COMPETENCENETWORK SOFTNET AUSTRIA

Testing with model checkers: A survey

SNA-TR-2007-P2-04

Gordon Fraser, Franz Wotawa, Paul E. Ammann

SNA TECHNICAL REPORT
NOVEMBER 2007

/'@.-G"\
SaftNet Ty,

Competence Network Softnet Austria, Inffeldgasse 16¢, A-801@,Gastria,
Phone +43-316-873-5711, Fax +41-316-873-5706
sekretariat @oft-net.at,http://ww.soft-net. at/

SNA TECHNICAL REPORT
SNA TECHNICAL REPORTSNA-TR-2007-P2-04, BVEMBER 2007

Testing with model checkers: A survey

Gordon Fraser! Franz Wotawa? Paul Ammann?®

Abstract.About a decade after the initial proposal to use model chedke the generation of test
cases we take a look at the achievements in this field of reflsedtodel checkers are formal veri-
fication tools, capable of providing counterexamples tdatexl properties. Normally, these coun-
terexamples are meant to guide an analyst when searchittgefonot cause of a property violation.
They are, however, also very useful as test cases. Manyddfitf@pproaches have been presented,

many problems have been solved, yet many issues remain.siliiey paper reviews the state of
the art in testing with model checkers.

Lnstitute for Software Technology, Technische Univérts@raz, Inffeldgasse 16¢, A-8010 Graz, Austria. E-mail:
fraser@ist.tugraz.at

?Institute for Software Technology, Technische UnivértsiBraz, Inffeldgasse 16b/2, A-8010 Graz, Austria. E-
mail: fwotawa@ist.tugraz.at

3Department of Information and Software Engineering, MS 4G4orge Mason University, Fairfax, VA 22030-
4444, U.S.A.

Copyright(© 2007 by the authors

1 INTRODUCTION

Testing remains the most important method to verify the quality of software. Adtitmmis necessary,
because manual testing takes a lot of effort and is error prone. Qalihal. [1] and Engels et al. [2]
initially proposed the use of model checkers for the automated generatiest chses.

Testing with model checkers is a model-based testing technique. The moddlapgsoach to software
testing encompasses the creation of an abstract model, which is used tota#lyraeate test cases. At
the same time the model tells us the expected outcome, thus solving the test ashtdenpiResearch has
resulted in numerous different approaches, differing in how modeldeaaieed, what formalisms are used to
represent the models, how test cases are selected in the model, and nearfigiaitrs. A recent taxonomy
of model-based testing techniques [3] gives an overview of availabl®agipes.

A model checker is a tool used for formal verification. It takes as inpuitomaton based model of
a system and a temporal logic property, and then effectively explorestire state space of the system in
order to determine whether the model violates the property or not. If a fiyogielation is encountered,
then a counterexample is returned to illustrate the violation to the analyzer.

While formal verification can prove property violation or satisfaction, it igally not sufficient in
practice. The proof only shows that a given model fulfills a propertyjeathe actual implementation is
also influenced by its environment, e.g., platform, compiler, etc. Furtherrfareal verification usually
only applies to models of limited size, which means that only abstract models oleopmgrams can be
verified. Consequently, software testing is necessary.

The idea of testing with model checkers is to interpret counterexampleg aages. The main challenge
is to force the model checker to systematically create sets of such cowntgyies, which can then be used
as a complete test suite.

A decade of research on testing with model checkers has resulted in a mutfitdifferent techniques
of how to derive test cases. Many issues related to this test case timméeve been tackled, yet there are
still some show stoppers, like the dreaded state explosion problem.

Testing with model checkers is mostly applied to reactive systems [4], whessftware size is within
bounds (e.g., embedded software), and it is feasible to assume the existensuitable model. However,
model checkers have also been used on other types of systems. falgamghing can be tested with model
checkers if there is a suitable model, that is sufficiently abstract to allowoadrd in realistic time.

This paper takes a look at achievements have been made for testing withahedetrs. It is organized
as follows: First, Section 2 reviews theoretical background and preliresaf model checkers and testing
with model checkers. Section 3 introduces a running example that is usedestil points throughout the
paper. Section 4 takes a look at the available techniques of how to use hahedker to create test suites
with regard to different coverage criteria, Section 5 considers appescbased on requirement properties,
and Section 6 reviews mutation based methods to generate test cases. Thssuesim testing with model
checkers are discussed in Section 7. Section 8 discusses the use bthea#ters to analyze existing test
suites, and Section 9 reviews applications of model checkers in the comtesttware testing that do not
fit into the previous sections. Publicly available tools that can be used toajeriest cases with model
checkers are described in Section 10. Finally, the paper is concluded twitbf discussion of outstanding
research issues in Section 11.

2 PRINCIPLES

Basically, a model checker is a tool intended for formal verification. kks$eks input an operational spec-
ification of the system that is considered. Then, it takes a temporal logiefyoand analyzes the entire
state space of the model in order to determine whether the model violates gegtpror not. If the state
space exploration shows no property violations, then correctness \wahdréo the property is proved. A
basic feature of model checkers is the ability to generate withesses amgiexamples for property satis-
faction or violation, respectively. When a typical model checker deteatstproperty is violated, it returns
a counterexample that illustrates the property violation. A human analyzerseathis counterexample to
identify and fix the design fault. For testing purposes, the counterexamapleecinterpreted as a test case.

2.1 Model Checking Preliminaries

The formalism commonly used to describe model checking and to define thatiesvad temporal logics
is the Kripke structure.

Definition 1 (Kripke Structure) A Kripke structureK is a tupleK = (S, Sy, T, L):
e Sis a set of states.
e Sy C Sis an initial state set.
e T C S x Sisatotal transition relation, that is, for everye S there is as’ € S such that(s, s') € T.

e L: S — 24P s alabeling function that maps each state to a set of atomic propositions tttairho
this state.

AP is a countable set of atomic propositions.

An infinite execution sequence of this model ipath As paths are infinite, deadlocks cannot directly
be modeled with Kripke structures. It is, however, possible to model daldads a self-loop to a state. A
Kripke structure defines all possible paths of a system.

Definition 2 (Path) A pathp := (s, s1, ...) of Kripke structurekK is an infinite sequence such that >
0: (si,841) € T for K.

Let Paths(K, s) denote the set of paths of Kripke structutethat start in state. We usePaths(K)
as an abbreviation to denof®aths(K, s) | s € Sp}-

As infinite paths are not usable in practice, model checking uses finitesegs; commonly referred
to astraces If necessary, we can interpret a finite sequence as an infinite seudrere the final state is
repeated infinitely.

Definition 3 (Trace) A tracet := (sq,...s,) Of Kripke structureK is a finite sequence such that0 <
i <mn:(sysi+1) € T for K. There can be a dedicated statesuch thats; = s, andi # n, which is a
loopback state, ands, ... s;—1, (s;...s,)*) is a path ofK.

A tracet is either a finite prefix of an infinite path or a path that contains a loop, if a ldpbtate is
given. The latter is called a lasso-shaped sequence, and has the:fer(t,)“, wheret; andt, are finite
sequences. The sequenges repeated infinitely often, denoted withthe infinite version of the Kleene star

3

operator used fow-languages. Lasso shaped sequences are used in practice to sladrviof liveness
properties, which requires infinite sequences. For example, the moelgtesthNuSMV [5] interprets all
identical states in a trace as possible points of loopback. The number sitias a trace consists of is
referred to as itfength For example, trace:= (s, s1, ..., sp) has a length ofength(t) = n.

Temporal logics are modal logics with special operators for time. Time carr éithimterpreted to be
linear or branching. The most common logics are the linear time logic LTL [6diTemporal Logic), and
the branching time logic CTL [7] (Computation Tree Logic). CTL*, introdubgdEmerson and Halpern [8],
is the superset of these logics. Most current model checkers sugitar LTL or CTL, or sometimes both.
Other temporal logics that are used in model checking are HennessyrMagé [9] (HML), Modal p-
calculus [10], and different flavors of CTL such as timed, fair, or ac@dL.

An LTL formula consists of atomic propositions, Boolean operators and texhpperators. The op-
erator " " refers to thenextstate. E.g., 1D a” expresses that has to be true in the next stateU” is
the until operator, whered U b” means that has to hold from the current state up to a state wiase
true. "O”" is the alwaysoperator, stating that a condition has to hold at all states of a path, @fhds”
the eventuallyoperator that requires a certain condition to eventually hold at some time inttire.f'he
syntax of LTL is given as follows, wheré P denotes the set of atomic propositions:

Definition 4 (LTL Syntax) The BNF definition of LTL formulas is given below:

¢ = truel| false|a € AP | = ¢ | 1 Ao | 1V po |
p1— P21 =201 U ga| O Do | O

A property¢ satisfied by path of model K is denoted a&’, 7 |= ¢, which is also abbreviated as= ¢
if K is obvious from the context. A path of model K violating property¢ is denoted ad{, = [~ ¢ or
7 [~ ¢. The semantics of LTL is expressed for infinite paths of a Kripke structtirdenotes the suffix of
the pathr starting from thei-th state, andr; denotes thé-th state of the path, with i € Ny. The initial
state of a pathr is 7.

Definition 5 (LTL Semantics) Satisfaction of LTL formulas by a pathe Paths(K) of a Kripke Structure
K = (S, 50,T, L) is inductively defined as follows, where= AP:

K, | true for all 1)
K,m¥ false forall (2)
K,mEa iff a€ L(m) 3
K,mE—¢ iff Knpo 4)
K, mkE= ¢1 N\ d2 iff KrEdhANKTEd (5)
K,mkE o1 Vo iff KnrEod¢VEKTE® (6)
K, mE=¢1— ¢ iff K,rnpEoVEK71Ed® @)
K,mlE¢1 = ¢ iff K,7mEoiff K, ¢ (8)
K,mkE=¢1 U ¢ iff FeNy:KrmEpAVI<j<i:Kr E=d¢ 9)
KrkE Q¢ iff K, 7' k=g (10)
K7l O¢ iff VjieNg:K,nl|=¢ (11)
KnkE 09 iff FjeNy:K,nl|=¢ (12)

The temporal logic CTL was introduced by Clarke and Emerson [7]. Itmamiewed as a subset of
CTL*, introduced by Emerson and Halpern [8]. CTL* formulas consisatmmic propositions, logical
operators, temporal operatofs (G, U, R, X) and path quantifiersA, E). The operatoF (“finally”)
corresponds to the eventually operatprin LTL, G ("globally”) corresponds to1. U ("until”) corre-
sponds toU, andR ("release”) is the logical dual dff . X ("next”) corresponds to the next operatoy.
The path quantifiera ("all”) and E ("some”) require formulas to hold on all or some paths, respectively.
CTL* includes all possible combinations of temporal operators with formwlaeye the temporal operators
do not have to be preceded by path quantifiers. As CTL* model chetkicmmplex, most model checkers
use either CTL or LTL in practice. Consequently, we do not consider*Gitldetail. CTL is the subset
of CTL* obtained by requiring that each temporal operator is immediatelyegest by a path quantifier.
Consequently, the syntax of CTL can be defined as follows:

Definition 6 (CTL Syntax) The BNF definition of CTL formulas is given below:
¢ = a€AP[¢1 V2| d1 N2 | 0|
AX G| AF ¢ [AG G| A 41U ¢ | A $1R ¢ |
EX ¢ |EF ¢ |EG ¢ |E ¢1U ¢ | E ¢1R o2
As all temporal operators are preceded by a path quantifier in CTL, thargies of CTL can be ex-

pressed by satisfaction relations for state formuldss = ¢ denotes a state formutathat is satisfied in
states of Kripke structurek.

Definition 7 (CTL Semantics) Satisfaction of CTL formulas by a statec S of a Kripke StructureX’ =
(S, So, T, L) is inductively defined as follows, where= AP:

K,sk=a iff acL(s)AseS
K,s it (s b= o)
K,s|E¢1V ¢ iff (K, s 1)V (K, s ¢2)
K.s b= b1 A 6 (s b= b1) A (K, s b= 60)
K,sEAX ¢ iff Vm € Paths(K,s): K, |E ¢
K,s = AF ¢ iff Vm e Paths(K,s):3i: K,m = ¢
K,sEAGo iff Vm e Paths(K,s):Vi: K,m = ¢
K,s = Ap1U @9 iff V€ Paths(K,s):3i:Vj <i:K,mjkE= @A
Vk >i: K, 7, = ¢9
K,s = ApiR ¢2 iff V€ Paths(K,s):Vi:Vj<i:K,mjW~¢1— K,mE=do
K,s EEX ¢ iff 37 € Paths(K,s): K,m = ¢
K,s =EF ¢ iff Ir e Paths(K,s): 3 : K, m = ¢
K,s FEG ¢ iff 3r € Paths(K,s) :Vi: K,m | ¢
K, s = EpU ¢ iff 3m € Paths(K,s):3i:Vj <i: K, mj = oA
Vk >i: K, 7 E ¢
K,s E EpR ¢9 iff 37 € Paths(K,s):Vi:Vj<i:K,mjl ¢ — K, m = ¢

Commonly, three different types of verifiable properties are distinguished

5

Safety Property: A safety property describes a behavior that may not occur on any {&iméthing bad
may not happen”). To verify a safety property, all execution pathg awe checked exhaustively.
Safety properties are of the tyfe —¢ or AG —¢, whereg is a propositional formula.

Invariance Property: An invariance property describes a behavior that is required to hold exegution
paths. Itis logically complementary to a safety property. Invariance ptiepere of the typél ¢ or
AG ¢, whereg is a propositional formula.

Liveness Property: A liveness property describes that "something good eventually happafith linear
time logics, this means that a certain state will always be reached. For exdmple— ¢ ¢ and
AG ¢; — AF ¢, are liveness properties.

The aim of model checking is to determine whether a given model fulfills angiveperty. Several
different algorithms have been successfully used for this task, usiiegetif temporal logics and data struc-
tures. Once property violation or satisfaction is determined, a model cheakereturn an example of
how this violation or satisfaction occurs. This is illustrated wittoainterexampler witness respectively.
Satisfaction of LTL properties is defined using linear sequences. Goesdy, withesses and counterexam-
ples for LTL formulas are also linear sequences. In contrast, CTLeptieg are state formulas. Therefore,
the CTL model checking problem [11, p. 35] is to find the set of states #imf\s a given formula in a
given Kripke structure. Special algorithms are used to derive tragamera for withess or counterexample
states [12].

The first successful model checking approaatxiglicit model checkingThere are different approaches
based on LTL [13, 14] and CTL [15, 16] properties. In all apprass;tthe state space is represented ex-
plicitly, and searched by forward exploration until a violation of a propértiypund. For example, in LTL
model checking the negation of a property is represented as an autonetand@pts infinite words (Bhi
automaton). If the synchronous product of model aridts automaton contains any accepting path, then
this path proves property violation (the path shows that the negation ofdpenty is accepted by the model
automaton, and therefore the property itself is violated). The counterés@srgmply the path back to the
initial state. The search algorithm can either be depth- or breadth-fanstitgeecently heuristic search has
also been considered. Breadth-first search always finds the styaosible counterexamples, but the mem-
ory demands are significantly higher than for depth-first search. lnr@ddel checking, all states satisfying
a given property are determined by recursively calculating the satisfledosmulas for each state. If all
states are visited and no violation is detected, then the property is consigtetitexmodel Directed model
checking17] extends explicit model checking with heuristic search to increasetedswvith which errors
are found and counterexamples are generated. Such a techniquédaldejif the aim of model checking
is not a proof of correctness, but the generation of counterexamplsuéh, this idea is well suited for test
case generation.

Symbolic model checkiri@8], the second generation of model checking, uses ordered hileargion
diagrams (BDDs [19]) to represent states and function relations on states efficiently. This allows
the representation of significantly larger state spaces, but a large nomBBEID variables has a negative
impact on the performance, and the ordering of the BDD variables hasificigt impact on the overall
size. There are different heuristic approaches of how to orderblasigas determining the optimal order is
NP-complete [20].

Bounded Model Checkir{g1], the third generation of model checking, reformulates the modekatgc
problem as a constraint satisfaction problem (CSP). This allows the ysemmisitional satisfiability (SAT)
solvers to calculate counterexamples up to a certain upper bound. Asddhg boundary is not too big,

6

this approach is very efficient. There are also approaches to extemdléxb model checking to infinite
state systems. Bounded model checking has been successfully applstetnswhere traditional model
checking fails. At the same time, there are many settings where a bounded chedker fails while a
symbolic model checker is efficient. Therefore, bounded model chedenot replace but supplement
traditional model checking techniques.

The most commonly used model checkers in the context of testing are theitestplie model checker
SPIN [22] (Simple Promela Interpreter), the Symbolic Analysis Laboratédy [23], which supports both
symbolic and bounded model checking, the symbolic model checker SMMaR4#vell as its derivative
NuSMV [5], which supports symbolic and bounded model checking. Qtbpular model checkers include
Mur¢ [25] the process algebra based FDR2 [26], or COSPAN [27]; sontleesk have also been used for
testing.

Many current model checkers such as NUSMV [5] or SAL [23] sup@d L model checking in addition
to or instead of LTL model checking. In CTL model checking, special ritigms are applied to construct
linear traces from an initial state to explain a violating state [12]. Howevdy, aertain restricted subsets
of branching time temporal logics such 46'T L or LIN always result in linear counterexamples [28].
When using full CTL, linear counterexamples are not always suffieismtvidence for property violation or
satisfaction. Most work on testing with model checkers only considers tharlsubset when using CTL for
properties. Therefore, we use the tetbunterexampléo describe a linear trace that either shows an LTL
property violation or violation of a CTL property that can be violated by a litnege.

Recently, an algorithm to create tree-like counterexamples has beerspdipp Clarke et al. [29]. In a
related work, Wijesekera et al. [30] define a formal relation betweemrtéssts and counterexamples for full
CTL. This relation is described in Section 7.8. A related approach hasgresented by Meolic et al. [31]:
Witness and counterexample automata represent the superset of allfihibeear withesses/counterexam-
ples for a limited subset of CTL.

2.2 Testing with Model Checkers

The idea of testing with model checkers is to interpret counterexamplestzases. A suitable test case
execution framework can extract from this the test data, and also thetegpesults (i.e., test oracle). Early
work on testing with model checkers required manually speciéetipurposeo either formulate negated
asnever-claimg2], or to partition the execution tree [1]. Later, many different techrsquere proposed
to systematically and automatically derive complete sets of test cases. Mosaelpgs follow the idea of
never-claims and use counterexamples, but some also use witness tséead of counterexamples; these
two ideas are complementary, as a simple negation of the used propertieficierstufo switch from one
to the other. This section only considers the basic idea of test case gemesgstematic techniques are
considered in later sections.

A test purpose describes the desired characteristics of a test cashdhhit be created. For example,
it could describe the final state of the test case, or a sequence of sttehdhld be traversed. The test
purpose is specified in temporal logic and then converted to a never-gjairedation; this asserts that the
test purpose never becomes true. Model checking the never-clairmode@ results in a counterexample,
if the never-claim becomes false at some point. The counterexample illustatethe never-claim is
violated, and thus shows how the original test purpose is fulfilled. As wiihmvn in Sections 4 and 5, a
popular approach is to automatically create never-claims based on ceweitagia. These never-claims are
calledtrap propertieg32], and for each item that should be covered one trap property ergieal. A test
purpose is not necessarily feasible, but fortunately infeasible tegopes are not a problem, because the

never-claim for an infeasible test purpose simply results in no countepgga

The exact interpretation of counterexamples as test cases dependsystim under test. In many
cases, testing with model checkers is applied to reactive systems, whitimped values from sensors and
set output values accordingly. The model therefore consists of d gatiables representing input, output,
and possibly internal variables, as depicted in Figure 1. The systeis tedeputs by setting output values,
such that a logical step in a counterexample can be mapped to an execut®ofche system under test
(see Figure 2(b)). Testing with model checkers is not limited to this specifecdi/automaton, but mapping

from counterexamples to test cases will vary for different scenaftwsexample when considering flow
graphs [33].

Sl...Sp
[}, —> —)01
[, —> —>0,
In —> QOm

Figure 1: Reactive system model.

(a) A counterexample is a trace in the execution tree.

Ep=)
I

Epl=y
I
Egt=)

wnn

1
P

covw
oovY

1
m

[e]e}

(b) Counterexample, usable as test case.
Figure 2: Counterexamples are execution paths, where each statesasdigss to all variables.

In the reactive system scenario, counterexamples can directly be atet@as test cases. Because test

cases are always finite, it is necessary to distinguish between traces withaut loopback when mapping
a trace to a test case.

Definition 8 (Test Case)A test case := (s, ...sy,) related to Kripke structurés is a finite sequence such
thatvV 0 <i<n: (s;si+1) € T for K.

The number of transitions a test case consists of is referred to &ngth E.g., test case :=
(s0, 51, -.., Sn) has a length ofength(t) = n. Test cases can easily be created from traces (Definition 3).
If a trace does not contain a loopback state, then trace and test caderdieal. If the trace does contain
a loopback, i.e., it is a lasso-shaped sequence, then the lasso needmfolthed. Tan et al. [34] describe
truncation strategies to create finite test cases from lasso-shapedeegjud/hen using a white-box test-
ing technique, the complete internal state is known, and can be tracked iirddeitag test case execution.
Therefore a test case can be terminated whenever the same state hasitektwice at the same position
in the loop. When using a black-box testing approach, the loop part ofabe is repeated a finite number
of times.

This interpretation of counterexamples as test cases can only be dirgutgosp deterministic systems.
If there is nondeterminism, then a concrete counterexample contains onlyossible choice for each
nondeterministic choice. Applying such a test case to an implementation that endkésrent but valid
choice would falsely report a fault. There are considerations of howtemd model checker based testing
to nondeterministic systems; see Section 7.7 for more details.

The result of the test case generation i®st suite(or test set. A test suiteT'S is a finite set of test
cases.

Definition 9 (Test Suite) A test suitel’S is a finite set ofr test cases. Theizeof TS is n. The overall
lengthof a test suitel'S is the sum of the lengths of its test casength(T'S) =), g length(t).

In order to describe how a test case is executed, further definitiomgeessary. In general, the test case
execution depends on the relation between the model and the system w@8tX€). The most common
scenario in the literature is that of reactive systems, which are executedrifirdte loop. This scenario is
also assumed here; if the mapping from model to SUT is different, then ssegacution has to be adapted
to this change. A time step in the model can easily be mapped to an execution cgalehim reactive
system. In each cycle, the SUT receives stimuli from the environment \viigpitgs Using the inputs, the
SUT performs some computations and makes some changes, which carebsadhsa itsoutputs A test
case is executed via interaction with the system under test (SUT). For &asten, the inputs are provided
by the tester. The resulting outputs are observed, and compared to #wezkpalues. This observation
leads to averdict which can be eithefail or pass expressing that a fault was found or not, respectively.

So far, a counterexample was only described as a sequence of statesdiAg to the definition of a
Kripke structure, each state can be mapped to a set of atomic propositibhslthan this state. In order to
use counterexamples as test cases, we need to identify inputs and otigadis state. For this, we use the
concept ofmodulesas described by Boroday et al. [35] in the context of testing with modstlars, and
originating from module checking theory [36]. In practice, the set of atgripositionsA P of a Kripke
structure does not contain deliberate propositions; a system is defireeddtyf variables [12, 35, 37] (see
Figure 1). The labeling function for a state therefore results in a valuatial wariables in that state. The
variables can be partitioned into input, output and internal variables.

Definition 10 (Module) A moduleM is a triple M = (K,I,0), whereK = (S,Sy,T,L) is a Kripke
structure, andl, O C AP are disjoint sets of input and output variables. The set of hidden viasalk
defined add = AP\(1 UO).

Intuitively, a module works as follows: In every stateM readsL(s) N I, stores internally..(s) N H, and
outputsL(s) N O. Inp(s) = L(s) N I denotes thénput of the module at state, andOut(s) = L(s) N O
denotes theutputof the module at state. A tracet := (sq, s1,...5,) Of module M can be interpreted
such that the output sequen@@ut(sp), Out(s1), ...Out(sy,)) is produced in response to the input sequence
(In(so),In(s1),...I1n(sy)).

Informally, a test case := (s, s1, ...s,) is therefore executed on an SUby providing values for all
input-variables described binp(s;) to I and comparing the output-variables described’hy (s;) with
the values returned b¥, for every states;, 0 < i < n. This actually allows two different interpretations:
Synchronous languages [38] such as Lustre [39], Esterel [ASjgmal [41] assume that the implementation
responds immediately, which is known as thachrony hypothesisThis hypothesis can be verified by
showing that the program execution time is always smaller than the time betwesndagssive external
inputs. Under this assumption the expected output is contained in the samesstatdrgput within a test
case. Alternatively, the expected output can be assigned to the sucskds of the state containing the
inputs. There is little difference between these two choices, as long as bd#i aral test case execution
framework agree on the interpretation. Formal testing theory assumesishener of a formal model
representing the implementation. The formal model for the implementation doastoatly have to exist;
this is known as theéest hypothesi¢see e.g., [42]). In our setting, execution of a test case is defined by
interpreting the implementation as a modie = (K7, I, O).

Definition 11 (Test Case Execution)Execution of test case:= (to, ...t,) passe®n implementatiod =
(K1,I1,0), if I has a pattp := (sq, ...Sn, ...), i..,p € Paths(I), such that for all stateg; : 0 < i < n:
s; = t;. If I does not have such a path, the test cafsels on 1.

As initially proposed by Engels et al. [2] and implemented in several diffesipproaches (see Sec-
tion 6), an alternative to converting test purposes to never-claims is to uodeliberate errors in the
model. The details of such an approach are discussed in Section 6; butimdgight of this we refine
the definition of a test case. A distinction is made betweesitiveandnegativetest cases, depending on
whether they contain a deliberate error or not.

What exactly leads to the detection of a fault depends on the type of test Eassitive test cases,
suffixed with ™", describe correct (positive) behavior. Negative test cases, edankth the suffix *”,
describe faulty (negative) behavior:

Definition 12 (Positive Test Case)A positive test case”™ detects a fault if its executidails.

Definition 13 (Negative Test Case)A negative test cage detects a fault if its executigrassesA negative
test case contains a transitidm;, t;) which is not defined by the reference model Kripke struciiye.e.,

(ti,t}) & T.

A correct implementation is expected to pass positive test cases, therefitigeptest cases are also
referred to apassingests. In contrast, negative test cases should not be passed bga topiementation,
hence such test cases are also knowiaiéiag tests. The majority of available approaches produce positive
test cases. Therefore, if a test case is not specially denotedaag™ in this paper, it is a positive test case.

3 ASIMPLE DEMONSTRATION MODEL

To illustrate the presented techniques, the following model serves as auplexian this paper: The model
represents a simplified controller of a car (CC). It has two Boolean inpatsé¢bresent the user’s decision

10

laccelerate/stop

brake/stop
laccelerate/stop

accelerate/slo

laccelerate/slow

accelerate/fast

brake/stop brake/stop

accelerate/fast
Figure 3: FSM of example model Car Controller (CC).
to accelerate or brake. Upon acceleration, the car starts moving, with sitiweor fast velocity. Upon

braking the car immediately stops. Figure 3 depicts this model as an FSM, waeséions are labeled
with the input and the resulting velocity as output. Figure 4 shows the SM\ts@made of the model.

MODULE nai n
VAR
accel erate: bool ean;
br ake: bool ean;
velocity: { stop, slow, fast };

ASSI GN
init(velocity) := stop;
next (vel ocity) := case

accelerate & !brake & velocity
accelerate & !brake & velocity

stop : slow
slow : fast;

laccelerate & !brake & velocity = fast : slow
laccelerate & !brake & velocity = slow : stop;

brake: stop;

TRUE : vel ocity;
esac;

Figure 4: CC represented as SMV model.

In addition to the model, several simple requirement properties are eggdriessTL:

1. Whenever the brake is activated, movement has to stop.

O(brake — Ovel ocity = st op) (13)

11

2. When accelerating and not braking, the velocity has to increaseajrgduntil it is fast.

O(—brake naccel erate Avel ocity =stop — Qvel ocity = sl ow) (14)
O(—-brake naccel erate Avel ocity =sl ow— QOvelocity =fast) (15)

3. When not accelerating and not braking, the velocity has to decreaseady, until the car stops.

O(—-brake A —accel erate Avel ocity =fast — Ovel ocity = sl ow) (16)
O(—-brake A —accel erate Avel ocity =sl ow— (Ovel ocity = st op) a7

4 COVERAGE BASED TEST CASE GENERATION

While manual specification of test purposes as proposed by Engelg§&tain lead to efficient test cases,

it is usually advantageous to systematically create complete test sets acdorslimge test objective. It is

difficult to ensure complete coverage of all possible system behaviorsnaitiually specified test purposes.
Coverage criteria are a means to measure how thorough a system isezkéncis given test suite. A

coverage criterion is defined on some aspect of a program or spgcifidar example statements or code

branches. Full coverage is achieved, if all items described by theameriterion are executed ¢avered

by at least one test case. Coverage is usually quantified as the pgecehizms that are covered.

o0 @

Model e o @

—»! Model Checker | @—@ @

G (a—> X!b) o0 @
G(b—->X!c) Test cases

G(c—>X!d) |

Trap Properties

Figure 5: Coverage based test case generation.

Model checkers can be used to automatically derive test suites for maxiowerage of a given cri-
terion. This process is illustrated in Figure 5. For each item that shouldvseezh) a distinct never-claim
(trap property[32]) is specified. The test suite is created by model checking all trgpepties against a
given model. Again, infeasible trap properties are detected if the modektehereates no counterexamples.

For example, in order to create a test suite that covers all states of thmsymiables, a trap property
for each possible stateof every variabler is needed, claiming that the value is not takéh:(x = a). A
counterexample to such an example trap property is any trace that contaiie here: = a. In the car
controller example introduced in Section 3, state coverage with respeathoradable could be achieved

12

with the following set of trap properties:

O (accel erate #0)
O(accel erate #1)
O (br ake # 0)

O (brake # 1)

O(vel ocity # st op)

O(vel ocity # sl ow)
O(vel ocity #fast)

While trap properties for state coverage are simple safety propertieqrispprties can be deliberate
temporal logic properties for which counterexamples exist; for examphe cdrebe defined over transitions
or sequences of transitions.

4.1 Coverage of SCR Specifications

The concept of trap properties was initially proposed by Gargantini agithdyer [32] with regard to
SCR (Software Cost Reduction method [43]) specifications. An SCR modkifised as a quadruple
(S, So, E™, T), whereS is the set of statesy C S is the initial state setZ™ is the set of input events, and
T is the transform describing the allowed state transitidhis described with tables for events (predicates
defined on a pair of system states implying that the value of at least one at&tble has changed) and
conditions (predicates defined on a system state) with regard to all variedoérolled by the considered
system.

SCR specifications consist of different types of tables. A condition tadfieek a variable as a function
of a mode and a condition, and an event table defines a variable as affisfaionode and an event. Table 1
shows a mode table for the CC example model.

Table 1: SCR Mode Transition Table feel oci ty in CC example.

Current Mode Event New Mode
st op accelerate =1 AND brake=0 sl ow
sl ow accelerate=1AND brake =0 fast
f ast accelerate =0AND brake =0 slow
sl ow accelerate =0 AND brake=0 stop
f ast br ake st op

The operational SCR specification is automatically converted to an SMV d¥ §fdel. SCR re-
qguirement properties can then be used as never-claims, as in [2]. Vkkidea presented in [32] is to
automatically create trap properties from the SCR tables. Each table is wahteean if-else construct for
the model checker SPIN, or a case-statement for SMV. For each laraalesignated variable is added,
which indicates which branch of the if-else/case construct is currentiiyead-or each possible value of
this special variable, a trap property is formulated claiming that this value &r t&ken. For example, the
variableCaseVar represents the chosen case for varidbde. Resulting trap properties in LTL would be,

13

e.g.,[0—(CaseVar =1), O-~(CaseVar = 2), etc. The trap properties automatically result in a test suite
for branch coverage of the SCR model. Considering Table 1, the resuoitinigl will contain five cases.
Consequently, there will be six trap properties, because the "no-ehaage has to be considered as well.
The trap properties are:

{0~(Casevelocity =) |0<i<6}

4.2 Coverage of Transition Systems

Heimdabhl et al. [44] proposed a framework for specification based#sst generation, focusing on struc-
tural coverage criteria, independently of any specific formalism. Thiadreork is instantiated in [37, 45,
46], where a general transition system definition is given. Other formalsms as SCR or RSML¢ [47],
can be interpreted as such transition systems, and mapped to model chemdaifications, e.g., SMV.
The language RSML® is based on the Statecharts like language Requirements State Machineds&ngua
(RSML) [48], and adds support for interfaces between the enviraharel the control software.

In this framework, the system state is uniquely determined by the valuesadfables{x, z2, ..., z,, }.
Each variabler; has a domaiD;, and consequently the reachable state space of a system is a subset of
D1 x Dy x ... x Dy,. The set of initial values for the variables is defined by a logical exjmegs The valid
transitions between states are described by the transition relation, whialtiset fD x D. The transition
relation is defined separately for each variable using logical conditiamrsvdfiablez;, the conditionq; ;
defines the possible pre-states of thth transition, and3; ; is the j-th post-state condition. A simple
transition for a variable; is a conjunction oty ;, 3; ; and a guard conditioty; ;: d; ; = a;; A Bij A Vi

The disjunction of all simple transitions for a variabtg is a complete transitios;. The transition
relation A is the conjunction of the complete transitions of all the varialles ..., z,,}. Consequently, a
basic transition system is defined as follows:

Definition 14 (Basic Transition System)A transition systemd/ over variables{x; ...z, } is a tupleM =
(D, A, p),withD = Dy x Dy x ... x D, A = A, 6;, and the initial state expressiqgn For each variable
x; there is a transition relation;, that is the disjunction of several simple transitidng = «; ; A B; ; Avi
wherec; j, 3;;, andy; ; are pre-state, post-state, and guard conditions of kit simple transition of
variable z;.

Figure 6 illustrates the RSMt¢ specification for our example CC model. The corresponding simple
transitions for the CC model are listed in Table 2.

Trap properties can be derived from the basic transition system modettBal coverage criteria are
defined with regard to the transition relatidn These coverage criteria are similar to common code based
coverage criteria such as decision or condition coverage, but reti@ansitions. In general, the conjunction
of pre-state conditiom and guard condition can be interpreted as a logical predicate, which allows the
use of common logic based coverage criteria [49]. The post-state condiimised as part of the trap
properties to force the creation of relevant counterexamples.

Simple Transition Coveragequires that each simple transition of every variable is executed. A simple
transition consists of pre-state, post-state, and guard conditions. dLemgky, a trap property to create an
according test case simply has to require that always when the pre-gtati¢ian and guard are true, the
post-state condition mayot be satisfied in the next state:

Hany = O-p

14

STATE_VARI ABLE vel ocity:
VALUES: { stop, slow, fast }
I NI TI AL_VALUE: stop
CLASSI FI CATION: State

EQUALS stop I F

TABLE
accel erate .+ FF
br ake . TFF
PREV_STEP(vel ocity) = stop : * = T,;
PREV_STEP(vel ocity) = slow : * T *;
END TABLE
EQUALS sl ow | F
TABLE
accel erate T F;
br ake . F F
PREV_STEP(vel ocity) = stop : T x;
PREV_STEP(vel ocity) = fast * T,
END TABLE
EQUALS fast IF
TABLE
accel erate TT,;
br ake . FF
PREV_STEP(vel ocity) = slow : T x;
PREV_STEP(vel ocity) = fast * T,

END TABLE

END STATE_VARI ABLE

Figure 6: Simple car controller as RSME specification.

In the CC example (Figure 4), simple transition coverage is achieved withltbeifog trap properties:

O(vel ocity =stop Aaccel erate A —-brake — O—(vel ocity = sl ow))
O(vel ocity =sl owAaccel erate A —brake — O—(vel ocity =fast))
O(vel ocity =fast A—accel erate A —brake — O—(vel ocity = sl ow))
O(vel ocity =sl owA —accel erat e A -brake — O—(vel ocity =stop))
O(brake — O—(vel ocity =stop))

O(vel ocity =fast Aaccel erate A —brake — O—(vel ocity =fast))

O(vel ocity =stop A—accel erate A —brake — O—(vel ocity =stop))

Note that counterexamples to such trap properties end with the simple transtiorn to 3. If this is

15

Table 2: Simple transitions farel oci ty.

Transition o 15} ¥

1 velocity =stop velocity =slow accel erate A-brake
2 velocity =slow velocity =fast accel erate A-brake
3 velocity =fast velocity =slow -accel erate A-brake
4 velocity =slow velocity =stop -—accel erate A—-brake
5 True vel ocity =stop brake

6 velocity =fast velocity =fast accel erate A-brake
7 velocity =stop velocity =stop -—accel erate A-brake

not an observable transition, then an additional postamble sequencessalgc Thdransition coverage
criterion described by Offutt et al. [50] is basically identical to the simplesitaom coverage criterion.

Simple Guard Coveragis similar to decision coverage in code based testing. Simple guard coverage
requires that for each simple transition there exists a testcagere the guard evaluates to true in a state
where the pre-state condition is true, and a test ¢agleere the guard evaluates to false in a state where
the pre-state condition is true. This criterion corresponds tprbeicate coverageriterion [49] for logical
expressions. For example, this could be expressed as a pair of tymriEs:

OaAy— O
OaAN-y— Op

Again, the post-state expressi@ris negated in order to force creation of suitable counterexamples for the
case when the guard evaluates to true. When the guard evaluates teifadgmn of a counterexample

is forced by claiming3 will be true in the next state. The CC example (Figure 4) requires fourtaen tr
properties to achieve simple guard coverage. To save space we oslgemnthe first simple transition:

O(vel ocity =stop Aaccel erate A —-brake — O—(vel ocity = sl ow))
O(vel ocity =stop A —(accel erate A —brake) — O(vel ocity = sl ow))

Condition Coveragg50] requires that for each condition (clause) in a predicate there ist @des
where the condition evaluates to true, and a test case where the condéioates to false. This criterion
corresponds to thelause coverageriterion [49] for logical expressions, and can also be applied to guard
conditions. It can be expressed as a pair of trap properties for ctause

O=(aAc=true)
O-(aAc= false)

The trap property claims that there is no state where the pre-state conditoinue and the clause
takes evaluates to true or false. Resulting counterexamples do notardgessecute the transition.
Again we consider the first simple transition of the example model:

16

O(vel ocity =stop Aaccel erat e = true)
O(vel ocity =stop Aaccel erate = false)
O(vel ocity =stop A (—br ake) = true)
O(vel ocity =stop A (—brake) = false)

Complete Guard Coverags similar to themultiple conditioncriterion in code based coverage analysis,
also known azombinatorial coverag@49]. A guard condition consists of several clauses (usually called
conditions in code based coverage). Complete guard coverage sethateall possible combinations of
truth values for the clauses of a guard are covered.

Let the clauses in a guard conditigrbe {cy, . . ., ¢;}, then complete guard coverage-ofequires a test
cases for any given Boolean vectar of lengthi, such that for some: /\Lzl(ck(sijsiﬂ) = wug). This
means that for every there has to be a trap property of the type:

l
O-(an M (cr(sissi1) = up))
k=1

The trap property claims that there is no state where the pre-state conditidrue and the clauses take on
the values described hy; this results in a trace that leads to the chosen valuation for the guard canditio
Note that this trace does not necessarily execute the transition.

Again we consider the first simple transition of the example model:

O(vel ocity =stop Aaccel erate = false A (-br ake) = false)
O(vel ocity =stop Aaccel erate = false A (—br ake) = true)
O(vel ocity =stop Aaccel erat e = true A (—br ake) = false)
O(vel ocity =stop Aaccel erat e = true A (-br ake) = true)

The number of trap properties quickly increases with the number of claGsesequently, if the number
of clauses is too big, then complete guard coverage can result in too maogdes to be useful. As a more
practical solution, the modified decision/condition coverage (MC/DC) critgd] has been proposed in
the context of code coverage. MC/DC requires that each conditiors@la&ishown to independently affect
the value of the decision (predicate) it is part of. This informal definitiomibiguous, and allows three
different interpretations. There are many variations of MC/DC in the liteeatimmann and Offutt [52]
articulate the differences and provide a uniform framework of definitiboiowing the nomenclature used
in [52], the considered clause in a predicate will be calledlgr clause, and the remaining clauseisor
clauses. In all interpretations of MC/DC, it takes a pair of test cases & eotlause. As test case pairs for
different clauses need not be disjoint, the size of an MC/DC test suitescasn gmall as+ 1 test cases for a
predicate withl clauses. In the strictest variant (1), the values of all minor clausesxarkihile the value
of the major clause is changed, which also has to result in a change ofitieeofdhe predicate. A slightly
relaxed variant (2) still requires that the predicate takes on both vdlue#)e values of the minor clauses
do not need to be fixed. Finally, the decision coverage can also bedel@sailting in variant (3), which
does not require the predicate to take on both values.

Clause-wise Guard Coveragean adaptation of the strictest interpretation (1) of MC/DC to basic tran-
sition systems, introduced by Rayadurgam and Heimdahl [37]. The sullssume some mechanism that

17

calculates a pair of Boolean vectars&indv of equal length for [clauses in guard, where only then-th
value differs. When the clausesare assigned the valuesanthen~ evaluates to true, and when assigned
the values inv, theny evaluates to false. The vectarsindv could, for example, be derived using constraint
satisfaction techniques. These vectors can be used to formulate the fgllitraynproperties for the:-th
clause of guard:

The first trap property results in a test case where the guard evalutigs, tand the second trap property
results in a test case where the guard evaluates to false as a consegjudidferent value for,,,.

Considering the first simple transition of our example again, clause-wisel goserage is achieved
with the following set of trap properties (slightly rewritten to fit into the page width

O((vel ocity =stop Aaccel erate A (=brake) = true) — O (-vel ocity = sl ow))
O((vel ocity =stop A—accel erate A (—brake) =true) — O(vel ocity = sl ow))
O((vel ocity =stop Aaccel erate A (—brake) = false) — O(vel ocity = sl ow))

Heimdahl et al. [53] also defin€lause-wise Transition Coveragahich is identical to clause-wise
guard coverage but defined in the context of the specification langR8§H.—¢. In a case study [53], a
flight guidance system specified in RSMLat varying levels of abstraction is analyzed with regard to test
case generation. The case study shows that the performance of thiecmecleer is a critical factor, but if
the model size is within bounds, then coverage based test case genisrigamsible. Complex criteria such
as clause-wise transition coverage result in better test cases thanmply eriteria like state coverage or
simple transition coverage. A high complexity of trap properties has a neggtect on the performance.

The drawback of the solutions described in [37] and [53] is that a mésinahat calculates appropriate
valuations of all minor clauses is required. Furthermore, all clauses tbave independent, otherwise
there might not exist a test case for every chosen valuation. As a sqlR@gadurgam and Heimdahl [54]
describe a method to create pairs of test cases for MC/DC. The solutisistsoof altering the model such
that there are auxiliary Boolean variables that store the values of claltseitial values of these auxiliary
variables are nondeterministically assigned by the model checker to tralser After that, these values are
not changed anymore. This results in a vectorf [value assignments to thhelauses of a guard condition.
Note that the model checker selected suitable valuations automatically, ardtlitioreal mechanism to
calculate vectors is necessary. The vector chosen by the model clieeaked to create a counterexample
for clausec,, that represents two concatenated test cases: A test caseyvbemkiates to true, and a test
case where evaluates to false, where the values of all clauses except the major ¢laase defined by..
The first case is covered by any counterexample to the following:

O(—(a Ay Aem # um A /\ (cp = ug)))
k#m
The second case is covered by any counterexample to the following:
O(=(a A=y Aem=umA /\ (cp = ug)))
k#m

18

Combining these two trap properties to one trap property achieves thattleesabuations for all clauses
except the major clause are used. To reach the same decision point twgiagtearun of a reactive system,
a dedicated hard reset transition might be necessary. Resulting coant@tes can then be split at the hard
reset transition into two test cases. Consequently, a trap property &r afpMC/DC test cases for major
clausec,, results in the following:

O(=(aAyAem #um A N (cx=u))VO((@A "y Acm =um A\ (cr = up)))
As an example, consider the first transition of the CC model, aratleel er at e be the major clause.
This results in the following trap property, where the model checker pagthe task of choosing suitable
values foru, anduy:

O(—(vel ocity =stop A (accel erat e A —brake) Aaccel erat e # u, A (—brake) = w)))V
O(—(vel ocity =stop A —(accel erat e A —brake) Aaccel erate = u, A (—brake) = wuy))

It is conceivable to modify this kind of trap property such that the consitiénansitions are actually
executed. For example, the following trap property achieves that a cexataple will first take the con-
sidered transition (to make left part of implication false), and then reaclina wbere the guard evaluates
to false (here, execution of a transition is forced by claimings, which is false as is false):

O((aAyAcem # tum A /\ (ck =ug)) — O(a A=y ANCm # um A /\ (ck =ug)) — OF)
k#m k#m

Full Predicate Coveragg¢50] requires that each clause in each predicate is tested independently.
contrast to the previously discussed clause wise coverage criterialtles wf minor clauses may change as
long as the value of the predicate is still determined by the considered claossequently, full predicate
coverage corresponds to interpretation (2) of MC/DC as describegkalin [55] this criterion is further
relaxed toUncorrelated Full Predicate CoverageWhile this still requires that for a clause it is shown
for both possible truth values that it influences the predicate, it is notreshthat the actual value of the
predicate differs; that is, it drops the requirement for decision cgeerdihis corresponds to interpretation
(3) of MC/DC as described above. In [55], the Boolean derivatié iSused to create two trap properties
for each clause. The Boolean derivatil®/dc of predicateP for conditionc is a predicate on the remaining
conditions that is true if the value efdetermines the value aP. Trap properties for condition in a
predicateP can be formulated by claiming that the derivative always impliés false and in a second
property that is true. We apply the derivative to the guard conditioas follows:

O (A d(y)/de) — c)
O (e Ad(y)/de) — —c)
Again we consider the first simple transition of the example model:
((vel ocity =stop Aaccel erate) — (—brake))
(vel ocity =stop Aaccel erate) — —(-brake))
(
(

vel ocity =stop A —brake) — (accel erat e))

U

O
O
O((vel ocity =stop A —-brake) — —(accel erate))

19

A natural extension of MC/DC is thReinforced Condition/Decision Covera@RC/DC) [57] criterion.
The idea of RC/DC is that it is not sufficient to show for each clause thatd@ggandently affects the
predicate’s outcome; it is also necessary to show that each clauserideepigkeepsthe outcome. This
means that the values of the minor clauses are fixed while the value of the naajse ¢s altered, and the
value of the decision does not change because of this. As it might natdsibfe to keep the values of all
minor clauses fixed, this requirement can be relaxed.

Following the MC/DC definition given in [37], RC/DC needs the following addiibimap properties,
whereu/, ‘v is a pair of Boolean vectors of equal lendtfor / clauses in guard, where only them-th
value differs. When the clauses take on the values described in thasesydiae guard condition shall
evaluate to the same value in both cases.df/aluates to true in both cases, then the transition is taken and
0 evaluates to true in the next state. Therefore, the trap properties corgtaiaghtion ofs:

l
OaA /\(ck:uk) — Op
k=1

l

OaA /\(ck:vk)—> O-p

k=1

If v evaluates to false, then the negatiorsdias to be removed.
Considering the first simple transition of our example again, RC/DC is achigitedhe following set
of trap properties (slightly rewritten to fit into the page width):

O((vel ocity =stop A—accel erate A (—-brake) = false) — O(vel ocity = sl ow))
O((vel ocity =stop A—accel erate A (—brake) =true) — O(vel ocity = sl ow))
O((vel ocity =stop Aaccel erate A (—brake) = false) — O(vel ocity = sl ow))

Finally, Transition Pair Coveragés another related coverage criterion given in [50] that is also useful in
the transition system context. In contrast to (simple) transition it requirealtiatsiblepairs of transitions
are covered. As shown in [55], this results in trap properties with two levelsext statements. The
following trap property covers the transitiofis;, 51, v1) and(az, B2,72):

O(1 Ayt — Olaz Aye — O—f3))

As an example, a test case covering the pair of the first two transitions ekample is achieved with
the following trap property (slightly rewritten to save space):

O((vel ocity =stop Aaccel erate A —brake) —
O((vel ocity =sl ownaccel erate A (—brake)) — O—(vel ocity =fast)

4.3 Control and Data Flow Coverage Criteria

The previous section presented coverage criteria in the context oftbassition systems. Such coverage
criteria, however, are not limited to this specific kind of model, but can bé&egpfw any system or speci-

fication that uses Boolean predicates. For example, Hong and Leed@3jmilar criteria (state coverage,
transition coverage) to create test cases for the control flow of agrogr EFSM model, and define trap
properties to generate test cases for data flow coverage criteriar, 8wefdiscussed coverage criteria only

20

considered the control flow of a model. Control flow criteria are basddgioal expressions in the specifi-
cation, which determine the branching during the execution. In contrdatflda oriented coverage criteria
consider how variables are defined and used during execution.

Test case generation with regard to coverage of data flow graphs s&gdeced in [33, 58]. A flow
graphG is defined as a tupleé’ = (V,v,,vr, A), whereV is a finite set of verticesy, € V' is the start
vertex,v; € V is the final vertex, andl is a finite set of arcs. A vertex represents a statement and an arc
represents possible flow of control between statements. The set dflearthat is defined at a vertexs
denoted withDEF'(v), and the set of variables that is used at a vertexdenotes wittU SE(v). A flow
graph can be interpreted as a Kripke structhirg) = (V,vs, L, AU {(v¢,vy)}), whereL(v,) = {start},

L(vy) = {final}, andL(v) = DEF(v) UUSE(v) for everyv € V — {vs, v }.

vl: input (accelerate , brake, previowelocity);
V2. velocity = previousvelocity ;
v3: if (brake) {
v4: velocity = stop;
} else {
V5: if (accelerate){
V6! if (velocity == stop)
V7. velocity = slow;
else
v8: velocity = fast ;
} else {
v9: if (velocity == fast)
v10: velocity = slow;
else
v1l: velocity = stop ;
¥

v12: output(velocity);

Figure 7: Example implementation of CC example.

As an example, Figure 7 shows an implementation of our car controller exafipéecorresponding
data flow graph is depicted in Figure 8, where vertexes are annotated @iittbth F* andU S E' sets. Hong
et al. [59] show how model checkers can be used to derive testitaskferent data flow coverage criteria
using witness formulas. In this survey, we use the criteria by Rapps agdkéfe[60] to illustrate this
approach; trap properties for further criteria are given in Hong ef58]. The basic idea of data flow
criteria is to finddefinition-use pairgdu-pairs). A pair(d(z,v),u(x,v")) is a du-pair, if there exists a path
(v,v1,...,v,,v") from vertexv to v/, such that is not defined in any; for 1 < i < n, or if n = 0 (this is
called a definition-clear path).

Hong et al. [59] express du-pairs as WCTL-formulas. WCTL formutaesCT L formulas where only the
temporal operatorEF , EX , andEU occur, and for any sub-formula of the forfaA. .. A f, all f; except
one at the most are atomic propositions. A WCTL formula for a du-p#ir,@), u(x,v)) is expressed as
follows:

wetl(d(z,v), u(z,v")) := EF (d(z,v) A EX E[~def(x)U (u(x,v") A EF final)])

21

° start
° d(brake, v1), d(accelerate, v1), d(previous_velocity,v1)
G d(velocity,v2), u(previous_velocity, v2)
° u(brake, v3)
d(velocity, v4) u(accelerate, v5)
ORC

u(velocity, v6) :

u(velocity, v12)

u(velocity, v9)

d(velocity, v7),
d(velocity, v8),
d(velocity, v10),
d(velocity, v11)

exit
Figure 8: Data flow graph for example implementation.

In this formula,de f (z) is the disjunction of all definitions af. This formula expresses that there exists
a path from the initial state td(x, v), such that there exists a definition-clear path.to, v"). In addition,
EF final requires that the path continues to the final vertex, such that the patboisaletepath. For
example, the following formula results for the du-p@itbrake, vl), u(brake,v3)):

wetl(d(brake,vl),u(brake,v3)) = EF (d(brake,vl) AN EX
E[~d(brake,v1)U (u(brake,v3) AN EF final)])
An example witness to this formula{ss, v1,v2,v3,v4,v12,vf). Any given(d(z,v), u(x,v")) is a du-pair
iff the Kripke structure representing the data flow graph satisfie$(d(z, v), u(x,v")).
The all-defscoverage criterion requires that for every definitiéx, v) there is a test case that uses a
definition-clear path to some(x, v'). Let DEF(G) denote the set of definitions in the data flow gra@ph

andUSE(G) the set of uses iiz. Then, a test suité" satisfies the all-defs coverage criterion iff it is a
witness set for:

{ \/ wetl(d(z,v), u(z,v")) | d(z,v) € DEF(G)}
u(z,w)eUSE(G)

22

Once more, a set of test cases can be created by using the modelr¢hatsée withess sequences for
this set of formulas, or equivalently, by calculating counterexamples toethations of these formulas.

In our example data flow graph in Figure 8, we can identify the example shi-pairs given below
(note that other sets of du-pairs are also possible). A test suite satisifidgfs can be created by calcu-
lating a witness for eaclctl(d(z,v),u(z,v")) or counterexample te:(wctl(d(x,v), u(x,v"))) for each
(d(z,v),u(z, ")) in this set:

{(d(brake,vl),u(brake,v3)),
d(accelerate,vl), u(accelerate, v5)),
d(previous_velocity, vl), u(previous_velocity, v2)),

d(velocity, v2), u(velocity, v6)),

(d(

(d(

(d(

(d(velocity, v4), u(velocity, v12)),
(d(velocity,v7), u(velocity, v12)),
(d(velocity, v8), u(velocity, v12)),
(d(velocity, v10), u(velocity, v12)),
(d(velocity, v11), u(velocity, v12))}

The all-usescoverage criterion can be defined in a similar manner. A test suite satisfied-tiees
coverage criterion, if for every definitiod(x, v) and every use(x, v’) there exists some definition-clear
path with respect te as part of a test case. Consequently, a test suite satisfies the all-useseariterion
if it is a witness set for the following set of formulas:

{wetl(d(z,v),u(x,v")) | d(z,v) € DEF(GQ),u(x,v") € USE(G)}

Obviously, the number of du-pairs is larger for the all-uses criterion thiatmé all-defs criterion. In our
example graph, we get the following set of du-pairs:

{(d(brake,vl),u(brake,v3)),

(d(accelerate,vl), u(accelerate, v5)),
d(previous_velocity, vl), u(previous_velocity, v2)),
d(velocity, v2), u(velocity, v6)),
d(velocity, v2), u(velocity, v9)),

(d(

(d(

(d()s

(d(velocity, v4), u(velocity, v12)),
(d(velocity, v7), u(velocity, v12)),
(d(velocity, v8), u(velocity, v12)),
(d(velocity, v10), u(velocity, v12)),
(

d(velocity, v11), u(velocity, v12))}

In this example, only the du-pafri(velocity, v2), u(velocity, v9)) is added in comparison to the all-defs
criterion. Theoretically, the worst case number of du-pairs caf @€) for a flow graph of size:.

Further data flow criteria are considered in [59]. Data flow coveraigerier are extended with control
dependence information in [61]. In [62], data and control flow criter@a applied to Statecharts speci-
fications. In [33], control and data flow coverage criteria are defioeedxtended finite state machines
(EFSMs).

23

4.4 Coverage of Abstract State Machines

Countless specification formalisms have been defined in the past. In jepgesage criteria can be defined
and used for testing for any specification language that is susceptible td otmking. For example,
Abstract State Machines [63] (ASMs) are yet another formalism thabbas considered in the context
of coverage oriented test case generation [64, 65]. ASMs are seaintiell defined pseudo-code over
abstract structures. An ASM consists of states and a finite set of rulggdoded function updates. Rules are
of the typeif condition thenupdates, wherecondition is an arbitrary Boolean expressions, andates is

a finite set of function updates that are executed simultaneously. Tleemeaaly different types of functions,
and basically a nullary function can be interpreted as a variable.

data Velocity = stop | slow | fast
i nstance Asniferm Vel ocity

brake :: Dynam c Bool

brake = initVal "brake" Fal se

accel erate :: Dynanic Bool

accelerate = initVal "accel erate" False

velocity :: Dynam c Velocity

velocity = initval "velocity" stop

rl::. Rule()

ri =if (velocity == stop) && (accelerate == True) && (brake == Fal se)
then velocity := slow

r2 ;. Rule()

r2 =if (velocity == slow) && (accelerate == True) && (brake == Fal se)
then velocity := fast

r3 :: Rule()

r3 =if (velocity == fast) && (accelerate == Fal se) && (brake == Fal se)
then velocity : = slow

r4 :: Rule()

ra = if (velocity == slow) && (accelerate == Fal se) && (brake == Fal se)
then velocity := stop

rs :: Rule()

r5 = if (brake == True)
then velocity := stop

Figure 9: ASM specification for CC example, each transition representadistinct rule..

24

Figure 9 shows the car controller example as an ASM specification, waehgmnsition is represented
as a distinct rule, following the style used in the tool ATGT (see Section I@izhaautomatically creates
test cases from ASM specifications with a model checker.

Similarly to the previously described approaches, rules are suitable foptoperty generationRule
coverages similar to simple transition coverage, and requires a test case where tdeguodition evaluates
to true, and one where the guard condition evaluates to false:(—condition). For example, rule 1 in
Figure 9 results in two trap properties, the first one lets the guard evaluatetdhe second one to false:

O(vel ocity =stop A —accel erat e A —br ake)
O-(vel ocity =stop A —accel erat e A —br ake)

In a similar style, other coverage criteria based on logical predicatesecapgiied to rule guards. For
example, MC/DC is used by [64, 65].

In contrast to these control oriented coverage criteriartitee update coverageequires each update
function to be nontrivially executed at least once. This is a data flow ageetriterion, as it considers the
value of a variable prior to a new assignment (i.e., definition). Rule updatzage for all five rules of our
example specification results in the following trap properties, generated GyrA

U
U

vel ocity # sl owA (vel ocity =stop Aaccel erate A —brake))
vel ocity #fast A(velocity =sl owAaccel erate A —brake))
O(vel ocity # sl owA (vel ocity =fast A—-accel erat e A —brake))
O(velocity #stop A (vel ocity =sl owA —accel er at e A —br ake))
O (brake Avel ocity # stop)

A~~~ /—~ —~

Further coverage criteria are defined by Gargantini and RiccobdfieH#rallel rule coverageequires
combinations of updates to be executed in parallel,strahg parallel rule coverageequires all possible
combinations of parallel update functions to be covered. This appraechden evaluated with the model
checker SMV in [64], and with the model checker SPIN in [65].

5 REQUIREMENTS BASED TESTING

The majority of coverage based approaches use some structurehgewaiterion based on a behavioral
model of the SUT. Sometimes it is desirable to create test cases with respegivém det of requirement
properties. The approach described by Engels et al. [2] can befarstds, if requirement properties are
used as test purposes. The drawback is that each requirementtpraplg results in one test case. This
test case is not necessarily a good exercise regarding the propertyex&mple, consider the property
O(z — Quy), which is quite a common type. A counterexample might not contain a state whisre
true, which obviously is not a good test case for the property. A stré&givard approach is to require the
antecedent to become true in a test case. For example, this is achievedtedttt@mt coverage [66], where
O(x — Quy) is reformulated toJ (x — Oy) A ¢ (z). Further approaches are shown below.

It is not always possible to create useful counterexamples by direajting requirement properties.
For example, negation of a safety property might result in a counterexavhfath consists of only one state
(the initial state) — which is not a useful test case.

An equivalence partitioning of the execution tree is suggested by Callatedn[#, 67]. For a single
requirement property, two kinds of paths can be distinguished within thenebgal computation tree: those

25

for which the property is fulfilled, and those where the property is violatdur idea of this partitioning is
that all paths within a partition are assumed to be very similar. That way, omhat sSumber of test cases,
or in fact only a single test case, per partition is necessary. A comple¢e obdisjoint partitions on infinite
paths in the computation tree can be created by combining properties ancegpeiions conjunctively.

For example assume two requirement propertieandg,. There are four different possible partitions
for these two propertiesd; A ¢, ¢1 A —ga, md1 A ¢o, and—¢1 A —¢o. Each such combination is a
coverage property This partitioning, called conjunctive complementary closure (CCC), cqsditions
that are only disjoint when considering complete paths in the computation ftirgte tFaces may fall into
one or more partitions. Coverage properties can be used to validate exéstinigaces, determine to which
partition a given test case belongs to, or to create a new test case foitiampa

5.1 Vacuity Based Coverage

Tan et al. [34] describe a method to derive trap properties from regaime properties. These trap prop-
erties achieve that such test cases are created that show how ayi®pen-vacuously fulfilled. Vacuity
describes the problem that a property is satisfied in a way not intendep&nty is vacuously satisfied, if
the model checker reports that the property is satisfied regardlessettfievithe model really fulfills what
the specifier originally had in mind or not. For example, the propéitys — () is vacuously satisfied
by any model where is never true. A vacuous pass of a property is an indication of a probleithier the
model or the property.

Beer et al. [68] usevitness formulaso detect vacuity for a subset of ACTL (CTL with only quanti-
fied temporal operators). This method is extended to CTL* by Kupfermdrivardi [69]. More efficient
algorithms are considered by Purandare and Somenzi [70]. In devecaity of a property is detected by
checking a formula and its witness formula against the model.

Witness formulas are derived from properties by changing sub-foendlae idea is that if a model
satisfies a property and also a corresponding witness formula, theroferfyris satisfied vacuously. If the
witness formula is not satisfied by the model, then the property is properljiesdtighe replacement of
sub-formulag with 1 in formula f is denoted ag|¢ < 1]. If a sub-formula can be replaced such that the
model does not satisfy the resulting formula, then the sub-foraftgatsthe formula:

Definition 15 (Affect) [34] A sub-formulag of f affectsf in model)/ if there is a formula) such that the
truth value off and f[¢ <] are different with respect td/.

If a property f is vacuously satisfied by a model, then there exists a sub-formiraf that does not
affect the property. This means that there exists no replacefnfant¢ such thatf[¢ < 1] is violated by
a given model. Consequently, a property is satisfied vacuously iff timeularand its witness formula are
both satisfied by the same model:

Definition 16 (Vacuity) [34] A model M satisfiesf vacuously with respect to a sub-formulaf M | f
and¢ doesn't affectf in M. M satisfiesf vacuously if there exists a sub-formulasuch thath/ satisfiesf
vacuously with respect 1.

The replacement formula can be any formula. Fortunately it is not necessary to replaséh every
possibley in order to detect vacuity. Kupferman and Vardi [69] show that it is eigffit to replaces with
true or false, depending on thpolarity of ¢ in the formulaf. The polarity of a sub-formula is positive,
if it is nested in even number of negationsjfinotherwise it is negative. The polarity of a sub-formgla
is denoted a&l(¢). To avoid confusion with the LTL] operator, it is noted thdfl in this section always

26

refers to the polarity. Replacementd®bccording to its polarity makes it feasible to determine vacuity using
witness formulas.

Theorem 1 [69] A model M satisfies the formulg vacuously if and only iV = —f[¢ < O(¢)] for some
(occurrence of) atomic propositiap, where(d(¢) = false if a has positive polarity inf andO(¢) = true
otherwise.

The idea of property coverage is that a test case that covers afgrapeording to the property coverage
criterion should not pass on any model that does not satisfy the property

Definition 17 (Property-Coverage Metrics) [34] Given a propertyf, a testt covers a sub-formula of
f if there is a mutationf[¢ < [(¢)] such that every modél/ that passes will not satisfy the formula

flo < D(9)].

The property coverage can be measured by creating a set of witmesdds. The percentage of these
witness formulas that are violated by at least one test case represepisjibety coverage value. Details
of how coverage is measured on existing test cases is given in SectiamrtBermore, test cases can be
generated by using witness formulas as trap properties, following theagpshown in Figure 5. For every
requirement property there is a trap property for every sub-formgiaf the following type:

flo <= D0(9)]

For example, requirement 1 of the CC example model (Equatioil®r ake — Ovel ocity =
st op)) results in the following trap properties (note that the polarityopbke is false because of the
implication):

O(false — Ovel ocity = stop)
O (brake — Otrue)

5.2 Unique First Cause Coverage

Whalen et al. [66] adapt the MC/DC criterion to apply to LTL requiremenpprties as a metric called
Unique-First-Cause CoverageWhile MC/DC only applies to states that fulfill certain requirements re-
garding the valuation of conditions in control flow branches, LTL propseiefine paths rather than states.
Whalen et al. define MC/DC via sets of Boolean expressions for decisggranents, and then refine these
sets with temporal operators.

Given a decisioM, A™ denotes the set of expressions necessary to show that all conditidnsadsi-
tively affect the outcome af; that is, whered evaluates to true as a consequence of a considered condition.
A~ denotes the set of expressions necessary to show that all conditidnsagatively affect the outcome
of A. In the following definition,x denotes a basic condition.

27

Definition 18 (Expressions for MC/DC)

ot = A{«}

x~ = {-x}

(AnB)T = {aABlac ATYU{AAb|beE BT}
(ANB)~ = {aABlac A }U{ANb|be B™}
(Av B)* = {aA-Bla€ AT} U{-AAb|be BT}
(AV B)~ — {an-Blac A YU{-AANb|be B}
(~A)* = A

(—|A)_ = AT

The set of expressions necessary to cover a decision is determinedurgively applying the above
rules. For example, the expressiox (y A z) results in the following set to show positive affe¢tz A —(y A
z)), (mxA(yAz))}. The setto show negative affectif—z A—=(yAz)), (mzA(-yAz)), (mxA(yA—z))}.

A requirement for a test suite to satisfy MC/DC of a decision(y A z) is that each constraint in these two
sets is satisfied by a test case.

As LTL formulas are defined on paths and not states, the above ruldgsambe extended to take tem-
poral operators into consideration, resulting in the unique-first-camsrage (UFC) criterion. A test suite
satisfies UFC, if it achieves that every basic condition in a formula taked possible outcomes at least
once, and each basic condition is shown to independently affect thel&dsrautcome. Assuming a formula
A and a pathr, a conditione is the unique first cause df, if in the first state along- whereA is satisfied,
it is satisfied because of The following rules are defined in [66]:

Definition 19 (Expressions for UFC)

O(A)*" = {AU(anO(A))|ae AT}

O(A)~ = {AUalac A}

O(A)T = {-AUalae A"}

O(A)~ = {-AU(anO(-A))|ac A}

O(A4)* = {O(a)]ac A"}

O(4) — {O@laeA)

(AuB)* = {(A/\ﬁB)U((a/\—'B) (AUB))|a € AT}U
{(AN-B)Ub|be B"}

(AUB)~ = {(AA-B)U(aA-B)lac A" }U
{(AN-B)U(bA-(AUB))|be B}

For example, the simple property= [(z A y) results in the constraints™ = {(z Ay)U ((z A y) A
O Ay)}tandg™ = {((z Ay)U(—z Ay)),((x Ay)U(z A —y))}. These constraints can be used to
create test cases with a model checker. As always, it is necessanyate iee constraints to be valid trap
properties. This results in the following type of trap properties, wheredohf € ¢, ¢~ one trap property
is created:

O-f
28

Test cases can be derived by using the usual trap property bgsedep shown in Figure 5.
As another example, létbe the requirement 1 of the CC example model (Equationd 3): O (br ake —
Ovel ocity = st op). For this property, the following two trap properties result for positifecf

—(brake — Qvelocity =stop)U

(—=brake A—(Ovel ocity =stop) A O(brake — Ovel ocity =stop))
—(brake — Ovel ocity =stop)U

(brake A (Ovel ocity =stop) A O(brake — Qvel ocity =stop))

The following two trap properties result for negative affect:

—(brake — Ovel ocity =stop)U (brake A =(Ovel ocity = st op))
—(brake — Ovel ocity =stop)U (brake A (O—(vel ocity =stop)))

LTL semantics are defined for infinite traces, while test cases are finierefidie, Whalen et al. [66]
refine the rules to derive expression sets, which is mainly of interestdostée analysis.

5.3 Dangerous Traces

There are several approaches based on mutation, where test easesated with regard to requirement
properties. Although mutation based approaches are considered innSgcive now consider the idea of
dangerous tracesntroduced by Ammann et al. [71]. In this approach, mutation is used to fiexasios
where a dangerous action is either inevitable or possible as of the nextistaitgsome point in the future.

An action is said to be dangerous if it can lead to a safety property violati®a.crrect implementation
may never violate safety properties, a fault model is used to describediety properties are violated. The
fault model is used to createutantsof a behavioral model, where each mutant is a simple syntactically valid
variation of the original model. The fault represented by the mutant matledan result in four different
types of dangerous traces:

e Atrace isAX dangerousif the additional transitions allowed by the mutddt violate a property”
in all next states after executing the mutated transition.

e A trace iSEX dangerousif there exists an additional transition allowed by the mutafitwhich
violates a propertyP in the next state.

e AtraceisAF dangerousif it can be extended with the next state fradi and other transitions from
the combined model so that in future there always is a violatiaR.of

e AtraceisEF dangerousif it can be extended with the next state frdd and other transitions from
the combined model so that in future there sometimes is a violatidh of

Ammann et al. [71] describe a method based on trap properties to genetatades for all of these
different types of dangerous traces. The use of a mutant niddellows two different flavors of test cases
to be produced for each dangerous trace: A failing test case that@sdine faulty transition and leads to the
property violation, of a passing test case, where instead of the faulsittcamthe correct transition is taken.
To allow creation of both types of test cases, Ammann et al. [71] combine almédvith a mutant)M’,
such that the combined model can take transitions fidrar M’. A special variabler i gi nal is used to

29

indicate whether a transition is part of the original model; it is false if the muteaedition is executed. This
special variable allows definition of trap properties to derive test cagesthe model/mutant combination.
In accordance with the original paper [71], we here state the test emgeits, which simply have to be
negated to be used as trap properties.

For example, a failing test case for AXX dangerous trace requires a sequence along vdriclyi nal
is true up to a state, where all next states wheregi nal is false violateP:

EF (origi nal AEX (—original)AAX (-original — —P))

Creation of a passing test case is a little bit more tricky, and exploits the beltd\@d L counterexample
creation algorithm. ArEX ori gi nal expression is added at the proper place in the test requirement in
order for the counterexample to contain an original transition instead of deduiae:

EF (ori gi nal AEX (original) AEX (-original)AAX (-original — —P))
The test requirements f@X dangerous failing and passing traces are:

EF (ori gi nal AEX (—origi nal A-P))
EF (origi nal AEX (original)AEX (-original A—P))

The test requirements fokF dangerous failing and passing traces are (partially abbreviated to fit in a
line):

EF (origi nal AEX (—original)AAX (-original — (-PVAF (=P))))
EF (origAEX (orig) AEX (-orig)AAX (—orig— (=P V AF (=P))))

The test requirements f@F dangerous failing and passing traces are:

EF (ori gi nal AEX (—ori ginal) AEF (=P))
EF (ori gi nal AEX (origi nal) AEX (—ori gi nal) A EF (=P))

Given mutants of the CC example model (Figure 4), any of the requiremgmegties given in Section 3
can serve a® in the trap properties listed above.

The overall process for test case generation, depicted in Figureoh8ists of deriving a set of trap
properties according to the desired dangerous traces for each e@usghfety property as well as creating
a set of mutants. Each mutant is combined with the original model, and thenechagkinst the trap
properties.

5.4 Property Relevance

A related approach to dangerous traces was presented by Fras®otawd [72]. Hereproperty relevance
is introduced as a relationship between test cases and requirememntipe@efailing test case is relevant to
a property, if the erroneous behavior described by the test case sitiatproperty. In contrast, positive test
cases have to satisfy requirement properties as they are created ¢mmeet model. Therefore, a passing
test case is relevant to a property, if the test case exeattiadlead to a property violation on an erroneous
implementation. The possible deviation is simulated according to a fault model or smufdéion. Based
on the notion of property relevance, it is shown in [72] how any struttangerage criterion can be combined
with property relevance:

30

Model Model+Mutant [~

—3| Model Checker [—3»i

1999

Test cases
G (a —> X b) G (original & ...)
G(b—->X!c) G (original & ...)
G (c —> X !d) PG (original & ...)
Requirements Trap properties

Figure 10: Dangerous traces for safety properties.

Definition 20 (X Property Relevance Coverage)The property relevance coveragé; of a test suitél’S
with regard to a set of propertieB and a structural coverage criterioiX represented as a set of trap
propertiesT is defined as the ratio of trap properties that are covered such that thericm test case
continues relevantly to a property, to the total number of possible profeqyproperty combinations:

1
Cr= BT H{p,tr | p € P Atr € T A relevant_covered(tr,p, TS)}|
k
The predicaterelevant_covered(a, b, T'S) is true if there exists a test cage= TS such thatt consists of
two sub-sequences= t1, t, wheret; coversa, i.e.,t; = a, andt, is relevant tob, i.e.,relevant(ta, b).

For exampleTransition Property Relevance Coveragguires that for each transition and each require-
ment property there is a test case that executes the transition and theagsoelevant to the property. In
[72], methods to measure property relevance and property releveariagre are presented. These methods
extend the general approach of coverage measurement with modetheehich is described in Section 8.
To simplify the measurement procedure, a weakened variant of propértant coverage (WeakProperty
Relevance Coverage) is defined, which relaxes the requirement ordérerowhich a structural item and a
property have to be covered.

The approach taken in [72] to create property relevance test suitesristtoréate a complete test suite
for the structural coverage criterion using a traditional trap propedgdbapproach. This test suite can then
be optimized to simplify the second step, which is to extend each test case witheatyrrelevant postam-
ble. For this extension, the original model and a model that can take eusminsitions are combined,
such that they share the identical prefixes. The initial state of these madetsmonds to the considered
structural coverage test case. The model checker is now used te arieace that shows how the erroneous
model violates the requirement property; this is achieved by simply checléngrtiperty using the outputs
of the erroneous model. As correct and erroneous model sharertteeisputs, the trace created by the
correct model represents the correct behavior which could lead toabenty violation. This trace is used
to extend the existing test case. The erroneous model can be a mutantacodedjng to some fault model.
As the number of mutants is potentially very high, Fraser and Wotawa [78esti@ special kind of mutant
which can nondeterministically choose exactly one erroneous transitiog algnexecution trace.

31

6 MUTATION BASED TEST CASE GENERATION

In general, mutation describes the modification of a program accordingie $ult model. Mutation
analysis describes the process of evaluating an existing test suite wittl teda ability to identify mutants.
Mutation testing is the process of deriving test cases that identify as manytsiaspossible. The idea
of mutation is based on theoupling effec{73] andcompetent programmer hypothe§igl]. The former
states that tests that detect simple faults are likely to also detect complex féhilesthve latter states that
programs are close to being correct.

Originally, mutation testing was applied to source code [73, 74]. Specificatigation was initially
introduced by Budd and Gopal [75]. In the context of model checkeed testing, specification mutation
was introduced by Ammann and Black [76] for coverage analysis, andsinéor test case generation was
initially suggested by Ammann et al. [77]. There are related approacheewsbecifications are mutated,;
e.g., Srivatanakul et al. [78] apply mutation together with model checkiege Hhowever, only approaches
where the aim is test case generation are considered.

A competent specifier hypothesssassumed, which resembles the competent programmer hypothesis
and states that specifications are close to what is actually desired. ificgieans are interpreted as abstract
programs, the coupling effect can be assumed as well.

6.1 Mutation Operators for Specifications

Although mutation can be applied to automaton models directly, the prevalent misthmdnutate the
textual representations of models, for example in the input language of thel oietker used for test case
generation.

In general, a mutation operator describes a syntactic change accordirfgutt model. The mutation
operator can be applied to different locations in the specification, eaticaion resulting in a specification
mutant. Usually only first order mutants are considered, that is, mutantdffeafrm the original version
by only one mutation.

Mutation operators for specifications are analyzed by Black et al. [T8e examples given in [79]
use the syntax of the model checker SMV [24], but can be applied to dmegthat uses similar logical
expressions. For example, the same mutation operators can also be apbpliedtdCTL properties.

The following mutation operators are defined and evaluated with regardvevage in [79]. Exam-
ple mutation operators are illustrated with the laecel erate & ! brake & velocity = stop:
sl ow of the CC example SMV code (Figure 4):

Logical Operator Replacement (LRO) : This mutation operator replaces a logical operator with another
logical operator.

accelerate | !brake & velocity = stop: slow

Relational Operator Replacement (RRO): This mutation operator replaces a relational operator with
another relational operator.

accelerate & !brake & velocity > stop: slow

Expression Negation Operator (ENO) : This operator negates sub-expressions.
accelerate & ! (!brake & velocity = stop): slow

32

Simple Expression Negation (SNO): This operator negates an atomic condition in a decision.
laccelerate & !brake & velocity = stop: slow

Operand Replacement Operator (ORO) Changes variables or constants with other syntactically valid
operands. For example:

Variable Replacement Operator (VRO) : This operator replaces a variable reference with a refer-
ence to another variable of the same type.
accelerate & !'accelerate & velocity = stop: slow

Constant Replacement Operator (CRO): This operator replaces a constant with a syntactically
valid different constant.

accelerate & !brake & velocity = stop: stop

Missing Condition Operator (MCO) : This operator removes a single condition from a decision.
accelerate & - & velocity = stop: slow

Stuck At Operator (STO) : This operator replaces a condition with true or false (1 or 0).
1 & !'brake & velocity = stop: slow

Assaociative Shift Operator (ASO) Changes the association between variables. For example, assume the

original linewould be(accel erate | !brake) & velocity = stop: slow .Apos-
sible mutant would then be the followingccel erate | (! brake & velocity = stop):
sl ow .

Arithmetic Operator Replacement (ARO) : This mutation operator replaces an algebraic operator with
another algebraic operator. For the sake of this example, assume thatinsteetting it tosl ow,
vel oci ty is an integer variable and is increased by 2:

accelerate & !brake & velocity=stop: velocity+2
A mutant could be:
accelerate & !brake & velocity=stop: velocity-2

6.2 Specification Mutation

Ammann et al. [77] initially proposed specification mutation for test case géarr An SCR specification
is converted to an SMV model and a set of temporal logic constraints, batiioh represent the mode
transitions. Mutation is applied to both the textual description of the model arrédlaé@ement properties.
Initially, the model satisfies all temporal logic constraints. Mutating either the hwdie constraints
might lead to property violations.

The first option is to verify mutant models with regard to the temporal logic cainss: For each mutant
model there is one counterexample for every constraint that is not ghtiglieesulting counterexample
illustrates how an erroneous implementation would behave, thereforeextlidiT is expected to behave
differently when a resulting test case is executed on it. Consequentlytiswwes can be used as negative
test cases, i.e., a fault is detected if an IUT behaves identically.

As second option, mutation of the temporal logic constraints can result iegiiepthat are not satisfied
by the original model, and can also be used to create counterexampleacdsdre created from the original
model, resulting test cases are positive test cases.

33

A mutant isequivalent if it behaves identically to the original model. Equivalence can be further
constrained by requiring the observable behavior to be identical to thhaedadriginal, that is, the output
values have to be identical at all times. Equivalent mutants do not resultiier@xamples.

—>>
| o0 @
Model Mutant — () -@
— Model Checker [—3» @—@ @
o0 @
Test cases

G(a—>X!b)

G(b—->X!c)

G (c—> X!d)

Requirements

Figure 11: Test cases from mutants violating the specification.

Fraser and Wotawa [80, 81] take a similar approach to generate test basenstead of creating a
model and properties that represent the same SCR specification, &oahawodel and a set of requirement
properties derived from formalizing user requirements is used. Thaarignodel is assumed to satisfy all
requirement properties. Figure 11 depicts the process of derivingasss with requirement properties. The
same process applies if the properties are derived from an SCR spémificNegative test cases illustrate
requirement property violations, therefore test cases are tracealdquimement properties. Traceability
with property mutants is not always possible, as a mutation can completelyectiengeaning of a property.
However, with only a certain restricted subset of mutation operators (2@, BRO, SNO, ENO), property
mutants are related to the original properties. In general, the perceffifagperty mutants that do not result
in counterexamples is higher than for model mutants. With this approach, d matint that creates no
counter examples is not necessarily equivalent; the specification mighgjtsd weak to detect the change.

The approach presented in [71] can also be seen as related to thia@ppkdere, the model is also
mutated and verified with regard to requirement properties. As descritiection 5.3, the objective is to
derive dangerous traces with regard to safety properties. For thisrigeal and mutant model are merged,
so that the combined model can take both, the original and the mutated tranShmprocess of merging
a model and its mutant is illustrated with the language SMV in [71]. A specialberaa i gi nal , which
is only false if the mutated transition is taken, is added to the model. This is usedat® apecial trap
properties based on the requirement properties, as described in &e8tion

6.3 Reflection

Ammann and Black [76] create logical formulas that “reflect” the transititatic of a model; this process
is calledreflection These reflected properties resemble the logical properties derv@dSCR specifica-
tions, as described in [77] and the previous section. With regard to th&tiosnsystem definition given in

34

Section 4.2, there is one such reflected property for each simple transition:

O(aAy — OB)

The reflection process is straight forward in principle, but there areraksubtle issues when applying
it to a concrete modeling language. For example, in the language of the madé&lectSMYV there is an
implicit semantics based on the syntactic ordering of case statements, whith lhasesolved as there
is no ordering for properties. To overcome this problem, it is necessanake the implicit information
contained in the ordering of the transitions explicit. In [76], this processlisdtexpoundment Basi-
cally, instead of using each antecedemtdition; (which representsa A) as such, they are converted to
(A1<j<k mcondition;) A conditiony, for conditiony.

The CC example NuSMV model (Figure 4) results in the following reflecteggntas (simplified;
automatic expoundment might result in more complex but logically identical prepgespecially for the
default branch):

O((accel erate A —brake Avel ocity =stop) — Ovel ocity = sl ow)
O((accel erate A —brake Avel ocity =sl ow) — Ovelocity =fast)
O((—accel erate A —brake Avel ocity =fast) — Ovel ocity = sl ow)
O((—accel erate A —brake Avel ocity =sl ow) — Ovel ocity =stop)
O (brake — Ovel ocity = st op)

There is one more simple transition that needs to be covered — the defaugh bktere, two things have
to be considered: First, the antecedent is not explicitly available, but ithercction of the negations of all
earlier antecedents. Second, the NuSMV model stateytatci t y does not change. To represent this
as a temporal logic property, an auxiliary variaBlerel oci t y is necessary, which is defined as follows:

VAR

vel ocity: bool ean;
P_vel ocity: bool ean;
ASSI GN
next (P_velocity) := velocity;

In our example, this results in the following property (simplified):

O(((accel erat e A —brake Avel ocity =fast)v
(—accel erate A —brake Avel ocity =stop)) —
O-(Pvel ocity =vel ocity))

Once a set of reflected properties is derived, mutation can be appliedst gheperties. In [76], the
resulting mutants are used to determine the mutation adequacy of a giveritestrsfact, the mutants of
the reflected properties can be used just like coverage related tragriged82] in order to generate test
cases. Figure 12 depicts the process of test case generation wittioefléfche mutant property describes a
transition that does not exist in the actual model, then the model checkersataounterexample that takes
the correct transition. The mutant properties can be greatly varied lyimgplifferent mutation operators.
An invaluable source of information for this approach is [55].

35

o0 -@

Model o—0 -@

—»| Model Checker [@—@ @

o0 -@

Test cases
G(a—>XDb) G (x —=> Xb)
G(b—-—>Xc) G (b &>Xc)
G(c—>Xd) ——3| G (lc—> X d) -

Reflection Mutants

Figure 12: Mutation based test case generation with reflection.

Gargantini [83] proposed a related approach based on Abstract&iaténe specifications (introduced
in Section 4.4). Guard conditions of update rules are mutated accordingiterafgult model. From the
mutated conditiongjetection conditionare derived. The idea is that a fault in a Boolean expression can be
discovered if the detection condition evaluates to true. For a given Boelgaassior and a mutany’, the
detection condition i®$ @ ¢'. The operato is the xor-operator, which means that the detection condition
is only true if ¢ and¢’ have different values. Test cases are generated by convertin§dnspecification
to a SPIN or SMV model. The considered guard conditions are mutated, setdbfdetection conditions
is created by combining each mutatitwith its original conditionp as¢ & ¢’. Trap properties are created
by negating the detection conditions; i.e., claiming that they are never true SAsgpecifications can be
hierarchic, additional outer guard conditions have to be included in th@togerty:

O(A— (¢ ¢)

Here, A denotes the conjunction of the outer guard conditions. The property isaéent to J (A — (¢ —
¢')). Test cases can be derived as usual by checking the trap propesiest the model.

Considering the example ASM specification of the CC model, given in Figues€yme a mutant of
the guard of rule 1 fronfvel ocity == stop) && (accelerate == True) && (brake ==
Fal se) tonot (vel ocity == stop) && (accelerate == True) && (brake == Fal se).
This results in the following trap property:

O(=((vel ocity = st opAaccel er at en—brake)d((vel oci ty # st opAaccel er at en—br ake)))

6.4 State Machine Duplication

Okun et al. [84] identified the problem that when using mutation in the refleappnoach there is no guar-
antee that a test case propagates a fault to an observable output. passiide solutionln-line expansion
is proposed. In-line expansion considers only reflections of the trams#lations of output variables. In
these reflections, internal variables are replaced with in-line copiesiofridmesition relations. This replace-
ment is repeated until the formula references no more internal varialléselexpansion results in very
efficient, but also very large test suites, as the number of mutants caaseayaite significantly.

36

» 66 6%

|| o0 @

Model Combined Model |- (- N

| Model Checker (3 @@ @

, oo @

l Y Test cases

Orig = Mutant
Mutant — Trap Property

Figure 13: State machine duplication based test case generation.

As an alternative, an approach calledte machine duplicatiois proposed in [84]. This approach is
based on model mutation, but uses an equivalence checking methodvi ctarnterexamples. As illus-
trated in Figure 13, for each mutant model, a combined model where mutaotigimél model are executed
in parallel is created. Both original and mutant model share the identical wajpues, therefore inequiva-
lence can be shown with a trace where the output values differ. The robeeker can easily be used to
create such a trace, by verifying a property of the following type foh@atput variablewut, or alternatively
creating the conjunction of all output variables:

O (original.out = mutant.out)
In the CC example model, the following property would be used:
O(original.velocity =nutant.velocity)

Boroday et al. [35] use this approach in the formal setting of modulessasided in Section 2. In this
setting, the composition of specification modsland mutanil/ with outputsO results in a counterexample
if:

SIMpED A@=p)

peO

If the mutant is equivalent to the original model with regard to the outputs, theendimbined model
satisfies these properties. If the mutant is not equivalent, then eacprsyehty results in a counterexample
usable as a test case where the fault is propagated to an output. Ingyractation of a test suite with state
machine duplication takes longer than with reflection, because there is tieadef creating the combined
models, and calling the model checker separately on each combined modeitswiteflected properties
can be verified in a single run of the model checker. Experiments [84], ewever, shown that test suites
created with state machine duplication are better.

37

7 ISSUES IN TESTING WITH MODEL CHECKERS

Testing with model checkers is an active area of research, and agheuelare many issues that still need
to be solved. The main showstopper for industry acceptance of mods{ertizased testing is probably the
limited performance. A main cause of this problem is the state explosion prohl¢thgoe are other issues

contributing to a potentially bad performance. Even if the performance epsalule, the results of the test
case generation might not be as good as possible. Some applicationasdika regression testing, need
special treatment. Nondeterministic models or properties that require nordmasterexamples are further

examples of issues with model checker based testing. This section revawifiédl problems and proposed
solutions.

7.1 Abstraction

The main cause for performance problems with model checkers is the gtddsier, which signifies the
large or intractable state spaces that can easily result from complex mdekgecially software model
checking is susceptible to the state explosion problem. Abstraction is a popeiaod to overcome the
state explosion problem. Abstraction is an active area of research, andabstraction techniques have
been presented in recent years. This has made it possible to verifgriiespon very large models. In
general, abstraction methods are tailored towards verification, anddbre@ak not always useful in the
context of testing.

A full survey of available techniques is out of the scope of this documengnaexample technique,
we mention counterexample guided abstraction refinement (CEGAR) [8&]hwefines an abstract model
until no more spurious counterexamples are generated when verifyingparfy. This method ensures
soundness, which means that a property that holds on the abstractatsmleblds on the concrete model.
In contrast, when generating test cases with a model checker, the wbjsdiifferent. Properties that are
violated by a concrete model should also be violated by the abstract model.

Ammann and Black [86] define a notion of soundness in the context of &sst generation, which
expresses that any counterexample of an abstracted model has to I teaca of the original model.
A method calledinite focusis proposed and shown to be sound with regard to this soundness definition
Finite focus only considers a limited set of states, for example only a fixesesolb variables of large or
unbounded domains. An additional state machine is defined, which chtngestatesoundto unsound
whenever a transition is taken that is out of the finite focus. Once the ndssiate is reached, this state
machine stays in this state.

Constraint rewriting rules are defined, which basically rewrite tempoiatprs such that they evaluate
to true when an unsound state is reached. In [86] this rewriting is defime@iTiL_, and a correctness proof
is given. The same rules apply to LTL properties. Consequently, theraomnisrewriting C' R(¢) for an
LTL/CTL property ¢ is recursively defined as follows, whesedenotes a Boolean value, ands a special
variable that is true if the state is sound or otherwise fal$®. denotes any of the LTL operatofs, O,
¢, or when considering CTL propertiesG , AF, AX, EG, EF , EX . The operato) P, stands for
eitherA or E in the context of the CTL until operator, or is a blank placeholder in the aflsEL. Atomic
propositions are denoted lay

Definition 21 (Constraint Rewriting)

cr(¢p, True) if ¢ begins with a temporal operator
s — cr(¢, True) else.

cri) - {

38

Q

r(a,v) = a

—\) _‘CT(¢7 _\’U)

JQ

cr

cr(p1 A ¢2,v) = cr(é1,v) Aer(gpa,v)

cr(¢1 V é2,v) = cr(¢n,v) Ver(g,v)
= cr(¢1,~w) — er(g2,v)

cr(p1 = ¢2,0) = cr(¢1,v) = cer(pe,v)

cr(OP ¢, True) OP (s — cr(¢,True))
cr(OP ¢, False) OP (s Acr(¢, False))
cr(OPy ¢1U ¢o, True) = OPFy ¢1 U ¢2 — cr(¢2, True))
cr(OPy ¢1 U ¢g, False) = OPFy ¢1 U ¢2 A cr(¢a, False))

(
(—¢
(
(
cr(ér — é2,v)
(
(
(
(
(

When creating test cases from a model which is abstracted with the finite fioetihod, this constraint
rewriting has to be applied to all properties involved in the test processisthaap properties, reflected
properties, etc. Any counterexample created from such a rewrittereqyois sound with regard to the
abstraction. This means that the test case applies to the abstracted angjitted wrodel. A property
where the constraint rewriting has been applied might be satisfied by ttracbmodel, while the original
model would result in a counterexample. Therefore, the number of t&s$ ca an abstract model is usually
smaller. This shows that abstraction can not only be used to increasertbentaace of the test case
generation, but also as a means to control the size of resulting test suites.

7.2 Improving the Test Suite Generation Process

One main cause for bad performance during test case generation is teeahecdker itself. Improvement
of model checking techniques is an important area of research. Fompéxaa case study by Heimdahl
et al. [53] showed that bounded model checking can be superiorstotdee generation, at least for certain
models and coverage criteria. As another example, directed model chdtkihis a recently proposed
technique, which is of interest to testing with model checkers, because itis & efficient generation
of counterexamples and not exhaustive verification. An overview okt research to improve model
checking is out of the scope of this document. As another example of hgretfeemance can be improved,
abstraction techniques have been considered in the previous subsection

Both coverage and mutation based approaches to test case generatios wedel checker far more
often than really necessary, as identified by Hong and Ural [87]eFeasd Wotawa [88], and Zeng et al.
[89]. For example, consider a coverage criterion that is represeptadét of trap propertieB. Tradition-
ally, the model checker is called for each trap propértyT’. As a consequence, many duplicate test cases
are created, and many test cases are subsumed by other, longes¢esBlack and Ranville [90] describe
winnowing of test cases as a means to remove such redundant testmas@scomplete test suite has been
generated. As described by Fraser and Wotawa [91], even testtbasere not duplicates or subsumed by
other test cases can contain a significant amount of redundancy ifah&irt common prefixes.

In [88], it is proposed to monitor trap properties during test case geoer&ach time a counterexample
is generated the remaining trap properties are analyzed with regard to wisonaterexample. A trap
property that is already covered does not need to be consideredgfaate generation; it is not necessary
to call the model checker on it.

39

As a concrete technique to perform this monitoring, LTL rewriting based @moapproach described
in [92] is proposed in [88]. The proposed rewriting techniques ard useuntime verification to deter-
mine whether a given execution trace shows a property violation. HavaluhdRosu [92] claim that their
rewriting engine is capable of 3 million rewritings per second, and therepgm®aches that try to further
optimize this approach, e.g., [93-95]. The following definition gives theitig rules necessary to de-
termine whether a temporal logic propetiyfor Kripke structureK = (.S, sg, T, L) is violated when state
s € Sis observed. The application efto ¢ is denoted ag{s}. A property is evaluated with regard to a
trace by sequentially rewriting the property for every state in the tracee Hetleriting results in a contradic-
tion at any state, then the property is violated. In contrast to the rewriting giden in [92], the following
definition of the rewriting does not treat the final state specially. Whenitieg/for runtime verification,
a pass/fail verdict is expected at the end of an execution trace. Inasgnfinite trace semantics are not
needed for test case monitoring, because only property violations areeddst. If the rewriting after the
last state results in a property, it is sufficient to know that the propertytigaiacovered.

Definition 22 (State Rewriting)

(Oe){s} = ofstAn Do

(O ¢){s} = ¢

(0 o){s} = ¢{s}Vv O(9)

(1 U ¢2){s} = ¢a{s}V (d1{s} A (d1 U ¢2))
(1 A p2){s} = ¢1{s} A d2{s}

(1 V P2){s} = ¢1{s}V ¢o{s}

(1 — ¢2){s} = ¢1{s} — ¢aofs}

(1 = d2){s} = ¢1{s} = ¢2{s}

(—¢){s} = —(¢fs})

a{s} = alifa¢ L(s) elsetrue

Fraser and Wotawa [96] represent mutant models as temporal logiatespehich allows application
of this approach to mutation based approaches. Each mutant model sergprkeby a unique characteristic
property. Characteristic properties are similar to the reflected propedszsibed in Section 6, but are
extended to cover all possible effects a mutation can have in a transitiomsysttead of monitoring trap
properties, the characteristic properties can be monitored. Whenelaracteristic property is covered by
a counterexample, it is not necessary to include the mutant represerttad blyaracteristic property in the
test case generation.

When converting each counterexample to a distinct test case, the resudtirggiite contains redun-
dancy. Monitoring avoids duplicate or subsumed test cases, but diftest cases might still share identical
prefixes. As described in the next section, these common prefixes domoibute to the overall fault de-
tection ability, but consume time during test case generation and executigrcarihbe avoided by creating
test cases incrementally instead of mapping each counterexample to a¢eSttdagapproach was initially
proposed by Hamon et al. [97]. After creating a counterexample, the isitited of the model for the next
verification process remains the final state of the counterexample. [thi87$ achieved by directly calling
application interface functions of the model checker SAL. Incrementsgdion of test cases in combina-
tion with property monitoring is used in [88]. The choice of which trap propgr verify next influences
the length of the test cases that are generated. In [97] the trap pre@adiehosen randomly (in the order

40

provided). In [88] this is done as well, but in many cases the rewriting pfpraperties leads to hints of
which trap properties can lead to very short test cases. For examply ffriopertyp = O (z — Qy) is
rewritten to¢’ = y A O (z — Quy) after the final state of a trace, then only a single additional transition
might be necessary to covefri.e., violate it with—y).

Hong and Ural [87] use subsumption relations between items describecbgi@ge criterion to reduce
the costs of the test case generation. An entity subsumes another entiticisiexgthe former guarantees
exercising the latter. The time used by the test case generation is redudiest bglculating a minimal
spanning set, and then only using coverage entities in this minimal spanniogiseive test cases.

Model checking is used to determine subsumption between two entities. luimadghat the entities
are represented as LTL formulas, such that a path exercises the eritifylfifls the LTL formula. For
entitiese; andes, represented by LTL formulagl(e;) anditi(ez), e; subsumes; if a model K satisfies
the following property:

ltl(el) — ltl(eg)

For each coverage criterion, a different formitide) has to be defined for the entitiesHong and Ural
[87] define these formulas for control and data flow coverage critamigg7], the subsumption relation is
used to derive minimal spanning sets for coverage criteria. A spanrifay secoverage criterion is a subset
of its entities, such that exercising all items in the spanning set covers all edigseribed by the coverage
criterion. A spanning set is minimal, if there exists no spanning set with less mieme

The minimal spanning set is derived by first creating a subsumption graplhich vertices represent
coverage entities and arcs represent subsumption. Subsumption inforisatiErived by model checking
the above property for pairs of coverage entities. Strongly conneciagpanents are collapsed into one
vertex, which results in a reduced subsumption graphwLetw,, be the vertices of the reduced subsump-
tion graph which have no incoming arc; that is, they are not subsuvigd..V,, are the sets of strongly
connected components of the subsumption graph corresponding.tov,,. A minimal spanning set is
{vi,...,u,}, such thaw, € V; forall 1 < i < n. Hong and Ural [87] present two different algorithm to
derive subsumption graphs, one requitésalls to the model checker farcoverage entities and identifies
all possible minimal spanning sets. The alternative algorithm reduces thdecatypy only creating one
possible minimal spanning set.

Monitoring avoids that the model checker is called for trap properties tieat@ered by the traces
selected so far, whilst the subsumption approach avoids model chedkiragp properties that aralways
subsumed by other trap properties. The results can be quite differehgvan though monitoring can
result in smaller test suites, the actual success depends on the ordeclntsap properties are chosen.
Consequently, a combination of these approaches is conceivable.

Zeng et al. [89] collect test cases created with a model checker in dustuzalledtest tree Each
counterexample is merged into the existing test tree. Identical prefixesrgry sverlaid in the tree, which
automatically removes duplicate or subsumed test cases. Once a completeetdsistroeen produced
covering all test requirements, a test suite is derived as the set of pathgHe tree root to a leaf. This
achieves the coverage criterion used for test case generation with a mohiestsuite. It is also suggested
that each time a sequence is generated, the remaining test requirememalyredawhether any of them
are fulfilled. A concrete method for this is the rewriting technique presetttedea and proposed in [88].

41

7.3 Improving the Results of the Test Suite Generation Pross

Performance is a main concern for test case generation; the generaespitself needs to be sufficiently
fast to be applicable to models of realistic size. However, performanceiamisnportant factor during test
case execution. If there are too many or too long test cases, executdesifsuite might not be feasible.
This is even more the case when considering regression testing, whetsaite is applied repeatedly after
changes in an implementation of specification. Some of the approache#ddsnorthe previous section
improve the test case generation such that smaller test suites result. Tiuis sensiders optimizations to
existing test suites.

With high execution costs in mind, the test case generation process shallg idsult in minimal test
suites in the first place. A test suite can either be minimal with regard to the nwhtest cases, or the
number of transition in the test suite. In the context of testing with model chedbath tasks are NP-hard,
as shown in [59].

Test suites created with model checkers are not minimal; in addition, theyamftesist of test cases that
do not contribute to the fault sensitivity. For example, different trap @migs might result in identical test
cases. If a (passing) test case is a prefix of another test case, thewtiinecessary to execute the shorter
test case if the longer one is also executed; the short test case is sdiddsuthe longer one. (For failing
tests long test cases are subsumed by shorter prefixes). Black avile80] describe several methods
to remove unnecessary test cases: Clearly, duplicates and subsutteddsscan be safely removed. The
cross sectiomf a requirement is the ratio of test cases that satisfy a test requiremesit tases in total:

_ #satisfying tests
N # tests

CS(r)

A test suite can be minimized by selecting those test cases, that satisfy taéstments with small cross
sections. Such test cases can be identified with Begolution

RES(t) =) 051(74)2

The higher the resolution of a test case is, the more small cross sectiareneeputs it fulfills. A test suite is
minimized by iteratively selecting the test case with the greatest resolution thii &uyet unfulfilled test
requirement, until all test requirements are fulfilled.

Another technique proposed in [90] is minimization, which selects a subsetest suite that achieves
a given coverage criterion. This is also knowrtest suite reductiorwhich is defined by Harrold et al. [98]
as follows:

Given: Atestsuitel'S, a set of requirements, o, . . ., r, that must be satisfied to provide the desired test
coverage of the program, and subset$'6f T3, T, . .., T;,, one associated with each of tha such
that any one of the test casigsbelonging tol; can be used to tesf.

Problem: Find a representative set of test cases fiibfhthat satisfies alt;s.

The problem of finding the optimal (minimal) subset is NP-hard, therefarerakheuristics have been
proposed [98—100]. Test suite reduction results in a new test suitel) whist contain at least one test case
from each subserl;. The reduced test suite therefore consists of less test cases; thigesdata overall
fault detection ability, as shown in several experiments [101-103] (ajththere are other claims [104]).
Note that this reduction of fault sensitivity would also occur when usingmimal instead of a heuristic
reduction approach.

42

Heimdahl and Devaraj [101] conducted their experiments in the contexiodil checker based test
case generation. These experiments also lead to the conclusion thafteeséduction can significantly
reduce the size of a test suite, but the fault detection ability suffers frismetiuction.

In [91] it is shown that test suites created with model checkers often icoaitsignificant amount of
redundancy, which means that test suites are bigger than would besagocegth regard to their fault detec-
tion ability. Common prefixes are identified as a main source of redundanaype@sure the redundancy,
test cases are represented as a tree, where the root node reptesaritial state.

Definition 23 Test Suite Execution Tree: Test cases {so, s1,...5;} of a test suitd’'S can be represented
as a tree, where the root node equals the initial state common to all test:case(7'S) = sg. For each
successive, distinct statg a child node is added to the previous noge

s 1 (si,85) € t; — s € children(s;)

The depth of the tree equals the length of the longest test caB8.irchildren(x) denotes the set of
child nodes of node. If there are different initial states, then a virtual root node that cotsndifferent
initial states can be added, as also used by Zeng et al. [89]. When vitsgihgases as a tree, redundancy
exists along paths to a node that has more than one child node. Conseghentigundancy of a test suite
can be quantified as follows:

Definition 24 Test Suite Redundancy: The redundaRcyf a test suitél'S is defined with the help of the
execution tree:

R(TS) = — . 3 R(z) (18)

n p—
z€children(root(TS))

The redundancy of the tree is the ratio of the sum of the redundancysvRlder the children of the
root-node and the number of arcs in the tree-{ 1, with n nodes). The redundancy val@is defined
recursively as follows:

R(l‘) — { (|chzldren(:n) - 1|) + ZcEchildren(x) R<C> Zf chzldren(:v) 7é {} (19)
0 if children(z) =}

In [91], it is proposed that test suites can be improved by splitting tess eeitle common prefixes and
recombine them such that the common prefixes are avoided. Hence, an egttest suite still fulfills the
original test requirements for most conceivable types of test requitspiaurt the overall test suite size is
reduced.

Finally, a technique that is used to improve the speed with which faults ardetbisdest case prior-
itization. Test case prioritization describes the task of finding an ordefitigedest cases of a given test
suite such that a given goal is reached faster. The test case prioritipadiolem is defined by Rothermel et
al. [105] as follows:

Given: T, atest suitePT, the set of permutations @f; f a function fromP7T to the real numbers.

Problem: FindT” € PT such that(vT")(T" € PT)(T" # T")[f(T") > f(T")].

43

In this definition,PT is the set of all possible orderings @f and f is a function that yields an award
value for any given ordering it is applied to. The functigrrepresents the goal of the prioritization; for
example, achievement of a coverage value as fast as possible, or @npot/of the rate at which faults are
detected.

In the context of testing with model checkers, prioritizing was consideyderdser and Wotawa [106].
In general, the first step of prioritization is to analyze each test case witind'¢o its coverage of a certain
criterion or mutation score; test case analysis with model checkers islbar Section 8. Then, the test
cases simply have to be arranged in descending order according tooyeziage values of mutation scores.
In [106], the use of the property relevance (see Section 5.4) that Eaksrement properties and test cases
is also proposed. In general, the prioritization reduces the averageenwhtest cases that need to be
executed in order to detect a fault.

7.4 Quality Concerns for Coverage Based Testing

Heimdahl et al. performed several experiments to evaluate model chieked testing. In [53], a case
study that analyzed the scalability of test case generation with model ¢chethke authors observed that
several condition based coverage criteria resulted in too short test ited are not good at detecting faults.
In [107], a pilot study was conducted to investigate the suitability of conditamet coverage criteria. In
this experiment, test suites were generated using different conditiod bagerage criteria for a close to
production model of a flight guidance system from Rockwell Collins Inte Tault detection ability of the
different test suites was measured on mutant versions of the model. phemegnt showed that a set of
randomly generated test cases generated using the same effort peniersio all coverage based test suites.

This result was due in part to a peculiar behavior of the model in use tleahetaconsidered by the
specifiers, but often exploited by the bounded model checker useeibyddhl et al., which always returns
the shortest possible counterexamples. The solution applied in [107] veiSite invariants to prohibit
the unwanted behavior. The other conclusion drawn by Heimdahl et alatisatty evaluation techniques
interfere with condition based coverage criteria. In general, this shatsthuitable model has a crucial
influence on the result of model checker based test case generation.

In a consequent experiment, Devaraj et al. [108] showed that whilerage criteria are suitable for
analysis purposes, there are problems when using them for test cegatgm. The identified problem is
that coverage of a trap property does not guarantee that a combjgnteof the specification is actually
executed by the resulting test case. As a solution, auxiliary variables thedte whether some part of the
specification was executed are introduced in the model and the trap fieeper

An evaluation of three specification coverage criteria was performediauvazik et al. [109]. Test
cases were automatically created for a given example model using fuitaredoverage, transition pair
coverage and specification mutation coverage, which is the mutation apprased on reflected properties
presented in Section 6. The resulting test cases of one criterion wdtat@eawith regard to the other
criteria. No subsumption relations could be detected between the consalitegid. The results showed
that while full predicate and specification mutation related test suites are glated with each other than
transition pair test suites.

7.5 Regression Testing

Regression testing is applied when previously tested code is changedemoensure that no new errors
are introduced. A straight forward approach to regression testimgtést all Here, all available test

44

cases are executed, which might be very time consuming and expendiezefdre,selective retesting
tries to select only a subset of the available test cases, which are sitffwigdetect faults introduced with
the changes. Traditionally, only changes in the source code are catsidehanges in the specification,
however, also require regression testing.

Xu et al. [110] present an approach to regression testing with modekelrs where a special compara-
tor creates properties from two versions of a model, the original versidraahanged version. Each such
property covers one test path that has been changed; in [110] lsger@dles in the model are introduced to
identify such paths, and the properties are implemented as assertionseuahables. It is suggested that
comparators can act on different levels of abstraction. The resultofepies are verified on the changed
model. Only those properties that result in counterexamples need to hideredisfor regression testing,
properties that hold on the changed model represent test paths thatmeed to be executed.

Fraser et al. [111] evaluate different techniques to create regnetesibcases and update existing test
suites when a model is changed. In a first step, an existing test suite igeshédydetermine which test
cases are still valid for the changed model and which are not. This caorgevdth a model checker, by
either symbolically executing the test case on the new model and comparingootphe test case and the
model, or by extractinghange propertie§rom the two versions of the model and then checking the test
case models against these properties. A change property represestiatige in the transition system, such
that a test case that takes a different transition violates the property.

Once obsolete test cases have been identified, there are differeaaelpgs to create new test cases.
The first approach is to determine the behavior of the changed model \g#hdréo the input of obsolete
test cases; that is, the test cases are adapted to the new model. Altgrnseiieeof trap properties are
generated from the old and changed model, and then the difference énsthissis calculated and used to
generate test cases. Finally, property and model rewriting is propofEtLijy which lets all test cases focus
on the model changes. Every resulting test case contains at leastasmgedHransition. Test cases created
with any of these approaches can be used as regression tests, ancbwtiened with those test cases from
a previous test suite that are still valid, form a new test suite.

These methods are evaluated in [111], and it is shown that there is adfifdubstween time consumed
for generating and executing new test cases and overall quality of sufestfter several changes. Conse-
guently, the preferred method depends on the available resourcesalitg (equirements.

7.6 Fault Visibility

The state of a model is defined by the values of its variables. These var@diebe input or output to
the system, but they can also be internal variables. Internal variables nogle directly observable.
Therefore, it is important that a test case ends with some observablecevemange, such that a verdict
is possible. For example, trap properties for structural coverageiardgetrap properties created by the
reflection approach explicitly consider the transition relations of interndlies. Such trap properties
usually end with a transition where an internal variable takes on an intergsling If this value cannot be
observed, the test case does not fulfill its intended purpose.

Okun et al. [84] propose two approaches that explicitly creates susht@@xamples that result in
an observable change in an output variable. In-line expansion repeatplaces internal variables in
the properties used for test case generation with their transition relatitihthene are no more internal
variables left. This process can be applied to any kind of trap propegyanfalternative, Okun et al. [84]
propose state machine duplication, described in Section 6.4.

45

Hong et al. [58] assume the existence of a special predicate which is true in any exit state (e.g.,
in the final vertex of a data flow graph). It is also suggested that the inititd san be used as an exit
state, such that test cases can be seamlessly executed. To make uspretiibége, trap properties have to
include a reference to this predicate, which can for example be done wiitipdination:

. — O—exit

When using a requirement property based approach it depends cegtlieement properties, whether
test cases are fully observable or not: If the properties include inteanables, then there is a chance that
observability is not always achieved.

7.7 Nondeterminism

Although a model checker can verify nondeterministic models, trace cexat@ples represent only one
possible choice for each nondeterministic branch. Consequently, cexamneples can only serve as test
cases when using deterministic models. If a trace generated from a nonidétéc model is executed as a
test case on animplementation, the test case might falsely detect a fault if theiempdeion makes different
choices at the nondeterministic branching points. The correct verdidsigdke would bénconclusiveas
neither pass or fail can be concluded.

A simple solution that is applicable as long as there is not too much nondeterminjgesented in
[112]. Here, the model is extended with an indicator variable that shotwsther a nondeterministic tran-
sition was chosen or not. When interpreting counterexamples as testttesesecution framework has to
check whether this flag is true when the implementation does not behaveezsezkf the flag is set, then
an inconclusive verdict is given, or else a fault is detected. It is alsigbtrforward to extend test cases
to a tree like structure, where there are different branches for elifferondeterministic choices. In [112],
this is done in a lazy fashion; that is, whenever an inconclusive verdairs during test case execution,
the last known deterministic state is used as the initial state of the system, andcau@erexample is
derived. This new counterexample serves as a new branch in the otéisestThe applicability of such an
approach depends on the amount of nondeterminism. Furthermore, if the impdtioreis nondeterminis-
tic itself, then applicability decreases. This means that nondeterminism as a afearderspecification or
implementation choice can be handled to a certain degree, but not asyoebydistributed systems.

Boroday et al. [35] distinguish betwegreakandstrongtest cases. A test casér model.S and mutant
M is weak if M can produce an output sequence in responsgetiat.S cannot produce. A test casés
strong if every output sequence &f in response to differs from the corresponding sequencesofUnder
fairness assumptions, a weak test case can reveal any fault if réiyeatecuted; the repeated execution
requires a reliable reset transitions. The method presented in [112] loewlded to distinguish weak test
cases from strong test cases: a (linear) test case is weak if it contiaimsoaclusive verdict.

Boroday et al. [35] describe methods to derive test cases for nonmdeistic specifications, based on
the state machine duplication approach (see Section 6.4). For the simplexttaxsehe specification is
deterministic and only the mutant is nondeterministic, weak test cases canimld®r the generic state
machine duplication approach. For strong test cases, Boroday ebhtd8cribe a method to derive an
observer from a mutant specification.

An observerObs(M) for module M uses all outputs ofi/ as inputs. A hidden variablgound is
added, and the hidden variablesin are removed. Determinization is possibly performed by powerset
construction. Except in trivial cases the observer is not input-enahtiditional sink states are added to

46

make the module input complete. In these sink states, the varfabled is set to true. A strong test case
for a nondeterministic mutant is therefore derived if the following propeogscot hold:

S||Obs(M) = O= found

If not only the mutant, but also the specification is nondeterministic, then wet&ases can be gener-
ated by creating an observer from the specification. A weak test caaenfindeterministic specification is
therefore derived if the following property does not hold:

Obs(S)||M = O= found

Because of its complexity, Boroday et al. [35] do not consider generafistrong test cases, but describe a
method to detect strong test cases.

7.8 Shortcomings of Linear Trace Counterexamples

The approach of converting test requirements to temporal logic propartéeshen using resulting coun-
terexamples as test cases only works as long as test requirements adfilled by such linear traces.
MC/DC, for example, requires pairs of test cases to cover conditionshéwsn in [30], such requirements
can be expressed with CTL. However, current model checkers tdsupgport full CTL but only a linear
subset such as such A€'T L7t or LIN [28]. To overcome this problem, it is proposed in [30] that model
checkers do not generate linear traces but a tree like structure ewitishce graphsEvidence graphs can
be nonlinear, and illustrate for any CTL formula, why it is satisfied or violatécin evidence graph is
nonlinear, then it is necessary to create several test cases to coggafie This is simply achieved by
creating one test case for each path from the root node to a leaf ndlde e@fidence graph. The approach
described in [30] is not implemented. Clarke et al. [29] proposed anitiigoto create tree-like coun-
terexamples, which would serve a similar purpose; at the time of this writingg\ewthere is no available
implementation.

8 TEST CASE ANALYSIS WITH MODEL CHECKERS

Model checkers are not only useful when it comes to creating tes.c@seen an extant set of test cases, a
model checker can be used to evaluate the quality, for example with regaatiltiaction of a given coverage
criterion. A nice aspect of this approach is that coverage can be neeasithout actually executing test
cases. Different activities during the development process can regaht cases; for example, use cases
created during the requirements phase, manually created test casescasés created with any automated
method. It is an important task from a practical perspective to evaluatgbodithese test cases are.

8.1 Symbolic Test Case Execution

Analysis of test cases with a model checker is based on the idea of eapingstest cases as verifiable
models, based on an approach by Ammann and Black [76]. Test casepegsented as constrained finite
state machines (CFSM), which have an explicit state counter on which thesvafiall other variables
depend. Test cases are converted to CFSM models with an additionaleaea. St at e. Itis initialized
with 0 and increased until the final state of the test case is reached. Tles v all variables are set
according only its value.

47

-- specification AG (brake -> AX velocity = stop)
-- is false as denpnstrated by the foll ow ng
-- execution sequence
-> State: 1.1 <-

accelerate = 0

brake = 0

velocity = stop
-> State: 1.2 <-

accelerate = 1

brake = 1

velocity = sl ow
-> State: 1.3 <-

accelerate = 0

brake = 0

Figure 14: Counterexample created by NuSMV showing that brakes td@ark in mutant model (edited
for brevity).

As an example, consider test case derival by checking a mutant motlet &C example given in
Section 3 4ccelerate | !brake & velocity = stop: sl ow) against the first requirement
property specified in Equation 13 in Section 3. NUSMV returns the cowaemgle shown in Figure 14,
which can be used as a negative test case.

In the trace in Figure 14, at every state only those variables that chémgjedalues are listed. In state
1.2 bothaccel er at e andbr ake are activated, while due to the mutation at the same tileoci t y
changes tsl ow. In state 1.3vel oci ty is still sl ow, which is a violation of the requirement that it
should best op. When converted to an SMV model, this trace results in the model listed in Fi§ure 1

This SMV model is suitable for analysis with a model checker, for example taueaoverage or a
mutation score. The latter can only be directly measured in the case of wediomutdnich means that the
change caused by the mutation does not have to propagate to an outpootsiered as killed. In order to
simulate the execution of a test case on a model, further processing isaigcdhe test case is combined
with the model by moving the model’s main module to a sub-module of the test casehamging all input
variables to parameters of that module. This new sub-module is instantiated@stlvase model, and the
input variables are used as parameters, thus ensuring that the mutahtisesdhe inputs provided by the
test case. The result is shown in Figure 16.

Finally, for each output variable a property is added that requires ttpubuvariables of the mutant
model and of the test case to be equal for the duration of the test caaléefoatively, a conjunction of all
these properties). After the last state of the sequence the test casetiepecify how the values change.
In the test case model, this is modeled by not changing the variables. Howevmutant model might still
change as time progresses. Therefore, the assertion is extended e @alid while the last step of the test
case has not been exceeded.

O (St at e < MAX_STATE — vel oci ty = nodel . vel ocity)

Calling the model checker on the combined model and these propertieyamgiexample illustrates

48

MODULE mai n next (brake) := case
VAR State = 0: 1;

accel erate: bool ean; State = 1: O;

brake: bool ean; 1: brake;

velocity: {stop, slow, esac;

fast}; init(velocity):= stop;

State: 0..2; next (vel ocity): =case
ASSI GN State = 0: slow

i nit(accel erate): =0; State = 1: sl ow,

next (accel erate): = case 1. velocity;

State = 0: 1; esac;

State = 1: O; init(State) := 0;

1. accelerate; next (State) := case
esac; State<2: State+l;
init(brake) := 0; 1. State; esac;

esac;

Figure 15: Test case as verifiable SMV model.

MODULE Mbdel (accel erate, brake)
VAR
velocity: {stop, slow, fast};
ASSI GN
As in (rutant) nodel

MODULE mai n
VAR
nodel : Model (accel erate, brake);
As in testcase nodel

Figure 16: Test case model combined with original model to simulate test xasation.

49

that the test case fails on the model. If the model checker does not retoumgerexample, then the test
case passes.

8.2 Coverage Analysis

Coverage analysis measures how thoroughly a given test suite egesciystem under test. A coverage

criterion describes the items that should be executedgred by at least one test case; for example, lines
of code, or branches in the control flow. Coverage criteria can aldmbed on specifications or models.

Different coverage criteria were presented in Section 4 and Sectioach iEem described by the coverage

criterion is represented as a single trap property, as described in theysrsection. These trap properties

can not only be used for test case generation, but also for determimiegage values. The test coverage is
the percentage of items that are actually covered, i.e., reached duriocggestxecution.

Definition 25 (Test Coverage) The coverage€’ of a test suitel’'S with regard to a coverage criterion rep-
resented by a set of trap properti@ss defined as the ratio of covered properties to the number of properties
in total:

C = |71)‘ - {z|z € P A covered(xz,TS)}|

The predicateovered(a, T'S) is true if there exists a test casec T'S such thatt coversa, i.e.,t ¥ a.

When checking a test case model (e.g., Figure 15) against a trap tgrapermodel checker returns
a counterexample if the test case covers the item represented by thedpaptyr Care has to be taken
because a test case is only a finite prefix of an execution path. The pathbaighncated such that a trap
property is violatedecausef the truncation. For example, consider evaluation of a condition with{the
operator on the final state of a test case. As there is no defined nexfstatie final state (or alternatively,
the next state after the final state might implemented as the final state itself algigisjate might cause a
property violation.

A common, practical solution to this problem is to rewrite properties such thattrenot be violated
because of a finite truncation. A special variable that evaluates to truéf dmbycurrent state of a sequence
is any state prior to the final state is assumed. In [55], this variable is deas&bt ai n. This variable
can be used to rewrite temporal logic formulas such that they only evaluattsoif violated before the
final state, else to true. The same rewriting rules as given in Section 7.%assel, only the variableis
replaced withSust ai n.

The test coverage of a given test suite is determined as follows:

1. Each test case is converted to a verifiable model, as described above.
2. Each test case model is checked against the rewritten versionsarhalining trap properties.
3. Each trap property that results in a counterexample is covered, andhdbneed to be checked again.

The overall test coverage is calculated from the number of coveregtogerties according to Defini-
tion 25.

50

8.3 Mutation Analysis

As introduced in Chapter 6, another common analysis technique besideagevanalysis is mutation
analysis. Here, a given test suite is examined with regard to a given saitahts, in order to determine
how many of the mutants can be distinguished from the original by the test ddseally, mutation analysis
is applied to the source code, but specification mutation is receiving imogeattention — for example,
consider the mutation based test case generation presented earlier.

Definition 26 (Mutation Score) [76] The mutation scoré& for a given method\ to create mutants, a test
sett for any specificatiom equals the number of mutants killed by the testisativided by the total number
of mutants /N, produced byM onr:

S(M,r,t):%

A special case of mutation analysis is presented by Ammann and Black [é6§, Hot the model but
properties that represent the transition relation are mutated. As desahbegd, these properties can be
used like trap properties for test case generation. Similarly, these fiespeain also be used for analysis
of test cases like trap properties. The mutation score is calculated fronuthieen of mutant properties
that result in a counterexample when checked against a test case mbdekind of mutation analysis
uses weak mutation, which means that a mutant is killed if an erroneous state resnediately after the
mutated transition.

In contrast, in strong mutation a mutant is killed if the final output is differesrnfthe original version.
Strong mutation analysis can be performed by considering model mutantsl kotants need different
treatment in order to determine a mutation score. Again, each test case éstedrne a verifiable model.
Then, each mutant is successively combined with a test case model abettabove, until the verification
of such a mutant/test case model combination results in a counterexamplent@rexample indicates that
the test case failed, which in turn means that the mutakiliésl.

9 FURTHER USES OF MODEL CHECKERS IN SOFTWARE TESTING

9.1 Testing with Software Model Checkers

All techniques presented so far assume the existence of a formal mdtiel ®fstem under test that can be
used to generate test cases. In practice, the creation of a sufficieatisiode of the most difficult steps in
model based testing. Sometimes the development process is supported loy gp@sification languages
which can serve as a basis for creating a verifiable model. Converstaedre different formalisms is
usually automatable; for example, Black [113] consider the generation déisirom high level specifica-
tions. Often, however, a model has to be generated manually, which isitiifficd error prone. Therefore
there is interest in applying model checking to source code directly, regntvenneed for a model. This is
commonly referred to asoftware model checking

There are two different paths that have been taken to apply modelingeickverification: Several
tools create models in the input languages of popular model checkergtiosource code. Other tools
implement their own model checking procedures. For example, Bandefa ¢ieates SMV or Promela
models from Java code. The first version of Java PathFinder [115tafs/erted Java programs to Promela
models. Further tools that are built on top of existing model checkers a&k& [16], Park et al. [117]

51

convert Java code to SAL models; Bogor [118] tries to provide a largiradependent software model
checking framework.

The second version of Java PathFinder [119] includes a specializadlvitachine that interprets byte-
code. Verisoft [120] executes C program code in order to avoid tked teerepresent program states and
statements. CMC [121] additionally stores information about visited statesnd@dumodel checking is
used to verify C code in CBMC [122]. SLAM [123] converts C code to Bam abstractions that are model
checked. Blast [124] uses counterexample guided abstraction refinemerify C code.

Testing with software model checkers has been considered by Beger[#25], who use the model
checker Blast to create test cases from C code. Test cases candvatgd with regard to predicates (i.e.,
safety properties), and locations in the source code. Consequentlydsssble to derive test cases for
code-based coverage criteria. Visser et al. [126] use the Javaifdghmodel checker to derive test cases
in a similar manner. A source translation for symbolic execution with model ched&eresented by
Sarfraz Khurshid and Visser [127]. This has been implemented as ars@xid¢o Java PathFinder, and can
be used to generate test cases [128].

These findings show that test case generation with software modelerkaskpossible in theory, but
scalability is not the only issue in practice. While test case generation witatipeal specifications creates
test sequences that include the expected output, test cases creatibylfdinm the source code do not solve
the oracle problem. Therefore, this is an area where further resedrtie needed.

9.2 Testing Timed Automata

Timed automata are automata that include special variables called clocks,imdligke information about
time, and can be used in guard conditions, etc. Uppaal [129] is a popul#el moecker based on timed
automata. Hessel et al. [130] proposed test case generation usiaglUppthis approach, a special timed
variant of CTL is used to formalize test purposes or coverage criteti@ generation of test cases with
either test purposes or properties created for coverage criteriscsasha®l in Section 4 is proposed. This
method is of particular interest for timed systems, because Uppaal sugpoggsation of not only shortest
but also quickest traces.

9.3 Combinatorial Testing

A new application of model checkers for test case generation was ggdpay Kuhn and Okun [131].
Combinatorial testing tries to provide a high level of coverage of a systemig tiomain with a small
number of test cases. The number of possible input combinations is usxiadlgnely high; for example, a
system with 20 inputs with 10 values each allows a total(3f different combinations. If, however, only
a limited number of combinations is selected, then this number is reduced sighjfic@onsidering all
possible pairs of inputs for the above example results in 190 different jpgis with 100 different possible
input combinations for each pair resulting in 19,000 different test cabéshwvis substantially smaller than
the overall number of different combinations.

The underlying idea of combinatorial testing can be best explained usimglhexample. Consider a
system with 3 boolean input variables, v2, andvs. All 2-way combinations would be; v, v1 v3, and
v9 v3. Only for these variable combinations all possible input value combinatiorestbde tested leading

to 12 test case instead of 16. In general there ar% different combinations when we haveinput

variables and we want to compute Aivay combinations. For each of this combinations all possible input

52

value tuple are generated. Variables which are not/irvweay combination are assigned to a value which
can be a random value or a value which allows to execute the programtestie

In practice, 3 to 6-way combinations are also used in addition to pairs an@lergood results. The
empirical results in [131] showed a fault detection rate of 100 perceiat 5oway combination. The under-
lying assumption of combinatorial testing is that only smaller subsets of inpublesiare responsible for
certain outputs. Hence, only those inputs must be considered when tespiegific functionality.

In [131], a model checker is used to derive test cases Wy coverage. Given assertions of the form
AG (P — AX R) andt-way variable combinations; Avs A... Av, Where each; is a condition comprising
a variable and a assigned value, three different types of trap praparéeroposed:

AG (v Ava Ao Ay NP — AX —R)
AG (1)1/\’[)2/\.../\%—>AX —|1)
AG (v1 Avg A ... Nvop — AX —R)

The first property might be trivially true if is large becaus® together withvy, ..., v; computes to
false which makes the implication true. Because of this reason [131] mepss$ng the second property
which simply forces a single step to be takeri (s always false). Alternatively, the final property removes
the conditionP to avoid trivially true cases.

9.4 Testing Composite Webservices with Model Checkers

Web services are a recently popular mechanism to allow interaction of eteous systems via the inter-
net. A particular strength of such techniques is that different servenre®e composed to form new, more
complex services. There are several different languages thatecasell to describe web services and aid
the automatic composition.

Composed web services result in complex behaviors, where the compeaarte distributed across
networks and implemented with different tools and systems. Therefoliécagon of composed web ser-
vice models as well as testing of composed web service implementations is vemganiporhe use of
model checkers to verify web service composition has been proposselvbyal researchers. A combined
approach of verification and testing based on model checkers haptmmsed by Huan et al. [132]. In
this approach, OWL-S (Web Ontology Language for Web Services)fsgaions are translated to a C-like
language, which is verified with the model checker Blast. The model chiecitkso used to create witnesses
that can be used as test cases, following the approach presentegdreBal. [125].

Garcia-Fanjul et al. [133] translate web service compositions specifitkddBEPL into Promela, the
language of the model checker SPIN. Then, trap properties are usezhte transition coverage test suites.

9.5 Adaptive Model Checking

Adaptive model checking [134] is an advanced combination of modekaingand testing. Verification is
performed on an incomplete model. If a counterexample is found, then timetexample is executed as a
test case on an actual implementation. If the system passes the test aasepbperty violation has been
found. If the test case does not pass, then the model is refined agtydhe actual execution result. This
is also related to black-box checking [135], where no model at all towttrtis assumed.

53

9.6 On-the-fly Testing with Model Checkers

All approaches to test case generation presented so far in this sueaty test casesfling that is, the test
cases are first generated from a model, and only once this generait®splis done are they executed. An
alternative approach is to interleave test case generation and exethigda known a®nline or on-the-fly
testing. On-the-fly testing has several advantages to offline testing; litecaontinued for a very long time,
reduces the state explosion problem because only a limited part of the stagensgeds to be considered at
a time, and nondeterminism is handled naturally.

Examples of on-the-fly testing tools based on model checkers are TaUg38], based on Uppaal, and
the work presented by de Vries and Tretmans [137], who use the mogleheshSPIN. These tools are not
based on model checking algorithms, but rather use the modeling and sim(gatiores of the underlying
model checkers.

10 TOOLS

Although testing with model checkers has been considered by seveealrch groups, much of the work
was done on research prototypes that were never released to the puiBdisection considers the test case
generation tools that are publicly available.

There is an online demonstration tool [138] for mutation based test caseagjen with model checkers
based on the work by Ammann et al. [77]. While it is only possible to generate#ses for the cruise
control example application used in [77], the tool helps to illustrate the stepls@win the process.

Since version 3.0, SAL [23] includes the tool SAL-ATG [139], which alfotest case generation with
SAL. As SAL provides a Scheme-based environment, this tool offers massibilities for customization
and extension. SAL-ATG does not use trap properties, but requiagghth model is extended witinap
variables which are true only when a test goal is reached. This basically allows sicol@rage goals as
with regular trap properties, although it is slightly more complicated to rewrite thaehtban to simply
provide properties. In general, most coverage criteria that can bessqu as trap properties can also be
encoded in the model. Figure 17 shows the car controller example modeFigure 4 as a SAL model.
The variableg 0-t 5 are not actually part of the specification, but are trap variables for sitrgateition
coverage. SAL-ATG can use these trap variables to create a simple tramsitierage test suite. For this,
the list of goals has to be specified as listed in Figure 18. Assuming this listtd gosaved in a file called
car _contr ol _goal s. scmand the model is saved in a file calledr _cont rol . sal , SAL-ATG is
started with the following command:

sal -atg car_control main car_control _goals.scm

SAL-ATG will try to find test cases such that every trap variable is trueatespoint. There are several
options to the test case generation; for details see [139].

ATGT (ASM Tests Generation Tool) [140] is a Java-based tool that impl&sriba concepts presented
in [64, 65, 83] to automatically create test cases for ASM specificatiodfelts a graphical user interface
and uses the model checker SPIN [22]. The tool automatically creategroperties, and illustrates them
graphically. As an example to get started, the ASM model listed in Figure 9earsdd with ATGT, and a
version of a popular safety injection system model is available on the todbisiteg140].

54

car_control : CONTEXT =
BEG N
speed: TYPE = {stop, slow, fast};

mai n: MODULE =
BEG N
I NPUT
accel erate, brake : BOOLEAN
OUTPUT
vel ocity: speed
LOCAL
to, t1, t2, t3, t4, t5: BOOLEAN

I NI TI ALI ZATI ON
velocity = stop;

t0 = FALSE;, t1 = FALSE;, t2 = FALSE;
t3 = FALSE, t4 = FALSE; t5 = FALSE;
TRANSI Tl ON
[
accel erate = TRUE AND brake = FALSE AND vel ocity = stop -->
velocity’ = slow, t0° = TRUE;
[]
accel erate = TRUE AND brake = FALSE AND vel ocity = slow -->
velocity' = fast; t1' = TRUE
[]
accel erate = FALSE AND brake = FALSE AND vel ocity = fast -->
velocity’ = slow, t2° = TRUE
[]
accel erate = FALSE AND brake = FALSE AND velocity = slow -->

velocity’ = stop; t3 = TRUE
[]
brake = TRUE -->
velocity’ = stop; t4 = TRUE
[]
ELSE -->
t5 = TRUE
]
END;
END

Figure 17: Simple car controller as SAL specification with trap variablesifigple transition coverage.

55

(define goal-list ’(
n t 0II n t 1Il n t 2" m t 3" n t 4" n t 5"
))

Figure 18: Test goal list for SAL-ATG.

11 OUTSTANDING RESEARCH ISSUES

Many researchers have considered testing with model checkers evastitouple of years, and significant
progress has been made to turn model checker based testing into a techuighle for real world applica-
tion. Many issues remain, however. Section 7 gave an overview of ifisaielsave been considered so far.
Not surprising, the main problem is performance. Research on modskerisas progressing, and the size
of models that can be handled constantly increases. There is a neegtonadizl checking technigues to
faster counterexample creation. Directed model checking [17] is an dearhguch a technique.

At the same time it is not sufficient to blame the performance of model chedkess if model checkers
could handle models of deliberate size, many of the currently examined testhmggees would result in
unfeasibly large test suites. Therefore, research on model abstracdssential, both for performance and
for scalability reasons. Abstraction is an active research topic, butédemm considered with a software
testing background. Abstraction techniques suitable for verificationogegpmight not be suitable for
testing. This leaves many unanswered questions, for example, how daoaésts differ from verification
models, and what abstraction techniques are suitable for testing?

There is a lack of documented empirical experience with testing with modeketsec Most work
evolves around a set of small, well known example applications. The oailable case study that evaluated
the scalability [53] showed promising results, but later studies [107] sthalasg the considered example
application has some peculiarities that make it questionable, whether the ersulesally representative.
Further experience reports would not only answer questions abalatbdity, but could also be used to
compare the many available techniques with regard to their relative poweh é&scomparison would be
invaluable for someone wanting to use model checkers for testing.

Even if all performance problems were resolved, there is still one intrimsialggm to all model based
testing approaches: Where does the model come from? In most work on basael testing, the existence
of a suitable formal model is assumed. The model creation, however, i tmemost difficult parts of the
whole development process. Creating models manually is a complicated tedskaapecifiers writing a
model for an application will probably come up with different models. Differaodels, however, will most
likely result in different test suites. Some approaches try to avoid thef@samodel altogether, for example,
black-box checking techniques (see Section 9.5). Alternative appesdry to extract models from source
code, and sometimes model based development tools are used, which ragangtHiable model naturally
results from the development process. Such approaches introdugeatdems, for example, what exactly
is tested by test cases resulting from the model: the implementation, or just théihtdaiseated the model
from the source code or vice versa?

ACKNOWLEDGEMENTS

Thanks to Paul Black for providing useful suggestions, and to Samajaéuirgam for helpful explanations.

56

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

John Callahan, Francis Schneider, and Steve Easterbrook. AlgoBaftware Testing Using Model-
Checking. InProceedings 1996 SPIN Workshdpugust 1996. Also WVU Technical Report NASA-
IVV-96-022.

André Engels, Loe Feijs, and Sjouke Mauw. Test generation for intelligentankswsing model
checking. In Ed Brinksma, editoRroceedings of the Third International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems. (TACAS/OIlime 1217 of_ecture Notes

in Computer Sciengd&nschede, the Netherlands, April 1997. Springer-Verlag.

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxoynof model-based testing. Techni-
cal Report No. 04/2006, Department of Computer Science, The Witivef Waikato (New Zealand),
April 2006.

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin keticand Alexander Pretschner.
Model-Based Testing of Reactive Systems: Advanced Lectures @ Noties in Computer Science)
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBKO262784.

Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and MaroeeRoNUSMV: A New
Symbolic Model Verifier. ITCAV '99: Proceedings of the 11th International Conference on Compute
Aided Verification pages 495-499, London, UK, 1999. Springer-Verlag. ISBN 3-68202-2.

Amir Pnueli. The temporal logic of programs. I8th Annual Symposium on Foundations of Com-
puter Science, 31 October-2 November, Providence, Rhode 1487 pages 46-57. IEEE, 1977.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis ohsgnization skeletons using
branching-time temporal logic. Ibogic of Programs, Workshgpages 52—71, London, UK, 1982.
Springer-Verlag. ISBN 3-540-11212-X.

E. Allen Emerson and Joseph Y. Halpern. Decision procedureggneessiveness in the temporal
logic of branching time. I'STOC '82: Proceedings of the fourteenth annual ACM symposium on
Theory of computingpages 169-180, New York, NY, USA, 1982. ACM Press. ISBN @99070-

2. doi: 10.1145/800070.802190.

Matthew Hennessy and Robin Milner. Algebraic laws for nondetermiiathconcurrencyd. ACM
32(1):137-161, 1985. ISSN 0004-5411. doi: 10.1145/2455.2460.

Dexter Kozen. Results on the propositional mu-calcultteor. Comput. Sgi27:333—-354, 1983.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peldddel CheckingMIT Press, Cambridge,
MA., 1 edition, 2001. 3rd printing.

Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan, and Xugl@hao. Efficient generation
of counterexamples and witnesses in symbolic model checkimgyolteedings of the 32st Conference
on Design Automation (DACpages 427-432. ACM Press, 1995.

Orna Lichtenstein and Amir Pnueli. Checking that finite state concupeygrams satisfy their
linear specification. IfPOPL '85: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium o
Principles of programming languaggsages 97-107, New York, NY, USA, 1985. ACM Press. ISBN
0-89791-147-4. doi: 10.1145/318593.318622.

57

[14] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic apgrt@automatic program verification
(preliminary report). InProceedings of the 1st IEEE Symposium on Logic in Computer Science
(LICS’86), pages 332—344. IEEE Computer Society, June 1986.

[15] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verificatiofirofe state concurrent system
using temporal logic specifications: a practical approacPO®L '83: Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming languaages 117-126, New York,
NY, USA, 1983. ACM Press. ISBN 0-89791-090-7. doi: 10.11450(857567080.

[16] Jean-Pierre Queille and Joseph Sifakis. Specification and védficaf concurrent systems in cesar.
In Proceedings of the 5th Colloquium on International Symposium on Progiiag pages 337-351,
London, UK, 1982. Springer-Verlag. ISBN 3-540-11494-7.

[17] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Dideetglicit model checking with
HSF-SPIN. InSPIN '01: Proceedings of the 8th international SPIN workshop on Mollecking
of software pages 57—79, New York, NY, USA, 2001. Springer-Verlag NewkYtmc. ISBN 3-540-
42124-6.

[18] Kenneth L. McMillan.Symbolic Model Checkindkluwer Academic Publishers, Norwell, MA, USA,
1993. ISBN 0792393805.

[19] Randal E. Bryant. Graph-based algorithms for boolean functiaripnéation.IEEE Trans. Comput.
35(8):677—691, 1986. ISSN 0018-9340.

[20] Randal E. Bryant. Symbolic boolean manipulation with ordered bidaigision diagrams. ACM
Comput. Sury.24(3):293—-318, 1992. ISSN 0360-0300. doi: 10.1145/13603543R6

[21] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan ZBymbolic Model Check-
ing without BDDs. INTACAS '99: Proceedings of the 5th International Conference on Toals an
Algorithms for Construction and Analysis of Systepages 193-207, London, UK, 1999. Springer-
Verlag. ISBN 3-540-65703-7.

[22] Gerard J. Holzmann. The Model Checker SPINEEE Trans. Softw. Eng23(5):279-295, 1997.
ISSN 0098-5589. doi: 10.1109/32.588521.

[23] Leonardo de Moura, Sam Owre, Harald Ruel3, John Rusht8hahkar, Maria Sorea, and Ashish Ti-
wari. SAL 2. In Rajeev Alur and Doron Peled, edito@gmputer-Aided Verification, CAV 2004bl-
ume 3114 ol ecture Notes in Computer Scienpages 496-500, Boston, MA, July 2004. Springer-
Verlag.

[24] K.L. McMillan. The SMV system. Technical Report CMU-CS-92-1&hrnegie-Mellon University,
1992.

[25] David L. Dill. The murphi verification system. IGAV '96: Proceedings of the 8th International
Conference on Computer Aided Verificatigrages 390-393, London, UK, 1996. Springer-Verlag.
ISBN 3-540-61474-5.

[26] Formal Systems (Europe) Ltd. Failures-Divergence Refinem@&@®RZFUser Manual, Oct 1997.

58

[27] R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN.Rroceedings of the Eighth Conference on
Computer Aided Verification (CAV 199&plume 1102 of_ecture Notes in Computer Scienpages
423-427. Springer, 1996.

[28] Edmund Clarke and Helmut Veith. Counterexamples revisited: Princiglgsrithms, applications.
In Verification: Theory and Practicevolume 2772 ofLecture Notes in Computer Sciengages
208-224. Springer-Verlag, 2004.

[29] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Treectkmterexamples in model
checking. InLICS '02: Proceedings of the 17th Annual IEEE Symposium on Logicoimptiter
Sciencepages 19-29, Washington, DC, USA, 2002. IEEE Computer Socidbp [57695-1483-9.

[30] Duminda Wijesekera, Lingya Sun, Paul Ammann, and Gordon Fr&edating counterexamples to
test cases in CTL model checking specificationsAIMOST '07: Proceedings of the 3rd interna-
tional workshop on Advances in model-based tesfiages 75-84, New York, NY, USA, 2007. ACM
Press. ISBN 978-1-59593-850-3. doi: 10.1145/1291535.1291543

[31] Robert Meolic, Alessandro Fantechi, and Stefania Gnesi. Witmess@unterexample automata for
ACTL. In Formal Techniques for Networked and Distributed Systewwisime 3235 of ecture Notes
in Computer Scien¢gages 259-275, 2004.

[32] Angelo Gargantini and Constance Heitmeyer. Using Model Chedkir@enerate Tests From Re-
quirements Specifications. BESEC/FSE’99: 7th European Software Engineering Conference, Held
Jointly with the 7th ACM SIGSOFT Symposium on the Foundations of Softwgimreering volume
1687, pages 146—162. Springer, September 1999.

[33] Hyoung Seok Hong and Insup Lee. Automatic Test Generation Bpecifications for Control-
Flow and Data-Flow Coverage Criteria. Rtoceedings of the International Conference on Software
Engineering (ICSE)2003.

[34] Li Tan, Oleg Sokolsky, and Insup Lee. Specification-based gstith linear temporal logic. In
Proceedings of IEEE International Conference on Information Renddrategration (IRI'04) pages
493-498, 2004.

[35] Sergiy Boroday, Alexandre Petrenko, and Roland Groz. Can dehmhecker generate tests for
non-deterministic systemd®2lectronic Notes in Theoretical Computer Scient@0:3-19, 2007.

[36] Orna Kupferman and Moshe Y. Vardi. Model checking revisited. CIAV '97: Proceedings of
the 9th International Conference on Computer Aided Verificatiayes 36—47, London, UK, 1997.
Springer-Verlag. ISBN 3-540-63166-6.

[37] Sanjai Rayadurgam and Mats P. E. Heimdahl. Coverage Bas¢dC@es Generation Using Model
Checkers. InProceedings of the 8th Annual IEEE International Conference andkg#fiap on the
Engineering of Computer Based Systems (ECBS 2@@bes 83-91, Washington, DC, April 2001.
IEEE Computer Society.

[38] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolasialbs, Paul Le Guernic, and Robert
de Simone. The Synchronous Languages 12 Years Latd?roceedings of the IEEE/olume 91,
pages 64-83, 2003.

59

[39] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synobsodata-flow programming lan-
guage LUSTREProceedings of the IEEF9:1305-1320, 1991.

[40] Gérard Berry and Georges Gonthier. The Esterel SynchronougsdPnagng Language: Design,
Semantics, Implementatio&cience Of Computer Programmiri(2):87-152, 1992.

[41] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. HBgnous Programming with
Events and Relations: the SIGNAL Language and Its Semangcsence of Computer Program-
ming 16(2):103-149, 1991.

[42] Jan Tretmans. Testing Concurrent Systems: A Formal Approatld.A.M Baeten and S. Mauw,
editors, CONCUR’99 —10*" Int. Conference on Concurrency Thepvplume 1664 ot.ecture Notes
in Computer Scienggages 46—65. Springer-Verlag, 1999.

[43] C.L.HeitmeyerEncyclopedia of Software Engineeringplume 2, chapter Software Cost Reduction.
John Wiley & Sons, 2002.

[44] Mats P. E. Heimdahl, Sanjai Rayadurgam, and Willem Visser. Spdaific€entered Testing. In
Proceedings of the Second International Workshop on Automategapnognalysis, Testing and
Verification (ICSE 200Q)2000.

[45] S. Rayadurgam and M. P. E. Heimdahl. Test-sequence genefatimrformal requirement mod-
els. INHASE '01: The 6th IEEE International Symposium on High-Assuragstes Engineering
Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0769512755

[46] Sanjai Rayadurgam and Mats P. E. Heimdahl. Coverage Bas&dC@ss Generation Using Model
Checkers. Technical Report 01-005, University of Minnesota, Eapolis, January 2001.

[47] Jeffrey M. Thompson, Mats P. E. Heimdahl, and Steven P. Miller. ipation-based prototyping
for embedded systems. BSEC/FSE-7: Proceedings of the 7th European software engineering
conference held jointly with the 7th ACM SIGSOFT international symposiunowmd&tions of soft-
ware engineeringpages 163-179, London, UK, 1999. Springer-Verlag. ISBN 3-68538-2. doi:
10.1145/318773.318940.

[48] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and JoR&ese. Requirements specifi-
cation for process-control systemEEE Trans. Softw. Eng20(9):684—707, 1994. ISSN 0098-5589.
doi: 10.1109/32.317428.

[49] Paul Ammann, Jeff Offutt, and Hong Huang. Coverage criteriddgical expressions. IISSRE
'03: Proceedings of the 14th International Symposium on Software Rdlidingineering page 99,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695/280

[50] A. Jefferson Offutt, Yiwei Xiong, and Shaoying Liu. Criteria fagrgerating specification-based tests.
In ICECCS IEEE Computer Society, 1999. ISBN 0-7695-0434-5.

[51] J. J. Chilenski and S. P. Miller. Applicability of modified condition/deaisimverage to software
testing. Software Engineering Journgbages 193-200, September 1994.

[52] Paul Ammann and Jeff Offutintroduction to Software TestingCambridge University Press, 2008.
Citation will be complete by the time the review cycle is over.

60

[53] Mats P.E. Heimdahl, Sanjai Rayadurgam, Willem Visser, George Bgwvand Jimin Gao. Auto-
Generating Test Sequences using Model Checkers: A Case StudphirthInternational Inter-
national Workshop on Formal Approaches to Software Testiofume 2931 ofLecture Notes in
Computer Sciengpages 42-59. Springer Verlag, October 2003.

[54] Sanjai Rayadurgam and Mats P.E. Heimdahl. Generating MC/DC Aadediest Sequences Through
Model Checking. IrProceedings of the 28th Annual NASA Goddard Software Engineeringst\ap
pages 91-96, 2003.

[55] Paul Ammann, Paul E. Black, and Wei Ding. Model Checkers invigok Testing. Technical Report
NIST-IR 6777, National Institute of Standards and Technology, 2002.

[56] Jr. Sheldon B. Akers. On a theory of boolean functiodsurnal of the Society for Industrial and
Applied Mathematics7(4):487-498, 1959. doi: 10.1137/0107041.

[57] Sergiy A. Vilkomir and Jonathan P. Bowen. Reinforced Conditioniflen Coverage (RC/DC): A
New Criterion for Software Testing. 18B '02: Proceedings of the 2nd International Conference of
B and Z Users on Formal Specification and Development in Z armqmhfes 291-308, London, UK,
2002. Springer-Verlag. ISBN 3-540-43166-7.

[58] Hyoung S. Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural.mipteal logic based theory of test
coverage and generation. Tools and Algorithms for the Construction and Analysis of Systems : 8th
International Conference, TACAS 2002, Held as Part of the Joint igan Conference on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April ,8002. Proceedings/olume
2280 ofLecture Notes in Computer Scienpages 151-161. Springer Verlag Gmbh, 2002.

[59] Hyoung S. Hong, Sung D. Cha, Insup Lee, Oleg Sokolsky, aashH Ural. Data flow testing as model
checking. INICSE '03: Proceedings of the 25th International Conference on Softlagineering
pages 232-242, Washington, DC, USA, 2003. IEEE Computer Society.

[60] Sandra Rapps and Elaine J. Weyuker. Selecting software tesisiatpdata flow information EEE
Trans. Softw. Eng11(4):367-375, 1985. ISSN 0098-5589. doi: 10.1109/TSE.19832832

[61] Hyoung S. Hong and Hasan Ural. Dependence testing: Extenditegfbw testing with control
dependence. Iifesting of Communicating Systemslume 3502 ofLecture Notes in Computer
Sciencepages 23-39. Springer Verlag Gmbh, 2005.

[62] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Sung Dduk CAutomatic Test Generation
from Statecharts Using Model Checking. Technical report, MS-QI$-D, 2001.

[63] Yuri Gurevich. Sequential abstract-state machines capture isggjuegorithms.ACM Trans. Com-
put. Logic 1(1):77-111, 2000. ISSN 1529-3785. doi: 10.1145/343369.34338

[64] A. Gargantini and E. Riccobene. Asm-based testing: Coveraigeiarand automatic test sequence.
Journal of Universal Computer Scienc&11):1050-1067, 2001.

[65] Angelo Gargantini, Elvinia Riccobene, and Salvatore Rinzivillo. USipin to Generate Tests from
ASM Specifications. InAbstract State Machines 2003. Advances in Theory and Practice: 10th
International Workshop, ASM 2003, Taormina, Italy, March 3-7,2@roceedingsvolume 2589 of
Lecture Notes in Computer Scienpages 263+. Springer Verlag Gmbh, 2003.

61

[66] Michael W. Whalen, Ajitha Rajan, Mats P.E. Heimdahl, and Steven P. Mill@overage metrics
for requirements-based testing. IBSTA’06: Proceedings of the 2006 International Symposium on
Software Testing and Analysfgages 25—-36, New York, NY, USA, 2006. ACM Press. ISBN 1-53859
263-1.

[67] John R. Callahan, Stephen M. Easterbrook, and Todd L. Montgor@enerating Test Oracles Via
Model Checking. Technical report, NASA/WVU Software Research, 1£998.

[68] llan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodefficiént detection of vacuity in
actl formulaas. InNCAV '97: Proceedings of the 9th International Conference on Compaiked
Verification pages 279-290, London, UK, 1997. Springer-Verlag. ISBN 3-563166-6.

[69] Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal ehobecking. I'CHARME
'99: Proceedings of the 10th IFIP WG 10.5 Advanced Research WpiRionference on Correct
Hardware Design and Verification Methagsages 82—-96, London, UK, 1999. Springer-Verlag. ISBN
3-540-66559-5.

[70] Mitra Purandare and Fabio Somenzi. Vacuum cleaning CTL formulaeCAV '02: Proceedings
of the 14th International Conference on Computer Aided Verificapiages 485-499, London, UK,
2002. Springer-Verlag. ISBN 3-540-43997-8.

[71] Paul Ammann, Wei Ding, and Daling Xu. Using a Model Checker ta Badety Properties. IRro-
ceedings of the 7th International Conference on Engineering of Cor@amputer Systems (ICECCS
2001) pages 212-221, Skovde, Sweden, 2001. IEEE.

[72] Gordon Fraser and Franz Wotawa. Property relevant softwatieag with model-checkerSIGSOFT
Software Engineering Note31(6):1-10, 2006. ISSN 0163-5948. doi: 10.1145/1218776.121.87

[73] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Saywakints on Test Data Selection:
Help for the Practicing ProgrammeZomputey 11:34-41, 1978.

[74] A.T.Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Segrd. Mutation analysis. Technical
report, School of Information and Computer Science, Georgia Insedaifology, Atlanta, Ga., Sept.
1979.

[75] Timothy A. Budd and Ajei S. Gopal. Program testing by specification trmtaComput. Lang.10
(1):63-73, 1985. ISSN 0096-0551. doi: 10.1016/0096-0551 (RE)9-6.

[76] Paul Ammann and Paul E. Black. A Specification-Based Coveragjeidvto Evaluate Test Sets. In
HASE '99: The 4th IEEE International Symposium on High-AssuragsteBis Engineeringpages
239-248, Washington, DC, USA, 1999. IEEE Computer Society. ISBNI5-0418-3.

[77] Paul E. Ammann, Paul E. Black, and William Majurski. Using Model €kieg to Generate Tests
from Specifications. IfProceedings of the Second IEEE International Conference on Faemgi-
neering Methods (ICFEM'98pages 46-54. IEEE Computer Society, 1998.

[78] T. Srivatanakul, J. A. Clark, S. Stepney, and F. Polack. Chgilhgrformal specifications by mutation:
a CSP security example. [Fenth Asia-Pacific Software Engineering Conferenmuages 340-350,
2003.

62

[79] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation OpesdtarSpecifications. Ifroceed-
ings of the Fifteenth IEEE International Conference on Automated Softwagmé&ering (ASE’0Q)
Washington, DC, USA, 2000. IEEE Computer Society.

[80] Gordon Fraser and Franz Wotawa. Using model-checkers fortiondaased test-case generation,
coverage analysis and specification analysis.Ptoceedings of the International Conference on
Software Engineering Advances (ICSEA 20@&)ges 16—22, Los Alamitos, CA, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2703-5. doi: 10.1109/ICSEA.2006.75.

[81] Gordon Fraser and Franz Wotawa. Using and improving requirepreperties for mutation based
test-case generatio22. WI-MAW Rundbrieflahrgang 12(2):5-23, 2006.

[82] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation of MdZieécker Specifications for Test
Generation and EvaluatioMutation testing for the new centyrgages 14-20, 2001.

[83] Angelo Gargantini. Using Model Checking to Generate Fault Detedtsgs. InProceedings of the
International Conference on Tests And Proofs (TARIyich, Switzerland, 2007.

[84] Vadim Okun, Paul E. Black, and Yaacov Yesha. Testing with M@tedcker: Insuring Fault Visibil-
ity. Technical Report NIST-IR 6929, National Institute of Standard$Bechnology, 2003.

[85] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Héleitln. Counterexample-
guided abstraction refinement. @AV '00: Proceedings of the 12th International Conference on
Computer Aided Verificatigrpages 154-169, London, UK, 2000. Springer-Verlag. ISBN 3-540
67770-4.

[86] Paul Ammann and Paul E. Black. Abstracting Formal Specificationstetate Software Tests via
Model Checking. IrProceedings of the 18th Digital Avionics Systems Confererateme 2. IEEE,
1999.

[87] Hyoung S. Hong and Hasan Ural. Using model checking for reduthe cost of test generation. In
Formal Approaches to Software Testinglume 3395 ol ecture Notes in Computer Sciengages
110-124. Springer Verlag Gmbh, 2005.

[88] Gordon Fraser and Franz Wotawa. Using LTL rewriting to improvep#réormance of model-checker
based test-case generation. AfMOST '07: Proceedings of the 3rd international workshop on Ad-
vances in model-based testimages 64—74, New York, NY, USA, 2007. ACM Press. ISBN 978-1-
59593-850-3. doi: 10.1145/1291535.1291542.

[89] Hongwei Zeng, Huaikou Miao, and Jing Liu. Specification-basstigeneration and optimization
using model checkingProceedings of the First Joint IEEE/IFIP Symposium on Theoreticpkais
of Software Engineering (TASE’'Q0:349-355, 2007. doi: 10.1109/TASE.2007.46.

[90] P. E. Black and S. Ranville. Winnowing tests: Getting quality coverema & model checker without
guantity. InDigital Avionics Systems, 2001. DASC. The 20th Confererademe 2, pages 9B6/1—
9B6/4 vol.2, 2001.

[91] Gordon Fraser and Franz Wotawa. Redundancy based testeditetion. InProceedings of the
10th International Conference on Fundamental Approaches to Softamgaeering (FASE 2007)
volume 4422 ot ecture Notes in Computer Scienpages 291-305. Springer, 2007.

63

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Klaus Havelund and Grigore Rosu. Monitoring programs usingitiegr In ASE '01: Proceedings
of the 16th IEEE Int. Conference on Automated Software Engineguamge 135, Washington, DC,
USA, 2001. IEEE Computer Society.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Progfdinitoring with LTL in Eagle. In
PADTAD’04, Parallel and Distributed Systems: Testing and Debug@if4.

Klaus Havelund and Grigore Rosu. Efficient monitoring of safetypprties. Int. J. Softw. Tools
Technol. Transf.6(2):158-173, 2004. ISSN 1433-2779. doi: 10.1007/s100090003-6.

Grigore Rosu and Klaus Havelund. Rewriting-based techniguesifitime verification.Automated
Software Engg.12(2):151-197, 2005. ISSN 0928-8910. doi: 10.1007/s105556205-y.

Gordon Fraser and Franz Wotawa. Mutant Minimization for Moded¢kler Based Test-Case Gen-
eration. InTesting: Academic and Industrial Conference Practice and Reseadmiques - MU-
TATION, 2007. TAICPART-MUTATION 2QQ7ages 161-168. IEEE Computer Society, 2007. doi:
10.1109/TAICPART.2007.4344120.

Grégoire Hamon, Leonardo de Moura, and John Rushby. GeneratiogeBEffT est Sets with a Model
Checker. InProceedings of the Second International Conference on Software éargig and For-
mal Methods (SEFM’'04)pages 261-270, 2004.

M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodoldgyy controlling the size of
a test suite. ACM Trans. Softw. Eng. MethodoR(3):270-285, 1993. ISSN 1049-331X. doi:
10.1145/152388.152391.

Jeffery von Ronne Christie Hong Gregg Rothermel, Mary Jeamdttar Empirical studies of test-
suite reductionSoftware Testing, Verification and Reliability2(4):219-249, 2002.

Hao Zhong, Lu Zhang, and Hong Mei. An experimental comparigofour test suite reduction
techniques. INCSE '06: Proceeding of the 28th international conference on Softwageeering
pages 636—-640. ACM Press, 2006. ISBN 1-59593-375-1. doi146/1134285.1134380.

Mats Per Erik Heimdahl and George Devaraj. Test-Suite ReduaioMddel Based Tests: Effects
on Test Quality and Implications for Testing. ASE pages 176-185. IEEE Computer Society, 2004.
ISBN 0-7695-2131-2.

James A. Jones and Mary Jean Harrold. Test-suite reductioprédization for modified con-
dition/decision coveragelEEE Trans. Softw. Eng29(3):195-209, 2003. ISSN 0098-5589. doi:
10.1109/TSE.2003.1183927.

Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Garisong. An empirical study of the
effects of minimization on the fault detection capabilities of test suitedC8M '98: Proceedings
of the International Conference on Software Maintenampagye 34. IEEE Computer Society, 1998.
ISBN 0-8186-8779-7.

W. Eric Wong, Joseph R. Horgan, Saul London, and Adityadhir. Effect of test set minimization
on fault detection effectiveness. IBSE '95: Proceedings of the 17th Int. Conference on Software
Engineering pages 41-50. ACM Press, 1995. ISBN 0-89791-708-1. doi: 46/225014.225018.

64

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Many Bearold. Test case prioritization:
An empirical study. INCSM ’'99: Proceedings of the IEEE International Conference on Soétwa
Maintenancepage 179, Washington, DC, USA, 1999. IEEE Computer Society. ISBBIO95-0016-
1.

Gordon Fraser and Franz Wotawa. Test-case prioritization withekadebckers. IProceedings of
the IASTED International Conference on Software Engineering (SE200)7.

Mats Per Erik Heimdahl, George Devaraj, and Robert Webercifsgion Test Coverage Adequacy
Criteria = Specification Test Generation Inadequacy CriterigdABE pages 178-186. IEEE Com-
puter Society, 2004. ISBN 0-7695-2094-4.

George Devaraj, Mats P. E. Heimdahl, and Donglin Liang. Cowethigected test generation with
model checkers: Challenges and opportunities. COMPSAC '05: Proceedings of the 29th An-
nual International Computer Software and Applications Conference (EGMC'05) Volume,Jpages
455-462, Washington, DC, USA, 2005. IEEE Computer Society. doi 1D8/COMPSAC.2005.66.

Aynur Abdurazik, Paul Ammann, Wei Ding, and Jeff Offutt. E\ation of three specification-based
coverage testing criteria. Froceedings of the 6th IEEE International Conference on Engineefing o
Complex Computer Systems (ICECCS 20payes 179-187, Tokyo, Japan, September 2000. IEEE
Computer Society.

Lihua Xu, Marcio Dias, and Debra Richardson. Generatingessgon tests via model checking. In
COMPSAC '04: Proceedings of the 28th Annual International Compbétdtware and Applications
Conference (COMPSAC’04pages 336—341, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2209-2-1.

Gordon Fraser, Bernhard Aichernig, and Franz Wotawadltammodel changes: Regression testing
and test-suite update with model-checkefgectronic Notes in Theoretical Computer Scignt@0:
33-46, 2007.

Gordon Fraser and Franz Wotawa. Test-case generatioroaathge analysis for nondeterministic
systems using model-checkers. Pmoceedings of the International Conference on Software Engi-
neering Advances (ICSEA 200prge 45, Los Alamitos, CA, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2937-2. doi: 10.1109/ICSEA.2007.71.

Paul E. Black. Modeling and Marshaling: Making Tests From M&@lecker Counterexamples. In
Proc. of the 19th Digital Avionics Systems Conferemeses 1.B.3-1-1.B.3-6 vol.1. IEEE, 2000.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laab&orina S. Bsareanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state models from javaesgode. INCSE '00:
Proceedings of the 22nd international conference on Software engigegrages 439-448, New
York, NY, USA, 2000. ACM Press. ISBN 1-58113-206-9. doi: 1@13/1337180.337234.

Klaus Havelund. Java pathfinder, a translator from java to prorireRroceedings of the 5th and 6th
International SPIN Workshops on Theoretical and Practical Aspec&PtN Model Checkingpage
152, London, UK, 1999. Springer-Verlag. ISBN 3-540-66499-8.

65

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Claudio DeMartini, Radu losif, and Riccardo Sisto. A deadlock a&te tool for concurrent java
programs.Softw. Pract. Exper29(7):577-603, 1999. ISSN 0038-0644. doi: 10.1002/(SICI}109
024X(199906)29:7i577::AID-SPE246¢3.0.CO;2-V.

David Y. W. Park, Ulrich Stern, Jens U. Skakkebaek, and DaviDill. Java model checking. In
ASE '00: Proceedings of the 15th IEEE international conference onmaited software engineering
page 253, Washington, DC, USA, 2000. IEEE Computer Society. ISBEI5-0710-7.

Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extelesdnd highly-modular software
model checking framework. IESEC/FSE-11: Proceedings of the 9th European software engineer-
ing conference held jointly with 11th ACM SIGSOFT international symposiuffoandations of
software engineeringpages 267-276, New York, NY, USA, 2003. ACM Press. ISBN 11453743

5. doi: 10.1145/940071.940107.

Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon. Réoklel checking programs. In
ASE '00: Proceedings of the 15th IEEE international conference onmiaited software engineering
page 3, Washington, DC, USA, 2000. IEEE Computer Society. ISBNIB-0710-7.

Patrice Godefroid. Model checking for programming languagssguverisoft. InPOPL '97:
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Prinadplpsogramming lan-
guages pages 174-186, New York, NY, USA, 1997. ACM Press. ISBN @99853-3. doi:
10.1145/263699.263717.

Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson RgEr, and David L. Dill. Cmc:
a pragmatic approach to model checking real coBE5OPS Oper. Syst. Re86(Sl):75-88, 2002.
ISSN 0163-5980. doi: 10.1145/844128.844136.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool foeaking ANSI-C programs. In Kurt
Jensen and Andreas Podelski, editdmmls and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2004yolume 2988 of_ecture Notes in Computer Sciengages 168-176. Springer,
2004. ISBN 3-540-21299-X.

Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamaniutofatic predi-
cate abstraction of ¢ programsSIGPLAN Not. 36(5):203-213, 2001. ISSN 0362-1340. doi:
10.1145/381694.378846.

Thomas A. Henzinger, Ranijit Jhala, Rupak Majumdar, and Gredtutre. Software verification
with Blast. InModel Checking Software: 10th International SPIN Workshop, Portl&id, USA,
May 9-10, 2003. Proceedinggages 235-239. Springer-Verlag, 2003.

Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhata, Rupak Majumdar. Generat-
ing Tests from Counterexamples. Rmoceedings of the 26th International Conference on Software
Engineering (ICSE’04, Edinburghpages 326—-335. IEEE Computer Society Press, 2004.

Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshidst fgut Generation with Java
PathFinder. INSSTA '04: Proceedings of the 2004 ACM SIGSOFT International Sgimm on
Software Testing and Analysisages 97-107, New York, NY, USA, 2004. ACM Press. ISBN 1-
58113-820-2. doi: 10.1145/1007512.1007526.

66

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Corina S. Pasareanu Sarfraz Khurshid and Willem Visser. @kred symbolic execution for model
checking and testing. IMACAS '03: Proceedings of the 9th International Conference on Toals an
Algorithms for the Construction and Analysis of Systepagjes 553-568, Warsaw, Poland, 2003.
Springer-Verlag.

Willem Visser, Corina S. #areanu, and Radek Relek. Test input generation for java containers
using state matching. I/8STA '06: Proceedings of the 2006 international symposium on Seftwar
testing and analysjpages 37-48, New York, NY, USA, 2006. ACM Press. ISBN 1-58363-1.
doi: 10.1145/1146238.1146243.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nlitshirnational Journal on Software
Tools for Technology Transfer (STTT)1 - 2):134-152, December 1997.

Anders Hessel, Kim G. Larsen, Brian Nielsen, Paul PetterssahArne Skou. Time-Optimal Real-
Time Test Case Generation Using Uppaal. In Alexandre Petrenko ane@sdlirich, editorsPro-
ceedings of the Third International Workshop on Formal ApproadbeSoftware Testing (FATES
2003) volume 2931, pages 114-130, 2004.

D. Richard Kuhn and Vadim Okun. Pseudo-exhaustive testingsdftware. In30th Annual
IEEE / NASA Software Engineering Workshop (SEW-30 2006), 25g28 2006, Loyola Col-
lege Graduate Center, Columbia, MD, USgages 153-158. IEEE Computer Society, 2006. doi:
10.1109/SEW.2006.26.

Hai Huan, Wei-Tek Tsai, Raymond Paul, and Yinong Chen. Autodnaiedel checking and testing
for composite web services. Broceedings of the 8th IEEE International Symposium on Object-
oriented Real-time Distributed Computingages 300-307. IEEE Computer Society, 2005.

Jose Garcia-Fanjul, Javier Tuya, and Claudio de la Riva. @#ngrTest Cases Specifications for
BPEL Compositions of Web Services Using SPIN Pimceedings of the International Workshop on
Web Services Modeling and Testing (WS-MaTe 2(Q@g)es 8394, 2006.

Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive rhodecking. INTACAS '02: Pro-
ceedings of the 8th International Conference on Tools and AlgorithmsddaZdmstruction and Anal-
ysis of Systempages 357-370, London, UK, 2002. Springer-Verlag. ISBN @-53419-4.

Doron Peled. Model checking and testing combined. In Jos C.adtdh, Jan Karel Lenstra, Joachim
Parrow, and Gerhard J. Woeginger, editéxatomata, Languages and Programming, 30th Interna-
tional Colloquium, ICALP 2003, Eindhoven, The Netherlands, JuneJsty-4, 2003. Proceedings
volume 2719 oL ecture Notes in Computer Scienpages 47-63. Springer, 2003.

Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online TestihgReal-time Systems Using
UPPAAL. In Jens Grabowski and Brian Nielsen, edité®tmceedings of the 4th International Work-
shop on Formal Approaches to Testing of Software (FATES 200iW)me 3395 ol ecture Notes in
Computer Sciencépringer-Verlag GmbH, 2004.

Rereé G. de Vries and Jan Tretmans. On-the-fly conformance testing using SRtérnational
Journal on Software Tools for Technology Transfer (STT12(%#):382-393, March 2000. doi:
10.1007/s100090050044.

67

[138] Paul E. Black. Demonstration of Generating Tests from Formatifgetions [web page]. URL
http://hissa.nist.gov/ black/AFTG . [Accessed October 24th, 2007].

[139] Grégoire Hamon, Leonardo de Moura, and John Rushby. Automated Besr&ion with SAL.
Technical report, Computer Science Laboratory, SRI Internation@h.20

[140] Angelo Gargantini. ATGT. ASM Tests Generation Tool [web page] URL
http://cs.unibg.it/gargantini/projects/atgt/. [Accessed October 24th,
2007].

68

