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Abstract

Automatic test data generation usually concerns identifying input values that cause a se-
lected path to execute. If a given path involves pointers, then input values may be represented
in terms of 2-dimensional dynamic data structures such as lists or trees. When testing is con-
ducted for programs in the presence of pointers, it is very important to identify a shape of the
input data structure describing how many nodes are requiredand how nodes are connected
each other. The approach presented in this paper makes use ofthe points-to information for
each statement in the selected path that will be used to represent the shape of an input data
structure. It also converts each statement into static single assignment (SSA) form without
pointer dereferences. This allows the approach to considereach statement in the selected path
as a constraint involving equality or inequality to make useof current constraint solving sys-
tems without significant effort. The SSA form serves as a system of constraints to be solved to
yield input values for non-pointer types. An empirical evaluation shows that shape generation
can be achieved in linear time in terms of the number of pointer dereference operations.
Keywords: Program Testing, Shape Generation, Automated Test Data Generation.

1 Introduction

Software testing is an essential step for improving software quality, but it consumes large amounts
of time and computing resources. The cost of software testing can be reduced significantly by
automating the process of test data generation. Test data generation can be treated as a search for
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input values to exercise a selected path. Several methods have been proposed to attack the problem
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. However, most of the prior work focuses on search algorithms that
find solutions to traverse the selected path in the absence ofpointers or heap-allocated structures.

This paper deals with test data generation for programs withpointers. Usually program code
involving pointers manipulates dynamic data structures referenced by input pointer variables. A
shapeof the data structure is a configuration of data objects, i.e., how many data objects are needed
and how they are linked to each other. Since dynamic data structures may have a variety of shapes
including linked lists and binary trees, one needs to determine a suitable shape of the input data
structure in order to traverse a given path. Of course, one also needs to uncover the values of the
data fields in the input data structure as well as the values ofinput variables that are not pointers.

The authors’ prior work [12] introduced a shape generation technique that handles pointers to
stack-allocated objects, i.e., pointers toint. This paper extends this prior work to more complicated
pointers that reference heap objects such as user-definedstructs and to interprocedural interactions
to analyze procedures with procedure calls. In addition, a tool supports an empirical evaluation of
the approach.

Given a program path, the approach provides:� a shape of the input data structure and� a set of constraints describing how to assign values for input variables that are not of pointer
type in order to cause the traversal of the selected path.

The approach represents a shape of the input data structure in terms of points-to relations (i.e.,
what pointer variables are pointing to) [13] for each input pointer variable. The key action is to
introduce a new points-to relation whenever necessary. Forexample, consider a statement of the
form “x=*y” for an input pointer variabley. If the variabley is not NULL and it does not yet point
to any storage location, it would be necessary to create a storage location pointed to byy in order
to execute that statement without any violation.

The new method does not directly generate test data for non-pointer input variables. Instead,
it generates constraints for input variables in such a way that existing constraint solving systems
can be employed. To support this feature, each statement along a test path is transformed into
SSA (Static Single Assignment) form [14] which does not involve pointer dereferences if they
exist. One important feature of SSA form is that each variable has at most one definition (meaning
that it is assigned at most once). This allows one to regard each statement along the test path as
a constraint involving equality or inequality [3]. Thus, one can apply various constraint solving
techniques to come up with a solution that describes values for non-pointer input variables. If
constraint solving systems that can solve nonlinear constraints are employed, the solution to the
constraint system can be computed. That is, getting input values of non-pointer types depends on
the ability of the constraint solving algorithm used.

The main contribution of this paper is astatic approach to automatic program testing for
programs in the presence of pointers and heap-allocated structures. The approach does not re-
quire any means for controlling the execution of the target program unlike execution-based ap-
proaches [2, 7, 10, 11, 15]. In general, execution-based approaches formulate the test data gener-
ation problem as a function minimization problem by treating each branch predicate on the given
path as a function that becomes minimal when the desired outcome is produced. Thus execution-
based approaches must monitor a program’s execution and force execution toward the desired
direction.
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The approach presented in this paper separates test data generation for non-pointer types from
the shape analysis problem. Such separation of concerns enables the approach to take advantage
of current test data generation techniques for non-pointervariables which have been relatively well
studied. Since the proposed method produces a set of constraints for non-pointer types in terms
of equalities or inequalities between variables, conventional constraint solving techniques can be
employed, reducing development effort.

The rest of the paper is organized as follows. Section 2 explains in detail the SSA form, basic
terminologies, and definitions. Section 3 defines transfer functions associated with various types
of statements and expressions dealing with statically allocated memory objects and the derefer-
ence operator ‘*’. It also illustrates the method through an example. Section 4 extends the method
to heap directed pointers which reference objects dynamically allocated in the heap. Section 5
explains the extension of the approach to deal with procedure calls. Section 6 describes the em-
pirical evaluation and the proof-of-concept tool. Section7 presents related work. Section 8 gives
conclusions and directions for future work.

2 Preliminaries

One straightforward way to generate test data is to extract anumber of constraints (equalities or
inequalities) from a path under consideration and solve theconstraint system. This can be done by
transforming the path into SSA form.

A key property of SSA form is that each variable has a unique static definition point [14]. In
order to ensure this property, variable renaming is usuallydone as follows:� every assignment to a variable v generates a new SSA variablevi where i is a unique number,� just after the assignment to v, vi becomes the current name (the last version or the current

instance) of v, and� every subsequent use of v is replaced by its current name vi .

The following discussion uses the syntax and semantics of the C programming language.
Assume that the subscript number of each SSA variable startswith 0. For example, the se-

quence of codex=10;x=x+3;is converted into SSA form as follows: x1=10;x2=x1+3. In this
example, two SSA variables x1 and x2 can be treated as logical variables rather than program vari-
ables. As a result, the first assignment can be treated as the equality to assert that x1 is equal to
10 and the second assignment as the equality to assert that the value of x2 is equal to the result of
adding 3 to the value of x1.

However, the presence of pointers complicates the conversion of the selected path into SSA
form because aliases can occur (i.e., two or more names existfor the same memory location) and
a variable can be defined indirectly via a pointer dereference. This makes it necessary to exploit
points-to information on the selected path during conversion to SSA form [16].

At each program location, one collects the points-to information and then replace each pointer
dereference with its points-to result. For example, the sequence of assignments given byx= &a;�x= 10;y= a
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can be converted to the SSA form without the pointer dereferencex1=&a0;a1=10;y1=a1
by using the points-to information thatx referencesa after executing the first assignment.

The approach represents points-to relations for each program point withσ mapping variables
to memory locations:

σ 2 State= Var! Loc

Var is the (finite) set of variables occurring in the SSA form on the program path of interest. Loc
is a set of locations (addresses) partially ordered as depicted in Fig. 1.

3
l
2
l
1
l


NOT-NULL
 NULL


Figure 1: The structure of locations

Then,σ(x) will now either be� > meaning that x may possibly point to any location (x can be NULL),� ? meaning that x is not a pointer variable or its points-to relation is undefined,� NOT-NULL meaning that x points to a certain memory location,but its exact address is not
yet known,� l i meaning that x points to a concrete memory location whose address is li or� NULL meaning that x is not currently pointing to any locationat all.

States are assumed to be partially-ordered as follows:

σi v σj if for all x ;σi(x)v σj(x)
The approach also introduces?σ such that for allσ 2 State,?σ v σ, and uses?σ to denote that a
selected path is infeasible.

It is often convenient to use a symbolic name to refer to a location instead of its address. The
discussion in this paper assumes that the targets of pointers always possess a (symbolic) name.
Under this assumption, the fact that variable ‘x’ points to a location named ‘y’ can be represented
by σ(x)=y without any confusion.
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However, this assumption does not hold for variables that are not in the scope of a function
but might be accessible through indirect reference. For example, consider functionfun with the
formal parameterx of typeint **: fun(int **x) f: : :g. The problem is that the functionfun
can refer to memory locations through ‘*x’ or ‘ **x’ which are not in the scope offun. In order to
capture points-to information accurately, the approach names such locations usinginvisible vari-
ables[13]. Invisible variables are names for the variables that are not in the scope of a function but
are accessible through indirect reference. For example, the invisible variables forx with typeint
** are 1x with typeint * and 2x with typeint **, respectively.

The functionLσ gives the last version of a variable with respect toσ. For example, suppose
that σ is the state after executing the sequence of the assignments“x=10; y=x+1; x=y”. Then,Lσ(x) will give x2. Lσ can also accept the SSA variable as input instead of the original variable.
Thus,Lσ(x), Lσ(x1), andLσ(xn) (n� 2) will produce the same result x2. On the other hand, letσ
be the state immediately after executing the first assignment. Then,Lσ(x) will give x1.

The pointer variables are partitioned into disjoint collections. A collection is a set of pointer
variables which should point to the same memory location. Incontrast, two pointer variables
belonging to distinct collections can not designate the same location. The approach assumes that
(1) each pointer variable initially belongs to a distinct collection, and (2) pointer variables reference
different memory locations unless there is evidence that they point to the same location. Hereafter,[x℄σ denotes the collection of the pointer variables pointing tothe same location whichLσ(x) is
pointing to.

3 Shape Generation for Program Testing

In this paper, each statement si in a path< s1; : : : ;sn > is viewed as a transfer function which speci-
fies how the statement acts on the input data structure that will traverse the (sub)path< s1; : : : ;si�1 >
and changes the input data structure to a new input data structure that will traverse the (sub)path< s1; : : : ;si >. This section defines transfer functions for boolean expressions and assignments for
use in shape generation for stack-allocated pointers, presents the shape generation algorithm, and
illustrates the approach through an example.

3.1 Transfer functions for boolean expressions

Fig. 2 shows transfer functions for boolean expressions involving pointers. For a given boolean
expression and a given state, one derives the largest solution (state) from the given state that will
evaluate the target boolean expression to true.

Consider the transfer function associated with the booleanexpression of the form “x<>NULL”.
The interesting problem occurs when a pointer variable, sayLσ(x), should point to a certain mem-
ory location, but its exact address is unknown at the moment,i.e., σ(Lσ(x))=>. The problem is
representing such a points-to relation.

The solution used here is to materialize a concrete locationfrom>. The address of the materi-
alized location is NOT-NULL and not a specific address. The function “new-name(v,σ)” generates
a name for the location as follows:

new�name(v;σ) =� k+1 Lσ(x); if k Lσ(x)2 [v℄σ;
1 Lσ(v); otherwise:
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[jx==NULL j℄σ = σ�f(k;NULL)jk 2 [x℄σg if σ(Lσ(x))w NULL= ?σ otherwise[jx<>NULL j℄σ = σ�f(k;new�name(x;σ))jk2 [x℄σg if σ(Lσ(x)) =>= σ else ifσ(Lσ(x))=NOT-NULL or σ(Lσ(x)) =l= ?σ otherwise[jx== lj℄σ = σ�f(k; l)jk 2 [x℄σg if (σ(Lσ(x))u l) 6=?= ?σ otherwise[jx==yj℄σ = σ�f(k;σ(Lσ(x))uσ(Lσ(y)))jk2 [x℄σg if (σ(Lσ(x))uσ(Lσ(y))) 6=?= ?σ otherwise[jx<>yj℄σ = ?σ if L σ(x) 2 [y℄σ or Lσ(y) 2 [x℄σ= σ otherwise

Figure 2: Transfer functions for boolean expressions. Operator� is the function overriding opera-
tor. The function f�g is defined on the union of the domains f and g. On the domain of git agrees
with g, and elsewhere on its domain it agrees with f.l denotes the address of a certain location.

The function “new-name(v,σ)” makes use of invisible variables and associates a name with the
location pointed to by Lσ(v). It first checks whether an invisible variable is included inthe collec-
tion [v℄σ. If there already exists an invisible variable of the form “kLσ(p)”, then the anonymous
location will be named “k+1 Lσ(p)”. Otherwise, a new invisible variable “1Lσ(v)” names the
anonymous location.

Once a name is associated with the materialized location, the approach introduces a new points-
to relation by making the pointer variable x point to new-name(x,σ). Note that the address of the
materialized location is regarded as NOT-NULL to reflect that it can represent any (concrete) lo-
cation. This is very important when another pointer variable, say y, points to a concrete location
named ‘m’ and, at a certain point in the given program path, ‘m’ is shown to refer to the materi-
alized location. That is, (*x, *y) forms an alias pair. Then,the exact address of the materialized
location is reduced to the address of ‘m’. If one would assigna specific address to the material-
ized location rather than NOT-NULL, it would not be possibleto detect such an alias pair because
inconsistency occurs, i.e.,σ(x)uσ(y) =?σ.

3.2 Transfer functions for assignments

Basic forms of the assignments considered in this section include “x=y”, “x =�y”, “ �x=y”,
“x =&y”, and “x =NULL”. Complex statements can be treated in terms of these basic assign-
ments. For example, the assignment “�x=�y” are broken into “temp=�y;�x= temp”.

The common effects of the assignments is to generate new SSA variables since the assignments
define variables directly or indirectly. If an assignment defines the variable ‘x’, then the transfer
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FUNCTION GP(x,σ:State) returnsσ
1: generate a new SSA variable, Nx, for Lσ(x);
2: setσ(Nx) to>;
3: set WorkList tofLσ(x)g;
4: for each k in WorkList do
5: delete k from WorkList;
6: for each p pointing to k w.r.tσ do
7: generate a new SSA variable, Np, for p;
8: setσ(Np) to Nk
9: add p to WorkList;
10: endfor
11: endfor

Figure 3: Function for generating new SSA variables. Nt denotes a newly created SSA variable for
the variable Lσ(t). For example, if Lσ(t) is ti for i � 0, then Nt denotes ti+1

function associated with the assignment makes use of the function “GP(x,σ)”, shown in Fig. 3, to
generate a new SSA variable for the variable ‘x’ with respectto the stateσ. It records the newly
created SSA variable as the latest version of ‘x’ (line 1). The newly created SSA variable Nx for
‘x’ is initialized to > (line 2).

GP(x,σ) also generates new SSA variables for all pointer variablesthat point to Lσ(x) onσ(Line
4 through line 11). For example, consider an assignment thatdefines the variable x when a pointer
variable p is pointing to x. Even though p does not appear textually on the left-hand side of the
assignment, the assignment is an indirect definition of p. Thus one needs to create a new SSA
variable for the pointer variable p. This process is repeated until all pointers that can reach the
storage location named x are taken into account.

Fig. 4 defines the transfer functions for the assignments; they are formulated in terms of boolean
expressions. The transfer functions associated with the last two assignments play an important
role in determining a shape of the input data structure required to traverse the path of interest.
The primary effect of the assignments is to introduce new points-to relations whenever necessary,
then make a suitable shape of the input data structure. The following discussion illustrates only
the transfer function associated with the assignment of theform “x=�y” because others can be
similarly understood.

The transfer function associated with the assignment of theform “x=�y” attempts to remove
the pointer dereference operator by using the points-to information for y. The first clause ap-
plies to the case whereσ(Lσ(y))=>. In this case, the approach materializes a location from>
whose name is given by new-name(y,σ). Once a name is associated with the materialized loca-
tion, the approach introduces a new points-to relation by making the pointer variable y point to
new-name(y,σ). Of course, this change should be made for all pointer variables belonging to the
collection containing y. The next step is simply to evaluatethe transfer function associated with
the equality “x==new-name(y,σ)”.

The second clause of the transfer function deals with the case where y references a materialized
location or a concrete location. The clause simply replacesthe right-hand side of the assignment
with the location y is pointing to. For example, if y points toa certain location, say v, then the
right-hand side of the assignment will be replaced by v and then the transfer function associated
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[jx=NULL j℄σ = [jx==NULL j℄GP(x;σ)[jx=&aj℄σ = [jx== laj℄GP(x;σ)[jx=yj℄σ = [jx==yj℄GP(x;σ)[jx=�yj℄σ = [jx==new�name(y;σ)j℄GP(x;σy) if σ(Lσ(y))=>= [jx==myj℄GP(x;σ) else ifσ(Lσ(y))=NOT-NULL or σ(Lσ(y))=lmy= ?σ otherwise[j�x=yj℄σ = [jnew�name(x;σ) == yj℄GP(x;σx) if σ(Lσ(x))=>= [jmx == yj℄GP(mx;σ) else ifσ(Lσ(x))=NOT-NULL or σ(Lσ(x))=lmx= ?σ otherwise

Figure 4: The transfer functions for assignments. In the transfer functions,lk denotes the
address of k, mp denotes the location pointed to by Lσ(p), σp is the state computed by
σp=σ�f(k;new�name(p;σ)jk2 [p℄σg.
with the boolean expression ”x==v” will be evaluated.

The last clause handles the case where y has the NULL value. Obviously, dereferencing y
at the assignment causes a violation. Thus, the result will be?σ, indicating that the path under
consideration cannot be executed.

3.3 The shape generation algorithm

Fig. 5 shows the algorithm for generating a description of the shapes of the input data structure
for the traversal of the given path< s1; : : : ;sn >. The view taken by the algorithm is that a pro-
gram path is a constraint system describing how an input datastructure (or input values) should
be formed in order to traverse the path. The idea is to extracta number of constraints from
the given path by transforming it into SSAform without pointer dereferences. For the sub-path< s1; : : : ;si > (i � n), a solution to the constraint system will be a stateσi after evaluating the
sub-path. The stateσi describes the shapes of the input data structure required totraverse the sub-
path in terms of points-to relations for each pointer variable. Since the constraint system does not
necessarily have a unique solution, the largest solution isdesired.

The first step is to construct an initial stateσ0. For every variablex, Line 1 concerns the
generation of its initial (SSA) version of the variable, x0. Concerning the points-to relation, every
SSA variable generated from input variables1 is assumed to point to anything. That is,σ(x0) => if x is an input pointer variable. This assumption is reasonablebecause memory locations
pointed to by input variables should not be initially restricted. On the other hand, local variables
or nonpointer variables have their points-to relation initially set to undefined. This initialization
process is specified in Line 2.

1Formal parameters or global variables
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FUNCTION get-shape(π:path) returnsσ

1: for every variable x, generate its initial SSA version x0 of the variable x0;
2: constructσ0 such that

σ0(x0) = � >; if x is an input variable of pointer type;?; otherwise.
3: set i to 1;
4: for each si in π do
5: if (si is of the form x<>y) thenσi =σi�1;
6: elseσi =[jsij℄σi�1;

7: if σi 6=?σ then
8: transform si into SSA form s̄i without pointer dereferences
9: if ( s̄i is of the form x==NULL) then for all k2 [x℄σi�1 [k℄σi = fkg
10: if ( s̄i is of the form x==l and9y �σi(Lσi(y))=l) then[x℄σi =[y℄σi =[x℄σi�1[ [y℄σi�1;
11: else if ( s̄i is of the form x==y) then[x℄σi =[y℄σi =[x℄σi�1[ [y℄σi�1;
12: else[x℄σi =[x℄σi�1 for every variable x;
13: else report that the path is inconsistent and exit;
14: increment i;
15: endfor

16: for each s̄t of the form x<>y do
17: if (x 2 [y℄σn or y2 [x℄σn) then report that the path is inconsistent and exit;
18: endfor

Figure 5: Function for computing shape information for the selected pathπ=s1; : : : ;sn
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Lines 3 through 15 concern evaluation of statements in the path. Line 5 defers evaluation of the
boolean expression of the form “x<>y”. Just after points-to information for the path is collected
(Lines 16 through 18), the boolean expression of the form “x<>y” is evaluated. Lazy evaluation
is used, since one can assume that pointer variables reference distinct locations unless there is
evidence that they point to the same location.

Line 9 concerns the form “x==NULL”. In this case, all the pointer variables in the collection[x℄σi�1 are supposed to point to no memory location at all. Thus, eachpointer pointer variable k in[x℄σi�1 is separated so that[k℄σi givesfkg. The next form that affects the points-to information is
“x== l”. The condition at line 10 checks whether an existing pointer variable points to the memory
location whose address isl. If such a variable, say y, exists, then it is necessary to merge[x℄σi�1 and[y℄σi�1 to make the pointer variables belonging to[x℄σi and[y℄σi point to the same memory location
with the addressl.

Line 11 concerns the form “x==y”. An interesting case ariseswhen x and y belong to disjoint
collections, but they are not in conflict (i.e.,σi(x)uσi(y) 6=?). Then, the collections are merged
to indicate that they should point to the same memory location from now on. The other forms do
not affect the points-to information.

The time complexity of the shape algorithm is determined as follows. σi is computed for each
si , that is ,jπj times wherejπj is the number of the statements plus the expressions in the given path
π. The time complexity of the function GP in Fig. 3 is proportional to the square of the number of
the variables in the pathπ, jvj2, because the iteration is traversedjvj times in the worst case and
in each iteration, all possible points-to relations have tobe considered, which equalsjvj. Thus the
worst case time complexity of the shape algorithm is O(jπj� jvj2).

The space complexity is proportional to the points-to information that is computed at each
program point. Since the points-to information is proportional to the number of variables, the
space complexity of the shape algorithm is O(jπj� jvj).
3.4 An example

Suppose that one wants to identify the shape of an input data structure required to traverse the path<1,2,3,4,6,8,9,10,11> of the program in Fig. 6.
For the sake of clarity, each state is represented by a pictorial representation called a shape

graph. In a shape graph, square nodes model concrete memory locations. Edges model pointer
values. Suppose thatσ(x) gets y. Then, there is a directed edge from the square node named x to
the square node named y. Shape graphs need not explicitly include?.

The initial stateσ0 is the following:

σ0(x0) = σ0(y0) =>;σ0(p0) = σ0(q0) = σ0(r0) = σ0(v0) = σ0(z0) =?:
Initial versions of input variables of pointer type are initialized to> while local variables or vari-
ables of non-pointer type are initialized to?. Another assumption is that each pointer variable
initially belongs to a distinct collection. Fig. 7(a) depicts the shape graph corresponding toσ0.

The evaluation of assignments 1 and 2 produces the followingpoints-to information:� x0 points to 1x0 and� y0 points to 1y0.
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void Example(int **x, int **y, int v) f
int *p, *q, *r, z;
1: p=*x;
2: q=*y;
3: if (p==q) f
4: if (p == NULL)
5: *q = v;
6: else if (q == NULL)
7: *p = v;

elsef
8: r=&z;
9: *r=10;
10: if (z==v)
11: *q=v;gg

elsef
12: *p=v;
13: *q=v;gg

Figure 6: An example program

The effects of assignments 1 and 2 is to introduce new points-to relations by materializing
the locations named 1x0 and 1y0 from > pointed to by x0 and y0, respectively. Since the two
assignments define p and q, respectively, their last versions are changed to p1 and q1. The result is
the shape graph shown in Fig. 7(b).

Consider the expression “p==q”. Its effect is to put p1 and q1 into the same collection because
they can possibly point to the same location. Consequently,the top nodes referenced by p1 and q1
are merged, indicating that p1 and q1 should reference the same location as shown in Fig. 7(c).

The boolean expression “p==NULL” should evaluate as false.Thus, consider the boolean
expression of the form “p<>NULL”, which excludes the case where both p1 and q1 will be NULL.
The top node referenced by both p1 and q1 (of course, also referenced by 1x0 and 1y0) is changed
to the node labeled with NOT-NULL which must be named. Name candidates include 1p1, 2 x0,
2 y0, and 1q1. It does not matter which one is used. Fig. 7(d) shows the situation where 2x0 is
selected as its name. Similarly, one can evaluate “q<>NULL”.

Consider the situation where the boolean expression “q==NULL” must evaluate to true. Sup-
pose that one wants to exercise the path<1,2,3,4,6,7>. The analysis will show that statement 7
represents dead code. To cause the traversal of statement 7,the current instance of q, q1, should be
NULL. This will cause a contradiction since the current state as shown in Fig. 7(d) requires that q1

should not be NULL. The result is?σ which indicates the detection of an inconsistent path.
Fig. 7(e) shows the points-to information that r1 points to z0 introduced immediately after

evaluation of the assignment 8. Consequently, the variablez0 will be defined at the assignment 9
indirectly. In addition, the function GP generates new versions of r and z: r2 and z1. As a result,
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Figure 7: Shape graphs generated by the shape analysis algorithm when applied to the given path
of the example program in Fig. 6: (a) depicts the initial state σ0, (b) depicts the shape graph after
evaluating sub-path<1,2>, (c) depicts the shape graph after evaluating sub-path<1,2,3>, (d)
depicts the shape graph after evaluating sub-path<1,2,3,4>, and (e) shows the points-to relation
arisen after evaluating assignment 8. The part enclosed in the dotted line in (f) shows the shape
of the input data structure that can cause the traversal of the target path<1,2,3,4,6,8,9,10,11> in
Fig. 6.
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the assignment is converted into SSA form without a pointer dereference as follows: z1==10.
Conversion of the boolean expression “z==v” into SSA form issimply “z1==v0”.

The last statement to consider is “*q=v”. Its evaluation is carried out in the same manner as
that of assignment 9 by using the points-to information of q.Since q1 points to 2x0, it is converted
into the SSA form as follows: 2x0==v0.

Of particular interest is the portion of the final shape graphthat is associated with initial in-
put (pointer) variables, because it gives a shape of the input data structure required to traverse the
selected path. “Initial input variables” refers to the versions of input variables before any modifi-
cation; they have 0 as their subscript number. The partial shape graph enclosed by dotted lines in
Fig. 7(f) shows the shape of the input data structure required to traverse the selected path.

After finding a shape of the input data structure required to traverse the selected path, one
needs to find values for input variables of non-pointer types. Such values are found by solving
the constraints generated from the selected path. Having the constraints, one can apply various
methods to come up with a solution [3, 9]. The constraints forthe example are the following:
z1 == 10, z1 == v0, and 2x0 == v0. The solution is z1:10, v0:10, 2 x0:10.

Variable v0 is key because it represents the input value of v. The resulting form of the input data
structure is shown enclosed by the dotted line in Fig. 7(f), and the value of the formal parameter v
is 10.

4 Heap-Based Data Structure

So far, the focus has been on pointers that reference statically-allocated memory objects (typi-
cally stacks). In this section, the approach is extended to heap-directed pointers, which reference
dynamically allocated objects. Heap-directed pointers often involve structures. A structure has
multiple fields, each of which is accessed using field identifiers. For the sake of simplicity, assume
that each field can either be an integer, a pointer to another structure or NULL.

4.1 Transfer functions for structures and heap-directed pointers

To support structures and heap-directed pointers, transfer functions deal with the statements or
expressions of the following forms:� x.f=expression� k=x.f� x.f rel k where rel is one off>;<;<>;==;<=;>=g2� p!f=k� k=q!f� p=malloc(-)� free(p)

2If k is of pointer type, rel will be one off<>;==g.
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� p! f rel k

Before defining transfer functions associated with these statements or expressions, one must
assign SSA numbers to structures. Since every field in a structure must be treated as a separate
variable, SSA numbers are associated with all fields as well as with the structure itself. SSA
numbering is adapted from the rules developed by Lapkowski and Hendren [16] as follows:

Rule 1 Assignment to a field increments the SSA number associated with the field. For example,
consider the assignment of the form “x.f=: : :” If the field f has k as its SSA number, then
evaluation of the assignment increments the SSA number. Thus, the SSA number of f will
be k+1 after the assignment. However, the SSA number associated with the structure, x,
remains unchanged.

Rule 2 A structure copy assignment changes the SSA number associated with the structure. For
example, consider “x=y” where x and y are variables of structure type. If the SSA number
associated with x is k, then it will be k+1 after evaluation of the assignment. In this case,
the SSA numbers associated with its fields remain unchanged.

Fig. 8 shows a program fragment illustrating how to assign SSA numbers to structures. Note
that only the structure copy assignment generates a new version of a variable of structure type.

struct foof struct foof
int f; int f;
int g; int g;g x, y; g x, y;

x.f=10; x0:f1=10;
x.g=20; x0:g1=20;
y.f=x.f; y0:f1=x0:f1;
x.f=30; x0:f2=30;
y=x; y1=x0;
x.g=y.f; x0:g2=y1:f1;

(a) (b)

Figure 8: A program fragment (a) and its SSA numbering for structures (b)

The transfer functions associated with the first four forms do not differ from those associated
with ordinary assignments, since a variable of the form x.f can be regarded as a separate variable.
From now on, assume that the function GP is changed to cope with structures accordingly.

Fig. 9 shows the transfer functions for some of the statements involving the pointer dereference
operator ‘!’, and the functions for allocating and releasing memory locations: malloc() and free()
function. The first two forms involving the pointer dereference operator ‘!’ can be transformed
into the forms without pointer dereferences using the points-to information, as done for the pointer
dereference operator ‘*’.

If a pointer variable references a node labeled with>, then a memory location is materialized
from the top node. For example, suppose that x is a pointer variable such thatσ(Lσ(x))=>.
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[jy=x! fj℄σ = [jy==new�name(x;σ):fj℄GP(y;σx) if σ(Lσ(x))=>= [jy==mx:fj℄GP(x;σ) else ifσ(Lσ(x))=NOT-NULL or σ(Lσ(x))=lmx

if σ(Lσ(x))uNULL =?= ?σ otherwise[jx! f=yj℄σ = [jnew�name(x;σ):f = yj℄GP(x;σx) if σ(Lσ(x))=>= [jmx:f == yj℄GP(mx;σ) else ifσ(Lσ(x))=NOT-NULL or σ(Lσ(x))=lmx= ?σ otherwise[jp=malloc(�)j℄σ = [jp= &heap locj℄σ[jfree(p)j℄σ = [jp= NULL j℄σ
Figure 9: Transfer functions of statements involving pointer dereference operator!, free() and
the malloc() function.

Also assume that the collection[x℄σ is the singleton setfLσ(x)g. Then, the invisible variable
1 Lσ(x) can represent the structure materialized from the top node,and “x!f” is replaced with
“1 Lσ(x).f”. This can be viewed as a process of concretizing the shapeof a data structure from
the ‘primordial soup’ [17]. The other transfer functions shown in Fig. 9 are similar to the transfer
functions associated with the statements “y=*x” and “*x=y”.

Fig. 9 also includes the transfer function for the statement‘p=malloc(-)’ which creates a new
location to be referenced by p. It creates an anonymous object that needs a name. A name is
created by using the location in the program, prefixed by the word “heap”.

Consider the following sequence of code:

1: p=malloc(-);

2: q=p;

3: p=malloc(-);

The sequence of code can be converted int SSA form as follows:p1=&heap1; q1=p1; p2=&heap3;.
An analysis of the code sequence finds that p1 and q1 point to the same heap object named ‘heap1’,
but p2 points to the heap object named ‘heap3’.

The memory release function “free(p)” returns the memory location referenced by p to the
heap. Without loss of semantic information, this is equivalent to saying that p does not point to
anything after “free(p)”. Thus, the transfer function associated with the assignment “p=NULL”
can replace “free(p)”.

Finally, consider the boolean expression of the form “p!f rel k”. The transfer functions asso-
ciated with the boolean expression of the above form can be defined in a manner similar to those
associated with the assignments of the form “p!f=k” (or “k=p!f”). That is, the points-to infor-
mation about what the pointer variable p is referencing is used to transform the boolean expression
into a boolean expression without the pointer dereference operator!.
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4.2 Example

Fig. 10 shows an example program from Korel [7]. Suppose thatone wants to identify a shape of
the input data structure that will traverse the path<1,2,3,4,7,8,3,4,7,9,3,4,5,6,3>.

struct Node {
int data;
struct Node *left;
struct Node *right;

};
typedef struct Node *NodePointer;

void Find(NodePointer L, int y, NodePointer q) {
NodePointer p;

1: p = L;
2: q = NULL;
3: while (p != NULL) {
4: if (y == p->data) {
5: q = p;
6: p = NULL;

}
else {

7,8: if (y < p->data) p = p->left;
9: else p= p->right;

}
}

}

Figure 10: An example program from Korel [7]

Fig. 11(a) shows the portion of the shape graph that corresponds to the initial state where the
analysis starts. The following discussion concerns only the relevant portion of the state.

Fig. 11(b) shows the shape graph after evaluating the sub-path <1,2>. Pointer variable p
points to whatever L is pointing to after evaluating “p=L” and q has the value NULL after evalu-
ating “q=NULL”(this is not explicitly shown in Fig. 11(b)).The subscripts of p and q have been
incremented by one because the assignments define them.

The next expression to evaluate is “p<>NULL”. The result should be a maximal state that
evaluates the expression to true. Such a state can be obtained by materializing a concrete location
from the top node pointed to by p1 and L0 as depicted in Fig. 11(c). Whenever a location of
structure type is created, the approach ensures that all itspointer fields can possibly reference any
place by initializing them with>. The newly created location is labeled with 1L0 using the notion
of invisible variable.

Evaluation of “y<>p!data” does not affect the points-to information, but generates a con-
straint without the pointer dereference as follows: “y0<>1 L0.data”. Similarly, “y<p!data” is
also transformed into “y0<1 L0.data”.
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Figure 11: The shape graphs generated by the shape algorithmwhen it is applied to the given path
of the example program in Fig. 10; (a) depicts the initial stateσ0, (b) depicts the shape graph after
evaluating the sub-path<1,2>, (c) depicts the shape graph after evaluating the sub-path<1,2,3>,
(d) depicts the shape graph after evaluating the sub-path<1,2,3,4,7,8>, (e) depicts the shape graph
after evaluating the sub-path<1,2,3,4,7,8,3,4,7>, and (f) depicts the shape graph after evaluating
the target path<1,2,3,4,7,8,3,4,7,9,3,4,5,6,3>.
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The next statement to consider is “p=p!left”. Because p1 points to a location named 1L0 (see
Fig. 11(c)), the assignment is transformed into the SSA form“p2==1 L0.left” yielding the state
depicted in Fig. 11(d).

The next statement is “p<>NULL”. Evaluation of the boolean expression ensures that the
location pointed to by the current instance of p, i.e., p2 should not be NULL. Thus, the top node
pointed to by p2 needs to be materialized. The newly created node is named1 1 L0:left according
to the naming scheme. For simplicity, the name is shortened to 2 L0 using the mapping table. The
result is the shape graph depicted in Fig.11(e).

The evaluation continues with “y<>p!data” and “y�p!data”, which do not affect the points-
to information. However, they generate an additional constraint “y0>2 L0:data0” to be satisfied by
the data field of the structure pointed to by p2.

L
0


1_L
0

NULL


NULL


NULL
NULL


20


8


10


2_L 
0


3_L 

0


Figure 12: A shape graph of the input data structure

Consider “p=p!right” and “p<>NULL”. The net effect is to create a (NOT-NULL) node to
be referenced by p3 and 2L0:right0. The newly created node is named1 1 1 L0:left0:right0,
which is shortened to3 L0. Now the sub-path<4,5,6> is evaluated. The boolean expression
“y==p!data” is transformed into the equality “y0==3 L0:data0”. The sequence of the assignments
“q=p;p=NULL;” can be evaluated without any difficulties. The result is shown in Fig. 11(f).

The pointer fields in the input data structure shown in Fig. 11(f) are set to NULL to keep the
input data structure as simple as possible. In addition, thevalues of each data field of the structures
are generated by solving the following constraints:� y0<1 L0:data0� y0>2 L0:data0� y0==3 L0:data0

Assuming that 10, 20, 8, and 10 are the input variable y and thedata fields, respectively, this
generates the input data structure shown in Fig. 12.

18



5 Interprocedural Shape Generation

Extending shape generation to programs with procedure calls does not require significant effort.
One way to accomplish interprocedural shape generation is to use inline substitution that replaces
a procedure call with a copy of the invoked procedure and select a complete path after inlining and
apply our shape generation algorithm to it.

This approach requires a few modifications to the technique described so far, but it does not
make use of any testing information on the called procedureseven when available. To test a
procedure P which calls a procedure Q that has already been tested, one should be able to reuse
test cases for Q. If Q does not have any test cases which are necessary to test P, additional test cases
should be developed for an adequate testing of P.

Describing the approach precisely requires some definitions. LetS∇σ be the state restricting
itself to the points-to relationships inσ which have a member ofSas the first element in each pair.
Let σ"k X be a set of locations that are directly or indirectly accessible from each location inX
with respect toσ and have k as their SSA number; if k is not specified, the latestSSA versions will
be assumed.

This section first describes how to represent test cases developed for a procedure and then gives
the process of testing a procedure with procedure calls.

5.1 Modeling parameter binding and procedure call

First, the approach models the effects of executing a procedure call. This paper considers only
call-by-value parameter binding as employed in C.

Using call-by-value, the called procedure can alter the contents of a variable in a calling pro-
cedure by passing a pointer to that variable as a procedure argument. However, the value of the
pointer, (i.e., the address of the variable referenced by the pointer) will not be affected during the
procedure call.

For example, consider the procedure in Fig. 13 that will change a variable indirectly. When
the procedure is called by “assignVar(p, 4)”, it would change the content of the variable pointed
to by the pointerp to 4. Note that the assignment at program point 3 does not affect the variable
referenced byp.

void assignVar(int *x, int v) f
1: *x=v;
2: x=(int *)malloc(sizeof(int));
3: *x=v+1;g

Figure 13: An example program for modeling call-by-value binding

If call-by-reference semantics are used, the location referenced byx should have the valuev+1.
The resulting information is propagated back to the call-site, giving the conclusion that the content
of the variable pointed to byp should be 5, rather than 4. This is due to the implicit assumption
that the actual parameterp and the formal parameterx are the same location in call-by-reference
semantics. In order to support call-by-value semantics, however, it must be explicit that actual
parameters and formal parameters represent distinct locations when analyzing a procedure.
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Figure 14: The shape graphs generated by the modified shape generation algorithm when applied
to the example program in Fig. 13; (a) depicts the initial stateσ0, (b) depicts the shape graph after
evaluating sub-path<1>, (c) depicts the shape graph after evaluating sub-path<1,2>, and (d)
depicts the shape graph after evaluating path<1,2,3>.
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To address the problem, this paper introducesvirtual parameters, which represent actual pa-
rameters of pointer type. The analysis proceeds in the same manner as the analysis technique
without virtual parameters except that it uses an alternative method of building the initial stateσ0.
Before analyzing a given path in a procedure, a virtual parameter, denoted byv fi is generated for
each formal pointerfi in such a way thatfi andv fi belongs to the same collection and initially
point to>. That is,σ0(fi) = σ0(v fi) => and[fi℄σ0 = [v fi℄σ0. Fig. 14(a) shows the initial state
built using the formal pointerx0 and the corresponding virtual parameterv x0.

Unlike call-by-value semantics, however, call-by-reference semantics do not require the no-
tion of virtual parameters which has been introduced to explicitly indicate that actual parameters
and formal parameters denote distinct locations. Thus, if call-by reference semantics are used,
virtual parameters are not needed any more and the analysis can be done in terms of only formal
parameters.

Recall that the state informationσπ after evaluating a given pathπ =< s1; : : : ;sn > includes all
information concerning the shape of the input data structure along the pathπ in terms of points-to
relationships between pointer variables. Since a procedure call is treated as an atomic operation,
two concerns must be addressed. One concern is the shape of the input data structure that should
be passed as input to the called procedure in order to traverse the pathπ, which is denoted byσIπ.
The other concern is the effect of the procedure call on the input data structure, which is denoted by
σoπ . The (local) effects of all the sub-paths< s1; : : : ;si > (i < n) of π do not need to be considered
for interprocedural shape generation although they are embodied inσπ. σIπ andσoπ are the entry
state and the exit state ofσπ, respectively.

It is simple to extractσIπ andσoπ from σπ. If the procedure P has the formal pointer parametersf1; :::;fm, thenσIπ andσoπ can be computed as follows:σIπ = (σπ"0fv f10; :::;v fm0g)∇σπ and
σoπ = (σπ"fv f10; :::;v fm0g)∇σπ.

For example, the rightmost part of Fig. 14(d) depicts the input data structure required to traverse
the path< 1;2;3> of the procedure in Fig. 13. The middle part of Fig. 14(d) shows the effect of
the procedure call on the input data structure.

Consider function calls of the formx=foo(...) where the functionfoo should have at least
one occurrence of the return statement. For each functionfoo returning a pointer type variable,
a global variableret foo is defined with the same type asfoo. Using this newly defined vari-
able,return(r) is expanded into “ret foo=r; return” and the function callx=foo(...) is
expanded into: “foo(...); x=ret foo”. As a result, the formulation ofσoπ is modified as fol-
lows:

σoπ = (σπ"fv f10; :::;v fm0 ;ret foo1g)∇σπ

Now consider the constraints on input values that are neededto traverse the pathπ and the
constraints on output values. The constraints on input values and output values are denoted byζIπ

andζoπ, respectively. BothζIπ andζoπ are strongly related toσIπ andσoπ. Rephrased in terms
of σIπ andσoπ, ζIπ is the set of constraints on the data fields of the locations defined inσIπ and
formal parameters of non-pointer type whileζoπ is the set of constraints on the data fields of the
locations defined inσoπ and a return variable of non-pointer type if it exists.

For example, consider the pathπ =< 1;2;3> through the procedure in Fig. 13. The constraints
ζIπ andζoπ correspond totrue3 and1 v x0 == v0, respectively as shown in Fig. 14(d). With the
help of virtual parameters, the (wrong) constraint depicted in the leftmost part of Fig. 14(d) can be
ignored.

3It means that there are no constraints to be applied.
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Assume that a test case for a pathπ is represented by a 4-tuple(σIπ ;ζIπ;σoπ;ζoπ). Then, if a
procedure P is tested according to a certain test criterion that selects a set of paths, sayfπ1; :::;πmg,
then the test suite for P will be as follows:[k=1::mf(σIπk ;ζIπk ;σoπk ;ζoπk )g

When the pathπk is obvious from a context, the discussion will usually omit it.

5.2 Strategy for interprocedural shape generation

This section describes an interprocedural strategy for a procedure which contains a procedure call.
Suppose that procedure P contains a procedure call which calls a procedure Q, and Q has been
tested using a test suit TSQ = fTC1; :::;TCmg where TCi = (σIπi ;ζIπi ;σoπi ;ζoπi ) for i=1,..,m. Let
σ
 be a state after evaluating the sub-path which reaches a call-site. σ
 is also a calling context.
Then, the input data structure, denoted by
σ
, that will be passed to the called procedure can be
extracted fromσ
 as follows:
σ
 = (σ
 "fLσ
(a1); :::;Lσ
(am)g)∇σ


The interprocedural shape generation is performed in the following steps. The first step is
consistency checking — determine if the shape of the input data structure described by
σ
 can be
accepted by Q. Next, if consistency checking fails, the called procedure is reanalyzed to find the
path in the called procedure that can be executed with
σ
. Then, build a shape of the input data
structure that performs the procedure call successfully byusing
σ
 andσIπ . Finally, the effect of
the procedure call is incorporated into the calling context. Variablesa1, ..., am represent actual
parameters and(v )f1, ...,(v )fm represent the corresponding (virtual) formal parameters.

5.2.1 Consistency checking

The input data structure
σ
 that reaches the call-site and an entry stateσIπi of a called procedure
are consistent if they possibly describe the same data structure. The following formula determines
if 
σ
 is consistent withσIπi :
σ
uσIπi (Lσ
(a1)=v f10 ; :::;Lσ
(am)=v fm0)
whereσ(x1=y1; :::;xm=ym) represents a state obtained by renaming yi with xi in σ and the names
of the locations reached through yi are changed accordingly. Here the assumption is that the actual
parameters represent distinct locations, i.e., ai 6= aj for i; j = 1::m.

The above formula maps the callee’s name space to the caller’s at each call site because each
procedure has its own distinct name space. If the formula evaluates to?σ, it means that the calling
procedure does not pass the input data structure required totraverse the path, i.e.,πi, of the called
procedure for the entry stateσIπi . Consistency checking is repeated for all entry states of test cases
until finding an entry state that is consistent withσ
.

For example, consider the input data structure given in Fig.15(f) which traverses the path
π =<1,2,3,4,7,8,3,4,7,9,3,4,5,6,3> of the procedure in Fig. 10 and call itS. It is easy to see that
S2, S3, andS4 given in Fig. 15(b), Fig. 15(c), and Fig. 15(d) are consistent with S whereasS1
given in Fig. 15(a) is not.
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However, this does not necessarily mean that the input data structuresS2, S3, andS4 that are
consistent withS are able to execute the test pathπ. Even thoughS2 is consistent withS, whether
or not it executesπ depends on the calling context. For example, suppose that the procedure is
called byFind(p,x,NULL) wherep is a pointer to the data structure shown in Fig. 15(c) and the
value of the actual parameterx is assigned 10. Call-by-value semantics assigns the value of the
actual parameterx to the corresponding formal parametery. Recall the constrainty0 > 2 L0:data0
(see Section 4.2) which requires that the value of the data field of the node labeled withX of the
data structure in Fig. 15(c) should be less than the value of the formal parametery. Applying the
constraint gives 10> 11, which clearly evaluates tofalse.

This example shows that consistency checking should also bedone on the constraints in the
data fields of the data structure. Formally stated,

ζ
^ζIπi (Lσ
(a1)=v f10 ; :::;Lσ
(am)=v fm0)
whereζc is the constraint on the data fields of the data structure which will be passed to the called
procedure.

5.2.2 Reanalyzing the procedure

What happens if no entry states are consistent with the inputdata structure given by the calling
context, i.e.,
σ
? Such a case does not necessarily mean that the called procedure does not have
any path that can be traversed by the input data structure given by
σ
.

For example, consider a procedure callalias foo(x;y;z) wherex andz point to exactly the
same location. A reanalysis of the called procedurealias foo is needed if there exist no entry
states of the called procedure that are consistent with the calling context. Recall that when a
procedure is first analyzed, calling contexts are not considered under the assumption that no alias
relationships exist among its input pointers. Thus, if no statements in the called procedure force
those two pointers to point to the same location, the procedure will not include the entry state
matching the calling context, and then one will have to reanalyze the procedure for the calling
context. Reanalysis is done by constructing the initial state σ0 such thatσ0=
σ
 when the analysis
of the procedure is begun.

5.2.3 Building input data structure

An entry stateσIπi that is consistent with
σ
 requires the derivation an input data structure shape
with two states in common. This is done by merging the two states as follows:
σ
uσIπi (Lσ
(a1)=v f10 ; :::;Lσ
(am)=v fm0)

The result is a shape of the input data structure that will perform the procedure call successfully.
For example, Fig. 15(d) can be regarded as the data structurethat is derived by merging the

data structuresS2 in Fig. 15(b) and Fig. 11(f). The resulting input data structure is added to the
test suite for the procedure for later use.

5.2.4 Incorporating the effects of the procedure call into the calling context

A procedure call can be characterized as a pair(σ
;σ0
) whereσ
 is a calling context that reaches
the call-site andσ0
 is the state after the procedure call. This step aims at computing σ0
 from σ
.
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The stateσ0
 consists of two (sub)states:σ0
1 andσ0
2. σ0
1 concerns the data structure which
will be passed as input to the procedure in order to carry out the procedure call successfully, while
σ0
2 concerns the effects of the call on the data structure. They are computed as follows:

σ0
1 = σ
� (
σ
uσIπi (Lσ
(a1)=v f10; :::;Lσ
(am)=v fm0))
σ0
2 = σ
�σOπi (Lσ0
(a1)=v f10; :::;Lσ0
(am)=v fm0)

where the SSA number ofLσ0
(ai) is k+1 if the SSA number ofLσ
(ai) is k. Since the data
structures passed to the called procedure might be changed during the call, new versions of SSA
variables for the actual parameters are created. The resultfollows:

σ0
 = σ0
1�σ0
2
The constraints on the data fields of the data structure propagate back to the call-site, i.e.,

immediately after the procedure call statement as follows:

ζ0
 = ζ00
 ^ζOπi (Lσ0
(a1)=v f10 ; :::;Lσ0
(am)=v fm0)
whereζ00
 = ζ
^ζIπi (Lσ
(a1)=v f10; :::;Lσ
(am)=v fm0).
5.3 Precision, Efficiency, and Applicability of the Approach

The approach must achieve a balance between precision and efficiency to be both practicable and
effective. One way to increase the precision of interprocedural analysis is to perform a context
sensitive analysis. A context sensitive analysis can distinguish all calling chains and will reanalyze
the callee for all distinct calling paths. For example, if procedure P1 calls procedure P2 two times,
which in turn calls procedure P3 three times, then procedureP3 will be reanalyzed six times with
different calling contexts. Even though this kind of analysis results in precise results due to the use
of calling contexts, it might explode as the number of the calling paths increases.

To limit the number of paths that must be analyzed, the new approach computes procedure sum-
mary information for each procedure. To build its summary, each procedure is analyzed once for
a set of paths, which will be chosen according to a certain testing criterion. A procedure summary
is represented as a set of pairs (entry state, exit state), asdefined in Section 5.1. Informally, each
entry state describes an input data structure which will traverse a path selected from the procedure
while each exit state describes the effect of the procedure on the corresponding entry state. When
a procedure call to P is encountered, consistency checking determines if the current calling context
matches any of the pairs (entry state, exit state) in procedure Pś summary. A matching entry state
indicates that a reanalyze of the called procedure P for the calling context is not necessary. Then
the summary information can be reused when analyzing the calling procedure without additional
effort.

An alternate approach is used when no entry states match the current calling context: the called
procedure is reanalyzed for the calling context. The reanalysis result is added to the procedures
summary in order to reuse it in other calling contexts, thus avoiding analysis explosion.

An inherent problem with the SSA form is that there can potentially be hundreds or thousands
of executions of of a single assignment statement, since themethod generates a new SSA variable
for every instance. From the perspective of program testing, this situation is not likely to actually
occur. Suppose that we have to select program paths which canmeet a certain testing criterion
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(i.e., statement coverage or branch coverage). There are likely to be very few paths that consist of
hundreds or thousands of statements in the selected paths.

The actual effectiveness and practicability of the approach can only be determined by applying
it to real programs. The following section describes an initial empirical evaluation.

6 Empirical Evaluation

The empirical evaluation consists of three parts. First, a proof-of-concept intraprocedural shape
generation tool (SGEN) demonstrates that the method can be implemented, and supports further
evaluation. Second, SGEN is applied to sample programs to show that it can determine if a path
is feasible, produce the appropriate input data shapes to traverse feasible paths, and detect pro-
gram faults. Finally, SGEN is applied to generate input datashapes for ten paths in each of three
programs to evaluate execution time performance.

6.1 The SGEN tool

SGEN demonstrates the feasibility and properties of the approach for programs written in a subset
of the C language. The subset includes a limited set of data types: int, arrays of int, user-defined
struct types, (multi-level) pointers to int and user definedstruct types. SGEN supports pointer
assignments, (in)comparison, allocation and deallocation operations.

SGEN has three components: a path selector, a shape generator, and a component to visualize
shapes. The path selector takes as input a text file containing a C program and guides the user to
select a path. The shape generator takes as input a path givenby the path selector and generates
a shape of the input data structure for the traversal of the selected path if the path is consistent.
The shape generator also produces a set of constraints to be solved by classical constraint solving
systems that yield the values in the data fields of the input data structure and/or the values of the
input parameter of non-pointer type if they exist.

The shape visualizer displays the input data structure graphically so that the user can easily
observe the topology of the shape, i.e., nodes and their connections. Fig. 16 shows a snapshot of
the data object shape produced by SGEN. A user can readily generate test data that matches the
shape displayed by the visualizer.

SGEN generates a suitable shape of the path incrementally. Even though a subpath rather than
a complete path is given, the tool can generate a suitable shape for the traversal of the subpath.

6.2 Applying SGEN to evaluate feasibility, find shapes and faults for paths

SGEN is applied to the example C programs given in Section 3.3and Section 4.2 and from Vis-
vanathan and Gupta [18] to demonstrate the effectiveness ofthe approach. The objective is to
answer two questions: (1) can the approach determine if a given path is feasible? and (2) does the
approach simultaneously produce a desirable shape of the input data structure and the constraints
on the data values in the input data structure when the path isfeasible? The following functions are
analyzed: the example programs in Fig 6 and Fig 10, and a linked list deletion function that was
based on a program from Visvanathan and Gupta [18] which deletes a node if it has the same data
value in the data field as the input parameter. SGEN analyzed aset of paths that cover the branch
coverage criterion for each program.
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Figure 16: A snapshot of a data input shape produced by SGEN and displayed by its shape visual-
izer

The program in Fig 6 contains two infeasible paths. SGEN detected the infeasibility of both
paths successfully. SGEN also successfully generated the desired shapes of the input data struc-
tures for all feasible paths examined and the constraints onthe data fields in the input data structure
and on the input parameters of non-pointer type.

The input data structure shape generated by SGEN helped the investigators to detect one pro-
gram fault in the list deletion program. The visual representation of the shape along with the
constraints on the input data structure led the investigators to the fault. The list deletion program
begins by processing the second node without checking the first node. Fig. 17 shows part of the
list deletion program.

A traversal of one of the test paths requires an input linked list consisting of three nodes. Values
in the data fields of the first two nodes cannot equal the input parameter value “d”, while the value
of the third node must equal “d”. Given the path, SGEN showed the three node linked lists as
desired, but generated only the constraints on the data fields of the last two nodes. This indicates a
program fault — the first node is actually ignored by the program while traversing the list.

6.3 Shape generation performance

To evaluate performance, SGEN generated shapes for three additional programs: a doubly linked
list insertion function (DLL), a binary search tree deletion function (BST) and a polynomial ad-
dition function (Poly) using linked lists. These functionsrepresent typical programs of moderate
complexity using user defined structures. For each function, ten feasible paths of varying lengths
were selected randomly, giving a total of 30 separate paths.Thus, SGEN ran 30 trials, which were
executed on a Pentium 4, 2.8 GHz machine running Windows 2000. The average processing time
was recorded for each trial along with the number of statements on the path, number of nodes
generated to construct the input data structure, and numberof assignments involving dereference
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...
void delete(node* root, int d) {

node* prev;
node* curr;
prev = root;
while(prev->next != NULL) {

curr = prev->next;
data = curr->data
if(curr->data == d) {
...
}
else {
...
}

}
...

}

Figure 17: A part of the list deletion procedure that was adapted from a similar program in Vis-
vanathan and Gupta [18]

operations in the path.
Table 1 shows the results for the 30 trials. The results are also plotted in Figure 18. The average

processing time vs. the number of statements is plotted in Figure 18(a). The average processing
time vs. the number of nodes generated and the number of pointer dereference operations in the
path are plotted in Figure 18(b) and Figure 18(c) respectively. The relationship between the number
of pointer dereference operations in the path and the numberof nodes generated to construct input
data structures that will traverse the target paths is plotted in Figure 18(d)

The plots in Figure 18(a) through (c) show that the processing times of paths increase almost
linearly with three factors: number of statements, number of nodes generated, and number of deref-
erence operations. The three plots in Figure 18(a) — the plots with the number of statements on
the x-axis — appear to clearly fit a linear model. However, theplots have different slopes. A linear
model does not fit as well for at least one plot in the graphs using the number of nodes and number
of deference operations in the x-axis (Figures 18(b), (c), and(d)). The plots demonstrate that pro-
cessing a fairly long path can be done without an abrupt rise in processing time, and suggests that
the approach will scale up to larger programs.

Though nearly linear, the relationships between processing time and (a) the number of state-
ments and (b) the number of nodes are notably different for each of the three programs (DLL, Poly,
and BST). In contrast, the relationship between processingtime and the number of pointer deref-
erence operations is notably more consistent between the programs. This suggests that the number
of dereference operations is the most dominant factor affecting shape generation. Hence SGEN
is likely to have better time performance on a comparativelylong path with few statements that
involve pointer dereference operations, than on a shorter path involving (relatively) many pointer
dereference operations.

Consider paths P7 and B7 in Table 1(b) and Table 1(c). The paths are of similar length (P7 has
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Table 1: Performance of shape generation trials for paths inthree functions

(a) Doubly linked list insertion function

Path # of Stmt. # of nodes # of Deref. Oper. Time(µsec)

D1 7 1 3 143.2
D2 17 2 8 314.9
D3 27 6 16 599.5
D4 33 8 20 779.9
D5 45 12 28 1153.0
D6 57 16 36 1539.6
D7 66 19 42 1928.2
D8 72 22 48 2264.8
D9 84 26 56 2767.0
D10 93 29 62 3042.8

(b) Polynomial addition function

Path # of Stmt. # of nodes # of Deref. Oper. Time(µsec)

P1 13 2 2 148.6
P2 28 4 8 406.5
P3 30 4 9 433.6
P4 39 4 13 592.4
P5 46 4 13 685.5
P6 55 4 9 855.1
P7 62 4 14 978.8
P8 71 5 23 1102.5
P9 81 7 32 1342.0
P10 91 8 34 1538.0

(c) Binary search tree deletion function

Path # of Stmt. # of nodes # of Deref. Oper. Time(µsec)

B1 10 2 3 159.4
B2 20 4 10 438.6
B3 28 5 14 545.7
B4 33 6 17 723.0
B5 43 8 23 946.8
B6 53 10 29 1209.0
B7 63 12 35 1460.0
B8 73 14 41 1768.1
B9 83 16 47 2014.6
B10 93 18 53 2342.2
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Figure 18: Performance vs. path size for trial programs. Plots (a) - (c) show time on the y-axis and
path size measures on the x-axis with # of statements in plot (a), # of nodes generated in plot (b),
# of dereference operations in the test path in plot (c). Plot(d) shows the relationship between # of
dereference operations and # of nodes of input data structures.
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62 statements and B7 has 63 statements), while the ratio of their processing times is about 1.6(�
1460:0=978:8). Clearly, path size does not solely determine processingtime, since the proportion
of statements involving pointer dereference operations will vary between paths.

The plots in Figure 18(a) show that SGEN gives superior time performance when analyzing
POLY than when applied to DLL and BST. SGEN performs better onPOLY because the polyno-
mial addition function involves fewer pointer dereferenceoperations than the other two functions.
Furthermore POLY requires relatively simple input data structures to traverse the selected paths
compared to DLL and BST. For example, consider paths D10, P10, and B10 shown in Table 1.
While they are of almost same sizes, there are significant differences in the number of nodes of
input data structures that are needed to test the corresponding paths.

The relationship between the size of the required test inputdata structures (i.e., the number of
nodes generated) and processing time provides further insight. In general, an increase in the num-
ber of dereference operations will increase the number of nodes generated. However all derefer-
ence operations do not involve creating new input data structures nodes, because some dereference
operations might manipulate pre-existing nodes. The plotsin Figure 18(d) show that the increase
in the number of dereference operations in POLY is slower than that in DLL and BST. This is
because Poly has very few dereference operations which directly contribute to creation of nodes
in the paths. Also, the number of nodes does not necessarily lead to the fast increase of the pro-
cessing time. For example, consider paths B4, P10, and D5 in Table 1. A traversal of these paths
requires the creation of 8 new nodes. However, their processing times vary significantly. This is
another indication that shape generation is directly proportional to the number of the dereference
operations in the path.

6.4 Limitations

Like all small-scale empirical studies, there are risks to the external validity of the results. One
limitation is that the programs evaluated are small, and cannot represent all programs involving
dynamic data structures. The feasibility evaluation does not demonstrate that the new method will
be effective on all programs. Further work is clearly neededto demonstrate that the new method
will be effective in general. Particularly, tests were not conducted on large-scale commercial soft-
ware systems. Reducing external validity threats will require studies of samples of the “universe”
of programs. Such sampling is very difficult, since it would require an accurate characterization of
the universe of programs.

Similarly, while the studies demonstrate that the new method can reveal program faults, the
studies do not comprehensively evaluate the capability of finding various classes of program faults
involving pointers.

The trials that measure the time complexity of the algorithms suggest that the time to generate
input data shapes increases linearly with respect to the number of dereferencing operations on a
path. However, this represents the performance of a small sample of paths. Clearly there will be
cases where generating input shapes will require greater computation times, since the worst case
time complexity is of O(jπj� jvj2), whereπ is the number of statements and expressions in the
path andv is the number of variables in the path. However, the results reported here suggests that
these cases are rare. Only larger scale empirical studies can determine the true average case com-
plexity and the likelihood of encountering cases that require long computation times. Of course,
total computation times could increase greatly when testing complex programs since testing would
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involve many more paths than when testing simple programs.
A lack of benchmark data and standard test sets makes it difficult to empirically compare the

new method with related work. The two most closely related methods either did not provide
any empirical results, or did not provide specific enough information to make direct comparisons.
Related work is discussed in the next section.

7 Related Work

Although there are many approaches for test data generation, research on shape generation for
programs with pointer inputs and heap-based data objects has received little attention. This sec-
tion first reviews test data generation for programs withoutpointers and then reviews results of
prior work on generating shapes of the input data structure in the presence of pointers. Finally, a
comparison to shape analysis used in compiler optimizationand parallelization is given.

7.1 Test data generation without pointers

Classical test data generation for programs without pointers are based on symbolic execution [1, 6].
Symbolic execution derives a system of algebraic constraints from a given path in terms of symbols
representing any input values that can traverse the path. Solutions to the system of algebraic
constraints become test data that cause the execution of thepath. Often symbolic execution requires
complex algebraic manipulation to simplify constraints and detect the infeasibility of the path.

Execution-based approaches for automatic test data generation requires the actual execution of
the program. Both Gallagher and Narasimhan [2] and Roger andKorel [10] formulate test data
generation as a function minimization problem. They treat each branch predicate on the given
path as a function that becomes minimal when the desired outcome is produced. Whenever a
certain branch predicate on the given path does not produce the desired outcome, the input value
is modified in the direction of minimizing the function associated with that predicate. This pro-
cess is repeated until all the branch predicates along the path evaluate to the required outcomes.
These techniques consider just one input variable and one branch predicate at a time. This may be
inefficient, in particular for infeasible paths.

Offut et al [11] presented a test generation technique called dynamic domain reductionfor unit
testing. It combines many techniques including symbolic execution, constraint-based testing and
execution-based test data generation. While, in general, execution-based approaches take an initial
value for each input variable, the dynamic domain reductionprocedure (DDR) is initially given
a set of values (i.e., domain), and as branches are taken in the selected path, the domains for the
variables are reduced to make the predicates true for any assignment of values from the domain.
Once the DDR procedure is finished, the domains for the input variables contain test data that will
cause execution of the path. If the path is infeasible or the initial domains given for input do not
include values that will execute the path, the variables’ domains will be empty. Even though the
DDR procedure limits itself to non-pointer types, its dynamic nature can handle arrays and loops
more efficiently and more accurately than static test data generation techniques that do not take use
of run-time information about programs.

Gupta et al [4, 5] presented another interesting approach based on program execution. This ap-
proach uses numerical analysis techniques to search for an input that traverses a path and provides
the amounts to adjust input value if the current input does not exercise the given path. Unlike the
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approaches that use function minimization algorithms, this technique takes into account all branch
predicates and all input variables at one time. Thus, the number of program executions required
is independent of the path length, but the size of the system of linear constraints to be solved may
increase with the number of branch predicates on a path.

7.2 Shape generation in the presence of pointers

There are two prior approaches to shape generation in the presence of pointers: a dynamic ap-
proach and a two phase approach. The dynamic approach proposed by Korel [7] requires program
execution for automatic test data generation. Backtracking generates the shape of the input data
structure as well as the values of the input variables (of non-pointer types) including the values in
the fields of the input data structure. This approach monitors the program execution flow to deter-
mine if the intended path was taken. If not, it backtracks to aprogram point where the incorrect
decision about the shape of the input data structure and the data values was made and manipu-
lates input (pointer) values so that the intended branch is executed. Thus, many iterations can be
required before a suitable shape and data values are found. Furthermore, it can be extremely inef-
ficient when the given path is infeasible. Korel does not describe any empirical results to compare
with the new approach. However, the empirical analysis of the new approach uses Korel’s example
programs as data.

Visvanathan and Gupta [18] independently presented a similar algorithm for generating a shape
of the input data structure. Their algorithm is called a two-phase approach because it first generates
the shape of the data structure for functions with pointer inputs and then generates the integer and
real values in the data fields of the data structure. In the first phase, i.e., the shape identification
phase collects constraints on the pointer values along a given path and solves the constraints to find
a suitable shape to traverse the path. The approach also collects aliasing information to use in the
second phase, the data value generation phase.

Visvanathan and Gupta provide empirical results analyzingtwo programs — a “linked list
search function” and a “binary search function”. They founda linear relationship between com-
putation time and the number of statements, number of nodes,and number of constraints. Among
a larger data set, the empirical evaluation of the new approach reported in this paper used a func-
tion that was adapted from one used by Visvanathan and Gupta.The empirical results for the new
method are similar to those reported by Visvanathan and Gupta. Unfortunately, direct comparisons
between the empirical results for the two systems is difficult. Visvanathan and Gupta do not pro-
vide the complete programs or specify the paths used in the study. Although both empirical studies
report linear computation time growth, the new approach offers several advantages.

First, the two phase approach is inefficient when all statements along a given path do not use
any pointers and the first phase becomes useless. Even when there are no pointers involved, the
approach produces constraints on the data values of non-pointer types, which can be readily solved
through classical constraint solving systems. Second, thetwo phase approach may require addi-
tional work to get solutions to the constraints on the data fields in the input data structure through
classical constraint solving systems. Unfortunately, most of constraint solving systems are not
designed to take aliasing information into account. It implies that one must resolve aliases in the
constraints before submitting them to constraint solving systems. The new approach collects the
points-to information for each pointer variable during evaluation of each program point along the
path and generates the constraint system, where the aliasing problem is already resolved. Third,
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in contrast to the two phase approach (where it is only possible to solve the constraints on the
data values of non-pointer types only after the first phase which collects the aliasing information is
completed), the new approach can solve constraints on the data fields in the input data structure in-
dependently of shape generation. It implies that one can detect an infeasible path with inconsistent
constraints on the data values more efficiently, even if a suitable shape of the input data structure
can be generated for the path. For example, consider the assignments p1!f = 10 and p2!f=20. If
p1 and p2 appears to point to the same memory location named N, the new approach will transform
the assignments to the constraints as follows: N.f==10 and N.f==20. The constraints are obviously
inconsistent. Recognizing such inconsistencies preventswasting time trying to find solutions, even
though a shape of the input data structure for the given path is found.

7.3 Shape analysis

Because test data generation for programs with pointers concerns shape identification of data struc-
ture, it may be asked whether one can use shape analysis techniques developed for applications
such as compiler optimization and parallelization [17]. For each program point, these techniques
can determine shapes of data structures that could result from executions of all possible paths that
reach the program point. The compiler techniques are not designed to give the information about
the shapes of input data structure that will cause the execution of a program path. Furthermore,
because all possible execution paths are considered, the compiler techniques inherently generate
overly conservative information for programs that can allocate unbounded memory objects. Thus,
unbounded data structures need to besummarizedin some finite way. Due to summarization, it is
possible to give shapes of input data structure that can not traverse the selected path. Note that for
test case generation, one only needs a shape of an input data structure that can traverse the selected
path rather all possible shapes of input data structures. Since a program path is assumed to be
finite, one does not have to summarize unbounded data structures.

8 Conclusions

Most work in automated test data generation focuses on finding input values for non-pointer types.
Handling pointers is crucial to test data generation for programs written in procedural languages
such as C. This paper presents a static approach to determining a shape of the input data structure
required to cause the traversal of a selected path in the presence of pointers.

The approach separates the shape generation problem from test data generation for non-pointer
types. As a result, determining input values for non-pointer types can be performed independently.
The method collects aliasing information along the path used to generate the constraints after the
aliasing problem is resolved. This reduces the burden of transforming the constraints to a form that
classical constraint solving systems can accept as input.

An empirical evaluation demonstrates the practicability and utility of the new approach. The
SGEN tool implements the technique for a subset of the C language. SGEN can determine if a
given path is feasible, and will produce input data shapes totraverse a feasible path. It can also
identify program faults when generated constraints do not match required shapes. A performance
evaluation indicates that the time required to generate input data structure shapes grows linearly
with respect to the size of a path, which suggests the method will scale up to large systems. The
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number of pointer dereference operations on a path is the best indicator of the time required to
generate an input shape.

While the research offers improvements over past work, there are open problems for further
study. First, the SGEN tool needs to be extended to handle array elements separately. Currently,
an array is regarded as a single object rather than element-by-element basis. This is because the
tool is based on classical SSA form which ignores array indices and handles an assignment to
an array element as an assignment to the entire array [19]. Thus it is possible to lose a certain
degree of precision when input values for arrays are computed. However, because other research
has developed methods to treat each array element separately, similar mechanisms can be added to
SGEN in near future.

Next, the approach needs to be extended to support pointer arithmetic. Pointers do not have
to point to single variables. They can also reference the cells of an array. With a pointer refer-
encing into an array, one can start doing pointer arithmetic. Pointer arithmetic avoids the need to
introduce an extra variable for the array indices. However,pointer arithmetic can complicate the
identification of a suitable shape of the input data structure because of the presence of overlapping
pointers that reference the same array at different offsets. For example, consider the pointer arith-
meticp=q+i wherep andq are pointer variables. In order to cope with such pointer arithmetic, the
new approach needs to be extended to infer thatp points to the same physical array asq but by an
offset ofi bytes. Dor, Rodeh, and Sagiv [20] demonstrate such an analysis to detect overlapping
pointers. The new approach can potentially incorporate thework of Dor et al to address pointer
arithmetic.

The new test generation method can potentially be extended for use in testing object-oriented
programs. Test cases for object-oriented programs are usually represented in terms of object con-
figurations. Since object configurations are affected by message passing, one will need to charac-
terize each method in terms of object configurations as done here for interprocedural analysis. The
new method, with extensions, should work for languages withpointers or references such as C++
or Java.
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