of program executions and do not rely on symbolic reasoning. Thus,it cannot be used to study path feasibility.At a time when no standard for 
oating-point arithmetic was available, sym-6



bolic execution was pioneered by King [1], Clarke [5], Howden [6] and others[7,8,9] in several systems. SELECT [7] and DAVE [5] exploited Linear Pro-gramming algorithms to solve linear path conditions over the reals. CASEGEN[8] utilized ad-hoc procedures based on try-by-value methods to solve non-linear equations and used inequalities over the reals and to �nd test data thatactivated a selected path in the control 
ow graph. Although these systemswere using 
oating-point operations in their computations, they solved pathconditions over the reals. Thus, they did not conform to the 
oating-pointcomputations of the program under test.SMOTL [9] and more recently GODZILLA [12] took advantage of domain re-duction techniques to prune the search space of integers inequalities. Gotliebet al. [25] applied Constraint Logic Programming over �nite domains to solveconstraints extracted from imperative programs in the tool INKA [26]. Theproposed framework dealt only with constraints over integers (possibly non-linear) to automatically generate test data. SMOTL, GODZILLA and INKAdid not address the problem of 
oating-point computations in symbolic exe-cution but they did use domain and interval propagation techniques to solveconstraint systems. The method used in the current paper to solve path cond-itions over 
oating-point variables is closely related to these techniques.More recently, Meudec followed a similar path in [11] and proposed solvingpath conditions over 
oating-point variables by means of a constraint solverover the rationals in the ATGen symbolic execution tool. The clpq library[27] of the Constraint Logic Programming system ECLIPSE was used to solvelinear constraints over rationals computed with an arbitrary precision using anextended version of the simplex algorithm. Although this approach appears tobe of particular interest in practice, it fails to handle correctly 
oating-point7



computations.Hence, the problem of 
oating-point computations in symbolic execution havenot been seriously addressed in the past. Although several works deal with
oating-point computations, none of them provide a correct handling of 
oating-point computations. Indeed, 
oating-point computation can be correctly han-dled neither with constraint solvers over the reals nor with constraint solversover the rationals. Dealing with 
oating-point computations requires the de-velopment of a new constraint solver dedicated to 
oating-point numbers.3 PreliminariesThis section introduces the arithmetical model speci�ed by the IEEE-754 stan-dard for binary 
oating-point arithmetic [18] and explains the limitations andnotations of the proposed approach.3.1 IEEE-754IEEE-754 speci�es two basic binary 
oating-point formats (single and double)and two extended formats. Each 
oating-point number is a triple (s; e; f) ofbit patterns where s is the sign bit, e the biased exponent, and f the signi�-cand. The single format occupies 32 bits (1 bit for the sign, 8 for the exponentand 23 for the signi�cant) while the double occupies 64 bits (1 bit for thesign, 11 for the exponent and 52 for the signi�cant). The standard does notgive a strict speci�cation of the extended formats, but it does prescribe someminimal requirements over their sizes. For example, a double extended mustoccupy at least 79 bits. Each format de�nes several classes of numbers: nor-8



malized numbers, denormalized numbers, signed zeros, in�nities and NaNs(which stands for Not-a-Number). For the single format, normalized numberscorresponds to an exponent value 0 < e < 255 and a value given by theformula: (�1)s 1:f 2e�127. Denormalized numbers correspond to an exponente = 0 and a value given by (�1)s 0:f 2�126 where f 6= 0. Note that the sig-ni�cand possesses a hidden bit which is 1 for normalized numbers and 0 fordenormalized. Note also that the bias is equal to 127 for the single format 3and the exponent is �126 for denormalized numbers. There are two in�nities(noted +INF , �INF with e = 255; f = 0) and two signed zeros (noted +0:0,�0:0 with e = 0; f = 0) that allow certain algebraic properties to be main-tained [17]. NaNs (e = 255; f 6= 0) are used to represent the results of invalidcomputations such as a division or a subtraction of two in�nities. They al-low the program execution to continue without being halted by an exception.IEEE-754 indicates four types of rounding directions: toward the nearest rep-resentable value, with \even" values preferred whenever there are two nearestrepresentable values (to-the-nearest), toward negative in�nity (down), towardpositive in�nity (up) and toward zero (chop). The most important requirementof IEEE-754 arithmetic is the accuracy of 
oating-point computations: each ofthe following operations, add, subtract, multiply, divide, square root, remain-der, conversions and comparisons, must deliver to its destination the exactresult if possible or the 
oating-point number that requires the least modi�-cation of the exact result w.r.t. the prescribed rounding mode and the result3 The actual value of the exponent is E � bias, where E is the exponent value inthe 
oating-point number representation. Thus, with single format 
oating-pointnumbers, the maximum value of the exponent is 127 and the minimum value is�126. 9



format destination. It is said that these operations are correctly rounded 4 . Forexample, the single-format result of 999999995904 + 10000 is 5 999999995904which is the single-format 
oating-point number nearest to the exact resultover the reals. This example shows that the accuracy requirement of IEEE-754 does not prevent surprising results from arising (the second operand isabsorbed by the addition operator).3.2 Limitations and notationsIn the sequel, we assume an IEEE-754 compliant 
oating-point unit. The typesof 
oating-point numbers manipulated by the program are limited to the sin-gle and the double-format. The proposed framework currently handles onlythe to-the-nearest rounding direction, which is the default rounding mode inmost programming languages. A decimal constant (such as 1:0e12) denotes a
oating-point value, and thus, has to be understood as the nearest 
oating-point number according to the default rounding mode (i.e. as 999999995904with a to-the-nearest rounding mode). Zeros and in�nities are handled butNaNs are not. Thus any 
oating-point unknown is assumed to take only a nu-merical or in�nity value. Henceforth x+ (resp. x�) denotes the smallest (resp.greatest) 
oating-point number greater (resp. smaller) than x, with respectto its format. Moreover, mid(a; b) denotes the 
oating-point number at themiddle 6 of a and b. Finally, let �;	;
;� denote 
oating-point operations4 IEEE-754 says equivalently \exactly rounded".5 These two decimals can be exactly represented by single binary 
oating-pointnumbers.6 which is a 
oating-point number of a wider format than the one of its twooperands. 10



(i.e. the format dependent result of a to-the-nearest rounding of the exact re-sult) whereas +;�; �; = denote the same operations over the reals. This paperaddresses only the problem of dealing with 
oating-point variables in symbolicexecution; other issues such as dealing with loops, arrays and pointers in sym-bolic execution are out of the scope of this paper. These problems are moredetailed in [28,29,10,11,30]. Finally, the combination of integers and 
oating-point expressions into a symbolic execution framework are not detailed here.Hence, programs are limited to 
oating-point data types.
4 Symbolic executionSymbolic execution has been formally described by Clarke and Richardson in[28]. This technique is based on the selection of a single path of the control
ow graph and the computation of symbolic states. When one has to dealwith 
oating-point computations, special attention must be paid to the wayexpressions are evaluated, as described in this section.
4.1 Control 
ow graph and pathsThe control 
ow graph of a program P is a connected oriented graph composedof a set of vertices, a set of edges and two distinguished nodes, e the uniqueentry node, and s the unique exit node. Each node represents a basic block andeach edge represents a possible branching between two basic blocks. A path ofP is a �nite sequence of edge-connected nodes of the control 
ow graph whichstarts on e. V ar(P ) denotes the set of variables of P .11



4.2 Symbolic states and expressionsSymbolic execution works by computing symbolic states for a given path. Asymbolic state for path e!n1! : : :!nk in P is a triple(e!n1! : : :!nk; f(v; �v)gv2V ar(P ); c1^: : :^cn) where �v is a symbolic expres-sion associated to the variable v and c1 ^ : : :^ cn is a conjunction of symbolicexpressions, called path conditions. A symbolic expression is either a symbo-lic value (possibly undef) or a well parenthesized expression composed oversymbolic values. In fact, when computing a new symbolic expression, eachinternal variable reference is replaced by its previous symbolic expression. Forexample, the symbolic state of path 1!2!3!4 in the program of Fig. 1 canbe obtained by the following sequence of symbolic states :(1!2, f(x;X); (y; 1:0e12); (z;undef)g; X > 0:0)(1!2!3, f(x;X); (y; 1:0e12); (z;X � 1:0e12)g; X > 0:0)(1!2!3!4,f(x;X); (y; 1:0e12); (z;X�1:0e12)g; X > 0:0^X�1:0e12==1:0e12)where X is the symbolic value of the input variable x.Usually, symbolic expressions and path conditions hold only over symbolicinput values. However, when 
oating-point computations are involved in thepath, other symbolic values can appear in the symbolic expressions, as de-scribed below.
4.3 Forward/backward analysisSymbolic states are computed by induction on their path by a forward or abackward analysis [28]. Each statement of each node of the path is symbol-ically evaluated using an evaluation function which computes the symbolic12



states. Forward analysis follows the statements of the selected path in thesame direction as that of actual program execution, whereas backward analy-sis uses the reverse direction. Backward analysis is usually preferred when oneonly wants to compute the path conditions.4.4 NormalizationIn the presence of 
oating-point computations, special attention must be paidto conform to the actual execution of program. It is necessary to take intoaccount the evaluation order and the precedence of expression operators asspeci�ed by the language 7 . The idea is to exploit the expression's shape ofthe abstract syntax tree built by the compiler of the program without anyrearrangement nor any simpli�cation due to optimizations 8 . When symbolicexpressions are directly extracted from the abstract syntax tree then, not onlythe operator precedence is respected but also is the order in which operandsare evaluated. This is not always the case when symbolic expressions are ex-tracted from source code by an analyzer. Preserving the order of evaluationin the analyzer is essential with 
oating-point computations as simple alge-braic properties such as associativity or distributivity are lost. An approachcalled normalization is proposed here. It decomposes expressions and takesinto account the above requirements. Normalization makes symbolic expres-sions over the 
oating-point numbers independent from the compiling envi-7 Some languages are quite permissive and give to the compiler some freedom inthe interpretation of 
oating-point expressions. In such a case, we have to observethe actual behaviour of the compiler.8 Compiler optimisation 
ags are not allowed here particularly when they rearrangeinstructions. 13



ronment.Any of the symbolic expressions is decomposed in a sequence of assignmentswhere fresh temporary variables 9 are introduced bearing in mind that theorder of evaluation must be preserved. For example, let E = v1 
 v2 
 v3 � v4then the resulting decomposition is E = t1 � v4 ^ t1 = t2 
 v3 ^ t2 = v1 
 v2because 
 has a higher priority than � and operands are evaluated from leftto right. This decomposition requires that intermediate results of an operationconform to the type of storage of its operands 10 . In the previous example, if v1and v2 are of single-format, then the temporary variable t2 must also be single-format. As a result, path conditions are only composed of binary or ternarysymbolic expressions that have a single operator over a known 
oating-pointformat. This form is called the normalized form of a symbolic expression.5 Solving path conditions over the 
oating-point numbersIn this section, the 
oating-point variables are supposed to take a numericalvalue. We assume here that the computations do not over
ow or raise excep-tions. These behaviours are handled by means of in�nites and NaNs and willbe considered in the next section.Path conditions are composed of normalized symbolic expressions over 
oating-9 The introduction of temporary variables does not change the semantic of 
oating-point computations as long as it maps the behaviour of the compiler and of the
oating-point unit.10 This property is not a requirement of IEEE-754 and consequently it is not alwaystrue. For example, on Intel's architectures extended formats are used by default tostore intermediate results 14



point input and temporaries variables. Each of these variables takes its nu-merical values within a �nite interval of possible 
oating-point values w.r.t. itsformat. Intervals are represented by a couple of bounds that can possibly beprovided by the user. By default, any numerical single-format 
oating-pointvalues belongs to [�3:40282347e38; 3:40282347e38] and any double-formatvalues belongs to [�1:7976931348623158e308; 1:7976931348623158e308].5.1 Interval propagationThe solving process is based on interval propagation [31,32], which is a classicaltechnique used to compute the set of solutions of non-linear constraints overthe reals. The technique takes advantage of interval arithmetic [33] and rela-tional arithmetic [34] to reduce the domains of the variables. If Ix = [a; b] andIy = [c; d] then interval arithmetic says that Ix+y = [a+c; b+d] contains all pos-sible values for the expression x+ y when x 2 Ix and y 2 Iy. In the same way,Ix�y = [a�d; b�c], Ix�y = [min(a�c; a�d; b�c; b�d); max(a�c; a�d; b�c; b�d)],Iexp(x) = [exp(a); exp(b)], etc. Relational arithmetic allows decomposing theconstraints in projection functions over intervals. For example, the constraintz = x + y is decomposed into three projection functions:Iz  Ix+y \ Iz; Ix  Iz�y \ Ix; Iy  Iz�x \ IyA constraint propagation algorithm uses these projection functions to com-pute a conservative approximation of the solutions of the constraint system.The following example of a constraint system over the reals illustrates thistechnique.Example 1 Let x 2 (�1;+1); y 2 (�1;+1) be two real unknowns in the con-straint system y = log(x); x + y = 0. After a decomposition of the constraints into15



projection functions, the following successive approximations of x and y are obtainedby interval propagation :x 2 (�1;+1) x 2 [0;+1) x 2 [0; 1] x 2 [0:56; 1] x 2 [0:56; 0:57] :::y 2 (�1;+1) y 2 (�1; 0] y 2 [�1; 0] y 2 [�1;�0:56] y 2 [�0:57;�0:56] :::Interval propagation has been applied in several systems [35,32] and two au-thors of the present paper contributed to the development of one of them,namely Interlog [21,22]. The work presented here mainly consists in adaptinga real-based interval propagation system to 
oating-point numbers. It essen-tially requires modifying projection functions to handle conservatively thedomains of 
oating-point variables. In the next subsections, interval propa-gation of 
oating-point intervals and projection functions for 
oating-pointconstraints are described.5.2 Propagation over 
oating-point intervalsDuring interval propagation, projection functions are incrementally introducedinto a propagation queue. An iterative algorithm manages each function oneby one into this queue by �ltering the domains of 
oating-point variables oftheir inconsistent values. Filtering algorithms consider only the bounds of thedomains to eliminate inconsistent values. When the domain of a variable hasbeen narrowed then the algorithm reintroduces in the queue all the projectionfunctions in which this variable appears in order to propagate this information.The algorithm iterates until the queue becomes empty, which corresponds toa state where no more pruning can be performed (a �xpoint).When selected in the propagation queue, each function is added into a constraint{store. The constraint{store is contradictory when the domain of at least one16



variable becomes empty during the propagation. In this case, the set of cons-traints (path conditions) is known to be unsatis�able and the correspondingpath is shown to be infeasible. The interval propagation process reaches a�xpoint because only a �nite number of 
oating-point values can be removedfrom the domains. This �xpoint is a conservative overestimation (Cartesianproduct of intervals) of the possible 
oating-point values for the input vari-ables.As is usually the case with interval propagation solvers, propagation over
oating-point intervals does not ensure that the set of constraints is satis�-able when a �xpoint is reached. Hence, one must resort to enumeration tolocate particular solutions. This is done by a labelling procedure which triesto systematically assign a 
oating-point to a variable and initiate propagationthrough the constraint{store. This process is repeated until all the uninstan-tiated variables become bound. If this valuation leads to a contradiction thenthe process backtracks to other possible values or variables.5.3 Floating-point variable projectionsIn the proposed approach, each normalized symbolic expression is decom-posed into ternary and binary symbolic expressions. These expressions couldbe directly translated into elementary constraints. Each of these constraints isa ternary or binary constraint and is itself decomposed into projection func-tions. A ternary symbolic expression r = a�b where � denotes one of the fourarithmetical operations �;	;
;�, is decomposed into 3 projections: the di-rect projection proj(r; r = a�b), the �rst inverse projection proj(a; r = a�b)and the second inverse projection proj(b; r = a� b). Inverse means that pro-17



jection is performed on a right operand of an assignment. The variable a inproj(a; r = a� b) is called the projected variable. Note that single assignmentr = a can be treated as the ternary symbolic expression r = a	+0:0 becausea	+0:0 = a even when a = �0:0. A binary symbolic expression a = (type)bwhere type is either float or double is decomposed into a direct projectionproj(a; a = (type)b) and an inverse one proj(b; a = (type)b). A binary sym-bolic expression a rel b where rel denotes any of the six relational operators==; <;=<;>;>=; ! = is decomposed into two projections : proj(a; a rel b)and proj(b; a rel b).5.3.1 Computing direct projections for ternary symbolic expressionsLet [rl; rh]; [al; ah]; [bl; bh] be the current 
oating-point domains of r; a; b, thenthe direct projection proj(r; r = a � b) computes new bounds r0l; r0h for thedomain of r by using the formula of Fig.3.[r0l; r0h] [al � bl; ah � bh] \ [rl; rh] when � = �[r0l; r0h] [al 	 bh; ah 	 bl] \ [rl; rh] when � = 	[r0l; r0h] [min(al 
 bl; al 
 bh; ah 
 bl; ah 
 bh);max(al 
 bl; al 
 bh; ah 
 bl; ah 
 bh)] \ [rl; rh]when � = 
[r0l; r0h] [min(al � bh; al � bl; ah � bh; ah � bl);max(al � bh; al � bl; ah � bh; ah � bl)] \ [rl; rh]when � = � and +0:0;�0:0 do not belong to [bl; bh]Figure 3. Formulae for direct projections proj(r; r = a� b)Although this remains implicit, it is important to bear in mind that theseformulae are based on the to-the-nearest rounding mode. Note also that theywas inspired by interval arithmetic [33,36] but di�er from it 11 . Thanks the11 For example, the expected result over the reals of the sum of two numbers x and ycan be captured by the interval [z; z] where z (resp. z) denotes the rounded towardnegative (resp. positive) in�nity result of x+ y [17].18



monotonicity of the to-the-nearest rounding direction, these formula can di-rectly be deduced from the interval arithmetic. The special case where +0:0or �0:0 belongs to the right operand of the � operator can easily be han-dled by using in�nities; this will be explained in the next section. Note alsothat the intersection of two intervals can be computed by using the formula[a; b] \ [c; d] = [max(a; c); min(b; d)] as the set of numerical 
oating-pointvalues is totally ordered (even for both �0:0 and +0:0). Fig. 4 shows an ex-ample of application of the formula for the operator �. The intervals of a; b; rare shown with vertical lines and each horizontal arrow represents the actualcomputation of the new bounds of r, before rounding. In this example, thenew inferior bound of r is rounded up although the result over the reals al+ blis strictly less than the to-the-nearest rounded result of al � bl. This is dueto the fact that al + bl is strictly greater than mid((al � bl)�; al � bl). Thisshows that the formula does not usually retain the solutions over the reals buthandles all the solutions over the 
oating-point numbers.
r’l = max(al bl,rl)

r’h = min(ah bh, rh)
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rlFigure 4. Computation of direct projection proj(r; r = a� b)Note that these formula for direct projections lead to an optimal pruning of theinterval of r, because IEEE-754 guarantees that the four arithmetic operationsare correctly rounded. 19



5.3.2 Computing inverse projectionsInverse projections are a little bit more complicated to compute. The �rstinverse projection proj(a; r = a� b) computes new bounds a0l; a0h for the do-main of a whereas the second inverse projection proj(b; r = a� b) computesnew bounds b0l; b0h for the domain of b. The formulae to compute these inverseprojections are given in Fig. 5. Note that the �rst and the second projectionsfor � and 
 are the same. Thus, only one of them is given here.[a0l; a0h] [mid(rl; r�l )	 bh;mid(rh; r+h )	 bl] \ [al; ah] when � = �[a0l; a0h] [mid(rl; r�l )� bl;mid(rh; r+h )� bh] \ [al; ah] when � = 	 (�rst inverse)[b0l; b0h] [al 	mid(rh; r+h ); ah 	mid(rl; r�l )] \ [bl; bh] when � = 	 (second inverse)[a0l; a0h] [min(mid(rl; r�l ) � bl;mid(rl; r�l )� bh;mid(rh; r+h )� bl;mid(rh; r+h )� bh);max(mid(rl ; r�l )� bl;mid(rl; r�l )� bh;mid(rh; r+h )� bl;mid(rh; r+h )� bh)] \ [al; ah]when � = 
 and +0:0;�0:0 do not belong to [bl; bh][a0l; a0h] [min(mid(rl; r�l ) 
 bl;mid(rl; r�l )
 bh;mid(rh; r+h )
 bl;mid(rh; r+h )
 bh);max(mid(rl ; r�l )
 bl;mid(rl; r�l )
 bh;mid(rh; r+h )
 bl;mid(rh; r+h )
 bh)] \ [al; ah]when � = � (�rst inverse)[b0l; b0h] [min(al �mid(rl; r�l ); ah �mid(rl; r�l ); al �mid(rh; r+h ); ah �mid(rh; r+h ));max(al �mid(rl; r�l ); ah �mid(rl; r�l ); al �mid(rh ; r+h ); ah �mid(rh ; r+h ))] \ [bl; bh]when � = � (second inverse) and +0:0;�0:0 do not belong to [bl; bh]Figure 5. Formula for inverse proj. proj(a; r = a� b) and proj(b; r = a� b)First, all inverse projections computes the middle of (rl; r�l ) and the middle of(rh; r+h ). The reason for that is that r is the result of a to-the-nearest rounding.More precisely, as the implemented operations are correctly rounded, theymight be seen as the rounding to to-the-nearest of the result rR over the realsof the same operation over the reals. Thus, if the 
oating point number rlis the result of a to-the-nearest rounding, rR has to belong to the interval 1212 [mid(rl; r�l );mid(rl; r+l )] is a conservative overestimation. A more precise intervalcould be computed if we take into account the value of the least signi�cant bit of rl(or rh). 20



[mid(rl; r�l ); mid(rl; r+l )]. The same reasoning applies to rh. The computationof the middle of two single-format or double format 
oating-point variables caneasily be computed as a wider format is almost always available 13 : the middleof two singles is captured by a double and the middle of two doubles is capturedby an extended double. Note that the operations themselves are performedover a wider format, such as in the inverse projection of � : mid(rl; r�l ) 	 bhas shown in Fig. 6. Here, both operands of 	 are �rst converted into a greaterformat, although this remains implicit in the formula.
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Figure 6. Computing �rst inverse projection proj(a; r = a� b)Second, special attention must be paid to the computation of the bounds ofthe projected variable. Operators �;	;
;� are correctly rounded. Thus, theycan be used to compute their inverse. The complete proof of this statementcan be found in [23] and only an outline of it is given here. Consider thecomputation of a0h for the addition in Fig. 6. As explained above, rh is the13 Note however that an overestimation of the solution can still be computed usingthe same format as the operands, but this usually leads to a greater imprecision.For example, [a0l; a0h]  [r�l 	 bh; r+h 	 bl] \ [al; ah] is a conservative overestimationfor the �rst inverse projection of the addition.21



result of a to-the-nearest rounding of the addition of a0 and b over the reals.Thus, over the reals, the following inequality holds : a0h+b � mid(rh; r+h ) wherethe 
oating-point number b 2 [bl; bh]. Over the reals, this inequality leads toa0h � mid(rh; r+h ) � bl. In order to obtain a0h, that is to say, in order to �ndthe greatest 
oating-point number less or equal to mid(rh; r+h ) � bl (which isnothing but the de�nition of a rounding to �1), we would have to computemid(rh; r+h )� bl with a rounding to �1. However, a to-the-nearest roundingcomputes a conservative value for a0h, i.e. a value that is equal or greater thanthe optimal value, and avoid the cost of a modi�cation of the rounding mode.As a consequence, the formula given here for computing the inverse projec-tions are not always optimal but o�er a conservative overestimation of the setof 
oating-point values that satisfy a given normalized symbolic expression.Considering the least signi�cant bit of rl and rh can lead to slightly moreshrinking [23] but requires changing the rounding mode several times duringthe computation of each projection function. Note also that interesting resultsfrom the literature can be used to improve the computation of inverse projec-tions. For example, a classical result [37] says that if x � y under
ows to adenormalized number then x� y is exactly equal to x+ y. In such a case, thecomputation of the middle mid(rh; rh+) might be avoided.5.4 Handling comparisons and conversionsComparisons. Relational operators such as ==; >;>=; <;<=; ! = are han-dled by ordered set properties because the �nite set of numerical 
oating-pointvariables is totally ordered. The formula is similar for the �rst and the secondprojections, hence only the �rst are given in Fig. 7. The 
oating-point domain22



of a (resp. b) is [al; ah] (resp. [bl; bh]) and the domain of the result a0 is [a0l; a0h].[a0l; a0h] [max(al; bl);min(ah; bh)] for proj(a; a == b)[a0l; a0h] [max(al; bl); ah] for proj(a; a � b)[a0l; a0h] [max(al; bl)+; ah] for proj(a; a > b)[a0l; a0h] [al;min(ah; bh)] for proj(a; a � b)[a0l; a0h] [al;min(ah; bh)�] for proj(a; a < b)[a0l; a0h] [if (al = bl = bh) then a+l else al,if (ah = bl = bh) then a�h else ah] for proj(a; a!=b)Figure 7. Formulae for projections coming from comparison operators
These formulae are mainly inspired by interval arithmetic [33] but slightlydi�er from it for the computation of modi�ed bounds. Here, the computationbene�ts from the fact that it operates over a �nite set of 
oating-point val-ues. Conversions. The simple language described in Sec.3.2 allows only twoconversions r = (float)a where a is a double and r = (double)a where a is asingle. Formulae that compute the bounds of projected variables with directand inverse projections of conversion operators are given in Fig. 8. Note thatany single-format value can be exactly converted into a double-format value.Thus, some conversions do not require any computation and remain implicitin the formulae.[r0l; r0h] [max f((float)al ; rl);min f((float)ah ; rh)] for proj(rf ; rf = (float)ad)[a0l; a0h] [max d(al;mid(rl; r�l ));min d(ah ;mid(rh; r+h )] for proj(ad; rf = (float)ad)[r0l; r0h] [max d(al; rl);min d(ah; rh)] for proj(rd; rd = (double)af )[a0l; a0h] [max f(al; rl);min f(ah; rh)] for proj(af ; rd = (double)af )where rf ; af denote single-format variables, and rd; ad denote double-format variables,max f;min f operate over the singles and max d;min d operate over the doublesFigure 8. Formulae for projections coming from conversion operators
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6 Handling symbolic valuesIEEE-754 distinguishes two kinds of symbolic values: in�nities and NaNs. Thecases where in�nities and NaNs can be produced as the result of a computationare detailed in [17]. However, implementing projection functions over symbo-lic values requires to further analysis of how to combine in�nities, numericalvalues, zeros and NaNs and how to deal with exceptions [37].In the proposed approach, the numerical domain is merely extended with bothin�nities and remains totally ordered. Roughly speaking, the main idea forcomputing projections consists in isolating the in�nities from the numericalvalues of the domains, computing the projected variable's domain in the nu-merical case, combining the symbolic values between themselves, and mergingthe results of both the symbolic and the numerical cases.To compute the projections of � (direct and inverse), tables 1 and 2 arerequired. Note that Nv stands for any non-zero numerical value and �INFdenotes any of the two in�nities.Table 1Value of r in direct proj(r; r = a� b)anb �INF �0:0 +0:0 Nv +INF�INF �INF �INF �INF �INF ?�0:0 �INF �0:0 +0:0 Nv +INF+0:0 �INF +0:0 +0:0 Nv +INFNv �INF Nv Nv Nv [ f�INF;+0:0g +INF+INF ? +INF +INF +INF +INFSome combinations of symbolic values are impossible. For example, when r =+0:0 and b = +INF , the �rst inverse projection proj(a; r = a� b) computesan empty domain for variable a. Thus, there exists no 
oating-point value of24



a able to satisfy the equation +0:0 = a�+INF . These cases are indicated bythe presence of the symbol ?. When the operands of a projection are knownand ? is encountered in the tables then the projection is refuted and theconstraint store is shown to be contradictory. Note that when the sum of twoopposite operands is exactly zero and the rounding mode is the to-the-nearestmode, then the result is +0:0 (and not �0:0). The cases where in�nity isproduced as the result of an operation over two numerical values (such as inNv �Nv) usually correspond to an over
ow.More frequently, operands are just known by their interval of possible values.Hence, when a combination of bounds is ?, such as in proj(a; r = a � b)where r 2 [�INF;+INF ] and b 2 [�INF;+INF ], ? is just ignored and theinterval of a is leaved unchanged (although +0:0 belong to the interval of r).The new bounds of r are computed using the formula of the numerical case([r0l; r0h] [al � bl; ah � bh] \ [rl; rh]). Signed zeros, in�nities and over
ows arejust special cases of this computation. If signed zeros belongs to the intervals ofa or b then the numerical case (Nv�Nv) of the table is applied. If an over
owoccurs then the bounds are updated with the corresponding in�nities.Table 2Value of a in �rst inverse proj(a; r = a� b)bnr �INF �0:0 +0:0 Nv +INF�INF Nv [ f�INF;�0:0g ? ? ? ?�0:0 �INF �0:0 +0:0 Nv +INF+0:0 �INF ? �0:0 Nv +INFNv Nv [ f�INFg ? Nv [ f�0:0g Nv [ f�0:0g Nv [ f+INFg+INF ? ? ? ? Nv [ f+INF;�0:0gThe same procedure can be used for the computation of the projections of	;
;� using the tables given at the end of the paper. Note that the nega-25



tive and positive numerical cases have not been distinguished in these tables.Although this is useful to implement better pruning of domains, these casesare not di�cult to determine as simple sign rules remain valid in the con-text of non-zeros numerical 
oating-point values. Note that the only caseswhere NaN is produced when operands are non-NaNs are1�1 for �;	 and0 �1; 0=0;1=1 for 
 and �.
7 A labelling procedureAs previously said, projection functions only reduce the domains of the vari-ables. Thus, constraint propagation ensures neither the path conditions aresatis�able nor a test datum to be found in the general case. Note howeverthat this process is e�cient as it only requires O(md) operations in the worstcase where m denotes the number of constraints and d denotes the size ofthe largest domain [22]. To �nd a solution, a labelling procedure has to beimplemented. Some heuristics are used to choose the variables and the valuesto be �rst enumerated. Several heuristics have been discussed in [38] and caneasily be implemented. Note that in a symbolic execution framework, only theinput variables need to be instantiated as all the other internal variables arecomputed in terms of these. As soon as a value is given to an uninstantiatedvariable, the interval propagator wakes up all the projection functions wherethis variable appears, thereby propagating the choice through the constraintsystem. In the applications of symbolic execution over 
oating-point variables,two di�cult situations may sometimes occur at the end of the initial propaga-tion step: either the path conditions have no solutions (i.e. the correspondingpath is non-feasible) but this has not been detected, or the path conditions26



have solutions but the resulting intervals are too approximate for it to befound. In these two related situations the labelling process is time-consumingand cannot be completed in all the cases. However, note there are alwaysless than 232 (resp. 264) possible values in the domain of a single-format (resp.double-format) 
oating-point value. So the process is no more time-consumingthan the one used in constraint-based automatic test data generation environ-ments over integers [39,25,11].8 Implementation and experimental resultsWe implemented a symbolic execution tool for ANSI C 
oating-point comput-ations, called FPSE (Floating Point Symbolic Execution). The tool extractspath conditions and symbolic expressions by a forward analysis and tries tosolve them using the principles described in this paper. The constraint prop-agation engine of FPSE is written in Prolog whereas the projection functionsare written in C.FPSE handles 
oating-point computations that strictly conform to IEEE-754and are intended to run on Sparc architectures. ANSI C accommodates theIEEE 754 
oating point standard by not adopting any constraints on 
oatingpoint which are contrary to this standard. In particular, it allows operationson float to be performed in single precision calculations. Note, however, thatANSI C gives the compiler a large degree of freedom in how to interpret andevaluate a 
oating-point expression to a precision wider than that normallyassociated with its type. While compiling the tested programs, it is necessaryto avoid the use of compiler options that activate code optimizations as well asoptions that allow the storage of 
oating-point values into extended formats.27



In practice, it is very di�cult to guarantee that the symbolic executionwill strictly conform to the actual execution because of several reasons: thelack of documentation of the compiler options and design, the existence ofunexpected hardware optimizations such as the fused multiply-add a+b*c,the unexpected change of rounding modes by user actions, the defaults in thecompiler implementation and so on. These limitations have to be taken intoaccount when interpreting the results of FPSE.8.1 Experimental resultsTo evaluate the approach, we compared the results provided by FPSE withexpected 
oating-point results computed by hand and results obtained withthree available solvers over the reals and the rationals. Distributed as part asthe ECLIPSE Prolog system, are the following three distinct solvers:(1) the IC library [19] which is an hybrid integer/real interval arithmeticconstraint solver based on interval propagation. As in any other inter-val propagation solver over the reals (e.g. Ilog solver, RealPaver [20],Interlog [21,22]), each real number is represented by a pair of 
oatingpoint bounds and any arithmetic operation is performed by using thesebounds. The resulting interval is then widened to take into account anypossible error in the operation, thus ensuring the resulting interval con-tains the true answer over the reals. This contrasts with our approachwhere 
oating-point numbers and operations are correctly approximatedby relations over �nite sets of 
oating-point numbers (also representedby pair of 
oating point bounds);(2) the clpr library [27] that solves linear constraints over the reals. clpr28



makes use of 
oating-point numbers to approximate computations overthe reals;(3) the clpq library [27] that solves linear constraints over rationals com-puted with an arbitrary precision. In clpq, each rational is treated as apair of integers and any arithmetic computation remains exact;Both solvers clpr and clpq exploit the simplex method and a Fourier-Motzkinalgorithm to solve linear constraints. In addition, they provide several isolationaxioms to take into account some restricted shapes of non-linear constraints.
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Figure 9. Control 
ow graph of program power.cPrograms. Several 
oating-point programs of small size were extracted fromthe literature to be carefully examined. We considered two distinct uses ofsymbolic execution: output symbolic expression computation and path feasi-bility.Firstly, symbolic expressions were extracted from [17] and implemented inprograms g1.c, g2.c. g1.c contains the C expression X = ((2:0e � 30 +1:0e30)� 1:0e30)� 1:0e� 30 whereas g2.c contains � == B2� 4AC. For this29



latter, two symbolic expressions were computed: the �rst one corresponds tothe direct evaluation of the expression by taking A = 1:22; B = 3:34; C =2:28 whereas the second one corresponds to the inverse evaluation where Cis unknown and � == +0:0. Symbolic expressions were extracted from pathsof the program power.c that computes xy, given in Fig.9. The two selectedpaths contain a number of iterations (40 and 350) that lead to over
ows. Allthese symbolic expressions are given in the top of Tab.3.Secondly, path feasibility was experimented with FPSE on path conditionsextracted from programs foo1.c and foo2.c given in the introductory partof the paper (Fig.1,2), from the program howden.c that is a small-size numericcomputation extracted from [40] and from the program power.c (Fig.9). Forthese programs, path conditions are given in the bottom of Tab.3. Second col-umn provides the expressions as they appear in the literature. In particular,note that the path conditions of examples 8,9,10,11 results from a simpli�ca-tion process which has eliminated several redundant constraints. This process,as proposed for several symbolic execution tools [10], is unsound over 
oating-point variables as algebraic properties (such as associativity and distributivity)are not preserved. Third column of Tab.3 contains the normalized symbolic ex-pressions as they are computed by the FPSE tool in the normalization process(sec.4). Finally, the last column contains the number of constraints present inthe normalized path conditions.All programs were compiled with gcc 14 on an ultra Sparc FPU under Solaris2.7.14 gcc-3.3.3 -g -Wall -DFPSE SPARC -lm -std=gnu89 -ffloat-store-mhard-float -msoft-quad-float -munaligned-doubles (some default options)30



Table 3Programs and FPSE expressionsProgram Symbolic expr. over R Normalized FPSE expression #1 g1.c X = (2�10�30 +1030)�1030�10�30 T2 = 2:0e � 30 � 1:0e30; T1 = T2 	 1:0e30;X = T1 	 1:0e � 30 32 g2.c � = B2 � 4 � A � C withA = 1:22; B = 3:34; C = 2:28 T1 = B 
 B; T2 = A 
 C; T3 = 4:0 
 T2;� = T1 	 T3 43 g2.c � = B2 � 4 � A � C withA = 1:22; B = 3:34;� = 0 T1 = B 
 B; T2 = A 
 C; T3 = 4:0 
 T2;� = T1 	 T3;� == 0:0 54 power.c(X=10,Y=-40)a-b-c-fd-eg40-d-f-g-h RES = XY with X = 10; Y = �40 W1 = 0:0 	 Y; Z1 = 1:0;fZi+1 = Zi �X;Wi+1 = Wi � 1:0gi=1::40;Z42 = 1:0 � Z41; RES = Z42 845 power.c(X=10,Y=-350)a-b-c-fd-eg350-d-f-g-h RES = XY with X = 10; Y = �350 W1 = 0:0 	 Y; Z1 = 1:0;fZi+1 = Zi �X;Wi+1 = Wi � 1:0gi=1::350 ;Z352 = 1:0 � Z351; RES = Z352 704Program Path condition over R Normalized FPSE path conditions #6 foo1.c X > 0; X + 1012 = 1012 X > 0:0; T1 = X � 1:0e12; T1 = 1:0e12 37 foo2.c X < 104; X + 1012 > 1012 X < 10000:0; T1 = X � 1:0e12; T1 > 1:0e12 38 howden.c A � B + 2 > 100; 48 � A � B > 0 T1 = A 
 B;X1 = T1 � 2:0; X1 > 100:0;X2 = 100:0 	 X1; X3 = X2 	 50:0; X3 > 50:0 69 power.c(X,Y unknown)a-b-c-d-f-g-h Y < 0; Y � 0 Y < 0:0; W = 	Y;W � 0:0 310 power.c(X,Y unknown)a-b-c-fd-eg40-d-f-g-h Y < 0; Y < �39; Y � �40 Y < 0:0; W1 = 0:0 	 Y;fWi > 0:0; Wi+1 = Wi � 1:0gi=1::40;W41 � 0:0 8311 power.c(X,Y unknown)a-b-c-fd-eg350-d-f-g-h Y < 0; Y < �349; Y � �350 Y < 0:0; W1 = 0:0 	 Y;fWi > 0:0; Wi+1 = Wi � 1:0gi=1::350;W351 � 0:0 703Results. In all the cases, the CPU time required to get the results with anyof the four solvers (FPSE, IC, clpr, clpq) is less than a few seconds, so it isnot shown. The �rst column contains the expected results computed eitherby executions of the C program or by manual analysis. In both cases, weprovide the results over the singles and the doubles. Binary 
oating-pointnumbers are represented by decimal constants, noted with 16 decimals. Thesecond column contains the results computed by the solvers over the realsand the rationals (IC, clpr and clpq). These solvers do not use single-format
oating-point numbers, hence only the results over the double-format or therationals is given. The last column contains the results computed by FPSEover both formats. Note that for any of the solvers (including FPSE), thelabelling process has not been triggered and the results that are shown areobtained just after the constraint propagation step. Note that, as Eclipse IC isbased on interval propagation, interval bounds are only changed if the absoluteand relative changes of the bound exceed a given propagation threshold, which31



is set to 1.0e-8.Table 4First experimental resultsExpected with Eclipse with FPSE1 single:X =-1.0000000031710769e-30double:X =-1.0000000000000001e-30 IC: X 2 [-1.0e-30, 140737488355328]clpr: X = 0.0clpq: X =1/999999999999999879147136483328 single:X = -1.0000000031710769e-30double:X = -1.0000000000000001e-302 single:� =0.029199600219726562double:� =0.029200000000001225 IC: � 2 [0.029199999999997672,0.029200000000001225]clpr: � = 0.029200000000001152clpq: � = 73/2500 = 0.0292 single:� =0.029199600219726562double:� =0.0292000000000012253 single:C =2.2859835624694824double:C =2.2859836065573770 IC: C 2[2.2859836065573766, 2.2859839065573771]clpr: C = 2.285983606557377clpq: C = 27889/12200 single:C 2[2.2859833240509033, 2.2859835624694824]double:C 2[2.2859836065573766, 2.2859836065573770]4 single:RES = +0.0double:RES =1.00000000000000001e-40 IC: RES 2 [9.9999999999999871e-41,1.0000000000000016e-40]clpr: RES = 1.0e-40clpq: RES = 10�40 single: RES = +0.0double:RES = 1.00000000000000001e-405 single:RES = +0.0double: RES = +0.0 IC: RES 2 [0.0, 5.56268464626801e-309]clpr: RES = 1.0e-350clpq: RES = 10�350 single: RES = +0.0double: RES = +0.0Expected with Eclipse with FPSE6 single:X 2[1.4012984643248171e-45,3.2767998046875000e+04]double:X 2[4.9406564584124654e-324,6.1035156250000000e-05] IC: infeasible pathclpr: infeasible pathclpq: infeasible path single:X 2[1.4012984643248171e-45,3.2768000000000000e+04]double:X 2[4.9406564584124654e-324,6.1035156250000000e-05]7 single:infeasible pathdouble:X 2[6.1035156250000000e-05,9.9999999999999982e+03] IC: X 2 [0.0, 10000.0]clpr: -0.0 < X < 10000.0clpq: 0 < X < 10000 single:infeasible pathdouble:X 2[6.1035156250000000e-05,9.9999999999999982e+03]8 single:double:infeasible path IC: infeasible pathclpr: -48.0 + B*A < 0.0, 98.0 - B*A < 0.0clpq: -48 + B*A < 0, 98 - B*A < 0 single:double:infeasible path9 single:double:infeasible path ic,clpr,clpq: infeasible path single:double:infeasible path10 single:Y 2 [-4.0e01,-39.000003814697265625]double:Y 2 [-4.0e01,-39.000000000000007105] IC: Y 2 [-40.0,-39.0]clpr: -40.0 � Y < -39.0clpq: -40 � Y < -39 single:Y 2 [-4.0e01, -39.0]double:Y 2 [-4.0e01, -39.0]11 single:Y 2 [-350.0,-349.000030517578125]double:Y 2 [-350.0,-349.00000000000005684] IC: Y 2 [-350.0,-349.0]clpr: -350.0 � Y < -349.0clpq: -350 � Y < -349 single:Y 2 [-350.0, -349.0]double:Y 2 [-350.0, -349.0]
Analysis. First examples illustrate that the four evaluators may producedistinct results. In example 1, the results computed by both clpr and clpq areincorrect not only w.r.t. the expected result over the 
oats (�rst column) butalso over the expected solutions over the reals (i.e. +1:0e�30). The library ICprovides a correct but useless result over the reals as the superior bound of the32



computed interval is greater than 1014. As expected, FPSE provides the resultstrictly conforming to the evaluation of the program over the 
oating-pointnumbers (single and double), without any overestimation. Examples 2 and 3show that even when expressions are not targeted to exemplify 
oating-pointcomputation problems (g2.c computes the roots of the second order equation),the results given by the three solvers over the reals and the rationals (IC, clpr,clpr) do not conform to the ones computed by program executions. In example3, FPSE returns an interval of 2 
oating point values (in both cases) but onlyone of them satisfy the symbolic expression. Examples 4 and 5 show situationswhere 
oating-point numbers are 
ushed to zero by the computations, leadingto a divergence with the computations over the reals (the program returns +0:0instead of a strict positive quantity). FPSE provides the expected result as1:0�+INF results in +0:0. Example 6 and 7 have already been discussed inthe introduction of the paper. Examples 8 and 9 demonstrate path infeasibility.In example 8, both clpr and clpq return an unsolved non-linear constraintsystem. Solvers based on interval propagation (IC,FPSE) are not restrictedto deal with linear constraints hence path infeasibility is shown. In example9, all the four solvers provide the expected result. Finally, examples 10 and11 illustrate the capacity of the solvers to deal with a realistic number ofconstraints, even when inverse projections are involved. In examples 8,9,10,11,IC and FPSE return the same (possibly overestimated) correct results at theend of the constraint propagation step, but only FPSE is trustworthy over the
oating-point numbers.To conclude, these experiments demonstrate that the proposed approach issuitable to deal e�ciently with small-sized C 
oating-point computations. Ofcourse, the set of experiments is too restricted to easily extrapolate the results33



to larger computations but this work is a �rst attempt to address the problemof 
oating-point computations in symbolic execution.
9 Further workIn this paper, a new symbolic execution framework able to handle correctlyIEEE-754 compliant 
oating-point computations has been introduced. Thede�nitions of correct and e�cient projection functions for solving normalizedsymbolic expressions have been given. Handling other rounding modes thanthe to-the-nearest number appears as being a tedious but not di�cult exten-sion of the proposed framework. In the same spirit, handling the square rootfunction is straightforward: this function is included in the IEEE-754 standardand is correctly rounded. Dealing with extended formats appears to be an in-teresting extension as computations require more and more precision. Thisextension probably requires using multiple-precision 
oating-point numbers,as exploited in some computer algebra systems. The most di�cult extensionconcerns the transcendental functions as there is nothing to guarantee thatthe computation is correctly rounded in these cases. This problem known asthe table maker dilemma problem is likely to be the more prospective part offuture work on this topic.
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AppendixThis appendix contains the tables used in direct and inverse projections whenin�nities are involved in the computations.Table 5Value of r in direct proj(r; r = a	 b)anb �INF �0:0 +0:0 Nv +INF�INF ? �INF �INF �INF �INF�0:0 +INF +0:0 �0:0 Nv �INF+0:0 +INF +0:0 +0:0 Nv �INFNv +INF Nv Nv Nv [ f�INF;+0:0g �INF+INF +INF +INF +INF +INF ?Table 6Value of r in direct proj(r; r = a
 b)anb �INF �0:0 +0:0 Nv +INF�INF +INF ? ? �INF �INF�0:0 ? +0:0 �0:0 f�0:0g ?+0:0 ? �0:0 +0:0 f�0:0g ?Nv f�INFg f�0:0g f�0:0g Nv [ f�0:0;�INFg f�INFg+INF �INF ? ? +INF +INFTable 7Value of r in direct proj(r; r = a� b)anb �INF �0:0 +0:0 Nv +INF�INF ? +INF �INF f�INF;+INFg ?�0:0 +0:0 ? ? f�0:0g �0:0+0:0 �0:0 ? ? f�0:0g +0:0Nv f�0:0g f�INFg f�INFg Nv [ f�0:0;�INFg f�0:0g+INF ? �INF +INF f�INF;+INFg ?
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Table 8Value of a in �rst inverse proj(a; r = a	 b)bnr �INF �0:0 +0:0 Nv +INF�INF ? ? ? ? Nv [ f+INF;�0:0g�0:0 �INF ? f�0:0g Nv +INF+0:0 �INF �0:0 +0:0 Nv +INFNv Nv [ f�INFg ? Nv Nv [ f�0:0g Nv [ f+INFg+INF Nv [ f�INF;�0:0g ? ? ? ?
Table 9Value of a in �rst inverse proj(a; r = a
 b)bnr �INF �0:0 +0:0 Nv +INF�INF Nv [ f+INFg ? ? ? Nv [ f�INFg�0:0 ? Nv [ f+0:0g Nv [ f�0:0g ? ?+0:0 ? Nv [ f�0:0g Nv [ f+0:0g ? ?Nv Nv [ f�INFg f�0:0g f�0:0g Nv Nv [ f�INFg+INF Nv [ f�INFg ? ? ? Nv [ f+INFg
Table 10Value of a in �rst inverse proj(a; r = a� b)bnr �INF �0:0 +0:0 Nv +INF�INF ? Nv [ f+0:0g Nv [ f�0:0g ? ?�0:0 Nv [ f+INFg ? ? ? Nv [ f�INFg+0:0 Nv [ f�INFg ? ? ? Nv [ f+INFg+INF ? Nv [ f�0:0g Nv [ f+0:0g ? ?Nv f�INFg f�0:0g f�0:0g Nv f�INFg
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