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1 INTRODUCTION

Testing remains the most important method to verify the quality of software. Automation is necessary,
because manual testing takes a lot of effort and is error prone. Callahan et al. [1] and Engels et al. [2]
initially proposed the use of model checkers for the automated generation oftest cases.

Testing with model checkers is a model-based testing technique. The model-based approach to software
testing encompasses the creation of an abstract model, which is used to automatically create test cases. At
the same time the model tells us the expected outcome, thus solving the test oracle problem. Research has
resulted in numerous different approaches, differing in how models arederived, what formalisms are used to
represent the models, how test cases are selected in the model, and many other factors. A recent taxonomy
of model-based testing techniques [3] gives an overview of available approaches.

A model checker is a tool used for formal verification. It takes as input an automaton based model of
a system and a temporal logic property, and then effectively explores theentire state space of the system in
order to determine whether the model violates the property or not. If a property violation is encountered,
then a counterexample is returned to illustrate the violation to the analyzer.

While formal verification can prove property violation or satisfaction, it is usually not sufficient in
practice. The proof only shows that a given model fulfills a property, while the actual implementation is
also influenced by its environment, e.g., platform, compiler, etc. Furthermore,formal verification usually
only applies to models of limited size, which means that only abstract models of complex programs can be
verified. Consequently, software testing is necessary.

The idea of testing with model checkers is to interpret counterexamples as test cases. The main challenge
is to force the model checker to systematically create sets of such counterexamples, which can then be used
as a complete test suite.

A decade of research on testing with model checkers has resulted in a multitudeof different techniques
of how to derive test cases. Many issues related to this test case generation have been tackled, yet there are
still some show stoppers, like the dreaded state explosion problem.

Testing with model checkers is mostly applied to reactive systems [4], where the software size is within
bounds (e.g., embedded software), and it is feasible to assume the existence of a suitable model. However,
model checkers have also been used on other types of systems. In general, anything can be tested with model
checkers if there is a suitable model, that is sufficiently abstract to allow verification in realistic time.

This paper takes a look at achievements have been made for testing with modelcheckers. It is organized
as follows: First, Section 2 reviews theoretical background and preliminaries of model checkers and testing
with model checkers. Section 3 introduces a running example that is used atseveral points throughout the
paper. Section 4 takes a look at the available techniques of how to use a model checker to create test suites
with regard to different coverage criteria, Section 5 considers approaches based on requirement properties,
and Section 6 reviews mutation based methods to generate test cases. The mainissues in testing with model
checkers are discussed in Section 7. Section 8 discusses the use of model checkers to analyze existing test
suites, and Section 9 reviews applications of model checkers in the contextof software testing that do not
fit into the previous sections. Publicly available tools that can be used to generate test cases with model
checkers are described in Section 10. Finally, the paper is concluded witha brief discussion of outstanding
research issues in Section 11.
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2 PRINCIPLES

Basically, a model checker is a tool intended for formal verification. It takes as input an operational spec-
ification of the system that is considered. Then, it takes a temporal logic property and analyzes the entire
state space of the model in order to determine whether the model violates the property or not. If the state
space exploration shows no property violations, then correctness with regard to the property is proved. A
basic feature of model checkers is the ability to generate witnesses and counterexamples for property satis-
faction or violation, respectively. When a typical model checker detects that a property is violated, it returns
a counterexample that illustrates the property violation. A human analyzer canuse this counterexample to
identify and fix the design fault. For testing purposes, the counterexample can be interpreted as a test case.

2.1 Model Checking Preliminaries

The formalism commonly used to describe model checking and to define the semantics of temporal logics
is the Kripke structure.

Definition 1 (Kripke Structure) A Kripke structureK is a tupleK = (S, S0, T, L):

• S is a set of states.

• S0 ⊆ S is an initial state set.

• T ⊆ S×S is a total transition relation, that is, for everys ∈ S there is as′ ∈ S such that(s, s′) ∈ T .

• L : S → 2AP is a labeling function that maps each state to a set of atomic propositions that hold in
this state.

AP is a countable set of atomic propositions.

An infinite execution sequence of this model is apath. As paths are infinite, deadlocks cannot directly
be modeled with Kripke structures. It is, however, possible to model a deadlock as a self-loop to a state. A
Kripke structure defines all possible paths of a system.

Definition 2 (Path) A pathp := 〈s0, s1, ...〉 of Kripke structureK is an infinite sequence such that∀ i ≥
0 : (si, si+1) ∈ T for K.

Let Paths(K, s) denote the set of paths of Kripke structureK that start in states. We usePaths(K)
as an abbreviation to denote{Paths(K, s) | s ∈ S0}.

As infinite paths are not usable in practice, model checking uses finite sequences, commonly referred
to astraces. If necessary, we can interpret a finite sequence as an infinite sequence where the final state is
repeated infinitely.

Definition 3 (Trace) A tracet := 〈s0, ...sn〉 of Kripke structureK is a finite sequence such that∀ 0 ≤
i < n : (si, si+1) ∈ T for K. There can be a dedicated statesi such thatsi = sn and i 6= n, which is a
loopback state, and〈s0, . . . si−1, (si . . . sn)ω〉 is a path ofK.

A tracet is either a finite prefix of an infinite path or a path that contains a loop, if a loopback state is
given. The latter is called a lasso-shaped sequence, and has the formt := t1(t2)

ω, wheret1 andt2 are finite
sequences. The sequencet2 is repeated infinitely often, denoted withω, the infinite version of the Kleene star
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operator used forω-languages. Lasso shaped sequences are used in practice to show violation of liveness
properties, which requires infinite sequences. For example, the model checker NuSMV [5] interprets all
identical states in a trace as possible points of loopback. The number of transitions a trace consists of is
referred to as itslength. For example, tracet := 〈s0, s1, ..., sn〉 has a length oflength(t) = n.

Temporal logics are modal logics with special operators for time. Time can either be interpreted to be
linear or branching. The most common logics are the linear time logic LTL [6] (Linear Temporal Logic), and
the branching time logic CTL [7] (Computation Tree Logic). CTL*, introducedby Emerson and Halpern [8],
is the superset of these logics. Most current model checkers support either LTL or CTL, or sometimes both.
Other temporal logics that are used in model checking are Hennessy-Milner Logic [9] (HML), Modal µ-
calculus [10], and different flavors of CTL such as timed, fair, or action CTL.

An LTL formula consists of atomic propositions, Boolean operators and temporal operators. The op-
erator ”© ” refers to thenextstate. E.g., ”© a” expresses thata has to be true in the next state. ”U ” is
theuntil operator, where ”a U b” means thata has to hold from the current state up to a state whereb is
true. ”¤ ” is the alwaysoperator, stating that a condition has to hold at all states of a path, and ”♦ ” is
theeventuallyoperator that requires a certain condition to eventually hold at some time in the future. The
syntax of LTL is given as follows, whereAP denotes the set of atomic propositions:

Definition 4 (LTL Syntax) The BNF definition of LTL formulas is given below:

φ ::= true | false | a ∈ AP | ¬ φ | φ1 ∧ φ2 | φ1 ∨ φ2 |

φ1 → φ2 | φ1 ≡ φ2 | φ1 U φ2 | ©φ | ¤φ | ♦φ

A propertyφ satisfied by pathπ of modelK is denoted asK, π |= φ, which is also abbreviated asπ |= φ
if K is obvious from the context. A pathπ of modelK violating propertyφ is denoted asK, π 6|= φ or
π 6|= φ. The semantics of LTL is expressed for infinite paths of a Kripke structure. πi denotes the suffix of
the pathπ starting from thei-th state, andπi denotes thei-th state of the pathπ, with i ∈ N0. The initial
state of a pathπ is π0.

Definition 5 (LTL Semantics) Satisfaction of LTL formulas by a pathp ∈ Paths(K) of a Kripke Structure
K = (S, S0, T, L) is inductively defined as follows, wherea ∈ AP :

K, π |= true for all π (1)

K, π 2 false for all π (2)

K, π |= a iff a ∈ L(π0) (3)

K, π |= ¬φ iff K, π 6|= φ (4)

K, π |= φ1 ∧ φ2 iff K, π |= φ1 ∧ K, π |= φ2 (5)

K, π |= φ1 ∨ φ2 iff K, π |= φ1 ∨ K, π |= φ2 (6)

K, π |= φ1 → φ2 iff K, π 6|= φ1 ∨ K, π |= φ2 (7)

K, π |= φ1 ≡ φ2 iff K, π |= φ1 iff K, π |= φ2 (8)

K, π |= φ1 U φ2 iff ∃i ∈ N0 : K, πi |= φ2 ∧ ∀ 0 ≤ j < i : K, πj |= φ1 (9)

K, π |= ©φ iff K, π1 |= φ (10)

K, π |= ¤φ iff ∀j ∈ N0 : K, πj |= φ (11)

K, π |= ♦φ iff ∃j ∈ N0 : K, πj |= φ (12)
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The temporal logic CTL was introduced by Clarke and Emerson [7]. It canbe viewed as a subset of
CTL*, introduced by Emerson and Halpern [8]. CTL* formulas consist of atomic propositions, logical
operators, temporal operators (F , G , U , R , X ) and path quantifiers (A, E). The operatorF (”finally”)
corresponds to the eventually operator♦ in LTL, G (”globally”) corresponds to¤ . U (”until”) corre-
sponds toU , andR (”release”) is the logical dual ofU . X (”next”) corresponds to the next operator© .
The path quantifiersA (”all”) and E (”some”) require formulas to hold on all or some paths, respectively.
CTL* includes all possible combinations of temporal operators with formulas,where the temporal operators
do not have to be preceded by path quantifiers. As CTL* model checkingis complex, most model checkers
use either CTL or LTL in practice. Consequently, we do not consider CTL* in detail. CTL is the subset
of CTL* obtained by requiring that each temporal operator is immediately preceded by a path quantifier.
Consequently, the syntax of CTL can be defined as follows:

Definition 6 (CTL Syntax) The BNF definition of CTL formulas is given below:

φ := a ∈ AP | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ |

AX φ | AF φ | AG φ | A φ1U φ2 | A φ1R φ2 |

EX φ | EF φ | EG φ | E φ1U φ2 | E φ1R φ2

As all temporal operators are preceded by a path quantifier in CTL, the semantics of CTL can be ex-
pressed by satisfaction relations for state formulas.K, s |= φ denotes a state formulaφ that is satisfied in
states of Kripke structureK.

Definition 7 (CTL Semantics) Satisfaction of CTL formulas by a states ∈ S of a Kripke StructureK =
(S, S0, T, L) is inductively defined as follows, wherea ∈ AP :

K, s |= a iff a ∈ L(s) ∧ s ∈ S

K, s |= ¬φ iff ¬(K, s |= φ)

K, s |= φ1 ∨ φ2 iff (K, s |= φ1) ∨ (K, s |= φ2)

K, s |= φ1 ∧ φ2 iff (K, s |= φ1) ∧ (K, s |= φ2)

K, s |= AX φ iff ∀π ∈ Paths(K, s) : K, π1 |= φ

K, s |= AF φ iff ∀π ∈ Paths(K, s) : ∃i : K, πi |= φ

K, s |= AG φ iff ∀π ∈ Paths(K, s) : ∀i : K, πi |= φ

K, s |= Aφ1U φ2 iff ∀π ∈ Paths(K, s) : ∃i : ∀j < i : K, πj |= φ1∧

∀k ≥ i : K, πk |= φ2

K, s |= Aφ1R φ2 iff ∀π ∈ Paths(K, s) : ∀i : ∀j < i : K, πj 6|= φ1 → K, πi |= φ2

K, s |= EX φ iff ∃π ∈ Paths(K, s) : K, π1 |= φ

K, s |= EF φ iff ∃π ∈ Paths(K, s) : ∃i : K, πi |= φ

K, s |= EG φ iff ∃π ∈ Paths(K, s) : ∀i : K, πi |= φ

K, s |= Eφ1U φ2 iff ∃π ∈ Paths(K, s) : ∃i : ∀j < i : K, πj |= φ1∧

∀k ≥ i : K, πk |= φ2

K, s |= Eφ1R φ2 iff ∃π ∈ Paths(K, s) : ∀i : ∀j < i : K, πj 6|= φ1 → K, πi |= φ2

Commonly, three different types of verifiable properties are distinguished:
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Safety Property: A safety property describes a behavior that may not occur on any path (”Something bad
may not happen”). To verify a safety property, all execution paths have to be checked exhaustively.
Safety properties are of the type¤¬φ or AG ¬φ, whereφ is a propositional formula.

Invariance Property: An invariance property describes a behavior that is required to hold on all execution
paths. It is logically complementary to a safety property. Invariance properties are of the type¤φ or
AG φ, whereφ is a propositional formula.

Liveness Property: A liveness property describes that ”something good eventually happens”. With linear
time logics, this means that a certain state will always be reached. For example,¤φ1 → ♦φ2 and
AG φ1 → AF φ2 are liveness properties.

The aim of model checking is to determine whether a given model fulfills a given property. Several
different algorithms have been successfully used for this task, using different temporal logics and data struc-
tures. Once property violation or satisfaction is determined, a model checker can return an example of
how this violation or satisfaction occurs. This is illustrated with acounterexampleor witness, respectively.
Satisfaction of LTL properties is defined using linear sequences. Consequently, witnesses and counterexam-
ples for LTL formulas are also linear sequences. In contrast, CTL properties are state formulas. Therefore,
the CTL model checking problem [11, p. 35] is to find the set of states that satisfy a given formula in a
given Kripke structure. Special algorithms are used to derive trace examples for witness or counterexample
states [12].

The first successful model checking approach isexplicit model checking. There are different approaches
based on LTL [13, 14] and CTL [15, 16] properties. In all approaches, the state space is represented ex-
plicitly, and searched by forward exploration until a violation of a propertyis found. For example, in LTL
model checking the negation of a property is represented as an automaton that accepts infinite words (B̈uchi
automaton). If the synchronous product of model and Büchi automaton contains any accepting path, then
this path proves property violation (the path shows that the negation of the property is accepted by the model
automaton, and therefore the property itself is violated). The counterexample is simply the path back to the
initial state. The search algorithm can either be depth- or breadth-first search; recently heuristic search has
also been considered. Breadth-first search always finds the shortest possible counterexamples, but the mem-
ory demands are significantly higher than for depth-first search. In CTL model checking, all states satisfying
a given property are determined by recursively calculating the satisfied sub-formulas for each state. If all
states are visited and no violation is detected, then the property is consistent with the model.Directed model
checking[17] extends explicit model checking with heuristic search to increase the speed with which errors
are found and counterexamples are generated. Such a technique is applicable if the aim of model checking
is not a proof of correctness, but the generation of counterexample. As such, this idea is well suited for test
case generation.

Symbolic model checking[18], the second generation of model checking, uses ordered binarydecision
diagrams (BDDs [19]) to represent states and function relations on thesestates efficiently. This allows
the representation of significantly larger state spaces, but a large numberof BDD variables has a negative
impact on the performance, and the ordering of the BDD variables has a significant impact on the overall
size. There are different heuristic approaches of how to order variables, as determining the optimal order is
NP-complete [20].

Bounded Model Checking[21], the third generation of model checking, reformulates the model checking
problem as a constraint satisfaction problem (CSP). This allows the use ofpropositional satisfiability (SAT)
solvers to calculate counterexamples up to a certain upper bound. As long as the boundary is not too big,
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this approach is very efficient. There are also approaches to extend bounded model checking to infinite
state systems. Bounded model checking has been successfully applied to systems where traditional model
checking fails. At the same time, there are many settings where a bounded model checker fails while a
symbolic model checker is efficient. Therefore, bounded model checkers do not replace but supplement
traditional model checking techniques.

The most commonly used model checkers in the context of testing are the explicit state model checker
SPIN [22] (Simple Promela Interpreter), the Symbolic Analysis Laboratory SAL [23], which supports both
symbolic and bounded model checking, the symbolic model checker SMV [24] as well as its derivative
NuSMV [5], which supports symbolic and bounded model checking. Otherpopular model checkers include
Murφ [25] the process algebra based FDR2 [26], or COSPAN [27]; some ofthese have also been used for
testing.

Many current model checkers such as NuSMV [5] or SAL [23] support CTL model checking in addition
to or instead of LTL model checking. In CTL model checking, special algorithms are applied to construct
linear traces from an initial state to explain a violating state [12]. However, only certain restricted subsets
of branching time temporal logics such asACTLdet or LIN always result in linear counterexamples [28].
When using full CTL, linear counterexamples are not always sufficientas evidence for property violation or
satisfaction. Most work on testing with model checkers only considers the linear subset when using CTL for
properties. Therefore, we use the termcounterexampleto describe a linear trace that either shows an LTL
property violation or violation of a CTL property that can be violated by a linear trace.

Recently, an algorithm to create tree-like counterexamples has been proposed by Clarke et al. [29]. In a
related work, Wijesekera et al. [30] define a formal relation between testcases and counterexamples for full
CTL. This relation is described in Section 7.8. A related approach has beenpresented by Meolic et al. [31]:
Witness and counterexample automata represent the superset of all finite and linear witnesses/counterexam-
ples for a limited subset of CTL.

2.2 Testing with Model Checkers

The idea of testing with model checkers is to interpret counterexamples as test cases. A suitable test case
execution framework can extract from this the test data, and also the expected results (i.e., test oracle). Early
work on testing with model checkers required manually specifiedtest purposesto either formulate negated
asnever-claims[2], or to partition the execution tree [1]. Later, many different techniques were proposed
to systematically and automatically derive complete sets of test cases. Most approaches follow the idea of
never-claims and use counterexamples, but some also use witness traces instead of counterexamples; these
two ideas are complementary, as a simple negation of the used properties is sufficient to switch from one
to the other. This section only considers the basic idea of test case generation, systematic techniques are
considered in later sections.

A test purpose describes the desired characteristics of a test case thatshould be created. For example,
it could describe the final state of the test case, or a sequence of states that should be traversed. The test
purpose is specified in temporal logic and then converted to a never-claim by negation; this asserts that the
test purpose never becomes true. Model checking the never-claim on amodel results in a counterexample,
if the never-claim becomes false at some point. The counterexample illustrateshow the never-claim is
violated, and thus shows how the original test purpose is fulfilled. As will beshown in Sections 4 and 5, a
popular approach is to automatically create never-claims based on coverage criteria. These never-claims are
calledtrap properties[32], and for each item that should be covered one trap property is generated. A test
purpose is not necessarily feasible, but fortunately infeasible test purposes are not a problem, because the
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never-claim for an infeasible test purpose simply results in no counterexample.
The exact interpretation of counterexamples as test cases depends on the system under test. In many

cases, testing with model checkers is applied to reactive systems, which read input values from sensors and
set output values accordingly. The model therefore consists of a set of variables representing input, output,
and possibly internal variables, as depicted in Figure 1. The system reacts to inputs by setting output values,
such that a logical step in a counterexample can be mapped to an execution cycle of the system under test
(see Figure 2(b)). Testing with model checkers is not limited to this specific type of automaton, but mapping
from counterexamples to test cases will vary for different scenarios;for example when considering flow
graphs [33].

Figure 1: Reactive system model.

(a) A counterexample is a trace in the execution tree.

(b) Counterexample, usable as test case.

Figure 2: Counterexamples are execution paths, where each state assigns values to all variables.

In the reactive system scenario, counterexamples can directly be interpreted as test cases. Because test
cases are always finite, it is necessary to distinguish between traces with or without loopback when mapping
a trace to a test case.
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Definition 8 (Test Case)A test caset := 〈s0, ...sn〉 related to Kripke structureK is a finite sequence such
that∀ 0 ≤ i < n : (si, si+1) ∈ T for K.

The number of transitions a test case consists of is referred to as itslength. E.g., test caset :=
〈s0, s1, ..., sn〉 has a length oflength(t) = n. Test cases can easily be created from traces (Definition 3).
If a trace does not contain a loopback state, then trace and test case areidentical. If the trace does contain
a loopback, i.e., it is a lasso-shaped sequence, then the lasso needs to beunfolded. Tan et al. [34] describe
truncation strategies to create finite test cases from lasso-shaped sequences. When using a white-box test-
ing technique, the complete internal state is known, and can be tracked in detail during test case execution.
Therefore a test case can be terminated whenever the same state has beenvisited twice at the same position
in the loop. When using a black-box testing approach, the loop part of the trace is repeated a finite number
of times.

This interpretation of counterexamples as test cases can only be directly applied to deterministic systems.
If there is nondeterminism, then a concrete counterexample contains only onepossible choice for each
nondeterministic choice. Applying such a test case to an implementation that makesa different but valid
choice would falsely report a fault. There are considerations of how to extend model checker based testing
to nondeterministic systems; see Section 7.7 for more details.

The result of the test case generation is atest suite(or test set). A test suiteTS is a finite set of test
cases.

Definition 9 (Test Suite) A test suiteTS is a finite set ofn test cases. Thesizeof TS is n. The overall
lengthof a test suiteTS is the sum of the lengths of its test casest: length(TS) =

∑

t∈TS length(t).

In order to describe how a test case is executed, further definitions arenecessary. In general, the test case
execution depends on the relation between the model and the system under test (SUT). The most common
scenario in the literature is that of reactive systems, which are executed in an infinite loop. This scenario is
also assumed here; if the mapping from model to SUT is different, then test case execution has to be adapted
to this change. A time step in the model can easily be mapped to an execution cycle insuch a reactive
system. In each cycle, the SUT receives stimuli from the environment via itsinputs. Using the inputs, the
SUT performs some computations and makes some changes, which can be observed via itsoutputs. A test
case is executed via interaction with the system under test (SUT). For this execution, the inputs are provided
by the tester. The resulting outputs are observed, and compared to the expected values. This observation
leads to averdict, which can be eitherfail or pass, expressing that a fault was found or not, respectively.

So far, a counterexample was only described as a sequence of states. According to the definition of a
Kripke structure, each state can be mapped to a set of atomic propositions that hold in this state. In order to
use counterexamples as test cases, we need to identify inputs and outputs at each state. For this, we use the
concept ofmodules, as described by Boroday et al. [35] in the context of testing with model checkers, and
originating from module checking theory [36]. In practice, the set of atomicpropositionsAP of a Kripke
structure does not contain deliberate propositions; a system is defined bya set of variables [12, 35, 37] (see
Figure 1). The labeling function for a state therefore results in a valuation of all variables in that state. The
variables can be partitioned into input, output and internal variables.

Definition 10 (Module) A moduleM is a triple M = (K, I, O), whereK = (S, S0, T, L) is a Kripke
structure, andI, O ⊆ AP are disjoint sets of input and output variables. The set of hidden variables is
defined asH = AP\(I ∪ O).
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Intuitively, a module works as follows: In every states, M readsL(s) ∩ I, stores internallyL(s) ∩ H, and
outputsL(s) ∩ O. Inp(s) = L(s) ∩ I denotes theinput of the module at states, andOut(s) = L(s) ∩ O
denotes theoutputof the module at states. A tracet := 〈s0, s1, ...sn〉 of moduleM can be interpreted
such that the output sequence〈Out(s0), Out(s1), ...Out(sn)〉 is produced in response to the input sequence
〈In(s0), In(s1), ...In(sn)〉.

Informally, a test caset := 〈s0, s1, ...sn〉 is therefore executed on an SUTI by providing values for all
input-variables described byInp(si) to I and comparing the output-variables described byOut(si) with
the values returned byI, for every statesi, 0 ≤ i ≤ n. This actually allows two different interpretations:
Synchronous languages [38] such as Lustre [39], Esterel [40], or Signal [41] assume that the implementation
responds immediately, which is known as thesynchrony hypothesis. This hypothesis can be verified by
showing that the program execution time is always smaller than the time between twosuccessive external
inputs. Under this assumption the expected output is contained in the same state as the input within a test
case. Alternatively, the expected output can be assigned to the successor state of the state containing the
inputs. There is little difference between these two choices, as long as both model and test case execution
framework agree on the interpretation. Formal testing theory assumes the existence of a formal model
representing the implementation. The formal model for the implementation does notactually have to exist;
this is known as thetest hypothesis(see e.g., [42]). In our setting, execution of a test case is defined by
interpreting the implementation as a moduleMI = (KI , I, O).

Definition 11 (Test Case Execution)Execution of test caset := 〈t0, ...tn〉 passeson implementationI =
(KI , I, O), if I has a pathp := 〈s0, ...sn, ...〉, i.e.,p ∈ Paths(I), such that for all statesti : 0 < i ≤ n:
si = ti. If I does not have such a path, the test caset fails on I.

As initially proposed by Engels et al. [2] and implemented in several different approaches (see Sec-
tion 6), an alternative to converting test purposes to never-claims is to introduce deliberate errors in the
model. The details of such an approach are discussed in Section 6; but withhindsight of this we refine
the definition of a test case. A distinction is made betweenpositiveandnegativetest cases, depending on
whether they contain a deliberate error or not.

What exactly leads to the detection of a fault depends on the type of test case. Positive test cases,
suffixed with ”+”, describe correct (positive) behavior. Negative test cases, marked with the suffix ”−”,
describe faulty (negative) behavior:

Definition 12 (Positive Test Case)A positive test caset+ detects a fault if its executionfails.

Definition 13 (Negative Test Case)A negative test caset− detects a fault if its executionpasses. A negative
test case contains a transition(ti, t′j) which is not defined by the reference model Kripke structureK, i.e.,
(ti, t

′
j) 6∈ T .

A correct implementation is expected to pass positive test cases, therefore positive test cases are also
referred to aspassingtests. In contrast, negative test cases should not be passed by a correct implementation,
hence such test cases are also known asfailing tests. The majority of available approaches produce positive
test cases. Therefore, if a test case is not specially denoted ast− or t+ in this paper, it is a positive test case.

3 A SIMPLE DEMONSTRATION MODEL

To illustrate the presented techniques, the following model serves as an example in this paper: The model
represents a simplified controller of a car (CC). It has two Boolean inputs that represent the user’s decision
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!accelerate/stop

accelerate/fast

brake/stop

!accelerate/slowS0

S1

S2
brake/stop

brake/stop

!accelerate/stop

accelerate/slow

accelerate/fast

Figure 3: FSM of example model Car Controller (CC).

to accelerate or brake. Upon acceleration, the car starts moving, with eitherslow or fast velocity. Upon
braking the car immediately stops. Figure 3 depicts this model as an FSM, wheretransitions are labeled
with the input and the resulting velocity as output. Figure 4 shows the SMV source code of the model.

MODULE main
VAR
accelerate: boolean;
brake: boolean;
velocity: { stop, slow, fast };

ASSIGN
init(velocity) := stop;
next(velocity) := case

accelerate & !brake & velocity = stop : slow;
accelerate & !brake & velocity = slow : fast;

!accelerate & !brake & velocity = fast : slow;
!accelerate & !brake & velocity = slow : stop;

brake: stop;

TRUE : velocity;
esac;

Figure 4: CC represented as SMV model.

In addition to the model, several simple requirement properties are expressed in LTL:

1. Whenever the brake is activated, movement has to stop.

¤ (brake → ©velocity = stop) (13)
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2. When accelerating and not braking, the velocity has to increase gradually, until it is fast.

¤ (¬brake ∧ accelerate ∧ velocity = stop → ©velocity = slow) (14)

¤ (¬brake ∧ accelerate ∧ velocity = slow → ©velocity = fast) (15)

3. When not accelerating and not braking, the velocity has to decrease gradually, until the car stops.

¤ (¬brake ∧ ¬accelerate ∧ velocity = fast → ©velocity = slow) (16)

¤ (¬brake ∧ ¬accelerate ∧ velocity = slow → ©velocity = stop) (17)

4 COVERAGE BASED TEST CASE GENERATION

While manual specification of test purposes as proposed by Engels et al.[2] can lead to efficient test cases,
it is usually advantageous to systematically create complete test sets accordingto some test objective. It is
difficult to ensure complete coverage of all possible system behaviors withmanually specified test purposes.

Coverage criteria are a means to measure how thorough a system is exercised by a given test suite. A
coverage criterion is defined on some aspect of a program or specification, for example statements or code
branches. Full coverage is achieved, if all items described by the coverage criterion are executed (=covered)
by at least one test case. Coverage is usually quantified as the percentage of items that are covered.

G (a −> X !b)

G (b −> X !c)

G (c −> X !d)

....

Model

Trap Properties

Model Checker

Test cases

Figure 5: Coverage based test case generation.

Model checkers can be used to automatically derive test suites for maximum coverage of a given cri-
terion. This process is illustrated in Figure 5. For each item that should be covered, a distinct never-claim
(trap property[32]) is specified. The test suite is created by model checking all trap properties against a
given model. Again, infeasible trap properties are detected if the model checker creates no counterexamples.

For example, in order to create a test suite that covers all states of the system variables, a trap property
for each possible statea of every variablex is needed, claiming that the value is not taken:¤¬(x = a). A
counterexample to such an example trap property is any trace that contains astate wherex = a. In the car
controller example introduced in Section 3, state coverage with respect to each variable could be achieved
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with the following set of trap properties:

¤ (accelerate 6= 0)

¤ (accelerate 6= 1)

¤ (brake 6= 0)

¤ (brake 6= 1)

¤ (velocity 6= stop)

¤ (velocity 6= slow)

¤ (velocity 6= fast)

While trap properties for state coverage are simple safety properties, trapproperties can be deliberate
temporal logic properties for which counterexamples exist; for example, they can be defined over transitions
or sequences of transitions.

4.1 Coverage of SCR Specifications

The concept of trap properties was initially proposed by Gargantini and Heitmeyer [32] with regard to
SCR (Software Cost Reduction method [43]) specifications. An SCR model isdefined as a quadruple
(S, S0, E

m, T ), whereS is the set of states,S0 ⊆ S is the initial state set,Em is the set of input events, and
T is the transform describing the allowed state transitions.T is described with tables for events (predicates
defined on a pair of system states implying that the value of at least one state variable has changed) and
conditions (predicates defined on a system state) with regard to all variables controlled by the considered
system.

SCR specifications consist of different types of tables. A condition table defines a variable as a function
of a mode and a condition, and an event table defines a variable as a function of a mode and an event. Table 1
shows a mode table for the CC example model.

Table 1: SCR Mode Transition Table forvelocity in CC example.

Current Mode Event New Mode
stop accelerate = 1 AND brake = 0 slow
slow accelerate = 1 AND brake = 0 fast
fast accelerate = 0 AND brake = 0 slow
slow accelerate = 0 AND brake = 0 stop
fast brake stop

The operational SCR specification is automatically converted to an SMV or SPIN model. SCR re-
quirement properties can then be used as never-claims, as in [2]. The novel idea presented in [32] is to
automatically create trap properties from the SCR tables. Each table is converted to an if-else construct for
the model checker SPIN, or a case-statement for SMV. For each variable, a designated variable is added,
which indicates which branch of the if-else/case construct is currently active. For each possible value of
this special variable, a trap property is formulated claiming that this value is never taken. For example, the
variableCaseV ar represents the chosen case for variableV ar. Resulting trap properties in LTL would be,
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e.g.,¤¬(CaseV ar = 1), ¤¬(CaseV ar = 2), etc. The trap properties automatically result in a test suite
for branch coverage of the SCR model. Considering Table 1, the resultingmodel will contain five cases.
Consequently, there will be six trap properties, because the ”no-change” case has to be considered as well.
The trap properties are:

{¤¬(Case velocity = i) | 0 ≤ i ≤ 6}

4.2 Coverage of Transition Systems

Heimdahl et al. [44] proposed a framework for specification based testcase generation, focusing on struc-
tural coverage criteria, independently of any specific formalism. This framework is instantiated in [37, 45,
46], where a general transition system definition is given. Other formalisms, such as SCR or RSML−e [47],
can be interpreted as such transition systems, and mapped to model checkingspecifications, e.g., SMV.
The language RSML−e is based on the Statecharts like language Requirements State Machine Language
(RSML) [48], and adds support for interfaces between the environment and the control software.

In this framework, the system state is uniquely determined by the values ofn variables{x1, x2, ..., xn}.
Each variablexi has a domainDi, and consequently the reachable state space of a system is a subset ofD =
D1 ×D2 × ...×Dn. The set of initial values for the variables is defined by a logical expression ρ. The valid
transitions between states are described by the transition relation, which is a subset ofD×D. The transition
relation is defined separately for each variable using logical conditions. For variablexi, the conditionαi,j

defines the possible pre-states of thej-th transition, andβi,j is the j-th post-state condition. A simple
transition for a variablexi is a conjunction ofαi,j , βi,j and a guard conditionγi,j : δi,j = αi,j ∧ βi,j ∧ γi,j .

The disjunction of all simple transitions for a variablexi is a complete transitionδi. The transition
relation∆ is the conjunction of the complete transitions of all the variables{x1, ..., xn}. Consequently, a
basic transition system is defined as follows:

Definition 14 (Basic Transition System)A transition systemM over variables{x1...xn} is a tupleM =
(D, ∆, ρ), with D = D1 × D2 × ... × Dn, ∆ =

∧

i δi, and the initial state expressionρ. For each variable
xi there is a transition relationδi, that is the disjunction of several simple transitionsδi,j = αi,j ∧βi,j ∧γi,j ,
whereαi,j , βi,j , and γi,j are pre-state, post-state, and guard conditions of thej-th simple transition of
variablexi.

Figure 6 illustrates the RSML−e specification for our example CC model. The corresponding simple
transitions for the CC model are listed in Table 2.

Trap properties can be derived from the basic transition system model. Structural coverage criteria are
defined with regard to the transition relation∆. These coverage criteria are similar to common code based
coverage criteria such as decision or condition coverage, but refer totransitions. In general, the conjunction
of pre-state conditionα and guard conditionγ can be interpreted as a logical predicate, which allows the
use of common logic based coverage criteria [49]. The post-state conditionβ is used as part of the trap
properties to force the creation of relevant counterexamples.

Simple Transition Coveragerequires that each simple transition of every variable is executed. A simple
transition consists of pre-state, post-state, and guard conditions. Consequently, a trap property to create an
according test case simply has to require that always when the pre-state condition and guard are true, the
post-state condition maynot be satisfied in the next state:

¤α ∧ γ → ©¬β
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STATE_VARIABLE velocity:
VALUES: { stop, slow, fast }
INITIAL_VALUE: stop
CLASSIFICATION: State

EQUALS stop IF
TABLE

accelerate : * F F;
brake : T F F;
PREV_STEP(velocity) = stop : * * T;
PREV_STEP(velocity) = slow : * T *;

END TABLE

EQUALS slow IF
TABLE

accelerate : T F;
brake : F F;
PREV_STEP(velocity) = stop : T *;
PREV_STEP(velocity) = fast : * T;

END TABLE

EQUALS fast IF
TABLE

accelerate : T T;
brake : F F;
PREV_STEP(velocity) = slow : T *;
PREV_STEP(velocity) = fast : * T;

END TABLE

END STATE_VARIABLE

Figure 6: Simple car controller as RSML−e specification.

In the CC example (Figure 4), simple transition coverage is achieved with the following trap properties:

¤ (velocity = stop ∧ accelerate ∧ ¬brake → ©¬(velocity = slow))

¤ (velocity = slow ∧ accelerate ∧ ¬brake → ©¬(velocity = fast))

¤ (velocity = fast ∧ ¬accelerate ∧ ¬brake → ©¬(velocity = slow))

¤ (velocity = slow ∧ ¬accelerate ∧ ¬brake → ©¬(velocity = stop))

¤ (brake → ©¬(velocity = stop))

¤ (velocity = fast ∧ accelerate ∧ ¬brake → ©¬(velocity = fast))

¤ (velocity = stop ∧ ¬accelerate ∧ ¬brake → ©¬(velocity = stop))

Note that counterexamples to such trap properties end with the simple transition from α to β. If this is
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Table 2: Simple transitions forvelocity.

Transition α β γ

1 velocity = stop velocity = slow accelerate ∧ ¬brake
2 velocity = slow velocity = fast accelerate ∧ ¬brake
3 velocity = fast velocity = slow ¬accelerate ∧ ¬brake
4 velocity = slow velocity = stop ¬accelerate ∧ ¬brake
5 True velocity = stop brake
6 velocity = fast velocity = fast accelerate ∧ ¬brake
7 velocity = stop velocity = stop ¬accelerate ∧ ¬brake

not an observable transition, then an additional postamble sequence is necessary. Thetransition coverage
criterion described by Offutt et al. [50] is basically identical to the simple transition coverage criterion.

Simple Guard Coverageis similar to decision coverage in code based testing. Simple guard coverage
requires that for each simple transition there exists a test cases where the guard evaluates to true in a state
where the pre-state condition is true, and a test caset where the guard evaluates to false in a state where
the pre-state condition is true. This criterion corresponds to thepredicate coveragecriterion [49] for logical
expressions. For example, this could be expressed as a pair of trap properties:

¤α ∧ γ → ©¬β

¤α ∧ ¬γ → ©β

Again, the post-state expressionβ is negated in order to force creation of suitable counterexamples for the
case when the guard evaluates to true. When the guard evaluates to false,creation of a counterexample
is forced by claimingβ will be true in the next state. The CC example (Figure 4) requires fourteen trap
properties to achieve simple guard coverage. To save space we only consider the first simple transition:

¤ (velocity = stop ∧ accelerate ∧ ¬brake → ©¬(velocity = slow))

¤ (velocity = stop ∧ ¬(accelerate ∧ ¬brake) → © (velocity = slow))

Condition Coverage[50] requires that for each condition (clause) in a predicate there is a test case
where the condition evaluates to true, and a test case where the condition evaluates to false. This criterion
corresponds to theclause coveragecriterion [49] for logical expressions, and can also be applied to guard
conditions. It can be expressed as a pair of trap properties for clausec:

¤¬(α ∧ c = true)

¤¬(α ∧ c = false)

The trap property claims that there is no state where the pre-state conditionα is true and the clausec
takes evaluates to true or false. Resulting counterexamples do not necessarily execute the transition.

Again we consider the first simple transition of the example model:
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¤ (velocity = stop ∧ accelerate = true)

¤ (velocity = stop ∧ accelerate = false)

¤ (velocity = stop ∧ (¬brake) = true)

¤ (velocity = stop ∧ (¬brake) = false)

Complete Guard Coverageis similar to themultiple conditioncriterion in code based coverage analysis,
also known ascombinatorial coverage[49]. A guard condition consists of several clauses (usually called
conditions in code based coverage). Complete guard coverage requires that all possible combinations of
truth values for the clauses of a guard are covered.

Let the clauses in a guard conditionγ be{c1, . . . , cl}, then complete guard coverage ofγ requires a test
cases for any given Boolean vectoru of length l, such that for somei:

∧l
k=1(ck(si, si+1) = uk). This

means that for everyu there has to be a trap property of the type:

¤¬(α ∧
l

∧

k=1

(ck(si, si+1) = uk))

The trap property claims that there is no state where the pre-state conditionα is true and the clauses take on
the values described byuk; this results in a trace that leads to the chosen valuation for the guard condition.
Note that this trace does not necessarily execute the transition.

Again we consider the first simple transition of the example model:

¤ (velocity = stop ∧ accelerate = false ∧ (¬brake) = false)

¤ (velocity = stop ∧ accelerate = false ∧ (¬brake) = true)

¤ (velocity = stop ∧ accelerate = true ∧ (¬brake) = false)

¤ (velocity = stop ∧ accelerate = true ∧ (¬brake) = true)

The number of trap properties quickly increases with the number of clauses. Consequently, if the number
of clauses is too big, then complete guard coverage can result in too many test cases to be useful. As a more
practical solution, the modified decision/condition coverage (MC/DC) criterion [51] has been proposed in
the context of code coverage. MC/DC requires that each condition (clause) is shown to independently affect
the value of the decision (predicate) it is part of. This informal definition is ambiguous, and allows three
different interpretations. There are many variations of MC/DC in the literature; Ammann and Offutt [52]
articulate the differences and provide a uniform framework of definitions. Following the nomenclature used
in [52], the considered clause in a predicate will be called themajorclause, and the remaining clausesminor
clauses. In all interpretations of MC/DC, it takes a pair of test cases to cover a clause. As test case pairs for
different clauses need not be disjoint, the size of an MC/DC test suite can be as small asl+1 test cases for a
predicate withl clauses. In the strictest variant (1), the values of all minor clauses are fixed while the value
of the major clause is changed, which also has to result in a change of the value of the predicate. A slightly
relaxed variant (2) still requires that the predicate takes on both values,but the values of the minor clauses
do not need to be fixed. Finally, the decision coverage can also be relaxed, resulting in variant (3), which
does not require the predicate to take on both values.

Clause-wise Guard Coverageis an adaptation of the strictest interpretation (1) of MC/DC to basic tran-
sition systems, introduced by Rayadurgam and Heimdahl [37]. The authors assume some mechanism that
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calculates a pair of Boolean vectorsu andv of equal lengthl for l clauses in guardγ, where only them-th
value differs. When the clausesci are assigned the values inu, thenγ evaluates to true, and when assigned
the values inv, thenγ evaluates to false. The vectorsu andv could, for example, be derived using constraint
satisfaction techniques. These vectors can be used to formulate the following trap properties for them-th
clause of guardγ:

¤α ∧
l

∧

k=1

(ck = uk) → ©¬β

¤α ∧
l

∧

k=1

(ck = vk) → ©β

The first trap property results in a test case where the guard evaluates totrue, and the second trap property
results in a test case where the guard evaluates to false as a consequence of a different value forcm.

Considering the first simple transition of our example again, clause-wise guard coverage is achieved
with the following set of trap properties (slightly rewritten to fit into the page width):

¤ ((velocity = stop ∧ accelerate ∧ (¬brake) = true) → © (¬velocity = slow))

¤ ((velocity = stop ∧ ¬accelerate ∧ (¬brake) = true) → © (velocity = slow))

¤ ((velocity = stop ∧ accelerate ∧ (¬brake) = false) → © (velocity = slow))

Heimdahl et al. [53] also defineClause-wise Transition Coverage, which is identical to clause-wise
guard coverage but defined in the context of the specification languageRSML−e. In a case study [53], a
flight guidance system specified in RSML−e at varying levels of abstraction is analyzed with regard to test
case generation. The case study shows that the performance of the model checker is a critical factor, but if
the model size is within bounds, then coverage based test case generationis feasible. Complex criteria such
as clause-wise transition coverage result in better test cases than very simple criteria like state coverage or
simple transition coverage. A high complexity of trap properties has a negative effect on the performance.

The drawback of the solutions described in [37] and [53] is that a mechanism that calculates appropriate
valuations of all minor clauses is required. Furthermore, all clauses haveto be independent, otherwise
there might not exist a test case for every chosen valuation. As a solution, Rayadurgam and Heimdahl [54]
describe a method to create pairs of test cases for MC/DC. The solution consists of altering the model such
that there are auxiliary Boolean variables that store the values of clauses. The initial values of these auxiliary
variables are nondeterministically assigned by the model checker to true or false. After that, these values are
not changed anymore. This results in a vectoru of l value assignments to thel clauses of a guard condition.
Note that the model checker selected suitable valuations automatically, and no additional mechanism to
calculate vectors is necessary. The vector chosen by the model checker is used to create a counterexample
for clausecm that represents two concatenated test cases: A test case whereγ evaluates to true, and a test
case whereγ evaluates to false, where the values of all clauses except the major clausecm are defined byu.
The first case is covered by any counterexample to the following:

¤ (¬(α ∧ γ ∧ cm 6= um ∧
∧

k 6=m

(ck = uk)))

The second case is covered by any counterexample to the following:

¤ (¬(α ∧ ¬γ ∧ cm = um ∧
∧

k 6=m

(ck = uk)))
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Combining these two trap properties to one trap property achieves that the same valuations for all clauses
except the major clause are used. To reach the same decision point twice in asingle run of a reactive system,
a dedicated hard reset transition might be necessary. Resulting counterexamples can then be split at the hard
reset transition into two test cases. Consequently, a trap property for a pair of MC/DC test cases for major
clausecm results in the following:

¤ (¬(α ∧ γ ∧ cm 6= um ∧
∧

k 6=m

(ck = uk))) ∨ ¤ (¬(α ∧ ¬γ ∧ cm = um ∧
∧

k 6=m

(ck = uk)))

As an example, consider the first transition of the CC model, and letaccelerate be the major clause.
This results in the following trap property, where the model checker performs the task of choosing suitable
values forua andub:

¤ (¬(velocity = stop ∧ (accelerate ∧ ¬brake) ∧ accelerate 6= ua ∧ (¬brake) = ub)))∨

¤ (¬(velocity = stop ∧ ¬(accelerate ∧ ¬brake) ∧ accelerate = ua ∧ (¬brake) = ub))

It is conceivable to modify this kind of trap property such that the considered transitions are actually
executed. For example, the following trap property achieves that a counterexample will first take the con-
sidered transition (to make left part of implication false), and then reach a point where the guard evaluates
to false (here, execution of a transition is forced by claiming©β, which is false asγ is false):

¤ ((α ∧ γ ∧ cm 6= um ∧
∧

k 6=m

(ck = uk)) → ¤ (α ∧ ¬γ ∧ ∧cm 6= um ∧
∧

k 6=m

(ck = uk)) → ©β)

Full Predicate Coverage[50] requires that each clause in each predicate is tested independently.In
contrast to the previously discussed clause wise coverage criteria, the values of minor clauses may change as
long as the value of the predicate is still determined by the considered clause.Consequently, full predicate
coverage corresponds to interpretation (2) of MC/DC as described above. In [55] this criterion is further
relaxed toUncorrelated Full Predicate Coverage. While this still requires that for a clause it is shown
for both possible truth values that it influences the predicate, it is not required that the actual value of the
predicate differs; that is, it drops the requirement for decision coverage. This corresponds to interpretation
(3) of MC/DC as described above. In [55], the Boolean derivative [56] is used to create two trap properties
for each clause. The Boolean derivativedP/dc of predicateP for conditionc is a predicate on the remaining
conditions that is true if the value ofc determines the value ofP . Trap properties for conditiona in a
predicateP can be formulated by claiming that the derivative always impliesc is false and in a second
property thatc is true. We apply the derivative to the guard conditionγ as follows:

¤ ((α ∧ d(γ)/dc) → c)

¤ ((α ∧ d(γ)/dc) → ¬c)

Again we consider the first simple transition of the example model:

¤ ((velocity = stop ∧ accelerate) → (¬brake))

¤ ((velocity = stop ∧ accelerate) → ¬(¬brake))

¤ ((velocity = stop ∧ ¬brake) → (accelerate))

¤ ((velocity = stop ∧ ¬brake) → ¬(accelerate))
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A natural extension of MC/DC is theReinforced Condition/Decision Coverage(RC/DC) [57] criterion.
The idea of RC/DC is that it is not sufficient to show for each clause that it independently affects the
predicate’s outcome; it is also necessary to show that each clause independentlykeepsthe outcome. This
means that the values of the minor clauses are fixed while the value of the major clause is altered, and the
value of the decision does not change because of this. As it might not be possible to keep the values of all
minor clauses fixed, this requirement can be relaxed.

Following the MC/DC definition given in [37], RC/DC needs the following additional trap properties,
whereu′, ′v is a pair of Boolean vectors of equal lengthl for l clauses in guardγ, where only them-th
value differs. When the clauses take on the values described in these vectors, the guard conditionγ shall
evaluate to the same value in both cases. Ifγ evaluates to true in both cases, then the transition is taken and
β evaluates to true in the next state. Therefore, the trap properties contain the negation ofβ:

¤α ∧
l

∧

k=1

(ck = uk) → ©¬β

¤α ∧
l

∧

k=1

(ck = vk) → ©¬β

If γ evaluates to false, then the negation ofβ has to be removed.
Considering the first simple transition of our example again, RC/DC is achievedwith the following set

of trap properties (slightly rewritten to fit into the page width):

¤ ((velocity = stop ∧ ¬accelerate ∧ (¬brake) = false) → © (velocity = slow))

¤ ((velocity = stop ∧ ¬accelerate ∧ (¬brake) = true) → © (velocity = slow))

¤ ((velocity = stop ∧ accelerate ∧ (¬brake) = false) → © (velocity = slow))

Finally, Transition Pair Coverageis another related coverage criterion given in [50] that is also useful in
the transition system context. In contrast to (simple) transition it requires thatall feasiblepairsof transitions
are covered. As shown in [55], this results in trap properties with two levelsof next statements. The
following trap property covers the transitions(α1, β1, γ1) and(α2, β2, γ2):

¤ (α1 ∧ γ1 → © (α2 ∧ γ2 → ©¬β2))

As an example, a test case covering the pair of the first two transitions of our example is achieved with
the following trap property (slightly rewritten to save space):

¤ ((velocity = stop ∧ accelerate ∧ ¬brake) →

© ((velocity = slow ∧ accelerate ∧ (¬brake)) → ©¬(velocity = fast)

4.3 Control and Data Flow Coverage Criteria

The previous section presented coverage criteria in the context of basictransition systems. Such coverage
criteria, however, are not limited to this specific kind of model, but can be applied to any system or speci-
fication that uses Boolean predicates. For example, Hong and Lee [33] use similar criteria (state coverage,
transition coverage) to create test cases for the control flow of a program or EFSM model, and define trap
properties to generate test cases for data flow coverage criteria. So far, the discussed coverage criteria only
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considered the control flow of a model. Control flow criteria are based onlogical expressions in the specifi-
cation, which determine the branching during the execution. In contrast, data flow oriented coverage criteria
consider how variables are defined and used during execution.

Test case generation with regard to coverage of data flow graphs is considered in [33, 58]. A flow
graphG is defined as a tupleG = (V, vs, vf , A), whereV is a finite set of vertices,vs ∈ V is the start
vertex,vf ∈ V is the final vertex, andA is a finite set of arcs. A vertex represents a statement and an arc
represents possible flow of control between statements. The set of variables that is defined at a vertexv is
denoted withDEF (v), and the set of variables that is used at a vertexv is denotes withUSE(v). A flow
graph can be interpreted as a Kripke structureK(G) = (V, vs, L, A ∪ {(vf , vf )}), whereL(vs) = {start},
L(vf ) = {final}, andL(v) = DEF (v) ∪ USE(v) for everyv ∈ V − {vs, vf}.

v1: input ( accelerate , brake , previousvelocity ) ;
v2: velocity = previousvelocity ;
v3: if ( brake ) {
v4: velocity = stop ;

} else {
v5: if ( accelerate ){
v6: if ( velocity == stop )
v7: velocity = slow ;

else
v8: velocity = fast ;

} else {
v9: if ( velocity == fast )
v10: velocity = slow ;

else
v11: velocity = stop ;

}
v12: output ( velocity ) ;

Figure 7: Example implementation of CC example.

As an example, Figure 7 shows an implementation of our car controller example.The corresponding
data flow graph is depicted in Figure 8, where vertexes are annotated with their DEF andUSE sets. Hong
et al. [59] show how model checkers can be used to derive test casesfor different data flow coverage criteria
using witness formulas. In this survey, we use the criteria by Rapps and Weyuker [60] to illustrate this
approach; trap properties for further criteria are given in Hong et al.[59]. The basic idea of data flow
criteria is to finddefinition-use pairs(du-pairs). A pair(d(x, v), u(x, v′)) is a du-pair, if there exists a path
〈v, v1, . . . , vn, v′〉 from vertexv to v′, such thatx is not defined in anyvi for 1 ≤ i ≤ n, or if n = 0 (this is
called a definition-clear path).

Hong et al. [59] express du-pairs as WCTL-formulas. WCTL formulas are CTL formulas where only the
temporal operatorsEF , EX , andEU occur, and for any sub-formula of the formf1∧ . . .∧fn all fi except
one at the most are atomic propositions. A WCTL formula for a du-pair (d(x, v), u(x, v)) is expressed as
follows:

wctl(d(x, v), u(x, v′)) := EF (d(x, v) ∧ EX E[¬def(x)U (u(x, v′) ∧ EF final)])
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Figure 8: Data flow graph for example implementation.

In this formula,def(x) is the disjunction of all definitions ofx. This formula expresses that there exists
a path from the initial state tod(x, v), such that there exists a definition-clear path tou(x, v′). In addition,
EF final requires that the path continues to the final vertex, such that the path is acompletepath. For
example, the following formula results for the du-pair(d(brake, v1), u(brake, v3)):

wctl(d(brake, v1), u(brake, v3)) := EF (d(brake, v1) ∧ EX

E[¬d(brake, v1)U (u(brake, v3) ∧ EF final)])

An example witness to this formula is〈vs, v1, v2, v3, v4, v12, vf〉. Any given(d(x, v), u(x, v′)) is a du-pair
iff the Kripke structure representing the data flow graph satisfieswctl(d(x, v), u(x, v′)).

Theall-defscoverage criterion requires that for every definitiond(x, v) there is a test case that uses a
definition-clear path to someu(x, v′). Let DEF (G) denote the set of definitions in the data flow graphG,
andUSE(G) the set of uses inG. Then, a test suiteT satisfies the all-defs coverage criterion iff it is a
witness set for:

{
∨

u(x,v)∈USE(G)

wctl(d(x, v), u(x, v′)) | d(x, v) ∈ DEF (G)}
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Once more, a set of test cases can be created by using the model checker to derive witness sequences for
this set of formulas, or equivalently, by calculating counterexamples to the negations of these formulas.

In our example data flow graph in Figure 8, we can identify the example set ofdu-pairs given below
(note that other sets of du-pairs are also possible). A test suite satisfyingall-defs can be created by calcu-
lating a witness for eachwctl(d(x, v), u(x, v′)) or counterexample to¬(wctl(d(x, v), u(x, v′))) for each
(d(x, v), u(x, v′)) in this set:

{(d(brake, v1), u(brake, v3)),

(d(accelerate, v1), u(accelerate, v5)),

(d(previous velocity, v1), u(previous velocity, v2)),

(d(velocity, v2), u(velocity, v6)),

(d(velocity, v4), u(velocity, v12)),

(d(velocity, v7), u(velocity, v12)),

(d(velocity, v8), u(velocity, v12)),

(d(velocity, v10), u(velocity, v12)),

(d(velocity, v11), u(velocity, v12))}

The all-usescoverage criterion can be defined in a similar manner. A test suite satisfies theall-uses
coverage criterion, if for every definitiond(x, v) and every useu(x, v′) there exists some definition-clear
path with respect tox as part of a test case. Consequently, a test suite satisfies the all-uses coverage criterion
if it is a witness set for the following set of formulas:

{wctl(d(x, v), u(x, v′)) | d(x, v) ∈ DEF (G), u(x, v′) ∈ USE(G)}

Obviously, the number of du-pairs is larger for the all-uses criterion than for the all-defs criterion. In our
example graph, we get the following set of du-pairs:

{(d(brake, v1), u(brake, v3)),

(d(accelerate, v1), u(accelerate, v5)),

(d(previous velocity, v1), u(previous velocity, v2)),

(d(velocity, v2), u(velocity, v6)),

(d(velocity, v2), u(velocity, v9)),

(d(velocity, v4), u(velocity, v12)),

(d(velocity, v7), u(velocity, v12)),

(d(velocity, v8), u(velocity, v12)),

(d(velocity, v10), u(velocity, v12)),

(d(velocity, v11), u(velocity, v12))}

In this example, only the du-pair(d(velocity, v2), u(velocity, v9)) is added in comparison to the all-defs
criterion. Theoretically, the worst case number of du-pairs can beO(n2) for a flow graph of sizen.

Further data flow criteria are considered in [59]. Data flow coverage criteria are extended with control
dependence information in [61]. In [62], data and control flow criteria are applied to Statecharts speci-
fications. In [33], control and data flow coverage criteria are definedfor extended finite state machines
(EFSMs).
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4.4 Coverage of Abstract State Machines

Countless specification formalisms have been defined in the past. In general, coverage criteria can be defined
and used for testing for any specification language that is susceptible to model checking. For example,
Abstract State Machines [63] (ASMs) are yet another formalism that hasbeen considered in the context
of coverage oriented test case generation [64, 65]. ASMs are semantically well defined pseudo-code over
abstract structures. An ASM consists of states and a finite set of rules for guarded function updates. Rules are
of the typeif condition thenupdates, wherecondition is an arbitrary Boolean expressions, andupdates is
a finite set of function updates that are executed simultaneously. There are many different types of functions,
and basically a nullary function can be interpreted as a variable.

data Velocity = stop | slow | fast
instance AsmTerm Velocity

brake :: Dynamic Bool
brake = initVal "brake" False

accelerate :: Dynamic Bool
accelerate = initVal "accelerate" False

velocity :: Dynamic Velocity
velocity = initVal "velocity" stop

r1 :: Rule()
r1 = if (velocity == stop) && (accelerate == True) && (brake == False)
then velocity := slow

r2 :: Rule()
r2 = if (velocity == slow) && (accelerate == True) && (brake == False)
then velocity := fast

r3 :: Rule()
r3 = if (velocity == fast) && (accelerate == False) && (brake == False)
then velocity := slow

r4 :: Rule()
r4 = if (velocity == slow) && (accelerate == False) && (brake == False)
then velocity := stop

r5 :: Rule()
r5 = if (brake == True)
then velocity := stop

Figure 9: ASM specification for CC example, each transition represented as a distinct rule..
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Figure 9 shows the car controller example as an ASM specification, where each transition is represented
as a distinct rule, following the style used in the tool ATGT (see Section 10), which automatically creates
test cases from ASM specifications with a model checker.

Similarly to the previously described approaches, rules are suitable for trap property generation.Rule
coverageis similar to simple transition coverage, and requires a test case where the guard condition evaluates
to true, and one where the guard condition evaluates to false:AG (¬condition). For example, rule 1 in
Figure 9 results in two trap properties, the first one lets the guard evaluate totrue, the second one to false:

¤ (velocity = stop ∧ ¬accelerate ∧ ¬brake)

¤¬(velocity = stop ∧ ¬accelerate ∧ ¬brake)

In a similar style, other coverage criteria based on logical predicates can be applied to rule guards. For
example, MC/DC is used by [64, 65].

In contrast to these control oriented coverage criteria, therule update coveragerequires each update
function to be nontrivially executed at least once. This is a data flow coverage criterion, as it considers the
value of a variable prior to a new assignment (i.e., definition). Rule update coverage for all five rules of our
example specification results in the following trap properties, generated by ATGT:

¤ (velocity 6= slow ∧ (velocity = stop ∧ accelerate ∧ ¬brake))

¤ (velocity 6= fast ∧ (velocity = slow ∧ accelerate ∧ ¬brake))

¤ (velocity 6= slow ∧ (velocity = fast ∧ ¬accelerate ∧ ¬brake))

¤ (velocity 6= stop ∧ (velocity = slow ∧ ¬accelerate ∧ ¬brake))

¤ (brake ∧ velocity 6= stop)

Further coverage criteria are defined by Gargantini and Riccobene [64]; Parallel rule coveragerequires
combinations of updates to be executed in parallel, andstrong parallel rule coveragerequires all possible
combinations of parallel update functions to be covered. This approach has been evaluated with the model
checker SMV in [64], and with the model checker SPIN in [65].

5 REQUIREMENTS BASED TESTING

The majority of coverage based approaches use some structural coverage criterion based on a behavioral
model of the SUT. Sometimes it is desirable to create test cases with respect to agiven set of requirement
properties. The approach described by Engels et al. [2] can be usedfor this, if requirement properties are
used as test purposes. The drawback is that each requirement property only results in one test case. This
test case is not necessarily a good exercise regarding the property. For example, consider the property
¤ (x → © y), which is quite a common type. A counterexample might not contain a state wherex is
true, which obviously is not a good test case for the property. A straightforward approach is to require the
antecedent to become true in a test case. For example, this is achieved with antecedent coverage [66], where
¤ (x → © y) is reformulated to¤ (x → © y) ∧ ♦ (x). Further approaches are shown below.

It is not always possible to create useful counterexamples by directly negating requirement properties.
For example, negation of a safety property might result in a counterexamplewhich consists of only one state
(the initial state) — which is not a useful test case.

An equivalence partitioning of the execution tree is suggested by Callahan et al. [1, 67]. For a single
requirement property, two kinds of paths can be distinguished within the expanded computation tree: those
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for which the property is fulfilled, and those where the property is violated.The idea of this partitioning is
that all paths within a partition are assumed to be very similar. That way, only a small number of test cases,
or in fact only a single test case, per partition is necessary. A complete cover of disjoint partitions on infinite
paths in the computation tree can be created by combining properties and their negations conjunctively.

For example assume two requirement propertiesφ1 andφ2. There are four different possible partitions
for these two properties:φ1 ∧ φ2, φ1 ∧ ¬φ2, ¬φ1 ∧ φ2, and¬φ1 ∧ ¬φ2. Each such combination is a
coverage property. This partitioning, called conjunctive complementary closure (CCC), creates partitions
that are only disjoint when considering complete paths in the computation tree. Finite traces may fall into
one or more partitions. Coverage properties can be used to validate existingtest traces, determine to which
partition a given test case belongs to, or to create a new test case for a partition.

5.1 Vacuity Based Coverage

Tan et al. [34] describe a method to derive trap properties from requirement properties. These trap prop-
erties achieve that such test cases are created that show how a property is non-vacuously fulfilled. Vacuity
describes the problem that a property is satisfied in a way not intended. A property is vacuously satisfied, if
the model checker reports that the property is satisfied regardless of whether the model really fulfills what
the specifier originally had in mind or not. For example, the property¤ (x → © y) is vacuously satisfied
by any model wherex is never true. A vacuous pass of a property is an indication of a problem ineither the
model or the property.

Beer et al. [68] usewitness formulasto detect vacuity for a subset of ACTL (CTL with onlyA quanti-
fied temporal operators). This method is extended to CTL* by Kupferman and Vardi [69]. More efficient
algorithms are considered by Purandare and Somenzi [70]. In general, vacuity of a property is detected by
checking a formula and its witness formula against the model.

Witness formulas are derived from properties by changing sub-formulas. The idea is that if a model
satisfies a property and also a corresponding witness formula, then the property is satisfied vacuously. If the
witness formula is not satisfied by the model, then the property is properly satisfied. The replacement of
sub-formulaφ with ψ in formulaf is denoted asf [φ ← ψ]. If a sub-formula can be replaced such that the
model does not satisfy the resulting formula, then the sub-formulaaffectsthe formula:

Definition 15 (Affect) [34] A sub-formulaφ of f affectsf in modelM if there is a formulaψ such that the
truth value off andf [φ ← ψ] are different with respect toM .

If a propertyf is vacuously satisfied by a model, then there exists a sub-formulaφ in f that does not
affect the property. This means that there exists no replacementψ for φ such thatf [φ ← ψ] is violated by
a given model. Consequently, a property is satisfied vacuously iff the formula and its witness formula are
both satisfied by the same model:

Definition 16 (Vacuity) [34] A modelM satisfiesf vacuously with respect to a sub-formulaφ if M |= f
andφ doesn’t affectf in M . M satisfiesf vacuously if there exists a sub-formulaφ such thatM satisfiesf
vacuously with respect toφ.

The replacement formulaψ can be any formula. Fortunately it is not necessary to replaceφ with every
possibleψ in order to detect vacuity. Kupferman and Vardi [69] show that it is sufficient to replaceφ with
true or false, depending on thepolarity of φ in the formulaf . The polarity of a sub-formulaψ is positive,
if it is nested in even number of negations inf , otherwise it is negative. The polarity of a sub-formulaφ
is denoted as¤(φ). To avoid confusion with the LTL¤ operator, it is noted that¤ in this section always
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refers to the polarity. Replacement ofφ according to its polarity makes it feasible to determine vacuity using
witness formulas.

Theorem 1 [69] A modelM satisfies the formulaf vacuously if and only ifM |= ¬f [φ ← ¤(φ)] for some
(occurrence of) atomic propositionφ, where¤(φ) = false if a has positive polarity inf and¤(φ) = true
otherwise.

The idea of property coverage is that a test case that covers a property according to the property coverage
criterion should not pass on any model that does not satisfy the property.

Definition 17 (Property-Coverage Metrics) [34] Given a propertyf , a testt covers a sub-formulaφ of
f if there is a mutationf [φ ← ¤(φ)] such that every modelM that passest will not satisfy the formula
f [φ ← ¤(φ)].

The property coverage can be measured by creating a set of witness formulas. The percentage of these
witness formulas that are violated by at least one test case represents theproperty coverage value. Details
of how coverage is measured on existing test cases is given in Section 8. Furthermore, test cases can be
generated by using witness formulas as trap properties, following the approach shown in Figure 5. For every
requirement propertyf there is a trap property for every sub-formulaφ of the following type:

f [φ ← ¤(φ)]

For example, requirement 1 of the CC example model (Equation 13,¤ (brake → ©velocity =
stop)) results in the following trap properties (note that the polarity ofbrake is false because of the
implication):

¤ (false → ©velocity = stop)

¤ (brake → © true)

5.2 Unique First Cause Coverage

Whalen et al. [66] adapt the MC/DC criterion to apply to LTL requirement properties as a metric called
Unique-First-Cause Coverage. While MC/DC only applies to states that fulfill certain requirements re-
garding the valuation of conditions in control flow branches, LTL properties define paths rather than states.
Whalen et al. define MC/DC via sets of Boolean expressions for decision assignments, and then refine these
sets with temporal operators.

Given a decisionA, A+ denotes the set of expressions necessary to show that all conditions inA posi-
tively affect the outcome ofA; that is, whereA evaluates to true as a consequence of a considered condition.
A− denotes the set of expressions necessary to show that all conditions inA negatively affect the outcome
of A. In the following definition,x denotes a basic condition.
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Definition 18 (Expressions for MC/DC)

x+ = {x}

x− = {¬x}

(A ∧ B)+ = {a ∧ B | a ∈ A+} ∪ {A ∧ b | b ∈ B+}

(A ∧ B)− = {a ∧ B | a ∈ A−} ∪ {A ∧ b | b ∈ B−}

(A ∨ B)+ = {a ∧ ¬B | a ∈ A+} ∪ {¬A ∧ b | b ∈ B+}

(A ∨ B)− = {a ∧ ¬B | a ∈ A−} ∪ {¬A ∧ b | b ∈ B−}

(¬A)+ = A−

(¬A)− = A+

The set of expressions necessary to cover a decision is determined by recursively applying the above
rules. For example, the expressionx∨(y∧z) results in the following set to show positive affect:{(x∧¬(y∧
z)), (¬x∧(y∧z))}. The set to show negative affect is:{(¬x∧¬(y∧z)), (¬x∧(¬y∧z)), (¬x∧(y∧¬z))}.
A requirement for a test suite to satisfy MC/DC of a decisionx∨ (y ∧ z) is that each constraint in these two
sets is satisfied by a test case.

As LTL formulas are defined on paths and not states, the above rules need to be extended to take tem-
poral operators into consideration, resulting in the unique-first-cause coverage (UFC) criterion. A test suite
satisfies UFC, if it achieves that every basic condition in a formula takes on all possible outcomes at least
once, and each basic condition is shown to independently affect the formula’s outcome. Assuming a formula
A and a pathπ, a conditionc is the unique first cause ofA, if in the first state alongπ whereA is satisfied,
it is satisfied because ofc. The following rules are defined in [66]:

Definition 19 (Expressions for UFC)

¤ (A)+ = {A U (a ∧ ¤ (A)) | a ∈ A+}

¤ (A)− = {A U a | a ∈ A−}

♦ (A)+ = {¬A U a | a ∈ A+}

♦ (A)− = {¬A U (a ∧ ¤ (¬A)) | a ∈ A−}

© (A)+ = {© (a) | a ∈ A+}

© (A)− = {© (a) | a ∈ A−}

(A U B)+ = {(A ∧ ¬B) U ((a ∧ ¬B) ∧ (A U B)) | a ∈ A+}∪

{(A ∧ ¬B) U b | b ∈ B+}

(A U B)− = {(A ∧ ¬B) U (a ∧ ¬B) | a ∈ A−}∪

{(A ∧ ¬B) U (b ∧ ¬(A U B)) | b ∈ B−}

For example, the simple propertyφ = ¤ (x ∧ y) results in the constraintsφ+ = {(x ∧ y) U ((x ∧ y) ∧
¤ (x ∧ y)} andφ− = {((x ∧ y) U (¬x ∧ y)), ((x ∧ y) U (x ∧ ¬y))}. These constraints can be used to
create test cases with a model checker. As always, it is necessary to negate the constraints to be valid trap
properties. This results in the following type of trap properties, where foreachf ∈ φ+, φ− one trap property
is created:

¤¬f
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Test cases can be derived by using the usual trap property based approach shown in Figure 5.
As another example, letφ be the requirement 1 of the CC example model (Equation 13):φ = ¤ (brake →

©velocity = stop). For this property, the following two trap properties result for positive affect:

¬(brake → ©velocity = stop) U

(¬brake ∧ ¬(©velocity = stop) ∧ ¤ (brake → ©velocity = stop))

¬(brake → ©velocity = stop) U

(brake ∧ (©velocity = stop) ∧ ¤ (brake → ©velocity = stop))

The following two trap properties result for negative affect:

¬(brake → ©velocity = stop) U (brake ∧ ¬(©velocity = stop))

¬(brake → ©velocity = stop) U (brake ∧ (©¬(velocity = stop)))

LTL semantics are defined for infinite traces, while test cases are finite. Therefore, Whalen et al. [66]
refine the rules to derive expression sets, which is mainly of interest for test suite analysis.

5.3 Dangerous Traces

There are several approaches based on mutation, where test cases are created with regard to requirement
properties. Although mutation based approaches are considered in Section 6, we now consider the idea of
dangerous traces, introduced by Ammann et al. [71]. In this approach, mutation is used to find scenarios
where a dangerous action is either inevitable or possible as of the next stateor at some point in the future.

An action is said to be dangerous if it can lead to a safety property violation. As a correct implementation
may never violate safety properties, a fault model is used to describe how safety properties are violated. The
fault model is used to createmutantsof a behavioral model, where each mutant is a simple syntactically valid
variation of the original model. The fault represented by the mutant modelM ′ can result in four different
types of dangerous traces:

• A trace isAX dangerous, if the additional transitions allowed by the mutantM ′ violate a propertyP
in all next states after executing the mutated transition.

• A trace isEX dangerous, if there exists an additional transition allowed by the mutantM ′ which
violates a propertyP in the next state.

• A trace isAF dangerous, if it can be extended with the next state fromM ′ and other transitions from
the combined model so that in future there always is a violation ofP .

• A trace isEF dangerous, if it can be extended with the next state fromM ′ and other transitions from
the combined model so that in future there sometimes is a violation ofP .

Ammann et al. [71] describe a method based on trap properties to generate test cases for all of these
different types of dangerous traces. The use of a mutant modelM ′ allows two different flavors of test cases
to be produced for each dangerous trace: A failing test case that includes the faulty transition and leads to the
property violation, of a passing test case, where instead of the faulty transition the correct transition is taken.
To allow creation of both types of test cases, Ammann et al. [71] combine a model M with a mutantM ′,
such that the combined model can take transitions fromM or M ′. A special variableoriginal is used to
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indicate whether a transition is part of the original model; it is false if the mutated transition is executed. This
special variable allows definition of trap properties to derive test cases from the model/mutant combination.
In accordance with the original paper [71], we here state the test requirements, which simply have to be
negated to be used as trap properties.

For example, a failing test case for anAX dangerous trace requires a sequence along whichoriginal
is true up to a state, where all next states whereoriginal is false violateP :

EF (original ∧ EX (¬original) ∧ AX (¬original → ¬P ))

Creation of a passing test case is a little bit more tricky, and exploits the behavior of CTL counterexample
creation algorithm. AnEX original expression is added at the proper place in the test requirement in
order for the counterexample to contain an original transition instead of a mutated one:

EF (original ∧ EX (original) ∧ EX (¬original) ∧ AX (¬original → ¬P ))

The test requirements forEX dangerous failing and passing traces are:

EF (original ∧ EX (¬original ∧ ¬P ))

EF (original ∧ EX (original) ∧ EX (¬original ∧ ¬P ))

The test requirements forAF dangerous failing and passing traces are (partially abbreviated to fit in a
line):

EF (original ∧ EX (¬original) ∧ AX (¬original → (¬P ∨ AF (¬P ))))

EF (orig ∧ EX (orig) ∧ EX (¬orig) ∧ AX (¬orig → (¬P ∨ AF (¬P ))))

The test requirements forEF dangerous failing and passing traces are:

EF (original ∧ EX (¬original) ∧ EF (¬P ))

EF (original ∧ EX (original) ∧ EX (¬original) ∧ EF (¬P ))

Given mutants of the CC example model (Figure 4), any of the requirement properties given in Section 3
can serve asP in the trap properties listed above.

The overall process for test case generation, depicted in Figure 10, consists of deriving a set of trap
properties according to the desired dangerous traces for each considered safety property as well as creating
a set of mutants. Each mutant is combined with the original model, and then checked against the trap
properties.

5.4 Property Relevance

A related approach to dangerous traces was presented by Fraser andWotawa [72]. Here,property relevance
is introduced as a relationship between test cases and requirement properties. A failing test case is relevant to
a property, if the erroneous behavior described by the test case violates the property. In contrast, positive test
cases have to satisfy requirement properties as they are created from acorrect model. Therefore, a passing
test case is relevant to a property, if the test case executioncould lead to a property violation on an erroneous
implementation. The possible deviation is simulated according to a fault model or simplemutation. Based
on the notion of property relevance, it is shown in [72] how any structural coverage criterion can be combined
with property relevance:
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Figure 10: Dangerous traces for safety properties.

Definition 20 (X Property Relevance Coverage)The property relevance coverageCR of a test suiteTS
with regard to a set of propertiesP and a structural coverage criterionX represented as a set of trap
propertiesT is defined as the ratio of trap properties that are covered such that the covering test case
continues relevantly to a property, to the total number of possible property/trap property combinations:

CR =
1

|P| ∗ |T|
· |{p, tr | p ∈ P ∧ tr ∈ T ∧ relevant covered(tr, p, TS)}|

The predicaterelevant covered(a, b, TS) is true if there exists a test caset ∈ TS such thatt consists of
two sub-sequencest := t1, t2 wheret1 coversa, i.e.,t1 6|= a, andt2 is relevant tob, i.e.,relevant(t2, b).

For example,Transition Property Relevance Coveragerequires that for each transition and each require-
ment property there is a test case that executes the transition and then proceeds relevant to the property. In
[72], methods to measure property relevance and property relevant coverage are presented. These methods
extend the general approach of coverage measurement with model checkers, which is described in Section 8.
To simplify the measurement procedure, a weakened variant of propertyrelevant coverage (WeakX Property
Relevance Coverage) is defined, which relaxes the requirement on the order in which a structural item and a
property have to be covered.

The approach taken in [72] to create property relevance test suites is to first create a complete test suite
for the structural coverage criterion using a traditional trap property based approach. This test suite can then
be optimized to simplify the second step, which is to extend each test case with a property relevant postam-
ble. For this extension, the original model and a model that can take erroneous transitions are combined,
such that they share the identical prefixes. The initial state of these models corresponds to the considered
structural coverage test case. The model checker is now used to create a trace that shows how the erroneous
model violates the requirement property; this is achieved by simply checking the property using the outputs
of the erroneous model. As correct and erroneous model share the same inputs, the trace created by the
correct model represents the correct behavior which could lead to the property violation. This trace is used
to extend the existing test case. The erroneous model can be a mutant model,according to some fault model.
As the number of mutants is potentially very high, Fraser and Wotawa [72] suggest a special kind of mutant
which can nondeterministically choose exactly one erroneous transition along any execution trace.
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6 MUTATION BASED TEST CASE GENERATION

In general, mutation describes the modification of a program according to some fault model. Mutation
analysis describes the process of evaluating an existing test suite with regard to its ability to identify mutants.
Mutation testing is the process of deriving test cases that identify as many mutants as possible. The idea
of mutation is based on thecoupling effect[73] andcompetent programmer hypothesis[74]. The former
states that tests that detect simple faults are likely to also detect complex faults, while the latter states that
programs are close to being correct.

Originally, mutation testing was applied to source code [73, 74]. Specificationmutation was initially
introduced by Budd and Gopal [75]. In the context of model checker based testing, specification mutation
was introduced by Ammann and Black [76] for coverage analysis, and theuse for test case generation was
initially suggested by Ammann et al. [77]. There are related approaches where specifications are mutated;
e.g., Srivatanakul et al. [78] apply mutation together with model checking. Here, however, only approaches
where the aim is test case generation are considered.

A competent specifier hypothesisis assumed, which resembles the competent programmer hypothesis
and states that specifications are close to what is actually desired. If specifications are interpreted as abstract
programs, the coupling effect can be assumed as well.

6.1 Mutation Operators for Specifications

Although mutation can be applied to automaton models directly, the prevalent methodis to mutate the
textual representations of models, for example in the input language of the model checker used for test case
generation.

In general, a mutation operator describes a syntactic change according toa fault model. The mutation
operator can be applied to different locations in the specification, each application resulting in a specification
mutant. Usually only first order mutants are considered, that is, mutants that differ from the original version
by only one mutation.

Mutation operators for specifications are analyzed by Black et al. [79].The examples given in [79]
use the syntax of the model checker SMV [24], but can be applied to language that uses similar logical
expressions. For example, the same mutation operators can also be applied toLTL or CTL properties.

The following mutation operators are defined and evaluated with regard to coverage in [79]. Exam-
ple mutation operators are illustrated with the lineaccelerate & !brake & velocity = stop:
slow of the CC example SMV code (Figure 4):

Logical Operator Replacement (LRO) : This mutation operator replaces a logical operator with another
logical operator.

accelerate | !brake & velocity = stop: slow

Relational Operator Replacement (RRO) : This mutation operator replaces a relational operator with
another relational operator.

accelerate & !brake & velocity > stop: slow

Expression Negation Operator (ENO) : This operator negates sub-expressions.

accelerate & !(!brake & velocity = stop ): slow

32



Simple Expression Negation (SNO): This operator negates an atomic condition in a decision.

!accelerate & !brake & velocity = stop: slow

Operand Replacement Operator (ORO) Changes variables or constants with other syntactically valid
operands. For example:

Variable Replacement Operator (VRO) : This operator replaces a variable reference with a refer-
ence to another variable of the same type.
accelerate & !accelerate & velocity = stop: slow

Constant Replacement Operator (CRO) : This operator replaces a constant with a syntactically
valid different constant.
accelerate & !brake & velocity = stop: stop

Missing Condition Operator (MCO) : This operator removes a single condition from a decision.

accelerate & & velocity = stop: slow

Stuck At Operator (STO) : This operator replaces a condition with true or false (1 or 0).

1 & !brake & velocity = stop: slow

Associative Shift Operator (ASO) Changes the association between variables. For example, assume the
original line would be:(accelerate | !brake) & velocity = stop: slow . A pos-
sible mutant would then be the following:accelerate | (!brake & velocity = stop):
slow .

Arithmetic Operator Replacement (ARO) : This mutation operator replaces an algebraic operator with
another algebraic operator. For the sake of this example, assume that instead of setting it toslow,
velocity is an integer variable and is increased by 2:

accelerate & !brake & velocity=stop: velocity+2

A mutant could be:

accelerate & !brake & velocity=stop: velocity-2

6.2 Specification Mutation

Ammann et al. [77] initially proposed specification mutation for test case generation. An SCR specification
is converted to an SMV model and a set of temporal logic constraints, both ofwhich represent the mode
transitions. Mutation is applied to both the textual description of the model and therequirement properties.
Initially, the model satisfies all temporal logic constraints. Mutating either the model or the constraints
might lead to property violations.

The first option is to verify mutant models with regard to the temporal logic constraints. For each mutant
model there is one counterexample for every constraint that is not satisfied. A resulting counterexample
illustrates how an erroneous implementation would behave, therefore a correct IUT is expected to behave
differently when a resulting test case is executed on it. Consequently, such traces can be used as negative
test cases, i.e., a fault is detected if an IUT behaves identically.

As second option, mutation of the temporal logic constraints can result in properties that are not satisfied
by the original model, and can also be used to create counterexamples. As traces are created from the original
model, resulting test cases are positive test cases.
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A mutant isequivalent, if it behaves identically to the original model. Equivalence can be further
constrained by requiring the observable behavior to be identical to that ofthe original, that is, the output
values have to be identical at all times. Equivalent mutants do not result in counterexamples.

Model Checker

Test cases

Model

Mutant
Mutant

Mutant

Requirements

G (a −> X !b)

G (b −> X !c)

G (c −> X !d)

....

Figure 11: Test cases from mutants violating the specification.

Fraser and Wotawa [80, 81] take a similar approach to generate test cases, but instead of creating a
model and properties that represent the same SCR specification, a behavioral model and a set of requirement
properties derived from formalizing user requirements is used. The original model is assumed to satisfy all
requirement properties. Figure 11 depicts the process of deriving testcases with requirement properties. The
same process applies if the properties are derived from an SCR specification. Negative test cases illustrate
requirement property violations, therefore test cases are traceable to requirement properties. Traceability
with property mutants is not always possible, as a mutation can completely change the meaning of a property.
However, with only a certain restricted subset of mutation operators (e.g., RRO, LRO, SNO, ENO), property
mutants are related to the original properties. In general, the percentage of property mutants that do not result
in counterexamples is higher than for model mutants. With this approach, a model mutant that creates no
counter examples is not necessarily equivalent; the specification might justbe too weak to detect the change.

The approach presented in [71] can also be seen as related to this approach. Here, the model is also
mutated and verified with regard to requirement properties. As described inSection 5.3, the objective is to
derive dangerous traces with regard to safety properties. For this, theoriginal and mutant model are merged,
so that the combined model can take both, the original and the mutated transition.The process of merging
a model and its mutant is illustrated with the language SMV in [71]. A special variableoriginal, which
is only false if the mutated transition is taken, is added to the model. This is used to create special trap
properties based on the requirement properties, as described in Section5.3.

6.3 Reflection

Ammann and Black [76] create logical formulas that “reflect” the transition relation of a model; this process
is calledreflection. These reflected properties resemble the logical properties derived from SCR specifica-
tions, as described in [77] and the previous section. With regard to the transition system definition given in
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Section 4.2, there is one such reflected property for each simple transition:

¤ (α ∧ γ → ©β)

The reflection process is straight forward in principle, but there are several subtle issues when applying
it to a concrete modeling language. For example, in the language of the model checker SMV there is an
implicit semantics based on the syntactic ordering of case statements, which hasto be resolved as there
is no ordering for properties. To overcome this problem, it is necessary tomake the implicit information
contained in the ordering of the transitions explicit. In [76], this process is called expoundment. Basi-
cally, instead of using each antecedentconditioni (which representsα ∧ γ) as such, they are converted to
(
∧

1≤j<k ¬conditionj) ∧ conditionk for conditionk.
The CC example NuSMV model (Figure 4) results in the following reflected properties (simplified;

automatic expoundment might result in more complex but logically identical properties, especially for the
default branch):

¤ ((accelerate ∧ ¬brake ∧ velocity = stop) → ©velocity = slow)

¤ ((accelerate ∧ ¬brake ∧ velocity = slow) → ©velocity = fast)

¤ ((¬accelerate ∧ ¬brake ∧ velocity = fast) → ©velocity = slow)

¤ ((¬accelerate ∧ ¬brake ∧ velocity = slow) → ©velocity = stop)

¤ (brake → ©velocity = stop)

There is one more simple transition that needs to be covered – the default branch. Here, two things have
to be considered: First, the antecedent is not explicitly available, but is the conjunction of the negations of all
earlier antecedents. Second, the NuSMV model states thatvelocity does not change. To represent this
as a temporal logic property, an auxiliary variableP velocity is necessary, which is defined as follows:

VAR
..
velocity: boolean;
P_velocity: boolean;

...
ASSIGN
next(P_velocity) := velocity;

In our example, this results in the following property (simplified):

¤ (((accelerate ∧ ¬brake ∧ velocity = fast)∨

(¬accelerate ∧ ¬brake ∧ velocity = stop)) →

©¬(P velocity = velocity))

Once a set of reflected properties is derived, mutation can be applied to these properties. In [76], the
resulting mutants are used to determine the mutation adequacy of a given test suite. In fact, the mutants of
the reflected properties can be used just like coverage related trap properties [82] in order to generate test
cases. Figure 12 depicts the process of test case generation with reflection. If the mutant property describes a
transition that does not exist in the actual model, then the model checker returns a counterexample that takes
the correct transition. The mutant properties can be greatly varied by applying different mutation operators.
An invaluable source of information for this approach is [55].

35



G (a −> X b)

G (b −> X c)

G (c −> X d)

....

Mutants

Model Checker

Test cases

Model

G (a −> X b)

G (b −> X c)

G (c −> X d)

....

Reflection

x

&
!c

Figure 12: Mutation based test case generation with reflection.

Gargantini [83] proposed a related approach based on Abstract StateMachine specifications (introduced
in Section 4.4). Guard conditions of update rules are mutated according to a given fault model. From the
mutated conditions,detection conditionsare derived. The idea is that a fault in a Boolean expression can be
discovered if the detection condition evaluates to true. For a given Booleanexpressionφ and a mutantφ′, the
detection condition isφ ⊕ φ′. The operator⊕ is the xor-operator, which means that the detection condition
is only true ifφ andφ′ have different values. Test cases are generated by converting an ASM specification
to a SPIN or SMV model. The considered guard conditions are mutated, and aset of detection conditions
is created by combining each mutantφ′ with its original conditionφ asφ ⊕ φ′. Trap properties are created
by negating the detection conditions; i.e., claiming that they are never true. As ASM specifications can be
hierarchic, additional outer guard conditions have to be included in the trapproperty:

¤ (A → ¬(φ ⊕ φ′))

Here,A denotes the conjunction of the outer guard conditions. The property is equivalent to ¤ (A → (φ ↔
φ′)). Test cases can be derived as usual by checking the trap propertiesagainst the model.

Considering the example ASM specification of the CC model, given in Figure 9,assume a mutant of
the guard of rule 1 from(velocity == stop) && (accelerate == True) && (brake ==
False) tonot(velocity == stop) && (accelerate == True) && (brake == False).
This results in the following trap property:

¤ (¬((velocity = stop∧accelerate∧¬brake)⊕((velocity 6= stop∧accelerate∧¬brake)))

6.4 State Machine Duplication

Okun et al. [84] identified the problem that when using mutation in the reflectionapproach there is no guar-
antee that a test case propagates a fault to an observable output. As onepossible solution,In-line expansion
is proposed. In-line expansion considers only reflections of the transition relations of output variables. In
these reflections, internal variables are replaced with in-line copies of their transition relations. This replace-
ment is repeated until the formula references no more internal variables. In-line expansion results in very
efficient, but also very large test suites, as the number of mutants can increase quite significantly.
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Figure 13: State machine duplication based test case generation.

As an alternative, an approach calledstate machine duplicationis proposed in [84]. This approach is
based on model mutation, but uses an equivalence checking method to derive counterexamples. As illus-
trated in Figure 13, for each mutant model, a combined model where mutant andoriginal model are executed
in parallel is created. Both original and mutant model share the identical input values, therefore inequiva-
lence can be shown with a trace where the output values differ. The modelchecker can easily be used to
create such a trace, by verifying a property of the following type for each output variableout, or alternatively
creating the conjunction of all output variables:

¤ (original.out = mutant.out)

In the CC example model, the following property would be used:

¤ (original.velocity = mutant.velocity)

Boroday et al. [35] use this approach in the formal setting of modules as described in Section 2. In this
setting, the composition of specification moduleS and mutantM with outputsO results in a counterexample
if:

S||M 6|= ¤
∧

p∈O

(p = p′)

If the mutant is equivalent to the original model with regard to the outputs, then the combined model
satisfies these properties. If the mutant is not equivalent, then each suchproperty results in a counterexample
usable as a test case where the fault is propagated to an output. In practice, creation of a test suite with state
machine duplication takes longer than with reflection, because there is the overhead of creating the combined
models, and calling the model checker separately on each combined model; mutants of reflected properties
can be verified in a single run of the model checker. Experiments [84] have, however, shown that test suites
created with state machine duplication are better.
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7 ISSUES IN TESTING WITH MODEL CHECKERS

Testing with model checkers is an active area of research, and as suchthere are many issues that still need
to be solved. The main showstopper for industry acceptance of model checker based testing is probably the
limited performance. A main cause of this problem is the state explosion problem, but there are other issues
contributing to a potentially bad performance. Even if the performance is acceptable, the results of the test
case generation might not be as good as possible. Some application scenarios, like regression testing, need
special treatment. Nondeterministic models or properties that require nonlinear counterexamples are further
examples of issues with model checker based testing. This section reviews identified problems and proposed
solutions.

7.1 Abstraction

The main cause for performance problems with model checkers is the state explosion, which signifies the
large or intractable state spaces that can easily result from complex models.Especially software model
checking is susceptible to the state explosion problem. Abstraction is a popularmethod to overcome the
state explosion problem. Abstraction is an active area of research, and many abstraction techniques have
been presented in recent years. This has made it possible to verify properties on very large models. In
general, abstraction methods are tailored towards verification, and therefore are not always useful in the
context of testing.

A full survey of available techniques is out of the scope of this document; as an example technique,
we mention counterexample guided abstraction refinement (CEGAR) [85], which refines an abstract model
until no more spurious counterexamples are generated when verifying a property. This method ensures
soundness, which means that a property that holds on the abstract modelalso holds on the concrete model.
In contrast, when generating test cases with a model checker, the objective is different: Properties that are
violated by a concrete model should also be violated by the abstract model.

Ammann and Black [86] define a notion of soundness in the context of test case generation, which
expresses that any counterexample of an abstracted model has to be a valid trace of the original model.
A method calledfinite focusis proposed and shown to be sound with regard to this soundness definition.
Finite focus only considers a limited set of states, for example only a fixed subset of variables of large or
unbounded domains. An additional state machine is defined, which changesfrom statesoundto unsound
whenever a transition is taken that is out of the finite focus. Once the unsound state is reached, this state
machine stays in this state.

Constraint rewriting rules are defined, which basically rewrite temporal operators such that they evaluate
to true when an unsound state is reached. In [86] this rewriting is defined for CTL, and a correctness proof
is given. The same rules apply to LTL properties. Consequently, the constraint rewritingCR(φ) for an
LTL/CTL propertyφ is recursively defined as follows, wherev denotes a Boolean value, ands is a special
variable that is true if the state is sound or otherwise false.OP denotes any of the LTL operators¤ , © ,
♦ , or when considering CTL propertiesAG , AF , AX , EG , EF , EX . The operatorOPU stands for
eitherA or E in the context of the CTL until operator, or is a blank placeholder in the caseof LTL. Atomic
propositions are denoted bya.

Definition 21 (Constraint Rewriting)

CR(φ) =

{

cr(φ, True) if φ begins with a temporal operator
s → cr(φ, True) else.
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cr(a, v) = a

cr(¬φ, v) = ¬cr(φ,¬v)

cr(φ1 ∧ φ2, v) = cr(φ1, v) ∧ cr(φ2, v)

cr(φ1 ∨ φ2, v) = cr(φ1, v) ∨ cr(φ2, v)

cr(φ1 → φ2, v) = cr(φ1,¬v) → cr(φ2, v)

cr(φ1 ≡ φ2, v) = cr(φ1, v) ≡ cr(φ2, v)

cr(OP φ, True) = OP (s → cr(φ, True))

cr(OP φ, False) = OP (s ∧ cr(φ, False))

cr(OPU φ1 U φ2, T rue) = OPU φ1 U φ2 → cr(φ2, T rue))

cr(OPU φ1 U φ2, False) = OPU φ1 U φ2 ∧ cr(φ2, False))

When creating test cases from a model which is abstracted with the finite focus method, this constraint
rewriting has to be applied to all properties involved in the test process, thatis, trap properties, reflected
properties, etc. Any counterexample created from such a rewritten property is sound with regard to the
abstraction. This means that the test case applies to the abstracted and the original model. A property
where the constraint rewriting has been applied might be satisfied by the abstract model, while the original
model would result in a counterexample. Therefore, the number of test cases on an abstract model is usually
smaller. This shows that abstraction can not only be used to increase the performance of the test case
generation, but also as a means to control the size of resulting test suites.

7.2 Improving the Test Suite Generation Process

One main cause for bad performance during test case generation is the model checker itself. Improvement
of model checking techniques is an important area of research. For example, a case study by Heimdahl
et al. [53] showed that bounded model checking can be superior for test case generation, at least for certain
models and coverage criteria. As another example, directed model checking [17] is a recently proposed
technique, which is of interest to testing with model checkers, because its aimis the efficient generation
of counterexamples and not exhaustive verification. An overview of current research to improve model
checking is out of the scope of this document. As another example of how theperformance can be improved,
abstraction techniques have been considered in the previous subsection.

Both coverage and mutation based approaches to test case generation call the model checker far more
often than really necessary, as identified by Hong and Ural [87], Fraser and Wotawa [88], and Zeng et al.
[89]. For example, consider a coverage criterion that is represented by a set of trap propertiesT . Tradition-
ally, the model checker is called for each trap propertyt ∈ T . As a consequence, many duplicate test cases
are created, and many test cases are subsumed by other, longer test cases. Black and Ranville [90] describe
winnowing of test cases as a means to remove such redundant test casesonce a complete test suite has been
generated. As described by Fraser and Wotawa [91], even test cases that are not duplicates or subsumed by
other test cases can contain a significant amount of redundancy if they contain common prefixes.

In [88], it is proposed to monitor trap properties during test case generation. Each time a counterexample
is generated the remaining trap properties are analyzed with regard to this new counterexample. A trap
property that is already covered does not need to be considered for test case generation; it is not necessary
to call the model checker on it.
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As a concrete technique to perform this monitoring, LTL rewriting based upon an approach described
in [92] is proposed in [88]. The proposed rewriting techniques are used in runtime verification to deter-
mine whether a given execution trace shows a property violation. Havelundand Rosu [92] claim that their
rewriting engine is capable of 3 million rewritings per second, and there are approaches that try to further
optimize this approach, e.g., [93–95]. The following definition gives the rewriting rules necessary to de-
termine whether a temporal logic propertyφ for Kripke structureK = (S, s0, T, L) is violated when state
s ∈ S is observed. The application ofs to φ is denoted asφ{s}. A property is evaluated with regard to a
trace by sequentially rewriting the property for every state in the trace. If the rewriting results in a contradic-
tion at any state, then the property is violated. In contrast to the rewriting rules given in [92], the following
definition of the rewriting does not treat the final state specially. When rewriting for runtime verification,
a pass/fail verdict is expected at the end of an execution trace. In contrast, finite trace semantics are not
needed for test case monitoring, because only property violations are ofinterest. If the rewriting after the
last state results in a property, it is sufficient to know that the property is not yet covered.

Definition 22 (State Rewriting)

(¤φ){s} = φ{s} ∧ ¤φ

(©φ){s} = φ

(♦ φ){s} = φ{s} ∨ ♦ (φ)

(φ1 U φ2){s} = φ2{s} ∨ (φ1{s} ∧ (φ1 U φ2))

(φ1 ∧ φ2){s} = φ1{s} ∧ φ2{s}

(φ1 ∨ φ2){s} = φ1{s} ∨ φ2{s}

(φ1 → φ2){s} = φ1{s} → φ2{s}

(φ1 ≡ φ2){s} = φ1{s} ≡ φ2{s}

(¬φ){s} = ¬(φ{s})

a{s} = a if a /∈ L(s) elsetrue

Fraser and Wotawa [96] represent mutant models as temporal logic properties, which allows application
of this approach to mutation based approaches. Each mutant model is represented by a unique characteristic
property. Characteristic properties are similar to the reflected properties described in Section 6, but are
extended to cover all possible effects a mutation can have in a transition system. Instead of monitoring trap
properties, the characteristic properties can be monitored. Whenever a characteristic property is covered by
a counterexample, it is not necessary to include the mutant represented bythis characteristic property in the
test case generation.

When converting each counterexample to a distinct test case, the resulting test suite contains redun-
dancy. Monitoring avoids duplicate or subsumed test cases, but different test cases might still share identical
prefixes. As described in the next section, these common prefixes do notcontribute to the overall fault de-
tection ability, but consume time during test case generation and execution. This can be avoided by creating
test cases incrementally instead of mapping each counterexample to a test case. This approach was initially
proposed by Hamon et al. [97]. After creating a counterexample, the initialstate of the model for the next
verification process remains the final state of the counterexample. In [97]this is achieved by directly calling
application interface functions of the model checker SAL. Incremental generation of test cases in combina-
tion with property monitoring is used in [88]. The choice of which trap property to verify next influences
the length of the test cases that are generated. In [97] the trap properties are chosen randomly (in the order
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provided). In [88] this is done as well, but in many cases the rewriting of trap properties leads to hints of
which trap properties can lead to very short test cases. For example, if trap propertyφ = ¤ (x → © y) is
rewritten toφ′ = y ∧ ¤ (x → © y) after the final state of a trace, then only a single additional transition
might be necessary to coverφ (i.e., violate it with¬y).

Hong and Ural [87] use subsumption relations between items described by acoverage criterion to reduce
the costs of the test case generation. An entity subsumes another entity if exercising the former guarantees
exercising the latter. The time used by the test case generation is reduced byfirst calculating a minimal
spanning set, and then only using coverage entities in this minimal spanning setto derive test cases.

Model checking is used to determine subsumption between two entities. It is assumed that the entities
are represented as LTL formulas, such that a path exercises the entity, ifit fulfills the LTL formula. For
entitiese1 ande2, represented by LTL formulasltl(e1) andltl(e2), e1 subsumese2 if a modelK satisfies
the following property:

ltl(e1) → ltl(e2)

For each coverage criterion, a different formulaltl(e) has to be defined for the entitiese. Hong and Ural
[87] define these formulas for control and data flow coverage criteria.In [87], the subsumption relation is
used to derive minimal spanning sets for coverage criteria. A spanning set for a coverage criterion is a subset
of its entities, such that exercising all items in the spanning set covers all entities described by the coverage
criterion. A spanning set is minimal, if there exists no spanning set with less elements.

The minimal spanning set is derived by first creating a subsumption graph,in which vertices represent
coverage entities and arcs represent subsumption. Subsumption information is derived by model checking
the above property for pairs of coverage entities. Strongly connected components are collapsed into one
vertex, which results in a reduced subsumption graph. Letvi, ...vn be the vertices of the reduced subsump-
tion graph which have no incoming arc; that is, they are not subsumed.V1, ...Vn are the sets of strongly
connected components of the subsumption graph corresponding tov1, ..., vn. A minimal spanning set is
{v′1, ..., v

′
n}, such thatv′i ∈ Vi for all 1 ≤ i ≤ n. Hong and Ural [87] present two different algorithm to

derive subsumption graphs, one requiresn2 calls to the model checker forn coverage entities and identifies
all possible minimal spanning sets. The alternative algorithm reduces the complexity by only creating one
possible minimal spanning set.

Monitoring avoids that the model checker is called for trap properties that are covered by the traces
selected so far, whilst the subsumption approach avoids model checking of trap properties that arealways
subsumed by other trap properties. The results can be quite different, and even though monitoring can
result in smaller test suites, the actual success depends on the order in which trap properties are chosen.
Consequently, a combination of these approaches is conceivable.

Zeng et al. [89] collect test cases created with a model checker in a structure calledtest tree. Each
counterexample is merged into the existing test tree. Identical prefixes are simply overlaid in the tree, which
automatically removes duplicate or subsumed test cases. Once a complete test tree has been produced
covering all test requirements, a test suite is derived as the set of paths from the tree root to a leaf. This
achieves the coverage criterion used for test case generation with a minimized test suite. It is also suggested
that each time a sequence is generated, the remaining test requirements are analyzed whether any of them
are fulfilled. A concrete method for this is the rewriting technique presented above, and proposed in [88].
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7.3 Improving the Results of the Test Suite Generation Process

Performance is a main concern for test case generation; the generation process itself needs to be sufficiently
fast to be applicable to models of realistic size. However, performance is also an important factor during test
case execution. If there are too many or too long test cases, execution ofa test suite might not be feasible.
This is even more the case when considering regression testing, where a test suite is applied repeatedly after
changes in an implementation of specification. Some of the approaches described in the previous section
improve the test case generation such that smaller test suites result. This section considers optimizations to
existing test suites.

With high execution costs in mind, the test case generation process should ideally result in minimal test
suites in the first place. A test suite can either be minimal with regard to the numberof test cases, or the
number of transition in the test suite. In the context of testing with model checkers, both tasks are NP-hard,
as shown in [59].

Test suites created with model checkers are not minimal; in addition, they oftenconsist of test cases that
do not contribute to the fault sensitivity. For example, different trap properties might result in identical test
cases. If a (passing) test case is a prefix of another test case, then itis not necessary to execute the shorter
test case if the longer one is also executed; the short test case is subsumed by the longer one. (For failing
tests long test cases are subsumed by shorter prefixes). Black and Ranville [90] describe several methods
to remove unnecessary test cases: Clearly, duplicates and subsumed test cases can be safely removed. The
cross sectionof a requirement is the ratio of test cases that satisfy a test requirement to test cases in total:

CS(r) =
# satisfying tests

# tests

A test suite can be minimized by selecting those test cases, that satisfy test requirements with small cross
sections. Such test cases can be identified with theirResolution:

RES(t) =
∑ 1

CS(r)2

The higher the resolution of a test case is, the more small cross section requirements it fulfills. A test suite is
minimized by iteratively selecting the test case with the greatest resolution that fulfills a yet unfulfilled test
requirement, until all test requirements are fulfilled.

Another technique proposed in [90] is minimization, which selects a subset ofa test suite that achieves
a given coverage criterion. This is also known astest suite reduction, which is defined by Harrold et al. [98]
as follows:

Given: A test suiteTS, a set of requirementsr1, r2, . . . , rn that must be satisfied to provide the desired test
coverage of the program, and subsets ofTS, T1, T2, . . . , Tn, one associated with each of theris such
that any one of the test casestj belonging toTi can be used to testri.

Problem: Find a representative set of test cases fromTS that satisfies allris.

The problem of finding the optimal (minimal) subset is NP-hard, therefore several heuristics have been
proposed [98–100]. Test suite reduction results in a new test suite, which must contain at least one test case
from each subsetTi. The reduced test suite therefore consists of less test cases; this reduces the overall
fault detection ability, as shown in several experiments [101–103] (although there are other claims [104]).
Note that this reduction of fault sensitivity would also occur when using an optimal instead of a heuristic
reduction approach.
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Heimdahl and Devaraj [101] conducted their experiments in the context ofmodel checker based test
case generation. These experiments also lead to the conclusion that test suite reduction can significantly
reduce the size of a test suite, but the fault detection ability suffers from this reduction.

In [91] it is shown that test suites created with model checkers often contain a significant amount of
redundancy, which means that test suites are bigger than would be necessary with regard to their fault detec-
tion ability. Common prefixes are identified as a main source of redundancy. To measure the redundancy,
test cases are represented as a tree, where the root node represents the initial state.

Definition 23 Test Suite Execution Tree: Test casesti = {s0, s1, ...sl} of a test suiteTS can be represented
as a tree, where the root node equals the initial state common to all test cases: root(TS) = s0. For each
successive, distinct statesj a child node is added to the previous nodesi:

sj : (si, sj) ∈ ti → sj ∈ children(si)

The depth of the tree equals the length of the longest test case inTS. children(x) denotes the set of
child nodes of nodex. If there are different initial states, then a virtual root node that connects different
initial states can be added, as also used by Zeng et al. [89]. When viewingtest cases as a tree, redundancy
exists along paths to a node that has more than one child node. Consequently, the redundancy of a test suite
can be quantified as follows:

Definition 24 Test Suite Redundancy: The redundancyR of a test suiteTS is defined with the help of the
execution tree:

R(TS) =
1

n − 1
·

∑

x∈children(root(TS))

R(x) (18)

The redundancy of the tree is the ratio of the sum of the redundancy values R for the children of the
root-node and the number of arcs in the tree (n − 1, with n nodes). The redundancy valueR is defined
recursively as follows:

R(x) =

{

(|children(x) − 1|) +
∑

c∈children(x) R(c) if children(x) 6= {}

0 if children(x) = {}
(19)

In [91], it is proposed that test suites can be improved by splitting test cases with common prefixes and
recombine them such that the common prefixes are avoided. Hence, an optimized test suite still fulfills the
original test requirements for most conceivable types of test requirements, but the overall test suite size is
reduced.

Finally, a technique that is used to improve the speed with which faults are detected is test case prior-
itization. Test case prioritization describes the task of finding an ordering of the test cases of a given test
suite such that a given goal is reached faster. The test case prioritization problem is defined by Rothermel et
al. [105] as follows:

Given: T , a test suite;PT , the set of permutations ofT ; f a function fromPT to the real numbers.

Problem: FindT ′ ∈ PT such that(∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].
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In this definition,PT is the set of all possible orderings ofT , andf is a function that yields an award
value for any given ordering it is applied to. The functionf represents the goal of the prioritization; for
example, achievement of a coverage value as fast as possible, or improvement of the rate at which faults are
detected.

In the context of testing with model checkers, prioritizing was considered by Fraser and Wotawa [106].
In general, the first step of prioritization is to analyze each test case with regard to its coverage of a certain
criterion or mutation score; test case analysis with model checkers is described in Section 8. Then, the test
cases simply have to be arranged in descending order according to their coverage values of mutation scores.
In [106], the use of the property relevance (see Section 5.4) that links requirement properties and test cases
is also proposed. In general, the prioritization reduces the average number of test cases that need to be
executed in order to detect a fault.

7.4 Quality Concerns for Coverage Based Testing

Heimdahl et al. performed several experiments to evaluate model checkerbased testing. In [53], a case
study that analyzed the scalability of test case generation with model checkers, the authors observed that
several condition based coverage criteria resulted in too short test cases that are not good at detecting faults.
In [107], a pilot study was conducted to investigate the suitability of condition based coverage criteria. In
this experiment, test suites were generated using different condition based coverage criteria for a close to
production model of a flight guidance system from Rockwell Collins Inc. The fault detection ability of the
different test suites was measured on mutant versions of the model. The experiment showed that a set of
randomly generated test cases generated using the same effort were superior to all coverage based test suites.

This result was due in part to a peculiar behavior of the model in use that was not considered by the
specifiers, but often exploited by the bounded model checker used by Heimdahl et al., which always returns
the shortest possible counterexamples. The solution applied in [107] was todefine invariants to prohibit
the unwanted behavior. The other conclusion drawn by Heimdahl et al. is that lazy evaluation techniques
interfere with condition based coverage criteria. In general, this shows that a suitable model has a crucial
influence on the result of model checker based test case generation.

In a consequent experiment, Devaraj et al. [108] showed that while coverage criteria are suitable for
analysis purposes, there are problems when using them for test case generation. The identified problem is
that coverage of a trap property does not guarantee that a considered part of the specification is actually
executed by the resulting test case. As a solution, auxiliary variables that indicate whether some part of the
specification was executed are introduced in the model and the trap properties.

An evaluation of three specification coverage criteria was performed by Abdurazik et al. [109]. Test
cases were automatically created for a given example model using full predicate coverage, transition pair
coverage and specification mutation coverage, which is the mutation approach based on reflected properties
presented in Section 6. The resulting test cases of one criterion were evaluated with regard to the other
criteria. No subsumption relations could be detected between the consideredcriteria. The results showed
that while full predicate and specification mutation related test suites are more related with each other than
transition pair test suites.

7.5 Regression Testing

Regression testing is applied when previously tested code is changed, in order to ensure that no new errors
are introduced. A straight forward approach to regression testing isretest all. Here, all available test
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cases are executed, which might be very time consuming and expensive. Therefore,selective retesting
tries to select only a subset of the available test cases, which are sufficient to detect faults introduced with
the changes. Traditionally, only changes in the source code are considered. Changes in the specification,
however, also require regression testing.

Xu et al. [110] present an approach to regression testing with model checkers, where a special compara-
tor creates properties from two versions of a model, the original version and a changed version. Each such
property covers one test path that has been changed; in [110] special variables in the model are introduced to
identify such paths, and the properties are implemented as assertions on these variables. It is suggested that
comparators can act on different levels of abstraction. The resulting properties are verified on the changed
model. Only those properties that result in counterexamples need to be considered for regression testing,
properties that hold on the changed model represent test paths that do not need to be executed.

Fraser et al. [111] evaluate different techniques to create regression test cases and update existing test
suites when a model is changed. In a first step, an existing test suite is analyzed to determine which test
cases are still valid for the changed model and which are not. This can be done with a model checker, by
either symbolically executing the test case on the new model and comparing outputs of the test case and the
model, or by extractingchange propertiesfrom the two versions of the model and then checking the test
case models against these properties. A change property represents the change in the transition system, such
that a test case that takes a different transition violates the property.

Once obsolete test cases have been identified, there are different approaches to create new test cases.
The first approach is to determine the behavior of the changed model with regard to the input of obsolete
test cases; that is, the test cases are adapted to the new model. Alternatively, sets of trap properties are
generated from the old and changed model, and then the difference in these sets is calculated and used to
generate test cases. Finally, property and model rewriting is proposed in[111], which lets all test cases focus
on the model changes. Every resulting test case contains at least one changed transition. Test cases created
with any of these approaches can be used as regression tests, and when combined with those test cases from
a previous test suite that are still valid, form a new test suite.

These methods are evaluated in [111], and it is shown that there is a trade-off between time consumed
for generating and executing new test cases and overall quality of a testsuite after several changes. Conse-
quently, the preferred method depends on the available resources and quality requirements.

7.6 Fault Visibility

The state of a model is defined by the values of its variables. These variables can be input or output to
the system, but they can also be internal variables. Internal variables might not be directly observable.
Therefore, it is important that a test case ends with some observable event or change, such that a verdict
is possible. For example, trap properties for structural coverage criteria or trap properties created by the
reflection approach explicitly consider the transition relations of internal variables. Such trap properties
usually end with a transition where an internal variable takes on an interestingvalue. If this value cannot be
observed, the test case does not fulfill its intended purpose.

Okun et al. [84] propose two approaches that explicitly creates such counterexamples that result in
an observable change in an output variable. In-line expansion repeatedly replaces internal variables in
the properties used for test case generation with their transition relations until there are no more internal
variables left. This process can be applied to any kind of trap property. As an alternative, Okun et al. [84]
propose state machine duplication, described in Section 6.4.
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Hong et al. [58] assume the existence of a special predicateexit, which is true in any exit state (e.g.,
in the final vertex of a data flow graph). It is also suggested that the initial state can be used as an exit
state, such that test cases can be seamlessly executed. To make use of thispredicate, trap properties have to
include a reference to this predicate, which can for example be done with animplication:

. . . → ¤¬exit

When using a requirement property based approach it depends on the requirement properties, whether
test cases are fully observable or not: If the properties include internalvariables, then there is a chance that
observability is not always achieved.

7.7 Nondeterminism

Although a model checker can verify nondeterministic models, trace counterexamples represent only one
possible choice for each nondeterministic branch. Consequently, counterexamples can only serve as test
cases when using deterministic models. If a trace generated from a nondeterministic model is executed as a
test case on an implementation, the test case might falsely detect a fault if the implementation makes different
choices at the nondeterministic branching points. The correct verdict in this case would beinconclusive, as
neither pass or fail can be concluded.

A simple solution that is applicable as long as there is not too much nondeterminism ispresented in
[112]. Here, the model is extended with an indicator variable that shows, whether a nondeterministic tran-
sition was chosen or not. When interpreting counterexamples as test cases, the execution framework has to
check whether this flag is true when the implementation does not behave as expected. If the flag is set, then
an inconclusive verdict is given, or else a fault is detected. It is also straight forward to extend test cases
to a tree like structure, where there are different branches for different nondeterministic choices. In [112],
this is done in a lazy fashion; that is, whenever an inconclusive verdict occurs during test case execution,
the last known deterministic state is used as the initial state of the system, and a newcounterexample is
derived. This new counterexample serves as a new branch in the old testcase. The applicability of such an
approach depends on the amount of nondeterminism. Furthermore, if the implementation is nondeterminis-
tic itself, then applicability decreases. This means that nondeterminism as a means of underspecification or
implementation choice can be handled to a certain degree, but not asynchronous, distributed systems.

Boroday et al. [35] distinguish betweenweakandstrongtest cases. A test caset for modelS and mutant
M is weak ifM can produce an output sequence in response tot thatS cannot produce. A test caset is
strong if every output sequence ofM in response tot differs from the corresponding sequence ofS. Under
fairness assumptions, a weak test case can reveal any fault if repeatedly executed; the repeated execution
requires a reliable reset transitions. The method presented in [112] couldbe used to distinguish weak test
cases from strong test cases: a (linear) test case is weak if it contains an inconclusive verdict.

Boroday et al. [35] describe methods to derive test cases for nondeterministic specifications, based on
the state machine duplication approach (see Section 6.4). For the simpler casewhen the specification is
deterministic and only the mutant is nondeterministic, weak test cases can be derived by the generic state
machine duplication approach. For strong test cases, Boroday et al. [35] describe a method to derive an
observer from a mutant specification.

An observerObs(M) for moduleM uses all outputs ofM as inputs. A hidden variablefound is
added, and the hidden variables inM are removed. Determinization is possibly performed by powerset
construction. Except in trivial cases the observer is not input-enabled; additional sink states are added to
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make the module input complete. In these sink states, the variablefound is set to true. A strong test case
for a nondeterministic mutant is therefore derived if the following property does not hold:

S||Obs(M) |= ¤¬ found

If not only the mutant, but also the specification is nondeterministic, then weak test cases can be gener-
ated by creating an observer from the specification. A weak test case for a nondeterministic specification is
therefore derived if the following property does not hold:

Obs(S)||M |= ¤¬ found

Because of its complexity, Boroday et al. [35] do not consider generation of strong test cases, but describe a
method to detect strong test cases.

7.8 Shortcomings of Linear Trace Counterexamples

The approach of converting test requirements to temporal logic propertiesand then using resulting coun-
terexamples as test cases only works as long as test requirements can be fulfilled by such linear traces.
MC/DC, for example, requires pairs of test cases to cover conditions. Asshown in [30], such requirements
can be expressed with CTL. However, current model checkers do not support full CTL but only a linear
subset such as such asACTLdet or LIN [28]. To overcome this problem, it is proposed in [30] that model
checkers do not generate linear traces but a tree like structure calledevidence graphs. Evidence graphs can
be nonlinear, and illustrate for any CTL formula, why it is satisfied or violated. If an evidence graph is
nonlinear, then it is necessary to create several test cases to cover thegraph. This is simply achieved by
creating one test case for each path from the root node to a leaf node ofthe evidence graph. The approach
described in [30] is not implemented. Clarke et al. [29] proposed an algorithm to create tree-like coun-
terexamples, which would serve a similar purpose; at the time of this writing, however, there is no available
implementation.

8 TEST CASE ANALYSIS WITH MODEL CHECKERS

Model checkers are not only useful when it comes to creating test cases. Given an extant set of test cases, a
model checker can be used to evaluate the quality, for example with regard tosatisfaction of a given coverage
criterion. A nice aspect of this approach is that coverage can be measured without actually executing test
cases. Different activities during the development process can resultin test cases; for example, use cases
created during the requirements phase, manually created test cases, or test cases created with any automated
method. It is an important task from a practical perspective to evaluate howgood these test cases are.

8.1 Symbolic Test Case Execution

Analysis of test cases with a model checker is based on the idea of representing test cases as verifiable
models, based on an approach by Ammann and Black [76]. Test cases are represented as constrained finite
state machines (CFSM), which have an explicit state counter on which the values of all other variables
depend. Test cases are converted to CFSM models with an additional variable, e.g.,State. It is initialized
with 0 and increased until the final state of the test case is reached. The values of all variables are set
according only its value.
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-- specification AG (brake -> AX velocity = stop)
-- is false as demonstrated by the following
-- execution sequence
-> State: 1.1 <-

accelerate = 0
brake = 0
velocity = stop

-> State: 1.2 <-
accelerate = 1
brake = 1
velocity = slow

-> State: 1.3 <-
accelerate = 0
brake = 0

Figure 14: Counterexample created by NuSMV showing that brakes do not work in mutant model (edited
for brevity).

As an example, consider test case derival by checking a mutant model ofthe CC example given in
Section 3 (accelerate | !brake & velocity = stop: slow) against the first requirement
property specified in Equation 13 in Section 3. NuSMV returns the counterexample shown in Figure 14,
which can be used as a negative test case.

In the trace in Figure 14, at every state only those variables that changedtheir values are listed. In state
1.2 bothaccelerate andbrake are activated, while due to the mutation at the same timevelocity
changes toslow. In state 1.3velocity is still slow, which is a violation of the requirement that it
should bestop. When converted to an SMV model, this trace results in the model listed in Figure 15.

This SMV model is suitable for analysis with a model checker, for example to measure coverage or a
mutation score. The latter can only be directly measured in the case of weak mutation, which means that the
change caused by the mutation does not have to propagate to an output to beconsidered as killed. In order to
simulate the execution of a test case on a model, further processing is necessary. The test case is combined
with the model by moving the model’s main module to a sub-module of the test case, and changing all input
variables to parameters of that module. This new sub-module is instantiated in thetest case model, and the
input variables are used as parameters, thus ensuring that the mutant model uses the inputs provided by the
test case. The result is shown in Figure 16.

Finally, for each output variable a property is added that requires the output variables of the mutant
model and of the test case to be equal for the duration of the test case (oralternatively, a conjunction of all
these properties). After the last state of the sequence the test case doesnot specify how the values change.
In the test case model, this is modeled by not changing the variables. However, the mutant model might still
change as time progresses. Therefore, the assertion is extended to onlybe valid while the last step of the test
case has not been exceeded.

¤ (State < MAX STATE → velocity = model.velocity)

Calling the model checker on the combined model and these properties, any counterexample illustrates
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MODULE main
VAR
accelerate: boolean;
brake: boolean;
velocity: {stop, slow,

fast};
State: 0..2;

ASSIGN
init(accelerate):=0;
next(accelerate):= case
State = 0: 1;
State = 1: 0;
1: accelerate;

esac;
init(brake) := 0;

next(brake) := case
State = 0: 1;
State = 1: 0;
1: brake;

esac;
init(velocity):= stop;
next(velocity):=case
State = 0: slow;
State = 1: slow;
1: velocity;

esac;
init(State) := 0;
next(State) := case
State<2: State+1;
1: State; esac;

esac;

Figure 15: Test case as verifiable SMV model.

MODULE Model(accelerate, brake)
VAR
velocity: {stop, slow, fast};

ASSIGN
... As in (mutant) model

MODULE main
VAR
model: Model(accelerate, brake);

... As in testcase model

Figure 16: Test case model combined with original model to simulate test case execution.
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that the test case fails on the model. If the model checker does not return acounterexample, then the test
case passes.

8.2 Coverage Analysis

Coverage analysis measures how thoroughly a given test suite exercises a system under test. A coverage
criterion describes the items that should be executed (covered) by at least one test case; for example, lines
of code, or branches in the control flow. Coverage criteria can also bebased on specifications or models.
Different coverage criteria were presented in Section 4 and Section 5. Each item described by the coverage
criterion is represented as a single trap property, as described in the previous section. These trap properties
can not only be used for test case generation, but also for determining coverage values. The test coverage is
the percentage of items that are actually covered, i.e., reached during testcase execution.

Definition 25 (Test Coverage)The coverageC of a test suiteTS with regard to a coverage criterion rep-
resented by a set of trap propertiesP is defined as the ratio of covered properties to the number of properties
in total:

C =
1

|P|
· |{x|x ∈ P ∧ covered(x, TS)}|

The predicatecovered(a, TS) is true if there exists a test caset ∈ TS such thatt coversa, i.e.,t 2 a.

When checking a test case model (e.g., Figure 15) against a trap property, the model checker returns
a counterexample if the test case covers the item represented by the trap property. Care has to be taken
because a test case is only a finite prefix of an execution path. The path might be truncated such that a trap
property is violatedbecauseof the truncation. For example, consider evaluation of a condition with the©

operator on the final state of a test case. As there is no defined next stateafter the final state (or alternatively,
the next state after the final state might implemented as the final state itself again),this state might cause a
property violation.

A common, practical solution to this problem is to rewrite properties such that they can not be violated
because of a finite truncation. A special variable that evaluates to true onlyif the current state of a sequence
is any state prior to the final state is assumed. In [55], this variable is denotedasSustain. This variable
can be used to rewrite temporal logic formulas such that they only evaluate to false if violated before the
final state, else to true. The same rewriting rules as given in Section 7.1 can be used, only the variables is
replaced withSustain.

The test coverage of a given test suite is determined as follows:

1. Each test case is converted to a verifiable model, as described above.

2. Each test case model is checked against the rewritten versions of all remaining trap properties.

3. Each trap property that results in a counterexample is covered, and does not need to be checked again.

The overall test coverage is calculated from the number of covered trapproperties according to Defini-
tion 25.
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8.3 Mutation Analysis

As introduced in Chapter 6, another common analysis technique besides coverage analysis is mutation
analysis. Here, a given test suite is examined with regard to a given set ofmutants, in order to determine
how many of the mutants can be distinguished from the original by the test cases. Usually, mutation analysis
is applied to the source code, but specification mutation is receiving increasing attention — for example,
consider the mutation based test case generation presented earlier.

Definition 26 (Mutation Score) [76] The mutation scoreS for a given methodM to create mutants, a test
sett for any specificationr equals the number of mutants killed by the test set,k, divided by the total number
of mutants,N , produced byM on r:

S(M, r, t) =
k

N

A special case of mutation analysis is presented by Ammann and Black [76]. Here, not the model but
properties that represent the transition relation are mutated. As describedabove, these properties can be
used like trap properties for test case generation. Similarly, these properties can also be used for analysis
of test cases like trap properties. The mutation score is calculated from the number of mutant properties
that result in a counterexample when checked against a test case model. This kind of mutation analysis
uses weak mutation, which means that a mutant is killed if an erroneous state results immediately after the
mutated transition.

In contrast, in strong mutation a mutant is killed if the final output is different from the original version.
Strong mutation analysis can be performed by considering model mutants. Model mutants need different
treatment in order to determine a mutation score. Again, each test case is converted to a verifiable model.
Then, each mutant is successively combined with a test case model as described above, until the verification
of such a mutant/test case model combination results in a counterexample. A counterexample indicates that
the test case failed, which in turn means that the mutant iskilled.

9 FURTHER USES OF MODEL CHECKERS IN SOFTWARE TESTING

9.1 Testing with Software Model Checkers

All techniques presented so far assume the existence of a formal model ofthe system under test that can be
used to generate test cases. In practice, the creation of a sufficient model is one of the most difficult steps in
model based testing. Sometimes the development process is supported by toolsor specification languages
which can serve as a basis for creating a verifiable model. Conversion between different formalisms is
usually automatable; for example, Black [113] consider the generation of models from high level specifica-
tions. Often, however, a model has to be generated manually, which is difficult and error prone. Therefore
there is interest in applying model checking to source code directly, removing the need for a model. This is
commonly referred to assoftware model checking.

There are two different paths that have been taken to apply model checking to verification: Several
tools create models in the input languages of popular model checkers fromthe source code. Other tools
implement their own model checking procedures. For example, Bandera [114] creates SMV or Promela
models from Java code. The first version of Java PathFinder [115] also converted Java programs to Promela
models. Further tools that are built on top of existing model checkers are JCAT [116], Park et al. [117]

51



convert Java code to SAL models; Bogor [118] tries to provide a language independent software model
checking framework.

The second version of Java PathFinder [119] includes a specialized virtual machine that interprets byte-
code. Verisoft [120] executes C program code in order to avoid the need to represent program states and
statements. CMC [121] additionally stores information about visited states. Bounded model checking is
used to verify C code in CBMC [122]. SLAM [123] converts C code to Boolean abstractions that are model
checked. Blast [124] uses counterexample guided abstraction refinement to verify C code.

Testing with software model checkers has been considered by Beyer etal. [125], who use the model
checker Blast to create test cases from C code. Test cases can be generated with regard to predicates (i.e.,
safety properties), and locations in the source code. Consequently, it ispossible to derive test cases for
code-based coverage criteria. Visser et al. [126] use the Java PathFinder model checker to derive test cases
in a similar manner. A source translation for symbolic execution with model checkers is presented by
Sarfraz Khurshid and Visser [127]. This has been implemented as an extension to Java PathFinder, and can
be used to generate test cases [128].

These findings show that test case generation with software model checkers is possible in theory, but
scalability is not the only issue in practice. While test case generation with operational specifications creates
test sequences that include the expected output, test cases created directly from the source code do not solve
the oracle problem. Therefore, this is an area where further researchwill be needed.

9.2 Testing Timed Automata

Timed automata are automata that include special variables called clocks, whichinclude information about
time, and can be used in guard conditions, etc. Uppaal [129] is a popular model checker based on timed
automata. Hessel et al. [130] proposed test case generation using Uppaal. In this approach, a special timed
variant of CTL is used to formalize test purposes or coverage criteria. The generation of test cases with
either test purposes or properties created for coverage criteria as described in Section 4 is proposed. This
method is of particular interest for timed systems, because Uppaal supportsgeneration of not only shortest
but also quickest traces.

9.3 Combinatorial Testing

A new application of model checkers for test case generation was proposed by Kuhn and Okun [131].
Combinatorial testing tries to provide a high level of coverage of a system’s input domain with a small
number of test cases. The number of possible input combinations is usually extremely high; for example, a
system with 20 inputs with 10 values each allows a total of1020 different combinations. If, however, only
a limited number of combinations is selected, then this number is reduced significantly. Considering all
possible pairs of inputs for the above example results in 190 different input pairs with 100 different possible
input combinations for each pair resulting in 19,000 different test cases which is substantially smaller than
the overall number of different combinations.

The underlying idea of combinatorial testing can be best explained using a small example. Consider a
system with 3 boolean input variablesv1, v2, andv3. All 2-way combinations would bev1 v2, v1 v3, and
v2 v3. Only for these variable combinations all possible input value combinations have to be tested leading

to 12 test case instead of 16. In general there are

(

n
k

)

different combinations when we haven input

variables and we want to compute allk-way combinations. For each of this combinations all possible input

52



value tuple are generated. Variables which are not in ak-way combination are assigned to a value which
can be a random value or a value which allows to execute the program under test.

In practice, 3 to 6-way combinations are also used in addition to pairs and provide good results. The
empirical results in [131] showed a fault detection rate of 100 percent for a 5-way combination. The under-
lying assumption of combinatorial testing is that only smaller subsets of input variables are responsible for
certain outputs. Hence, only those inputs must be considered when testing aspecific functionality.

In [131], a model checker is used to derive test cases fort-waycoverage. Given assertions of the form
AG (P → AX R) andt-way variable combinations,v1∧v2∧...∧vt where eachvi is a condition comprising
a variable and a assigned value, three different types of trap properties are proposed:

AG (v1 ∧ v2 ∧ ... ∧ vt ∧ P → AX ¬R)

AG (v1 ∧ v2 ∧ ... ∧ vt → AX ¬1)

AG (v1 ∧ v2 ∧ ... ∧ vt → AX ¬R)

The first property might be trivially true ift is large becauseP together withv1, . . . , vt computes to
false which makes the implication true. Because of this reason [131] proposes using the second property
which simply forces a single step to be taken (¬1 is always false). Alternatively, the final property removes
the conditionP to avoid trivially true cases.

9.4 Testing Composite Webservices with Model Checkers

Web services are a recently popular mechanism to allow interaction of heterogeneous systems via the inter-
net. A particular strength of such techniques is that different services can be composed to form new, more
complex services. There are several different languages that can be used to describe web services and aid
the automatic composition.

Composed web services result in complex behaviors, where the componentscan be distributed across
networks and implemented with different tools and systems. Therefore, verification of composed web ser-
vice models as well as testing of composed web service implementations is very important. The use of
model checkers to verify web service composition has been proposed byseveral researchers. A combined
approach of verification and testing based on model checkers has beenproposed by Huan et al. [132]. In
this approach, OWL-S (Web Ontology Language for Web Services) specifications are translated to a C-like
language, which is verified with the model checker Blast. The model checker is also used to create witnesses
that can be used as test cases, following the approach presented by Beyer et al. [125].

Garcia-Fanjul et al. [133] translate web service compositions specified with BEPL into Promela, the
language of the model checker SPIN. Then, trap properties are used tocreate transition coverage test suites.

9.5 Adaptive Model Checking

Adaptive model checking [134] is an advanced combination of model checking and testing. Verification is
performed on an incomplete model. If a counterexample is found, then the counterexample is executed as a
test case on an actual implementation. If the system passes the test case, then a property violation has been
found. If the test case does not pass, then the model is refined according to the actual execution result. This
is also related to black-box checking [135], where no model at all to startwith is assumed.
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9.6 On-the-fly Testing with Model Checkers

All approaches to test case generation presented so far in this survey create test casesoffline; that is, the test
cases are first generated from a model, and only once this generation process is done are they executed. An
alternative approach is to interleave test case generation and execution;this is known asonlineor on-the-fly
testing. On-the-fly testing has several advantages to offline testing; it canbe continued for a very long time,
reduces the state explosion problem because only a limited part of the state space needs to be considered at
a time, and nondeterminism is handled naturally.

Examples of on-the-fly testing tools based on model checkers are T-Uppaal [136], based on Uppaal, and
the work presented by de Vries and Tretmans [137], who use the model checker SPIN. These tools are not
based on model checking algorithms, but rather use the modeling and simulationfeatures of the underlying
model checkers.

10 TOOLS

Although testing with model checkers has been considered by several research groups, much of the work
was done on research prototypes that were never released to the public. This section considers the test case
generation tools that are publicly available.

There is an online demonstration tool [138] for mutation based test case generation with model checkers
based on the work by Ammann et al. [77]. While it is only possible to generate test cases for the cruise
control example application used in [77], the tool helps to illustrate the steps involved in the process.

Since version 3.0, SAL [23] includes the tool SAL-ATG [139], which allows test case generation with
SAL. As SAL provides a Scheme-based environment, this tool offers manypossibilities for customization
and extension. SAL-ATG does not use trap properties, but requires that the model is extended withtrap
variables, which are true only when a test goal is reached. This basically allows similarcoverage goals as
with regular trap properties, although it is slightly more complicated to rewrite the model than to simply
provide properties. In general, most coverage criteria that can be expressed as trap properties can also be
encoded in the model. Figure 17 shows the car controller example model fromFigure 4 as a SAL model.
The variablest0–t5 are not actually part of the specification, but are trap variables for simpletransition
coverage. SAL-ATG can use these trap variables to create a simple transition coverage test suite. For this,
the list of goals has to be specified as listed in Figure 18. Assuming this list of goals is saved in a file called
car control goals.scm and the model is saved in a file calledcar control.sal, SAL-ATG is
started with the following command:

sal-atg car_control main car_control_goals.scm

SAL-ATG will try to find test cases such that every trap variable is true at some point. There are several
options to the test case generation; for details see [139].

ATGT (ASM Tests Generation Tool) [140] is a Java-based tool that implements the concepts presented
in [64, 65, 83] to automatically create test cases for ASM specifications. Itoffers a graphical user interface
and uses the model checker SPIN [22]. The tool automatically creates trapproperties, and illustrates them
graphically. As an example to get started, the ASM model listed in Figure 9 can be used with ATGT, and a
version of a popular safety injection system model is available on the tool’s website [140].
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car_control: CONTEXT =
BEGIN

speed: TYPE = {stop, slow, fast};

main: MODULE =
BEGIN
INPUT

accelerate, brake : BOOLEAN
OUTPUT

velocity: speed
LOCAL

t0, t1, t2, t3, t4, t5: BOOLEAN

INITIALIZATION
velocity = stop;
t0 = FALSE; t1 = FALSE; t2 = FALSE;
t3 = FALSE; t4 = FALSE; t5 = FALSE;

TRANSITION
[

accelerate = TRUE AND brake = FALSE AND velocity = stop -->
velocity’ = slow; t0’ = TRUE;

[]
accelerate = TRUE AND brake = FALSE AND velocity = slow -->
velocity’ = fast; t1’ = TRUE;

[]
accelerate = FALSE AND brake = FALSE AND velocity = fast -->
velocity’ = slow; t2’ = TRUE;

[]
accelerate = FALSE AND brake = FALSE AND velocity = slow -->
velocity’ = stop; t3’ = TRUE;

[]
brake = TRUE -->
velocity’ = stop; t4’ = TRUE;

[]
ELSE -->
t5’ = TRUE;

]
END;

END

Figure 17: Simple car controller as SAL specification with trap variables for simple transition coverage.

55



(define goal-list ’(
"t0" "t1" "t2" "t3" "t4" "t5"
))

Figure 18: Test goal list for SAL-ATG.

11 OUTSTANDING RESEARCH ISSUES

Many researchers have considered testing with model checkers over the last couple of years, and significant
progress has been made to turn model checker based testing into a technique suitable for real world applica-
tion. Many issues remain, however. Section 7 gave an overview of issuesthat have been considered so far.
Not surprising, the main problem is performance. Research on model checkers is progressing, and the size
of models that can be handled constantly increases. There is a need to adapt model checking techniques to
faster counterexample creation. Directed model checking [17] is an example of such a technique.

At the same time it is not sufficient to blame the performance of model checkers. Even if model checkers
could handle models of deliberate size, many of the currently examined testing techniques would result in
unfeasibly large test suites. Therefore, research on model abstraction is essential, both for performance and
for scalability reasons. Abstraction is an active research topic, but it is seldom considered with a software
testing background. Abstraction techniques suitable for verification purposes might not be suitable for
testing. This leaves many unanswered questions, for example, how do testmodels differ from verification
models, and what abstraction techniques are suitable for testing?

There is a lack of documented empirical experience with testing with model checkers. Most work
evolves around a set of small, well known example applications. The only available case study that evaluated
the scalability [53] showed promising results, but later studies [107] showed that the considered example
application has some peculiarities that make it questionable, whether the resultsare really representative.
Further experience reports would not only answer questions about scalability, but could also be used to
compare the many available techniques with regard to their relative power. Such a comparison would be
invaluable for someone wanting to use model checkers for testing.

Even if all performance problems were resolved, there is still one intrinsic problem to all model based
testing approaches: Where does the model come from? In most work on modelbased testing, the existence
of a suitable formal model is assumed. The model creation, however, is oneof the most difficult parts of the
whole development process. Creating models manually is a complicated task, and two specifiers writing a
model for an application will probably come up with different models. Different models, however, will most
likely result in different test suites. Some approaches try to avoid the use of a model altogether, for example,
black-box checking techniques (see Section 9.5). Alternative approaches try to extract models from source
code, and sometimes model based development tools are used, which means that a verifiable model naturally
results from the development process. Such approaches introduce new problems, for example, what exactly
is tested by test cases resulting from the model: the implementation, or just the toolsthat created the model
from the source code or vice versa?
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