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Abstract

Automatic test data generation usually concerns identfynput values that cause a se-
lected path to execute. If a given path involves pointersn hput values may be represented
in terms of 2-dimensional dynamic data structures suctstsdr trees. When testing is con-
ducted for programs in the presence of pointers, it is veryoirant to identify a shape of the
input data structure describing how many nodes are reqaingdhow nodes are connected
each other. The approach presented in this paper makes tise pdints-to information for
each statement in the selected path that will be used toseqir¢he shape of an input data
structure. It also converts each statement into statidesiagsignment (SSA) form without
pointer dereferences. This allows the approach to consmlgr statement in the selected path
as a constraint involving equality or inequality to make afeurrent constraint solving sys-
tems without significant effort. The SSA form serves as aesysif constraints to be solved to
yield input values for non-pointer types. An empirical exalon shows that shape generation
can be achieved in linear time in terms of the number of poiéeeference operations.

Keywords: Program Testing, Shape Generation, Automated Test Datar@on.

1 Introduction

Software testing is an essential step for improving softveprality, but it consumes large amounts
of time and computing resources. The cost of software gstam be reduced significantly by
automating the process of test data generation. Test da&a®n can be treated as a search for
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input values to exercise a selected path. Several metheddlean proposed to attack the problem
[1,2,3,4,5,6,7,8,9, 10, 11]. However, most of the prior kvimcuses on search algorithms that
find solutions to traverse the selected path in the absenpeimters or heap-allocated structures.

This paper deals with test data generation for programs pathters. Usually program code
involving pointers manipulates dynamic data structurésremced by input pointer variables. A
shapeof the data structure is a configuration of data objects hi@yv many data objects are needed
and how they are linked to each other. Since dynamic datetstes may have a variety of shapes
including linked lists and binary trees, one needs to dateera suitable shape of the input data
structure in order to traverse a given path. Of course, swraeds to uncover the values of the
data fields in the input data structure as well as the valuegpot variables that are not pointers.

The authors’ prior work [12] introduced a shape generatmhmique that handles pointers to
stack-allocated objects, i.e., pointersrib This paper extends this prior work to more complicated
pointers that reference heap objects such as user-dstined and to interprocedural interactions
to analyze procedures with procedure calls. In additionpagupports an empirical evaluation of
the approach.

Given a program path, the approach provides:

e a shape of the input data structure and

e a set of constraints describing how to assign values fortimaiiables that are not of pointer
type in order to cause the traversal of the selected path.

The approach represents a shape of the input data structigneris of points-to relations (i.e.,
what pointer variables are pointing to) [13] for each inpainper variable. The key action is to
introduce a new points-to relation whenever necessaryekample, consider a statement of the
form “x=*y” for an input pointer variablg. If the variabley is not NULL and it does not yet point
to any storage location, it would be necessary to createragagdocation pointed to by in order
to execute that statement without any violation.

The new method does not directly generate test data for nongp input variables. Instead,
it generates constraints for input variables in such a way e¢kisting constraint solving systems
can be employed. To support this feature, each statememy aldest path is transformed into
SSA (Static Single Assignment) form [14] which does not imeopointer dereferences if they
exist. One important feature of SSA form is that each vagiflals at most one definition (meaning
that it is assigned at most once). This allows one to regartl se@atement along the test path as
a constraint involving equality or inequality [3]. Thus,enan apply various constraint solving
techniques to come up with a solution that describes valoesdn-pointer input variables. If
constraint solving systems that can solve nonlinear caimr are employed, the solution to the
constraint system can be computed. That is, getting induesaof non-pointer types depends on
the ability of the constraint solving algorithm used.

The main contribution of this paper is sdatic approach to automatic program testing for
programs in the presence of pointers and heap-allocatedtstes. The approach does not re-
quire any means for controlling the execution of the targegpmm unlike execution-based ap-
proaches [2, 7, 10, 11, 15]. In general, execution-baserbappes formulate the test data gener-
ation problem as a function minimization problem by tregtgach branch predicate on the given
path as a function that becomes minimal when the desirecbogds produced. Thus execution-
based approaches must monitor a program’s execution and &ecution toward the desired
direction.



The approach presented in this paper separates test datagem for non-pointer types from
the shape analysis problem. Such separation of concerbtesrthe approach to take advantage
of current test data generation techniques for non-pouateables which have been relatively well
studied. Since the proposed method produces a set of comsti@r non-pointer types in terms
of equalities or inequalities between variables, coneerati constraint solving techniques can be
employed, reducing development effort.

The rest of the paper is organized as follows. Section 2 eéxla detail the SSA form, basic
terminologies, and definitions. Section 3 defines transfections associated with various types
of statements and expressions dealing with staticallycated memory objects and the derefer-
ence operator”. It also illustrates the method through an example. Sectiextends the method
to heap directed pointers which reference objects dyndiyiahocated in the heap. Section 5
explains the extension of the approach to deal with proeedalls. Section 6 describes the em-
pirical evaluation and the proof-of-concept tool. Sectfopresents related work. Section 8 gives
conclusions and directions for future work.

2 Preliminaries

One straightforward way to generate test data is to extracinaber of constraints (equalities or
inequalities) from a path under consideration and solvetmstraint system. This can be done by
transforming the path into SSA form.

A key property of SSA form is that each variable has a unigagcstlefinition point [14]. In
order to ensure this property, variable renaming is usutdhe as follows:

e every assignmentto a variable v generates a new SSA vaviableere i is a unique number,

e just after the assignment to v, becomes the current name (the last version or the current
instance) of v, and

e every subsequent use of v is replaced by its current name v

The following discussion uses the syntax and semanticsed€throgramming language.

Assume that the subscript number of each SSA variable stathisO. For example, the se-
guence of code&=10; x=x+3; is converted into SSA form as follows; x10; % =x;+3. In this
example, two SSA variableg xand % can be treated as logical variables rather than program vari
ables. As a result, the first assignment can be treated agtiadity to assert thatxis equal to
10 and the second assignment as the equality to assert ¢hadltie of % is equal to the result of
adding 3 to the value ofx

However, the presence of pointers complicates the comrersdi the selected path into SSA
form because aliases can occur (i.e., two or more hamesfexiste same memory location) and
a variable can be defined indirectly via a pointer derefezerithis makes it necessary to exploit
points-to information on the selected path during conegrso SSA form [16].

At each program location, one collects the points-to infation and then replace each pointer
dereference with its points-to result. For example, theieage of assignments given by

x=&a;xx=10;y=a



can be converted to the SSA form without the pointer derafsre
x1=&ag;a1 =10;y1 =ay

by using the points-to information thatreferences after executing the first assignment.
The approach represents points-to relations for each gmogoint withc mapping variables
to memory locations:
O € State= Var — Loc

Var is the (finite) set of variables occurring in the SSA formthe program path of interest. Loc
is a set of locations (addresses) partially ordered as tebic Fig. 1.

Figure 1: The structure of locations

Then,o(x) will now either be
e T meaning that x may possibly point to any location (x can be N)JL
e | meaning that x is not a pointer variable or its points-totretais undefined,

e NOT-NULL meaning that x points to a certain memory locatibut its exact address is not
yet known,

e |; meaning that x points to a concrete memory location whosesadds il or
¢ NULL meaning that x is not currently pointing to any locatiaiall.

States are assumed to be partially-ordered as follows:
o; C gjif for all x, g;(x) C oj(x)

The approach also introducesg such that for alb € State, L s C 0, and used ¢ to denote that a
selected path is infeasible.

It is often convenient to use a symbolic name to refer to atiosanstead of its address. The
discussion in this paper assumes that the targets of psiaternys possess a (symbolic) name.
Under this assumption, the fact that variabdegoints to a location named’ can be represented
by o(x) =y without any confusion.



However, this assumption does not hold for variables thatnat in the scope of a function
but might be accessible through indirect reference. Fom@ka consider functiofun with the
formal parametex of typeint **: fun(int **x) {...}. The problem is that the functidrun
can refer to memory locations througtx' or ‘**x’ which are not in the scope étun. In order to
capture points-to information accurately, the approachesasuch locations usingvisible vari-
ables[13]. Invisible variables are names for the variables that®t in the scope of a function but
are accessible through indirect reference. For exampanthisible variables fox with typei nt
** are 1x with typei nt * and 2x with typei nt **, respectively.

The functionLy gives the last version of a variable with respectitoFor example, suppose
thato is the state after executing the sequence of the assignrherit; y=x+1; x=y”. Then,
Lo(x) will give X2. Ly can also accept the SSA variable as input instead of thenatigariable.
Thus,Lg(x), Lg(x1), andLg(xy) (n < 2) will produce the same resulyxOn the other hand, let
be the state immediately after executing the first assighnidren,Ls(x) will give X1.

The pointer variables are partitioned into disjoint cdilees. A collection is a set of pointer
variables which should point to the same memory location.cdntrast, two pointer variables
belonging to distinct collections can not designate theeskbroation. The approach assumes that
(1) each pointer variable initially belongs to a distindiection, and (2) pointer variables reference
different memory locations unless there is evidence thet goint to the same location. Hereatfter,
[X]c denotes the collection of the pointer variables pointingh® same location whichg(x) is
pointing to.

3 Shape Generation for Program Testing

In this paper, each statemenpirsa path< sy,...,S, > is viewed as a transfer function which speci-
fies how the statement acts on the input data structure thataverse the (sub)path s1,...,5_1 >
and changes the input data structure to a new input datawteubat will traverse the (sub)path
<s1,...,5 >. This section defines transfer functions for boolean exgiwes and assignments for
use in shape generation for stack-allocated pointersepteshe shape generation algorithm, and
illustrates the approach through an example.

3.1 Transfer functions for boolean expressions

Fig. 2 shows transfer functions for boolean expressionslvinvg pointers. For a given boolean
expression and a given state, one derives the largest@oligtiate) from the given state that will
evaluate the target boolean expression to true.

Consider the transfer function associated with the boaeanression of the form “x>NULL".
The interesting problem occurs when a pointer variableLs#y), should point to a certain mem-
ory location, but its exact address is unknown at the momento(Ls(X)) =T. The problem is
representing such a points-to relation.

The solution used here is to materialize a concrete loc&toon T. The address of the materi-
alized location is NOT-NULL and not a specific address. Thmefion “new-name(w)” generates
a name for the location as follows:

k+1 Lg(x), ifk_Lg(X)€ [V]s;

new—namev, o) :{ 1Lg(v), otherwise



IX==NULL[jo = o&o{(k,NULL)|k € [X]s} if o(Ls(x)) I NULL
= g otherwise

[X<>NULL[jo = oo{(k,new—naméx,o))ke [X]¢} if o(Ls(X)) =T
= o elseifo(Lg(x))=NOT-NULL or o(Ls(x)) =lI
= g otherwise

[x==I[o = o0{(kI)|ke [X]¢}if (a(La(x))M)#L
= 14 otherwise

[x==ylo = 00{(k,o(Ls(x))Ma(La(y)))k € [X]o} if (0(La(X))MTO(La(y))) # L
= g otherwise

[x<>ylo = LoifLg(X) € [ylo OrLo(y) € [X]o
= o otherwise

Figure 2: Transfer functions for boolean expressions. &tpe® is the function overriding opera-
tor. The function > g is defined on the union of the domains f and g. On the domaintaigrees
with g, and elsewhere on its domain it agrees withdenotes the address of a certain location.

The function “new-name(@)” makes use of invisible variables and associates a hanhetfnat
location pointed to by k(v). It first checks whether an invisible variable is includedha collec-
tion [v]s. If there already exists an invisible variable of the formL'k(p)”, then the anonymous
location will be named “k-1_Ls(p)”. Otherwise, a new invisible variable “ILs(v)" names the
anonymous location.

Once a name is associated with the materialized locatierapproach introduces a new points-
to relation by making the pointer variable x point to new-me#xp). Note that the address of the
materialized location is regarded as NOT-NULL to reflect ihaan represent any (concrete) lo-
cation. This is very important when another pointer vagalshy y, points to a concrete location
named ‘m’ and, at a certain point in the given program path,snshown to refer to the materi-
alized location. That is, (*x, *y) forms an alias pair. Thehe exact address of the materialized
location is reduced to the address of ‘m’. If one would assigpecific address to the material-
ized location rather than NOT-NULL, it would not be possitdaletect such an alias pair because
inconsistency occurs, i.e3(X)ro(y) = Lg.

3.2 Transfer functions for assignments

Basic forms of the assignments considered in this sectiolude “x=y”, “X =xy”, “*x=Yy”,
“x =&y”", and “x=NULL". Complex statements can be treated in terms of theseckassign-
ments. For example, the assignmeft £ xy” are broken into “temp= xy; *xXx =temp”.

The common effects of the assignments is to generate new &%bles since the assignments

define variables directly or indirectly. If an assignmerifirtes the variable ‘x’, then the transfer



FUNCTION GP(xg:State) returng
1 generate a new SSA variableg,Nor Lg(X);
2 seto(Ny) to T;

3 set WorkList tof{Ls(X) };

4 for each k in WorkList do

5 delete k from WorkList;

6: for each p pointing to k w.rdr do

7: generate a new SSA variable;,Nor p;
8 seto(Np) to Nk

9: add p to WorkList;

10: endfor
11: endfor

Figure 3: Function for generating new SSA variablesdéhotes a newly created SSA variable for
the variable ls(t). For example, if Is(t) is t; for i > 0, then N denotes;t.;

function associated with the assignment makes use of tleidunt*'GP(x©)”, shown in Fig. 3, to
generate a new SSA variable for the variable ‘X’ with respedhe states. It records the newly
created SSA variable as the latest version of ‘X’ (line 1)e Hiewly created SSA variableyNor
‘X" is initialized to T (line 2).

GP(xp) also generates new SSA variables for all pointer varighkgpoint to lg(x) ono(Line
4 through line 11). For example, consider an assignment#fates the variable x when a pointer
variable p is pointing to x. Even though p does not appeaugdiyt on the left-hand side of the
assignment, the assignment is an indirect definition of pusTéne needs to create a new SSA
variable for the pointer variable p. This process is remeat#il all pointers that can reach the
storage location named x are taken into account.

Fig. 4 defines the transfer functions for the assignmengy;dhe formulated in terms of boolean
expressions. The transfer functions associated with thietwao assignments play an important
role in determining a shape of the input data structure requio traverse the path of interest.
The primary effect of the assignments is to introduce newmtgetio relations whenever necessary,
then make a suitable shape of the input data structure. Tlosvinog discussion illustrates only
the transfer function associated with the assignment ofdire “x =x*y” because others can be
similarly understood.

The transfer function associated with the assignment ofdim “x = xy” attempts to remove
the pointer dereference operator by using the points-tormmétion for y. The first clause ap-
plies to the case whem®(Ls(y))=T. In this case, the approach materializes a location fflom
whose name is given by new-namegy, Once a name is associated with the materialized loca-
tion, the approach introduces a new points-to relation biingathe pointer variable y point to
new-name(yg). Of course, this change should be made for all pointer kbegabelonging to the
collection containing y. The next step is simply to evalufie transfer function associated with
the equality “x==new-name(@)”.

The second clause of the transfer function deals with the wagre y references a materialized
location or a concrete location. The clause simply repléecesight-hand side of the assignment
with the location y is pointing to. For example, if y pointsdccertain location, say v, then the
right-hand side of the assignment will be replaced by v aea tine transfer function associated

7



[X=NULL[Jo = [x==NULL|GP(x,0)

[x=&allo = [[x==I4]GP(x,0)
[x=y[o = [x==y[GPR(x,0)
[x=xy[o = [x==new-namdy,o)[GP(x,0y) if o(Lg(y))=T

[x==my[GP(x,0) else ifa(Ls(y))=NOT-NULL or o(Ls(y))=Im,
= 4 otherwise

lxx=y|o = [[new—naméx, o) == y[|GP(x,0x) if o(Lgs(X))=T
= [my ==y[|GP(my,0) else ifo(Ly(X))=NOT-NULL or o(Lg(X))=Im,
= 14 otherwise

Figure 4: The transfer functions for assignments. In thedfexr functions,ly denotes the
address of k, m denotes the location pointed to bys(p), op is the state computed by
op=00{(k,new—namep, o) |k € [plq}.

with the boolean expression "x==v" will be evaluated.

The last clause handles the case where y has the NULL valugio@ty, dereferencing y
at the assignment causes a violation. Thus, the result wilLd indicating that the path under
consideration cannot be executed.

3.3 The shape generation algorithm

Fig. 5 shows the algorithm for generating a description efshapes of the input data structure
for the traversal of the given path s,...,s, >. The view taken by the algorithm is that a pro-
gram path is a constraint system describing how an inputstatature (or input values) should
be formed in order to traverse the path. The idea is to exaastimber of constraints from
the given path by transforming it into SSAform without p@ntereferences. For the sub-path
<s,...,5 > (i <n), a solution to the constraint system will be a stateafter evaluating the
sub-path. The stat® describes the shapes of the input data structure requiteavierse the sub-
path in terms of points-to relations for each pointer vdaasince the constraint system does not
necessarily have a unique solution, the largest solutidesged.

The first step is to construct an initial statg. For every variable, Line 1 concerns the
generation of its initial (SSA) version of the variabl@, Xoncerning the points-to relation, every
SSA variable generated from input variaBlés assumed to point to anything. That @gxg) =
T if x is an input pointer variable. This assumption is reasonhblsause memory locations
pointed to by input variables should not be initially restied. On the other hand, local variables
or nonpointer variables have their points-to relationiatiiy set to undefined. This initialization
process is specified in Line 2.

LFormal parameters or global variables



FUNCTION get-shapetpath) returns

1. for every variable x, generate its initial SSA versignok the variable ¥;
2: construciog such that

Go(Xo) = { T, ifxis an input variable of pointer type;

1, otherwise.

3:setitol;
4: for each sin 1tdo
5. if (s is of the form x >y) theno; =0;_1;
elseo; =[s[|0i-1;

o

7. if gj#1s then

8: transform sinto SSA form jswithout pointer dereferences

9: if (‘'s is of the form x==NULL) then for all ke [X]q;, , [Klo;, = {k}

10: if (s is of the form x==I and3y - 6;(Lg, (y))=1) then[X]|s, = [Y]o; = [X]o;_, U [Y]o: 1
11: else if (i5is of the form x==y) then[X|s, =[Ylo, = [X|o;_, U[Ylo;_;;

12: elsex]q, =[X]q,_, for every variable x;

13: elsereport that the path is inconsistent and exit;
14: incrementi;
15: endfor

16: for each (of the form x>y do

17:  if (x € [y]g, Or Y € [X]g,) then report that the path is inconsistent and exit;
18: endfor

Figure 5: Function for computing shape information for tekested patht=s, ..., S,



Lines 3 through 15 concern evaluation of statements in ttfe hane 5 defers evaluation of the
boolean expression of the form<x>y”. Just after points-to information for the path is colledt
(Lines 16 through 18), the boolean expression of the forra=*y” is evaluated. Lazy evaluation
is used, since one can assume that pointer variables reéedkstinct locations unless there is
evidence that they point to the same location.

Line 9 concerns the form “x==NULL". In this case, all the ptanvariables in the collection
[X]s,_, are supposed to point to no memory location at all. Thus, pagiter pointer variable k in
[X]o._, is separated so thilt|s, gives{k}. The next form that affects the points-to information is
“x==|". The condition at line 10 checks whether an existing paiatgiable points to the memory
location whose addresslisif such a variable, say y, exists, then itis necessary t@ajgfs_, and
lylo._, to make the pointer variables belongingx®; and[y]s; point to the same memory location
with the addresk

Line 11 concerns the form “x==y”. An interesting case arista&n x and y belong to disjoint
collections, but they are not in conflict (i.e(x) M oj(y) # L). Then, the collections are merged
to indicate that they should point to the same memory londtiem now on. The other forms do
not affect the points-to information.

The time complexity of the shape algorithm is determinecbdews. o; is computed for each
s, thatis |1 times whereg] is the number of the statements plus the expressions intha gath
T. The time complexity of the function GP in Fig. 3 is propona to the square of the number of
the variables in the patty, |v|?, because the iteration is travergeglitimes in the worst case and
in each iteration, all possible points-to relations havedaonsidered, which equdlg. Thus the
worst case time complexity of the shape algorithm {$rDx |v|?).

The space complexity is proportional to the points-to infation that is computed at each
program point. Since the points-to information is propmrtil to the number of variables, the
space complexity of the shape algorithm i§®@ x |v|).

3.4 Anexample

Suppose that one wants to identify the shape of an input taigsre required to traverse the path
<1,2,3,4,6,8,9,10,11 of the program in Fig. 6.

For the sake of clarity, each state is represented by a @trepresentation called a shape
graph. In a shape graph, square nodes model concrete meosatiohs. Edges model pointer
values. Suppose thaix) gets y. Then, there is a directed edge from the square nodedhato
the square node named y. Shape graphs need not explicitigec.

The initial stateog is the following:

0o(Xo) = 0o(Yo) = T,00(pPo) = 0o(do) = To(ro) = To(Vo) = Oo(20) = L.

Initial versions of input variables of pointer type are ialized to T while local variables or vari-
ables of non-pointer type are initialized to. Another assumption is that each pointer variable
initially belongs to a distinct collection. Fig. 7(a) defs¢he shape graph correspondingto

The evaluation of assignments 1 and 2 produces the follopamgts-to information:

e X points to 1xg and

e Yo points to 1yo.
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void Example(int **x, int **y, int v) {
int *p, *q, *1, z;

1: pP=*X;
2: g="*y;
3: if (p==0) {
4. if (p == NULL)
5. *q=V;
6: else if (g == NULL)
7. *P=Vv,
else{
8: r=&z,
9: *r=10;
10: if (z==v)
11: *q=v;
}
}
else{
12: *p=v;
13: *qQ=v;
}
}

Figure 6: An example program

The effects of assignments 1 and 2 is to introduce new pointstations by materializing
the locations named_ 2y and 1lyp from T pointed to by ¥ and yp, respectively. Since the two
assignments define p and g, respectively, their last vessimmchanged toy@and q. The result is
the shape graph shown in Fig. 7(b).

Consider the expression “p==q". Its effect is to putgmd g into the same collection because
they can possibly point to the same location. Consequéeh#ytop nodes referenced by gnd q
are merged, indicating thag and g should reference the same location as shown in Fig. 7(c).

The boolean expression “p==NULL" should evaluate as fal$éus, consider the boolean
expression of the form “@>NULL", which excludes the case where bothand q will be NULL.
The top node referenced by bothand q (of course, also referenced byxg and 1yp) is changed
to the node labeled with NOT-NULL which must be named. Namalwates include s, 2 Xo,
2.yo, and 1q;. It does not matter which one is used. Fig. 7(d) shows thatsin where 2xg is
selected as its name. Similarly, one can evaluate=*tjjULL".

Consider the situation where the boolean expression “gqa=NUthust evaluate to true. Sup-
pose that one wants to exercise the path2,3,4,6,%. The analysis will show that statement 7
represents dead code. To cause the traversal of statentleatctirrent instance of gz gshould be
NULL. This will cause a contradiction since the currentsias shown in Fig. 7(d) requires that g
should not be NULL. The result is s which indicates the detection of an inconsistent path.

Fig. 7(e) shows the points-to information thatpoints to g introduced immediately after
evaluation of the assignment 8. Consequently, the varigphall be defined at the assignment 9
indirectly. In addition, the function GP generates new wars of r and z: § and z. As a result,

11
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Figure 7. Shape graphs generated by the shape analysiglalg@arhen applied to the given path
of the example program in Fig. 6: (a) depicts the initialestaf, (b) depicts the shape graph after
evaluating sub-patk:1,2>, (c) depicts the shape graph after evaluating sub-pdt}2,3>, (d)
depicts the shape graph after evaluating sub-pdt}2,3,4>, and (e) shows the points-to relation
arisen after evaluating assignment 8. The part enclosdtkinldtted line in (f) shows the shape
of the input data structure that can cause the traversakaftiget path1,2,3,4,6,8,9,10,12 in

Fig. 6.
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the assignment is converted into SSA form without a pointreférence as follows: 1z=10.
Conversion of the boolean expression “z==v” into SSA formimply “z;==vqp".

The last statement to consider is “*q=v". Its evaluationasrd out in the same manner as
that of assignment 9 by using the points-to information ddiepce g points to 2xg, it is converted
into the SSA form as follows: Xg==vj.

Of particular interest is the portion of the final shape grépdt is associated with initial in-
put (pointer) variables, because it gives a shape of the ohgta structure required to traverse the
selected path. “Initial input variables” refers to the vens of input variables before any modifi-
cation; they have 0 as their subscript number. The partegesiyraph enclosed by dotted lines in
Fig. 7(f) shows the shape of the input data structure requodraverse the selected path.

After finding a shape of the input data structure requiredrawerse the selected path, one
needs to find values for input variables of non-pointer typgsch values are found by solving
the constraints generated from the selected path. Havmgdhstraints, one can apply various
methods to come up with a solution [3, 9]. The constraintstlier example are the following:
Z1 == 10, 2 == vg, and 2Xg == Vg. The solution is .10, \:10, 2X0:10.

Variable \y is key because it represents the input value of v. The reguibrm of the input data
structure is shown enclosed by the dotted line in Fig. 7(f}l #ne value of the formal parameter v
is 10.

4 Heap-Based Data Structure

So far, the focus has been on pointers that reference $ydadimcated memory objects (typi-
cally stacks). In this section, the approach is extendecapfdirected pointers, which reference
dynamically allocated objects. Heap-directed pointetsrofnvolve structures. A structure has
multiple fields, each of which is accessed using field idemrsfiFor the sake of simplicity, assume
that each field can either be an integer, a pointer to anothertsre or NULL.

4.1 Transfer functions for structures and heap-directed panters

To support structures and heap-directed pointers, trafighetions deal with the statements or
expressions of the following forms:

¢ x.f=expression

o k=xf

x.frel k where rel is one of >, <, <>,==, <=, >=}?

p—f=k

k=g—f

p=malloc(-)

o free(p)

2If k is of pointer type, rel will be one of <>,==}.
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e p—frelk

Before defining transfer functions associated with theagestents or expressions, one must
assign SSA numbers to structures. Since every field in atateimust be treated as a separate
variable, SSA numbers are associated with all fields as vgeWith the structure itself. SSA
numbering is adapted from the rules developed by LapkowskiHendren [16] as follows:

Rule 1 Assignment to a field increments the SSA number associatixdie field. For example,
consider the assignment of the form “x.f= If the field f has k as its SSA number, then
evaluation of the assignment increments the SSA numbers,Tha SSA number of f will
be k+ 1 after the assignment. However, the SSA number associatedhe structure, X,
remains unchanged.

Rule 2 A structure copy assignment changes the SSA number assbevéh the structure. For
example, consider “x=y” where x and y are variables of strieetype. If the SSA number
associated with x is k, then it will bek 1 after evaluation of the assignment. In this case,
the SSA numbers associated with its fields remain unchanged.

Fig. 8 shows a program fragment illustrating how to assigA 8&mbers to structures. Note
that only the structure copy assignment generates a nevonerisa variable of structure type.

struct foo{ struct foo{
intf; int f;
intg; intg;
Fxy; Xy
x.f=10; xo.f1=10;
X.g=20; %-01=20;
y.f=x.f; Yo.f1=Xo.f1;
x.f=30:; xo.f2=30;
Y=X, Y1=Xo;
X.g=y.f; X0-92=Y1.f1;

(a) (b)
Figure 8: A program fragment (a) and its SSA numbering fardtres (b)

The transfer functions associated with the first four forrmsdt differ from those associated
with ordinary assignments, since a variable of the form atf be regarded as a separate variable.
From now on, assume that the function GP is changed to copeswiictures accordingly.

Fig. 9 shows the transfer functions for some of the statesiamblving the pointer dereference
operator —’, and the functions for allocating and releasing memorgatmns: malloc() and free()
function. The first two forms involving the pointer derefece operator-’ can be transformed
into the forms without pointer dereferences using the geiatinformation, as done for the pointer
dereference operator “*’.

If a pointer variable references a node labeled wittthen a memory location is materialized
from the top node. For example, suppose that x is a pointéablarsuch that(Lg(x))=T.
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ly=x—flo = [ly==new-naméx,o).f[GP(y,ox) if o(Ls(X))=T
= [ly==my.f|GP(x,0) else ifo(L(x))=NOT-NULL or 6(Lg(x))=Im,
if 0(Lg(X))INULL = L
= 14 otherwise

Ix—=f=y[o = [[new—naméx,o).f = y[|GP(x,0y) if o(Lg(X))=T
= [[my.f == y[|GP(my,0) else ifo(Lg(X))=NOT-NULL or 6(Ls(X))=Im,
= 15 otherwise

[p=mallog—)Jjc = [p==&heaploc|o

[free(p) o = [p=NULL[o

Figure 9: Transfer functions of statements involving peirdereference operates, free() and
the malloc() function.

Also assume that the collectidr]s is the singleton sefLs(x)}. Then, the invisible variable
1 Ls(x) can represent the structure materialized from the top nani@,"x—f" is replaced with
“1_Ls(x).f”. This can be viewed as a process of concretizing the sbépedata structure from
the ‘primordial soup’ [17]. The other transfer functionsshm in Fig. 9 are similar to the transfer
functions associated with the statements “y=*x" and “*x=y”

Fig. 9 also includes the transfer function for the statemy@rmalloc(-)’ which creates a new
location to be referenced by p. It creates an anonymous othjat needs a name. A name is
created by using the location in the program, prefixed by tbelWwheap”.

Consider the following sequence of code:

1: p=malloc(-);
2: O=p;
3: p=malloc(-);

The sequence of code can be converted int SSA form as folloivs&heapl; ql=p1l; p2=&hea3;.
An analysis of the code sequence finds that p1 and q1 poire &atime heap object named ‘*help
but p2 points to the heap object named ‘héap

The memory release function “free(p)” returns the memowpatmn referenced by p to the
heap. Without loss of semantic information, this is equnalto saying that p does not point to
anything after “free(p)”. Thus, the transfer function asated with the assignment “p=NULL"
can replace “free(p)”.

Finally, consider the boolean expression of the formfirel k”. The transfer functions asso-
ciated with the boolean expression of the above form can beedkin a manner similar to those
associated with the assignments of the form-fgk” (or “k=p —f"). That is, the points-to infor-
mation about what the pointer variable p is referencing &lue transform the boolean expression
into a boolean expression without the pointer dereferepegator—.
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4.2 Example

Fig. 10 shows an example program from Korel [7]. Supposedhatwants to identify a shape of
the input data structure that will traverse the path2,3,4,7,8,3,4,7,9,3,4,5,6;3

struct Node {
int data,;
struct Node *|eft;
struct Node *right;
b
t ypedef struct Node *NodePoi nter;

voi d Fi nd(NodePoi nter L, int y, NodePointer q) {
NodePoi nter p;

1. p =L
2: q = NULL,;
3: while (p !'= NULL) {
4: if (y == p->data) {
5 q=np
6: p = NULL;
}
el se {
7,8: if (y < p->data) p = p->left;
9: el se p= p->right;
}
}
}

Figure 10: An example program from Korel [7]

Fig. 11(a) shows the portion of the shape graph that correlgpto the initial state where the
analysis starts. The following discussion concerns orgyrétevant portion of the state.

Fig. 11(b) shows the shape graph after evaluating the stib{h,2>. Pointer variable p
points to whatever L is pointing to after evaluating “p=L"chq has the value NULL after evalu-
ating “g=NULL"(this is not explicitly shown in Fig. 11(b))The subscripts of p and q have been
incremented by one because the assignments define them.

The next expression to evaluate is<pNULL". The result should be a maximal state that
evaluates the expression to true. Such a state can be abtaimeaterializing a concrete location
from the top node pointed to by; @nd Ly as depicted in Fig. 11(c). Whenever a location of
structure type is created, the approach ensures that pbintser fields can possibly reference any
place by initializing them withl". The newly created location is labeled with.3 using the notion
of invisible variable.

Evaluation of “y<>p—data” does not affect the points-to information, but getesya con-
straint without the pointer dereference as followsy<y>1_Lg.data”. Similarly, “y<p—data” is
also transformed into g1 Lo.data”.
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Figure 11: The shape graphs generated by the shape algovtiemit is applied to the given path
of the example program in Fig. 10; (a) depicts the initiatests, (b) depicts the shape graph after
evaluating the sub-path1,2>, (c) depicts the shape graph after evaluating the sub<ath,3>,

(d) depicts the shape graph after evaluating the sub<paih,3,4,7,8, (e) depicts the shape graph
after evaluating the sub-pathl,2,3,4,7,8,3,4,%, and (f) depicts the shape graph after evaluating
the target path<1,2,3,4,7,8,3,4,7,9,3,4,5,6;3
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The next statement to consider is “p=feft”. Because p points to a location namedll, (see
Fig. 11(c)), the assignment is transformed into the SSA fipp¥r=1Lo.left” yielding the state
depicted in Fig. 11(d).

The next statement is $>NULL". Evaluation of the boolean expression ensures that th
location pointed to by the current instance of p, i.e.should not be NULL. Thus, the top node
pointed to by p needs to be materialized. The newly created node is namel,.1eft according
to the naming scheme. For simplicity, the name is shortemed.t using the mapping table. The
result is the shape graph depicted in Fig.11(e).

The evaluation continues with &y>p—data” and “y>p—data”, which do not affect the points-
to information. However, they generate an additional aamst “yy>2_L g.datg” to be satisfied by
the data field of the structure pointed to by p

Lo

S

Z |NULL -

2
5 _L
TN 3L

10
NULL |NULL

Figure 12: A shape graph of the input data structure

Consider “p=p-right” and “p<>NULL". The net effect is to create a (NOT-NULL) node to
be referenced bygand 2Lq.rightg. The newly created node is named _1 Ly.leftg.righty,
which is shortened t@_L,. Now the sub-path<4,5,6> is evaluated. The boolean expression
“y==p—data” is transformed into the equalitygy=3_Lo.datg". The sequence of the assignments
“g=p; p=NULL; ” can be evaluated without any difficulties. The result iswhan Fig. 11(f).

The pointer fields in the input data structure shown in Figf)ldre set to NULL to keep the
input data structure as simple as possible. In additiornyvahees of each data field of the structures
are generated by solving the following constraints:

e yo<l Log.datg
e yo>2 Lo.datg
e yo==3 Lo.daty

Assuming that 10, 20, 8, and 10 are the input variable y andl&te fields, respectively, this
generates the input data structure shown in Fig. 12.
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5 Interprocedural Shape Generation

Extending shape generation to programs with procedurs daks not require significant effort.
One way to accomplish interprocedural shape generatianuse inline substitution that replaces
a procedure call with a copy of the invoked procedure anacsaleomplete path after inlining and
apply our shape generation algorithm to it.

This approach requires a few modifications to the technisgsenbed so far, but it does not
make use of any testing information on the called procedaves when available. To test a
procedure P which calls a procedure Q that has already bstatdt@ne should be able to reuse
test cases for Q. If Q does not have any test cases which agsgaey to test P, additional test cases
should be developed for an adequate testing of P.

Describing the approach precisely requires some defisitibet STo be the state restricting
itself to the points-to relationships mwhich have a member &as the first element in each pair.
Let 01k X be a set of locations that are directly or indirectly acd#ssirom each location iiX
with respect tay and have k as their SSA number; if k is not specified, the 1&8#t versions will
be assumed.

This section first describes how to represent test casesogpeefor a procedure and then gives
the process of testing a procedure with procedure calls.

5.1 Modeling parameter binding and procedure call

First, the approach models the effects of executing a proeechll. This paper considers only
call-by-value parameter binding as employed in C.

Using call-by-value, the called procedure can alter theeras of a variable in a calling pro-
cedure by passing a pointer to that variable as a procedguenant. However, the value of the
pointer, (i.e., the address of the variable referenced &ytinter) will not be affected during the
procedure call.

For example, consider the procedure in Fig. 13 that will geaa variable indirectly. When
the procedure is called by “assignVar(p, 4)”, it would charige content of the variable pointed
to by the pointep to 4. Note that the assignment at program point 3 does not affiectdriable
referenced by.

voi d assignVar(int *x, int v) {

1 *x=v;

2: x=(int *)malloc(sizeof(int));
3: *X=V+1,

¥

Figure 13: An example program for modeling call-by-valueding

If call-by-reference semantics are used, the locatiomeefeed by should have the valuet1.
The resulting information is propagated back to the cadl; gjiving the conclusion that the content
of the variable pointed to by should be 5, rather than 4. This is due to the implicit assionpt
that the actual parametprand the formal paramet&rare the same location in call-by-reference
semantics. In order to support call-by-value semanticaieler, it must be explicit that actual
parameters and formal parameters represent distincidosawvhen analyzing a procedure.
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Xo V_X%
or L or
% _X1
NOT NULL
1_V_Xi==Vo
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X3 V_X; X o V_%
X, V_Xq Xo V_Xo
A
1 vlx:
1_v_Ko 1 X VL
1 x 1 v]x: or 1l % =73
NOT NULL NOT NULL

NOT NULL NOT NULL
1 X3==Vot+l 1_V_X1==V0
1_V_Xi==Vo -

() (d)

Figure 14: The shape graphs generated by the modified shapeagien algorithm when applied
to the example program in Fig. 13; (a) depicts the initialesta, (b) depicts the shape graph after
evaluating sub-patk:1>, (c) depicts the shape graph after evaluating sub-gdtf2>, and (d)
depicts the shape graph after evaluating path2,3>.
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To address the problem, this paper introdudesial parameterswhich represent actual pa-
rameters of pointer type. The analysis proceeds in the saammen as the analysis technique
without virtual parameters except that it uses an alteraatiethod of building the initial stats.
Before analyzing a given path in a procedure, a virtual patamdenoted by _f; is generated for
each formal pointef; in such a way that; andv_f; belongs to the same collection and initially
pointtoT. Thatis,0o(fi) = 0o(v_fi) = T and[fi]g, = [v_fi]g,. Fig. 14(a) shows the initial state
built using the formal pointex, and the corresponding virtual parametet,.

Unlike call-by-value semantics, however, call-by-refer® semantics do not require the no-
tion of virtual parameters which has been introduced toieiiyl indicate that actual parameters
and formal parameters denote distinct locations. Thusalifliy reference semantics are used,
virtual parameters are not needed any more and the anafysisecdone in terms of only formal
parameters.

Recall that the state informatian; after evaluating a given path= < sy,...,$, > includes all
information concerning the shape of the input data strecilomng the pathtin terms of points-to
relationships between pointer variables. Since a proeedail is treated as an atomic operation,
two concerns must be addressed. One concern is the shapeiopth data structure that should
be passed as input to the called procedure in order to tetleegpath, which is denoted byr,..
The other concern is the effect of the procedure call on thetidata structure, which is denoted by
Oo,- The (local) effects of all the sub-patkssy, ...,s > (i < n) of tdo not need to be considered
for interprocedural shape generation although they areodietl inor. or,, andag,,, are the entry
state and the exit state of;, respectively.

It is simple to extractr,, ando,, from or. If the procedure P has the formal pointer parameters
f1,...,fm, thenor, ando,, can be computed as followsir, = (Orto{V-f1,,...,V-fm, }) Dor and
Oon = (OnT{Vrf1y,...,VIm, }) OOm

For example, the rightmost part of Fig. 14(d) depicts thetmata structure required to traverse
the path< 1,2,3 > of the procedure in Fig. 13. The middle part of Fig. 14(d) shoke effect of
the procedure call on the input data structure.

Consider function calls of the form=f 0o(...) where the functior oo should have at least
one occurrence of the return statement. For each funttorreturning a pointer type variable,
a global variable et f oo is defined with the same type &so. Using this newly defined vari-
able,return(r) is expanded intor‘et foo=r; return” and the function calk=foo(...) is
expanded into: f'oo(...); x=ret _foo”. As a result, the formulation o, is modified as fol-
lows:

Oop = (Ont{v_£1y,...,v£En,, ret_foos })HdOn

Now consider the constraints on input values that are netmé@verse the patit and the
constraints on output values. The constraints on inpuiegdund output values are denotedpy
and({,,, respectively. Botl{;, and{,, are strongly related tor,, ando,,. Rephrased in terms
of o1, ando,,, {1, is the set of constraints on the data fields of the locatiofisett in o, and
formal parameters of non-pointer type whdg, is the set of constraints on the data fields of the
locations defined iw,,, and a return variable of non-pointer type if it exists.

For example, consider the path-< 1,2, 3 > through the procedure in Fig. 13. The constraints
{1, andi,, correspond tor ue® and1_v_xo == vy, respectively as shown in Fig. 14(d). With the
help of virtual parameters, the (wrong) constraint depiatethe leftmost part of Fig. 14(d) can be
ignored.

3t means that there are no constraints to be applied.
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Assume that a test case for a patfs represented by a 4-tupler,,, {s,,0o,,o,)- Then, if a
procedure P is tested according to a certain test critehiatrselects a set of paths, say, ..., Tin},
then the test suite for P will be as follows:

U {(oInk ) ZInk ) 0-01-[k 3 Zonk)}

k=1..m

When the pathy is obvious from a context, the discussion will usually orit i

5.2 Strategy for interprocedural shape generation

This section describes an interprocedural strategy fooeguture which contains a procedure call.
Suppose that procedure P contains a procedure call whithaarocedure Q, and Q has been
tested using a test suit §S= {TCy, ..., TCn} where TG = (GIni,ZIni,ooni,Zoni) fori=1,..,m. Let

o. be a state after evaluating the sub-path which reaches-aitalb. is also a calling context.
Then, the input data structure, denoteddqy that will be passed to the called procedure can be
extracted frono. as follows:

Gz = (0T {Loy (a1), s Loy (a) }) 00

The interprocedural shape generation is performed in thewmg steps. The first step is
consistency checking — determine if the shape of the inptat skaucture described i can be
accepted by Q. Next, if consistency checking fails, theechfirocedure is reanalyzed to find the
path in the called procedure that can be executed @ithThen, build a shape of the input data
structure that performs the procedure call successfullydiygo. andoz,. Finally, the effect of
the procedure call is incorporated into the calling conteriablesay, ..., a, represent actual
parameters an@_)f,, ..., (v_)f, represent the corresponding (virtual) formal parameters.

5.2.1 Consistency checking

The input data structure. that reaches the call-site and an entry state of a called procedure
are consistent if they possibly describe the same datasteuclhe foIIowmg formula determines
if 0. is consistent wﬂhnni.

Gz 01, (L, (a1)/V-E19, o Lo, (n) /7-Ex,)

whereo(x1/y1,...,Xm/Ym) represents a state obtained by renamingith x; in o and the names
of the locations reached throughare changed accordingly. Here the assumption is that thialact
parameters represent distinct locations, ie# g fori,j = 1..m.

The above formula maps the callee’s name space to the sadleeach call site because each
procedure has its own distinct name space. If the formulmates tol 5, it means that the calling
procedure does not pass the input data structure requiteaverse the path, i.em;, of the called
procedure for the entry state, . Consistency checking is repeated for all entry statessbtteses
until finding an entry state that is consistent with

For example, consider the input data structure given in Biff) which traverses the path
n=<1,2,3,4,7,8,3,4,7,9,3,4,5,6;3f the procedure in Fig. 10 and callSt It is easy to see that
S2, S3, and$4 given in Fig. 15(b), Fig. 15(c), and Fig. 15(d) are consisteith S whereasS1
given in Fig. 15(a) is not.
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Figure 15: Input data structures passed to the proceduea givFig. 10: (a5l (b) S2 (c) S3 (d)
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However, this does not necessarily mean that the input tatetgresS2, S3, andS$4 that are
consistent witlt are able to execute the test pathEven thouglt2 is consistent witts, whether
or not it executest depends on the calling context. For example, suppose thairticedure is
called byFi nd(p, x, NULL) wherep is a pointer to the data structure shown in Fig. 15(c) and the
value of the actual parameteris assigned 10. Call-by-value semantics assigns the véltreeo
actual parametexrto the corresponding formal paramegeiRecall the constrainty > 2 Ly.datag
(see Section 4.2) which requires that the value of the ddthdiethe node labeled witK of the
data structure in Fig. 15(c) should be less than the valukeofdrmal parameter. Applying the
constraint gives 16- 11, which clearly evaluates fal se.

This example shows that consistency checking should alsibbe on the constraints in the
data fields of the data structure. Formally stated,

Ce ANy, (Lo (a1) /v £1gs-s Lo (an) [V £mp)

where(. is the constraint on the data fields of the data structurelwhitt be passed to the called
procedure.

5.2.2 Reanalyzing the procedure

What happens if no entry states are consistent with the idg@tat structure given by the calling
context, i.e.0.? Such a case does not necessarily mean that the called preaksks not have
any path that can be traversed by the input data structues ¢iyo..

For example, consider a procedure edlias_foo(x,y,z) wherex andz point to exactly the
same location. A reanalysis of the called procedilreas_foo is needed if there exist no entry
states of the called procedure that are consistent with ailn@ context. Recall that when a
procedure is first analyzed, calling contexts are not ca@msatlunder the assumption that no alias
relationships exist among its input pointers. Thus, if redeshents in the called procedure force
those two pointers to point to the same location, the proeedill not include the entry state
matching the calling context, and then one will have to reamathe procedure for the calling
context. Reanalysis is done by constructing the initiglestg such thaig=0. when the analysis
of the procedure is begun.

5.2.3 Building input data structure

An entry stateor,, thatis consistent witl. requires the derivation an input data structure shape
with two states in common. This is done by merging the tweestas follows:

G2 M0y, (L (31) /¥-£191 o Lo, () /7-F1,)

The result is a shape of the input data structure that wifbperthe procedure call successfully.

For example, Fig. 15(d) can be regarded as the data strutiatrés derived by merging the
data structureS2 in Fig. 15(b) and Fig. 11(f). The resulting input data stasetis added to the
test suite for the procedure for later use.

5.2.4 Incorporating the effects of the procedure call into lhe calling context

A procedure call can be characterized as a f@iro’.) wherea. is a calling context that reaches
the call-site ana’. is the state after the procedure call. This step aims at congpa, from o..
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The stateo’. consists of two (sub)states’.; ando’.,. 0..; concerns the data structure which
will be passed as input to the procedure in order to carrylmiptocedure call successfully, while
0., concerns the effects of the call on the data structure. Treeg@mputed as follows:

0L = 0. © (0. Mo1, (Lo, (a1)/vE1g, -, Lo (an) /v Eny))
OICQ =00 O-Dni (LO"C (ai)/v—f].m ) LO"C (am)/v—fmo)

where the SSA number afy (a;) is k+1 if the SSA number o (a;) is k. Since the data
structures passed to the called procedure might be changeddhe call, new versions of SSA
variables for the actual parameters are created. The fefalvs:

A /
O-c _oc1®oc2

The constraints on the data fields of the data structure gedpaback to the call-site, i.e.,
immediately after the procedure call statement as follows:

(e = Lo Aoy, (Lo (a1) /v £14, o, Lo (an) /V )

wherel¢ = {c A1y, (Lo, (21)/V-£1g, s Lo, (an) /VEmy )

5.3 Precision, Efficiency, and Applicability of the Approad

The approach must achieve a balance between precision faridrady to be both practicable and
effective. One way to increase the precision of interpracaidanalysis is to perform a context
sensitive analysis. A context sensitive analysis canjsish all calling chains and will reanalyze
the callee for all distinct calling paths. For example, bgedure P1 calls procedure P2 two times,
which in turn calls procedure P3 three times, then proceBGreiill be reanalyzed six times with
different calling contexts. Even though this kind of an@ygsults in precise results due to the use
of calling contexts, it might explode as the number of théirmglpaths increases.

To limit the number of paths that must be analyzed, the newcagih computes procedure sum-
mary information for each procedure. To build its summaagheprocedure is analyzed once for
a set of paths, which will be chosen according to a certabmgpsriterion. A procedure summary
is represented as a set of pairs (entry state, exit statdgfased in Section 5.1. Informally, each
entry state describes an input data structure which wiletise a path selected from the procedure
while each exit state describes the effect of the proceduté@corresponding entry state. When
a procedure call to P is encountered, consistency checkitegrdines if the current calling context
matches any of the pairs (entry state, exit state) in praeeB& summary. A matching entry state
indicates that a reanalyze of the called procedure P fordlieg context is not necessary. Then
the summary information can be reused when analyzing thieggrocedure without additional
effort.

An alternate approach is used when no entry states matchttenccalling context: the called
procedure is reanalyzed for the calling context. The rgamalesult is added to the procedures
summary in order to reuse it in other calling contexts, thumsding analysis explosion.

An inherent problem with the SSA form is that there can paddigtbe hundreds or thousands
of executions of of a single assignment statement, sincenétbod generates a new SSA variable
for every instance. From the perspective of program testimg situation is not likely to actually
occur. Suppose that we have to select program paths whicineaha certain testing criterion
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(i.e., statement coverage or branch coverage). Therekafg to be very few paths that consist of
hundreds or thousands of statements in the selected paths.

The actual effectiveness and practicability of the appnaan only be determined by applying
it to real programs. The following section describes anahémpirical evaluation.

6 Empirical Evaluation

The empirical evaluation consists of three parts. Firstiaipof-concept intraprocedural shape
generation tool (SGEN) demonstrates that the method camplemented, and supports further
evaluation. Second, SGEN is applied to sample programsaw #at it can determine if a path
is feasible, produce the appropriate input data shapeserse feasible paths, and detect pro-
gram faults. Finally, SGEN is applied to generate input datpes for ten paths in each of three
programs to evaluate execution time performance.

6.1 The SGEN tool

SGEN demonstrates the feasibility and properties of thecgmt for programs written in a subset
of the C language. The subset includes a limited set of daestyint, arrays of int, user-defined
struct types, (multi-level) pointers to int and user defisgdict types. SGEN supports pointer
assignments, (in)comparison, allocation and deallocatp®erations.

SGEN has three components: a path selector, a shape genanata component to visualize
shapes. The path selector takes as input a text file congaan@ program and guides the user to
select a path. The shape generator takes as input a pathbyitee path selector and generates
a shape of the input data structure for the traversal of tlexisel path if the path is consistent.
The shape generator also produces a set of constraints tdveel by classical constraint solving
systems that yield the values in the data fields of the inpta st@ucture and/or the values of the
input parameter of non-pointer type if they exist.

The shape visualizer displays the input data structurehjgally so that the user can easily
observe the topology of the shape, i.e., nodes and theireotions. Fig. 16 shows a snapshot of
the data object shape produced by SGEN. A user can readibragentest data that matches the
shape displayed by the visualizer.

SGEN generates a suitable shape of the path incrementa#éy tBough a subpath rather than
a complete path is given, the tool can generate a suitabpedbathe traversal of the subpath.

6.2 Applying SGEN to evaluate feasibility, find shapes and fats for paths

SGEN is applied to the example C programs given in SectioraBd3Section 4.2 and from Vis-
vanathan and Gupta [18] to demonstrate the effectivenesizechpproach. The objective is to
answer two questions: (1) can the approach determine ifengath is feasible? and (2) does the
approach simultaneously produce a desirable shape of pé diata structure and the constraints
on the data values in the input data structure when the p&hssle? The following functions are
analyzed: the example programs in Fig 6 and Fig 10, and adiiigedeletion function that was
based on a program from Visvanathan and Gupta [18] whichietetenode if it has the same data
value in the data field as the input parameter. SGEN analysetl @ paths that cover the branch
coverage criterion for each program.
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Figure 16: A snapshot of a data input shape produced by SGHEMiaplayed by its shape visual-
izer

The program in Fig 6 contains two infeasible paths. SGENadletethe infeasibility of both
paths successfully. SGEN also successfully generatedetsieed shapes of the input data struc-
tures for all feasible paths examined and the constraintis@data fields in the input data structure
and on the input parameters of non-pointer type.

The input data structure shape generated by SGEN helpedvibgtigators to detect one pro-
gram fault in the list deletion program. The visual repréaton of the shape along with the
constraints on the input data structure led the investigdtothe fault. The list deletion program
begins by processing the second node without checking stenfade. Fig. 17 shows part of the
list deletion program.

A traversal of one of the test paths requires an input linka@bnsisting of three nodes. Values
in the data fields of the first two nodes cannot equal the inargmeter value “d”, while the value
of the third node must equal “d”. Given the path, SGEN showedthree node linked lists as
desired, but generated only the constraints on the data fi¢lithe last two nodes. This indicates a
program fault — the first node is actually ignored by the paogmvhile traversing the list.

6.3 Shape generation performance

To evaluate performance, SGEN generated shapes for thdgeadl programs: a doubly linked
list insertion function (DLL), a binary search tree deletimnction (BST) and a polynomial ad-
dition function (Poly) using linked lists. These functiompresent typical programs of moderate
complexity using user defined structures. For each functemfeasible paths of varying lengths
were selected randomly, giving a total of 30 separate patmss, SGEN ran 30 trials, which were
executed on a Pentium 4, 2.8 GHz machine running Windows.ZDI0® average processing time
was recorded for each trial along with the number of statésnen the path, number of nodes
generated to construct the input data structure, and nuafl@signments involving dereference
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voi d del ete(node* root, int d) {

node* prev;

node* curr;

prev = root;

whi | e(prev->next !'= NULL) {
curr = prev->next;
data = curr->data
if(curr->data == d) {

el se {

Figure 17: A part of the list deletion procedure that was &ef&jfrom a similar program in Vis-
vanathan and Gupta [18]

operations in the path.

Table 1 shows the results for the 30 trials. The results aembtted in Figure 18. The average
processing time vs. the number of statements is plottedgarEil8(a). The average processing
time vs. the number of nodes generated and the number ofepalateference operations in the
path are plotted in Figure 18(b) and Figure 18(c) respdgtivdne relationship between the number
of pointer dereference operations in the path and the nuoflmerdes generated to construct input
data structures that will traverse the target paths iseadatt Figure 18(d)

The plots in Figure 18(a) through (c) show that the procgssmes of paths increase almost
linearly with three factors: number of statements, numbaodes generated, and number of deref-
erence operations. The three plots in Figure 18(a) — the pldh the number of statements on
the x-axis — appear to clearly fit a linear model. Howeverglots have different slopes. A linear
model does not fit as well for at least one plot in the graphsguie number of nodes and number
of deference operations in the x-axis (Figures 18(b), (@J(d)). The plots demonstrate that pro-
cessing a fairly long path can be done without an abrupt nggacessing time, and suggests that
the approach will scale up to larger programs.

Though nearly linear, the relationships between procgdsime and (a) the number of state-
ments and (b) the number of nodes are notably different fc e&ithe three programs (DLL, Poly,
and BST). In contrast, the relationship between procedsimg and the number of pointer deref-
erence operations is notably more consistent between tigegms. This suggests that the number
of dereference operations is the most dominant factor taffgshape generation. Hence SGEN
is likely to have better time performance on a comparativ@hg path with few statements that
involve pointer dereference operations, than on a shodtr ipvolving (relatively) many pointer
dereference operations.

Consider paths P7 and B7 in Table 1(b) and Table 1(c). Thesathof similar length (P7 has
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Table 1. Performance of shape generation trials for patti@e functions

(a) Doubly linked list insertion function

| Path| # of Stmt.| # of nodes| # of Deref. Oper/| Time(usec)|

D1 7 1 3 143.2
D2 17 2 8 314.9
D3 27 6 16 599.5
D4 33 8 20 779.9
D5 45 12 28 1153.0
D6 57 16 36 1539.6
D7 66 19 42 1928.2
D8 72 22 48 2264.8
D9 84 26 56 2767.0
D10 93 29 62 3042.8

(b) Polynomial addition function

| Path| # of Stmt.| # of nodes| # of Deref. Oper] Time(usec)|

P1 13 2 2 148.6
P2 28 4 8 406.5
P3 30 4 9 433.6
P4 39 4 13 592.4
PS5 46 4 13 685.5
P6 55 4 9 855.1
P7 62 4 14 978.8
P8 71 5 23 1102.5
P9 81 7 32 1342.0
P10 91 8 34 1538.0

(c) Binary search tree deletion function

| Path| # of Stmt.| # of nodes| # of Deref. Oper/] Time(usec)|

Bl 10 2 3 159.4
B2 20 4 10 438.6
B3 28 5 14 545.7
B4 33 6 17 723.0
B5 43 8 23 946.8
B6 53 10 29 1209.0
B7 63 12 35 1460.0
B8 73 14 41 1768.1
B9 83 16 47 2014.6
B10 93 18 53 2342.2
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Figure 18: Performance vs. path size for trial programstsKb - (c) show time on the y-axis and
path size measures on the x-axis with # of statements in @)p#(of nodes generated in plot (b),
# of dereference operations in the test path in plot (c). @oshows the relationship between # of
dereference operations and # of nodes of input data stesctur
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62 statements and B7 has 63 statements), while the ratiewfgiocessing times is about 126(
146Q0/9788). Clearly, path size does not solely determine procedsimg since the proportion
of statements involving pointer dereference operatiotis/aty between paths.

The plots in Figure 18(a) show that SGEN gives superior timdégomance when analyzing
POLY than when applied to DLL and BST. SGEN performs betteP@QLY because the polyno-
mial addition function involves fewer pointer derefereperations than the other two functions.
Furthermore POLY requires relatively simple input datactinres to traverse the selected paths
compared to DLL and BST. For example, consider paths D10, &i@ B10 shown in Table 1.
While they are of almost same sizes, there are significafdrdiices in the number of nodes of
input data structures that are needed to test the corresppaths.

The relationship between the size of the required test idat# structures (i.e., the number of
nodes generated) and processing time provides furthghindn general, an increase in the num-
ber of dereference operations will increase the number désgenerated. However all derefer-
ence operations do not involve creating new input data tsires nodes, because some dereference
operations might manipulate pre-existing nodes. The oEgure 18(d) show that the increase
in the number of dereference operations in POLY is slowen that in DLL and BST. This is
because Poly has very few dereference operations whicbtlgientribute to creation of nodes
in the paths. Also, the number of nodes does not necesseaitlytb the fast increase of the pro-
cessing time. For example, consider paths B4, P10, and DahleT. A traversal of these paths
requires the creation of 8 new nodes. However, their pracgssnes vary significantly. This is
another indication that shape generation is directly priiqaal to the number of the dereference
operations in the path.

6.4 Limitations

Like all small-scale empirical studies, there are riskshi® éxternal validity of the results. One
limitation is that the programs evaluated are small, andhaarepresent all programs involving
dynamic data structures. The feasibility evaluation da#giemonstrate that the new method will
be effective on all programs. Further work is clearly neettedemonstrate that the new method
will be effective in general. Particularly, tests were nohducted on large-scale commercial soft-
ware systems. Reducing external validity threats will regjatudies of samples of the “universe”
of programs. Such sampling is very difficult, since it wouddjuire an accurate characterization of
the universe of programs.

Similarly, while the studies demonstrate that the new netten reveal program faults, the
studies do not comprehensively evaluate the capabilityndfrig various classes of program faults
involving pointers.

The trials that measure the time complexity of the algorglsmggest that the time to generate
input data shapes increases linearly with respect to theboauwf dereferencing operations on a
path. However, this represents the performance of a snrapleaof paths. Clearly there will be
cases where generating input shapes will require greatepetation times, since the worst case
time complexity is of Q|1 x |v|?), whereTtis the number of statements and expressions in the
path andv is the number of variables in the path. However, the resafisnted here suggests that
these cases are rare. Only larger scale empirical studiedetarmine the true average case com-
plexity and the likelihood of encountering cases that regjlang computation times. Of course,
total computation times could increase greatly when tgstomplex programs since testing would
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involve many more paths than when testing simple programs.

A lack of benchmark data and standard test sets makes itulliffccempirically compare the
new method with related work. The two most closely relatedhads either did not provide
any empirical results, or did not provide specific enougbrimfation to make direct comparisons.
Related work is discussed in the next section.

7 Related Work

Although there are many approaches for test data generaieaarch on shape generation for
programs with pointer inputs and heap-based data objestselgaived little attention. This sec-

tion first reviews test data generation for programs withmaihters and then reviews results of
prior work on generating shapes of the input data structuthe presence of pointers. Finally, a
comparison to shape analysis used in compiler optimizatn@hparallelization is given.

7.1 Test data generation without pointers

Classical test data generation for programs without pasraiee based on symbolic execution [1, 6].
Symbolic execution derives a system of algebraic congt&iom a given path in terms of symbols
representing any input values that can traverse the patiuti&ts to the system of algebraic

constraints become test data that cause the executiongdtiheOften symbolic execution requires
complex algebraic manipulation to simplify constraintd a@etect the infeasibility of the path.

Execution-based approaches for automatic test data gemeraquires the actual execution of
the program. Both Gallagher and Narasimhan [2] and Rogeamel [10] formulate test data
generation as a function minimization problem. They treathebranch predicate on the given
path as a function that becomes minimal when the desirecdbo#tds produced. Whenever a
certain branch predicate on the given path does not prodhécddsired outcome, the input value
is modified in the direction of minimizing the function assded with that predicate. This pro-
cess is repeated until all the branch predicates along tiegvaluate to the required outcomes.
These techniques consider just one input variable and @mebmpredicate at a time. This may be
inefficient, in particular for infeasible paths.

Offut et al [11] presented a test generation techniqueaddy@amic domain reductiofor unit
testing. It combines many techniques including symbolecexion, constraint-based testing and
execution-based test data generation. While, in genex@tigion-based approaches take an initial
value for each input variable, the dynamic domain redugtimctedure (DDR) is initially given
a set of values (i.e., domain), and as branches are takee sethcted path, the domains for the
variables are reduced to make the predicates true for amynassnt of values from the domain.
Once the DDR procedure is finished, the domains for the inpuélles contain test data that will
cause execution of the path. If the path is infeasible oritei domains given for input do not
include values that will execute the path, the variableshdms will be empty. Even though the
DDR procedure limits itself to non-pointer types, its dynamature can handle arrays and loops
more efficiently and more accurately than static test dategion techniques that do not take use
of run-time information about programs.

Gupta et al [4, 5] presented another interesting approasédoan program execution. This ap-
proach uses numerical analysis techniques to search fapanthat traverses a path and provides
the amounts to adjust input value if the current input dodserercise the given path. Unlike the
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approaches that use function minimization algorithms, thchnique takes into account all branch
predicates and all input variables at one time. Thus, thebeurof program executions required
is independent of the path length, but the size of the sysfdmear constraints to be solved may
increase with the number of branch predicates on a path.

7.2 Shape generation in the presence of pointers

There are two prior approaches to shape generation in tisemee of pointers: a dynamic ap-
proach and a two phase approach. The dynamic approach pbpgorel [7] requires program
execution for automatic test data generation. Backtracienerates the shape of the input data
structure as well as the values of the input variables (ofpminter types) including the values in
the fields of the input data structure. This approach mositoe program execution flow to deter-
mine if the intended path was taken. If not, it backtracks py@ram point where the incorrect
decision about the shape of the input data structure andateevadlues was made and manipu-
lates input (pointer) values so that the intended branckaswged. Thus, many iterations can be
required before a suitable shape and data values are fourtheFmore, it can be extremely inef-
ficient when the given path is infeasible. Korel does not deeany empirical results to compare
with the new approach. However, the empirical analysis ehtaw approach uses Korel's example
programs as data.

Visvanathan and Gupta [18] independently presented aasialgjorithm for generating a shape
of the input data structure. Their algorithm is called a fV@se approach because it first generates
the shape of the data structure for functions with pointpuia and then generates the integer and
real values in the data fields of the data structure. In thegdhase, i.e., the shape identification
phase collects constraints on the pointer values alongemgiath and solves the constraints to find
a suitable shape to traverse the path. The approach alsctsadlliasing information to use in the
second phase, the data value generation phase.

Visvanathan and Gupta provide empirical results analysmg programs — a “linked list
search function” and a “binary search function”. They fouanlinear relationship between com-
putation time and the number of statements, number of nadelspnumber of constraints. Among
a larger data set, the empirical evaluation of the new aghrogported in this paper used a func-
tion that was adapted from one used by Visvanathan and Gup&empirical results for the new
method are similar to those reported by Visvanathan andasujtfortunately, direct comparisons
between the empirical results for the two systems is difficdisvanathan and Gupta do not pro-
vide the complete programs or specify the paths used in ti.sAlthough both empirical studies
report linear computation time growth, the new approactreféeveral advantages.

First, the two phase approach is inefficient when all statésnalong a given path do not use
any pointers and the first phase becomes useless. Even wdreratle no pointers involved, the
approach produces constraints on the data values of noteptypes, which can be readily solved
through classical constraint solving systems. Secondtwbehase approach may require addi-
tional work to get solutions to the constraints on the datddia the input data structure through
classical constraint solving systems. Unfortunately, hdsconstraint solving systems are not
designed to take aliasing information into account. It i@pkthat one must resolve aliases in the
constraints before submitting them to constraint solviygfeams. The new approach collects the
points-to information for each pointer variable duringleredion of each program point along the
path and generates the constraint system, where the glipsablem is already resolved. Third,
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in contrast to the two phase approach (where it is only ptessthsolve the constraints on the
data values of non-pointer types only after the first phasewtollects the aliasing information is
completed), the new approach can solve constraints on tadidals in the input data structure in-
dependently of shape generation. It implies that one cattlah infeasible path with inconsistent
constraints on the data values more efficiently, even if tablé shape of the input data structure
can be generated for the path. For example, consider thgnassnts p—f = 10 and p—f=20. If

p1 and p appears to point to the same memory location named N, the pgneach will transform
the assignments to the constraints as follows: N.f==10 afreH20. The constraints are obviously
inconsistent. Recognizing such inconsistencies preweassing time trying to find solutions, even
though a shape of the input data structure for the given gdtiund.

7.3 Shape analysis

Because test data generation for programs with pointersecos shape identification of data struc-
ture, it may be asked whether one can use shape analysisgeebeveloped for applications
such as compiler optimization and parallelization [17]r Each program point, these techniques
can determine shapes of data structures that could resaoitdkecutions of all possible paths that
reach the program point. The compiler techniques are naguoed to give the information about
the shapes of input data structure that will cause the exacraof a program path. Furthermore,
because all possible execution paths are considered, thpileo techniques inherently generate
overly conservative information for programs that cancdle unbounded memory objects. Thus,
unbounded data structures need tsbmmarizedn some finite way. Due to summarization, it is
possible to give shapes of input data structure that carraarise the selected path. Note that for
test case generation, one only needs a shape of an inputietaise that can traverse the selected
path rather all possible shapes of input data structuresceS program path is assumed to be
finite, one does not have to summarize unbounded data stesctu

8 Conclusions

Most work in automated test data generation focuses on findput values for non-pointer types.
Handling pointers is crucial to test data generation fogpams written in procedural languages
such as C. This paper presents a static approach to detegnairshape of the input data structure
required to cause the traversal of a selected path in thereof pointers.

The approach separates the shape generation problem sbdata generation for non-pointer
types. As a result, determining input values for non-paityees can be performed independently.
The method collects aliasing information along the patidueegenerate the constraints after the
aliasing problem is resolved. This reduces the burden n$faaming the constraints to a form that
classical constraint solving systems can accept as input.

An empirical evaluation demonstrates the practicabilitg atility of the new approach. The
SGEN tool implements the technique for a subset of the C laggu SGEN can determine if a
given path is feasible, and will produce input data shapdgaterse a feasible path. It can also
identify program faults when generated constraints do raitimrequired shapes. A performance
evaluation indicates that the time required to generatatidpta structure shapes grows linearly
with respect to the size of a path, which suggests the methibdoale up to large systems. The
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number of pointer dereference operations on a path is theidmisator of the time required to
generate an input shape.

While the research offers improvements over past work etlaee open problems for further
study. First, the SGEN tool needs to be extended to handly atements separately. Currently,
an array is regarded as a single object rather than elenyegliement basis. This is because the
tool is based on classical SSA form which ignores array esliand handles an assignment to
an array element as an assignment to the entire array [19)s iths possible to lose a certain
degree of precision when input values for arrays are condpwiewever, because other research
has developed methods to treat each array element sepasatelar mechanisms can be added to
SGEN in near future.

Next, the approach needs to be extended to support poirtiematic. Pointers do not have
to point to single variables. They can also reference this oélan array. With a pointer refer-
encing into an array, one can start doing pointer arithm@&ainter arithmetic avoids the need to
introduce an extra variable for the array indices. Howepeinter arithmetic can complicate the
identification of a suitable shape of the input data stri&chacause of the presence of overlapping
pointers that reference the same array at different offé@tisexample, consider the pointer arith-
meticp=qg+i wherep andq are pointer variables. In order to cope with such pointeharéetic, the
new approach needs to be extended to inferghadints to the same physical arraycgbut by an
offset ofi bytes. Dor, Rodeh, and Sagiv [20] demonstrate such an as#tydetect overlapping
pointers. The new approach can potentially incorporatemiik of Dor et al to address pointer
arithmetic.

The new test generation method can potentially be extermtaast in testing object-oriented
programs. Test cases for object-oriented programs ardlyisepresented in terms of object con-
figurations. Since object configurations are affected bysags passing, one will need to charac-
terize each method in terms of object configurations as dereefbr interprocedural analysis. The
new method, with extensions, should work for languages paihters or references such as-€
or Java.
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