HKU CS Tech Report TR-2009-03

Postprint of article irSoftware Testing, Verification and Reliabil@ (2): 89—120 (2010)

Finding Failures from Passed Test Cases:
Improving the Pattern Classification Approach
to the Testing of Mesh Simplification Prograrhs

W.K. Charf, City University of Hong Kong, Hong Kong
Jeffrey C.F. Ho, wwwins Consulting Hong Kong Limited, Hongrig
T.H. Tse, The University of Hong Kong, Hong Kong

Abstract

Mesh simplification programs create three-dimensionaygmial models similar to an
original polygonal model, and yet use fewer polygons. Thegpce different graphics even
though they are based on the same original polygonal modeis résults in a test oracle
problem. To address the problem, our previous work has dpedl a technique that uses a
reference model of the program under test to train a classlflsing such an approach may
mistakenly mark a failure-causing test case as passedwdirsothe testing effectiveness of
revealing failures. This paper suggests piping the testiscasarked as passed by a statistical
pattern classification module to an analytical metamorpésting module. We evaluate our
approach empirically using three subject programs witl 2V80 program mutants. The result
shows that, using a resembling reference model to trairsaiiler, the integrated approach can
significantly improve the failure detection effectivene$she pattern classification approach.
We also explain how metamorphic testing in our design tragesificity for sensitivity.

*(© 2009 John Wiley & Sons, Ltd. This material is presented tausmgimely dissemination of scholarly and
technical work. Personal use of this material is permitt@dpyright and all rights therein are retained by authors or
by other copyright holders. All persons copying this infation are expected to adhere to the terms and constraints
invoked by each author’s copyright. In most cases, thes&svoiay not be reposted without the explicit permission
of the copyright holder. Permission to reprint/republisis tmaterial for advertising or promotional purposes or for
creating new collective works for resale or redistributiorservers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from John Wiley & Sdrtd.

T This research is supported in part by GRF grants of the Refséarants Council of Hong Kong (project nos.
123207 and 716507), a grant from City University of Hong Kdpgpject no. CityU 7002324), and a discovery grant
of the Australian Research Council (project no. DP09847A@reliminary version of this paper was presented at the
31st Annual International Computer Software and ApplaagiConference (COMPSAC 2007) [13].

* All correspondence should be addressed to Dr. W.K. Chan pafrment of Computer Science, City University
of Hong Kong, Tat Chee Avenue, Hong Kong. Tel: (+852) 2788 068Fax: (+852) 2788 8614. Email:
wkchan@cs.cityu.edu.hk

Administrator
 HKU CS Tech Report TR-2009-03

(a) 100% (b) 70% (c) 30%

Figure 1. Mesh simplification of polygonal models of a Bee#ostatue

Keywords test oracle problem, mesh simplification, non-testabl#wswe, metamorphic
testing, classification, testing methodology.

1 Introduction

Content-rich software applications with multimedia anégirics subsystems are popular and
increasingly complex. These applications accept spetiditain formats such as Analyze 7.5 [46]
for medical imaging [1], X3D [59] and PLY [56] for image remniteg, and MPEG4 [47] for video
and audio, and then create the graphics. For real-lifeantse graphics-based applications such
as scene creation in computer games [17, 36, 63], slow vrsti@n of graphical models is too
costly. To address this issue, for instance, computer gaftes use low-resolution versions of
polygonal models to produce shadowing effects or to vigealistant objects [19].

A main category of general techniques to produce these és@hution versions of polygonal
models ismesh simplificatiof16, 19, 23, 38,64]. Mesh simplification converts a given 3D
polygonal model to one with fewer polygons while appeariodpé similar to the original. For
instance, Figure 1 shows three Beethoven statues in diffenembers of polygon produced by
mesh simplification. The statue in Figure 1(a) has simplifitalthe ones using only 70% and 30%
of the original 3D polygonal model as shown in Figures 1(l1) &(c), respectively. Nonetheless,
different mesh simplification techniques aim to achieveese optimization goals such as little
memory storage, fastest speed, or best shadow accuracyjemftolp37]. They thus produce
different changes on the same original polygonal modelsréate their versions of simplified
graphics. It is hard for testers to assess the accuracy tésheutput of a program. This results in
the test oracle problerh.

Two mesh simplification programs may be a variant of eachroffieey can be of the same
kind, or of different kinds, in the taxonomy of simplificatialgorithms [37]. For instance, a
topology-preserving simplification algorithm preservies butline of the model at every step. If
there is a hole in an original model, the algorithm keeps tile turing and after the simplification
process. On the other hand, a topology-modifying one magealp holes in the model and merge
separate objects into one unit as simplification progred§esay that a reference modetembles

L A test oracleis a mechanism to decide whether a program output is coMéeen the test oracle is unavailable
or too costly to use, it leads to thest oracle probleni60].

2

the implementation under test (IUT) if these two progranmergto the same kind in the taxonomy
of simplification algorithms. If the two programs belong téfetent kinds in the taxonomy, we
say that they ardissimilar.

Our previous work [11, 12], known @&T, has shown empirically that the use of a resembling
reference model to train a classifier can be a better psetatdeothan the use of a dissimilar
reference model. On the other hand, owing to the statistiaalre of pattern classification [22],
many failure-causing test casesemain undiscovered. This hinders the effectivene $of

Metamorphic testing (MT) [14] checks whether a set of tesesaand their respective program
outputs satisfy a data relation. In the simplest form, MTates afollow-up test case based on
aninitial test case. It then compares the test outputs of the initéfalfow-up test cases to see
whether they may contradict any given necessary relatinpsated by the correct version of the
IUT. Any such contradiction shows a failure. MT calls thegeessary relations asetamorphic
relations Although MT can be useful, the need of additional test cdmEomes a hurdle in
employing MT to test content-rich software. Methods to gageproblem are desirable.

We believe that a classifier [22] trained by a reference mpielides a complementary helping
hand: A test case labeled as failure-causing by a classifféces to catch the testers’ attention.
On the other hand, a passed test case may still be failusrtauWe may treat the test case as
an initial test case, and pipe it to the MT module to producell@w-up test case. We then let
the classifier decide the class of the follow-up test case (he passed class or the failed class).
Because a test case marked as failure-causing will recesters’ attention, we need not apply the
remaining MT output checking procedure to such a follow-egi tase. On the contrary, when a
follow-up test case marked as passed, we apply the MT proedadwcheck whether the passed
initial test case, the passed follow-up case, and theiréssits breach any metamorphic relations.
In short, by this scheme, we propose to apply MT to check theuts of only those test cases that
a classifier has marked as passed. This motivates us to grogegrating MT withPAT.

The main contributions of the paper are as follows: It presenformalized methodology
known asPAT 2.0 to integrate analytical and statistical techniques thexiifly failures for testing
mesh simplification programs and their kinds. It reports gpeemental study. The empirical
result shows that MT significantly complements the classife approach to identifying failures.
It also explains why and how MT in our methodology presentaddoff between the sensitivity
and specificity of a binary classification scheme.

We organize the rest of the paper as follows: Section 2 re/ilated work on the testing
of software with graphical interfaces. Section 3 gives thehhical background of the work.
Section 4 presents our methodology. Section 5 presentxparimental setup, results, and threats
to validity. We then discuss our findings and explain how MaAd#s specificity for sensitivity in
Section 6. Finally, we conclude the paper in Section 7.

2 A failure-causing test case is a test case that revealsusddiom an 1UT.

2 Related Work

We review related work that uses machine learning appreaahpseudo-oracles, as well as related
work on metamorphic testing and other approaches to easedharacle problem. For brevity, we
shall focus on the testing of software with graphical irdegs.

Berstel and colleagues [4] design the VEG language to desgraphical user interfaces
and show that model checkers may verify properties againgpegification written in VEG
without referring to the source program. Our approach da¢gely on the source code of the
program under test either, but our work involves dynamidyais whereas their technique is
static. D’Ausbourg and colleagues [18] support the fornedign of operations in user interface
systems by a software environment. One may use the techpmggented in [4] to verify such
a design. Memon and colleagues [44] use a test specificatiortesnal object interactions as
a means of detecting inconsistencies between the testfispgon and the resulting execution
sequence of events for each test case. Such an approacah pldar in conformance testing of
telecommunication protocols. Sun and Jones [57] proposmitasapproach for test harnesses.
Memon and colleagues [43] further evaluate several typps@fido-oracle for GUIs. Their results
suggest the use of simple pseudo-oracles for large tesasétsomplex pseudo-oracles for small
test sets. Our work does not explore such kinds of tradeoffintegrates a complex pseudo-oracle
(classification) with a simple one (metamorphic relation).

There are other approaches to testing programs with gralpmitputs. gDEBuggéerchecks
whether a list of commands issued by an application confdaritee usual underlying graphics
visualization application programming sequences usedpenGL [54]. As explained in [5, 11,
12], however, many different sequences of commands mayereth@ same graphical image.
Checking whether a particular sequence of commands has umshto produce a particular
image may not be fully reliable. To test programs with irdeds with virtual reality applications,
Bierbaum [5] proposes a framework to record selected iredrate states of program executions
and contrast them against the expected ones. Follorand11, 12], we do not use the internal
states of the program under test. Cheung and colleaguesiitbMayer [40] both use explicit
statistical formulas such as mean and distributions tolchéether a test output carries desirable
characteristics. Mayer and Guderlei [41] evaluate the ohp&different metamorphic relations
on Java programs that compute numerical determinants.r Shaly agrees with our previous
work [30] that metamorphic testing is useful in easing tlst teacle problem.

Researchers also have studied the test oracle problem &r atintexts. Ostrand and
colleagues [49] propose an integrated environment to essers to review and modify their test
scripts. Dillon and Ramakrishna [21] prune the search spétest oracles constructed from a
specification. Baresi and colleagues [3] add assertiorjs¢4ograms to check their intermediate
states. Peters and Parnas [50] propose to construct ppgoigeam documentations and generate
oracles from them.

Apart from statistics approaches, there are analyticatagmges such as golden version [6]
and assertion checking [45]. Nonetheless, as we have egplavhen describing the test oracle
problem, different mesh simplification algorithms prodwwsoeilar but diverse outputs. Using a

3 Available athttp://www.gremedy.com/.

golden version may not help in this case. Assertion checkergies whether a program state or
the output of a program execution satisfies an expected wondiMany industrial applications,
such as the popular Microsoft .NET framework, have sucagsipplied assertion checking.

Applying pattern classifications to ease the test oraclédlpro is not new. Last and
colleagues [34, 58] train a classifier to augment the inceteppecification of a legacy system,
and treat the legacy system as a golden version. As we hal@rmeeqh, golden versions are often
unavailable for mesh simplification programs. Podgurski his research group classify failure
cases into categories by machine learning [51] and therergfencategories using the classification
tree technique [24]. Bowring and colleagues [7] apply maeHhearning to regression testing of
a consecutive sequence of minor revisions of the same progradentify failures in subsequent
versions. Their approach is similar to the reference mogpl@ach proposed by us [11,12].
However, their approach requires the source code of the@mognder test. Our previous work
does not have this requirement, but needs to produce mutante reference models, which
are reusable when testing other mesh simplification progrmainthe same kind. Another pattern
classification approach in [10] does not use reference rmodel

3 Background

Our methodology builds on top &RT [12] and extends it with an analytical module, for which we
choose metamorphic testing. In this section, we preserttdblkground of these two techniques.
To ease our presentation, we rename our previous techrii@i&dm PAT to PAT 1. Readers who
are familiar with these background techniques may skips@etion and go directly to Section 4.

3.1 PAT1

In our previous work [11,12], we have developed a methodplogw known asPAT 1,
which stands for Pattern classification t@éutomatic reference oracles for thesting of mesh
simplification programs”. It trains a classifier using an I§/feference model, and then uses the
classifier [22] to identify failures from the test outputgleé IUT. In this section, we revieRAT 1.

As we have described in Section 1, it is hard to identify aufalfrom the test results of a
mesh simplification program. On the other hand, to train asilieer (denoted b{) for binary
classification [61] of test results, we need a method to predraining samples for the passed and
failed classes.

To produce training samples for the passed class, we run &8 feference model over a set
of 3D polygonal models to produce image outputs. We theraekiralues from such an output
for a vector of image features, and use all such value veawtsining samples. In this way, we
obtain a dataset of training samples for the passed classad® our subsequent discussion, we
denote the dataset I$p.

To produce training samples of the failed classes, we cpragram mutants [2, 48] from the
reference model. We first run the program mutants over the sainof 3D polygonal models to
produce image outputs. We then extract values from eachdmatput for the same vector of

image features. We include the value vector into in the @af@enoted bys-) of training samples
for the failed class only i does not already have this value vector.

In the testing phase, we run the IUT over a test case. Like#i@ng phase, we extract values
from the corresponding image output for the same vector afjefeatures. The classifiérthen
decides the class of the value vector (namely, failed orgehsd=inally, we mark the test case as
failure-causing if the value vector belongs to the faileassl Otherwise, we mark the test case as
passed.

Chan and colleagues [12] has formalized A& 1 procedure, which is also listed as follows:

Let C be a classifier to test an implementation under Hd3t with a reference model
R LetM ={m, mp,...,m, ..., mg} be a set of 3D polygonal models, serving as test
cases. ExecutinB over M will produce a set of outputsR(my), R(mp), ..., R(m) }.
Suppose the program mutants [20,48] Rf are denoted by{Ri, Ry, ..., R.}.
Executing eaclR; of these mutants ove® will produce a corresponding set of
outputs{R;j(my), Rj(mp), ..., Rj(my) }.

Let (f1, fo, ..., fy) be a list of classification feature extraction functiong #veracts
features from input polygonal models and program outpuigeran input modetn;,
the reference prograiR, and the outpuR(m), the above list of functions will extract
a list of featureg fi(m, R, R(my)), f2(mi, R, R(my)), ..., fy(mi, R, R(my))), known as
avector of extracted features

Similarly, for each mutari;, the list of functions will produce a corresponding vector
of extracted featureéfr(my, R, Rj(m)), f2(m, Rj, Rj(my)), ..., fu(mi, Rj, Rj(m))).

If the vector of extracted features produced from mutapts identical with that
produced fromR, PAT 1 will discard the vector. We refer to the remaining vectors
asnon-equivalent mutation vectors

PAT 1 labels every such vector of extracted featurepassedand every such non-
equivalent mutation vector dailed. PAT 1 uses all these labeled vectors to train the
classifierC for binary classification.

To testlUT, PAT 1 executes it over a set of test cases, and constructs thersy@dto
extracted features fdUT using the above scheme but replacihgy IUT. PAT 1 then
passes each of such vectorsldil to the trained classifie€, and let the classifier
label the vector. A vector labeled passedneans observing no failure, and thus, the
corresponding test cases to produce the vector will be rdaagpassed On the other
hand, a vector labeled #asiled indicates a failure, and the corresponding test cases to
produce the vector will be marked tslure-causing

Two specific designs IRAT 1 are the use of reference model and the use of black-box &satur
Based on empirical evaluation, we have also made a reconatiendh [12] to testers when using
PAT 1. We discuss them further below.

Reference model.PAT 1 requires a reference modBl As we have described in Section 1,
a reference model may resemble the IUT or be dissimilar toTid know whether a
reference model resembles or is dissimilar to the IUT in the@nomy of simplification
algorithms [37], we seek external advices. We have cortifie members of the graphic
research groups at The University of Hong Kong and seardietiterature (such as [53]).
To our best knowledge, expert judgment is still necessadetide the classificatioPAT 1
presumes to know whether a reference model resembles the IUT

Black-box features. A classification feature extracted from the program runtleéavior may
be black-box (for example, the mean brightness of an imageije-box (for example, the
number of branch statements covered by a test case), or araioh of them. Coincidental
correctness [28] occurs when a program execution has tadieafault to become an error,
yet the error does not propagate to any output to becomeuadatHowever, before finding
out the faults on an execution path, knowing whether coertal correctness has occurred
in the execution is difficult.

Coincidental correctness thus distinguishes using bibeckinformation from using white-
box information to stand for a classification feature fotitegpurposes. A white-box feature
generally needs the knowledge of program states. Owingdatturrence of potential
coincidental correctness, the involved program statespaissed test case can be abnormal.
To use such a feature to train a classifier for the passed tdssers should confirm the used
white-box information indeed as expected. Otherwise, thay confuse the classifier to
serve as a pseudo-oracle.

Onthe other hand, coincidental correctness does not #ffeciutput of a program execution.
Thus, if we extract features from an image output, coindiglecorrectness will not affect
these features. TherefoeAT 1 uses black-box features.

Recommendation. In PAT 1, the reference mod®& may resemble the IUT or be dissimilar to it.
In [11, 12], we have empirically evaluated that using a rdserg reference model as the
reference moddR can be significantly more effective to identify programdiags than using
a dissimilar one. Thus, in [11,12], we recommend testerss airesembling reference
model whenever it is available as a means to train a clasaifigerPAT 1.

Empirical Results. We also revisit the results T 1 in [12]. The purpose of this review is to let
readers know the effectivenessRAT 1 to identify failures for testing mesh simplification
programs. We first recall that iRAT 1, a classifier only has two classes of outcomes,
namely labeling a test case as passed or failure-causingthém wordsPAT 1 is a binary
classification scheme.

According to [12], the average effectivenessPafl 1 when using a resembling reference

model (denoted byAT 1.r) is 69.0%. However, when using a dissimilar reference model
the average effectiveness PAT 1 (denoted byPAT 1.d) becomes 33.4%. In other words,

PAT 1.r can be 106.5% more effective thBaT 1.d.

We have reviewedAT 1. In the next section, we will review metamorphic testing,iethis
another module in our new methodology.

3.2 Metamorphic Testing

This section revisits metamorphic testing (MT) [14]. A aahtdea of MT is to check the expected
necessary properties of the program under test that relaitégpte test cases and their test results
with a view to revealing failures. It captures such a neaggs@perty as a metamorphic relation.

A metamorphic relationMR) [9, 14] is a relation over a set of distinct inputs and their
corresponding outputs of the target functiprthat the progran® under test aims to implement.
Let us take the sine function for example: For any inpgtandx, such thatx; + xo = 11, we must
have sinx; = sin X».

Given a test casg; = 11/6, a tester will obtain a follow-up test cagg (= 51/6) based on the
relationx; + xo = 1. For instance, testers may use a constraint solving appraacnplement a
program to generate by subtracting from the constarnit. 4

By executing the sine program over bothandxy, the tester will obtain the corresponding
test results, say, 0.5000 and 0.5004, respectively. Thertester checks whether the two outputs
satisfy the relation sirx; = sin X2, which means whether 0.5000 is equal to 0.5004. If the etyuali
does not hold, which is the case for this particular examylEdetects a failure.

A metamorphic relation is as follows [9]:

MR: If r(X]-? X2, vy Xy p(X]_), p(X2>7 teey p(Xk), Xk+17 Xk+27 ey Xn)7
thenr/(X]_, X2y ooy Xy Xkt-15 -+ 5 Xny p(X]_), p(X2)7 sy p(xk)a p(xk-l—l)a s p(xn))

Here,xq, X2, ..., X are initial test caseS¥;1, X+2, - - -, Xn are follow-up test caseq(x;) is the
expected output of the functigmoverx;; andr andr’ are relations.

Testers should study the problem domain to define metamorghations. This is akin to
requirements engineering, in which requirements engmeather than automatic engines are
essential to elicit and specify the system requirements.

The following paragraph shows the definition of metamorpésting.

Definition 1 (Metamorphic Testing) [9] Let P be an implementation of a target function p. The
metamorphic testingf the metamorphic relation

MR: If r(Xl, X2,y oy Xk, p(X]_), p(X2)7 R p(xk)a K15 Kk425 -+ - Xn)7
then II(Xla X2y o evy Xiy Xkg-15 -+ 5 Xns p(xl)a p(XZ)a EERR p(xk)7 p(Xk+1)7 SRR p(Xn))

involves the following steps:(1) Given a series of initial test case&g, Xo, ..., %) and
their respective resultsP(x1), P(x2), ..., P(X)), generate a series of follow-up test cases

4 Forinstance, in [30], we have experimented to request dpees to specify metamorphic relations and implement
programs to generate follow-up test cases. Interestecergaday contact us to obtain the source codes of these
implementations of metamorphic relations.

(Xk+1, Xkr2, - - - Xn) @ccording to the relation(ixg, X, ..., Xk, P(x1), P(X2), - .., P(X), Xk+1, Xk+-2,

..., Xn) over the implementation P(2) Check the relation’xa, X2, ..., Xk, Xk+1, --- Xn, P(X1),
P(x2), ..., P(X), P(Xx1), ---, P(xn)). If r’ is evaluated to be false, then the metamorphic testing
of MR reveals a failure.

In the next section, we will describe our methodology andndetfne research question.

4 Our Methodology: PAT 2

This section proposes a testing methodology that comiagsl [11, 12] with metamorphic
testing [14]. It studies the integration of statisticalhemues and analytical techniques for
alleviating the test oracle problem. We call the methodplBgr 2. As the name implies, it
extend<PAT 1.

In PAT 1, a trained classifier will label a test casefasure-causingor passed A test case
marked as failure-causing would catch the attention ofetsst For instance, Scenario (A) in
Figure 2 sketches an example of the useAdf 1 to identify a failure-causing test case. On the top
left corner of Figure 2, there is a sample test case labeletlass indicated by its comment line,
m1lspecifies a 3D polygonal model of a wind direction sign. Trsaal output of the IUT oveml
(labeled a®©utput of IUT(Mm1)is shown next to the test case for readers’ reference. Adjdo the
visual output, we also show a zoom-in image of the chest galteocock symbol, and highlight
the failure. As we have described in Section 1, this type idrfia may intermix with inaccurate
expectations on the output by a tester. Thus, the failurdedrard to be observed manually. This
particular scenario illustrates theaT 1 can help identify a failure successfully, so that we need
not applyPAT 2.

On the other hand, because of the statistical nature of sifitastest outputs marked passed
by PAT 1 may still be failures. Thus, after classifier has checked @ha(initial) test case does
not reveal any failurePAT 2 pipes the test case (and its test output) to an MT module tdwin
further checking. Specifically, the MT module will constracfollow-up test case based on the
initial test case. Scenario (B) in Figure 2, for instanceyshthat there is a test casel which has
passed th@AT 1 phase.PAT 2 proceeds to construct a follow-up test cas2 For this particular
scenario, the test casa2is constructed using the metamorphic relatMR3 (see Section 5.1.4),
which expects to turn the imagine output upside down. Fomgte, we may observe from the test
casemzin Figure 2 that thg-component of each vertex has changed in sign, comparedhath
corresponding vertex ohl

We run the IUT over the follow-up test case to obtain the tesuit and use the classifier above
to label the test case. HAT 1 shows a failure in the follow-up test case, the latter shoeeive
testers’ attention. By a token similar to the handlingrdf we do not apply MT’s output checking
procedure omz2 as illustrated in Scenario (B) of Figure 2.

If the follow-up test case is labeled as pas$®d, 2 further compares the initial and follow-up
test cases and their test results to check whether theytbtleagiven metamorphic relations. This
is shown in Scenario (C) of Figure 2. In the scenario, we hagteasion box labeled asr2 =
m1 (but inverted)?” It is the MT output checking procedure accordingMi®&; (see Section 5.1.4),

9

which compares whether the features vector of the outpugefram the IUT ovem2agrees with
the features vector obtained by inverting the image outiaum fthe IUT overm1 On the top right
corner of Figure 2, we also show the output of the IUT aw@r(labeled a©utput of IUT(m2) and
the enlarged part of the cock chest. We may observe betweea #nlarged chests in the outputs
of m1andmz2that they are not identical, which breabtR;. Therefore PAT 2 labels the pair of
test casesnilandm?) as failure-causing.

ThePAT 2 methodology is as follows.

Test case m1 Output of IUT (m1) Test case m2 Output of IUT (m2)
% re.nderg o straight, % I‘efzderg o
% wind direction sign % wind direction sign curvy,
% simplification unnatural % simplification ‘ /
% percentage = 10 (fazlure) % percentage = 10 natura
vertex coordinates Vertex coordinates =
<1, 1, 1> <1, -1, 1>
<12 1> <l, -2, 1>

Scenario (A) Scenario (B) Scenario (C)
[m1 is passed] [m1 is passed]
ml is failure-causing construct construct
m2 from ml m2 from ml

m2 J/ m2
@ (bt
inverted)?
[m2 is passed]
| ol

m2 is failure-causing
the pairml and m2, is failure-causing

Figure 2: Blueprint of the MethodologBAT 2.

(1) Given a test casey for testing a mesh simplification prograf PAT 1 labelsm; as either
passedr failure-causing

(2) If PAT 1 labelsm; asfailure-causing exit from the methodology.

(3) If PAT 1 labelsm; aspassedwe further apply the MT module for further verification. Let
{MR1, MRy, ..., MR} be a set of metamorphic relations of the expected functiothef
programP. To simplify our presentation but without loss of genesaliet us assume that the
implementation of eachRy accepts one initial test case and produces one follow-tipass.

10

Using Resembling Using Dissimilar Arbitrary
Reference Model| Reference Model Reference Mode
PAT 1 without piping to MT PAT 1.r PAT 1.d PAT 1.0

PAT 1 with piping to MT PAT 2.r PAT 2.d PAT 2.0

Table 1: Different Naming Convention f®AT 1 andPAT 2

Applying the given implementations of the metamorphictietss to a test cass; will produce
a set of follow-up test casd#1R; (my), MR(my), ..., MRy(my) }. Executing the IUT over these
follow-up test cases will produce the outp&(MRy(my)), P(MRz(my)), ..., P(MRy(my)) }.

(4) We use the classifier ¢fAT 1 again to determine whether the follow-up test cases reveal a
failure. For follow-up test cases labeled as failure-cagisexit from the methodology.

(5) We use the implementation of each applicable metamongation{MRy, MRy, ..., MRy}
to compare the initial test case, the follow-up test casdgiR; (m;), MRx(my), ..., MRy(my),
and their test outputs. MRy is breached for somlee {1, 2, ..., n}, we label the test casg
and the follow-up test cagdRy(m;) as failure-causing.

In this way,PAT 2 saves the effort in applying MT by only checking the test sabatPAT 1
classify adailure-causing Still, it is uncertain whether the extra step of applying MTworth the
effort. A research question thus arises:

RQ1: During the testing of mesh-simplification software, how Immeprovement in
the effectiveness of failure identification will result bpipg the results of a pattern
classification approach to MT?

As we have explained in Section 3.1, a reference mé&del PAT 1 can be a resembling
reference model or a model of a dissimilar kind. To evalue 2 rigorously, we thus want to
study whether using a resembling reference models or amlasreference model as the reference
modelRin PAT 1 to have any significant impacts on tR&T 2 methodology.

In the sequel, to ease our presentation, we make the folpwimmming convention to
differentiate various combinations of reference moéel, 1 and MT. We denote the version of
PAT 1 that uses a resembling reference modePhy 1.r. By the same token, we denote the version
of PAT 1 that uses a dissimilar reference modelRayr 1.d. BecausePAT 2 builds atop ofPAT 1,
we denote the versions BAT 2 based orPAT 1.r andPAT 1.d by PAT 2.r andPAT 2.d, respectively.

In some practical situations, testers may not decide whetheference model resembles the
IUT, but just select an arbitrary reference model. Hencealse study whether it is useful to pipe
the results oPAT 1 to MT if the pair of reference model and IUT is unclear to besmabling or
dissimilar. (That is, not knowing wheth@rT 1.r and PAT 1.d is being applied). We denote this
version ofPAT 1 by PAT 1.0. Following the naming convention above, we denote the warsf
PAT 2 building on top ofPAT 1.0 by PAT 2.0. We show the naming convention in Table 1.

Thus, we define the following null hypotheses for our furtsierdy:

11

H1i: Thereis no significant difference betweeAT 1.0 andPAT 2.0 in failure identification ability.
Ho: There is no significant difference betweRAT 1.r andPAT 2.r in failure identification ability.
Hs: Thereis no significant difference betweaeAT 1.d andPAT 2.d in failure identification ability.

Ha: There is no significant difference in the improvement bemveAT 2.r over PAT 1.r and
PAT 2.d overPAT 1.d in failure identification ability.

Following the advice given in [12], we do not hide our intésa® study whethePAT 2 can be
more effective thafPAT 1, which is a step toward understanding why the technique mayay
not be useful. Let us explain it further.

Rejecting the hypothesid; helps demonstrate that connecting a statistical techntiojun
analytical technique can be useful to identify failures. tBa other hand, if we could accept
the hypothesisi; and yet reject either the hypothesis or the hypothesi$is, the results may
indicate the integration being multi-modal. This may heéggige further research questions on
understanding the reasons on why such integration showdtammagdal behavior in the future.
Another case is that we could accept alHyf, Hy, andHs. Although such a case shows a negative
result, yet it provides evidences that connecting staibind analytical techniques to ease the test
oracle problems is more challenging than what we know atdtaige. Lastly, if we could reject
bothH> andH3, we then want to know whether the improvement delivere@Ay2.r overPAT 1.r
can be more significant than that delivered#yr 2.d overPAT 1.d, which isHs. This helps give
practical advices to testers.

In the next section, we will describe the empirical study andlyze the findings.

5 Empirical Study

In this section, we present an empirical evaluation of teeaech question. Section 5.1 will present
the setup of the experiment. In Section 5.1.1, we will déscthe subject programs used in the
experiment. Section 5.1.2 presents how the test cases #asgktiafor the previous classification
experiment in [11, 12] are created. Section 5.1.3 introdws®l explains the metrics to evaluate
the results of the current study. In Sections 5.1.4 and Seynesent the metamorphic relations of
the subject programs and the procedure of the experimenallfiwe analyze the results of the
current study in Section 5.3.

5.1 Experimental Setup

In this section, we describe the setup of our empirical studye study is built on top of
the previous experiments conducted in our previous work12]L We use their classification
dataset as the starting point of the current experimenthénptresent study, we construct a few
metamorphic relations and pipe the test cases markpdssedn the dataset to the MT module
to identify additional failures.

12

5.1.1 Subjects of the Experiment

We use the Java programs studied in [11, 12] as this wouldeniglio compare the findings with
PAT 1. Each program implements a distinct mesh simplificatioomtigm: Melax’s simplification
algorithm [42], the quadric algorithm [25], and a quadrigaithm weighted by the areas of
surrounding triangles [25]. We denote their implementsim the experiment bylelax Quadric
andQuadricTri, respectively. Each of these algorithms accepts a 3D pabigonodel and outputs
a simplified one.

(1) Melax measures the cost of each edge in a polygonal model as a proidits length and
curvature. It iteratively picks the edges with the lowesitsdo remove until the model has
reduced to the required number of polygons.

(2) Quadriccontracts pairs of vertices rather than edges, so that mected regions in a polygon
model may merge. It approximates contraction errors by goiadatrices. It picks the pairs
of vertices with the lowest costs to remove until the modsltealuced to the required number
of polygons.

(3) QuadricTri improves onQuadric by considering also the sizes of triangles around vertices
during contraction.

Quadric and QuadricTri are topology-modifying mesh simplifications [37]. Theyesthle
each another, and are dissimilar fraelax which is of the topology-preserving kind [37].
Figure 3 shows a spider simplified by these programs for readeference. Take Figure 3(d)
for example. The image shows a spider image output produc@aiadricusing 10% of polygons
of the given 3D polygon model of the spider. Other sub-figureBigure 3 can be interpreted
similarly. We may observe from Figure 3 that the outputs @f $shibject programs at any given
simplification percentage are quite close to one another.

Each of the three subject programs serves two roles in theriexent of [11, 12]. Tak€Quadric
for illustration. The experiment has us€uadric as a reference model to train up the classic
C4.5 classifier. The trained classifier will mark the tesipots of the other two subject programs
(QuadricTriandMelax serving the role of the IUT. (Section 5.1.2 will describe thst cases used
in experiment.) In turn, when we us#elaxor QuadricTrito train the classifielQuadricwill act
as the IUT.

Each program accepts a 3D polygonal model file in the stanBawdformat [56] with an
integer (from 0 to 100) indicating the target percentageaygons that will remain after mesh
simplification. We call this integer parameter simplification percentageFor instance, if the
value of the simplification percentage is zero, it shows dhly background. Similarly, when
the value of the simplification percentage is 100, it will shithe original model without any
simplification effect. The backgrounds of all outputs ar&cklin color. Each program fits the 3D
polygonal model in an area betweenl([—1, —1) and (11, 1), centered at (@, 0). The image
resolution is standardized to 800 pixe!500 pixels.

To ease our presentation, we treat the simplification péagenas an attribute of the input 3D
polygonal model. Therefore, in this paper, we simply ref8Dgpolygonal model as an input to a
subject program.

13

(a) Quadric, 100% (b) Quadric, 70% (c) Quadric, 40% (d) Quadric, 10%

(e) QuadricTri (f) QuadricTri, 70%(g) QuadricTri, 40%(h) QuadricTri, 10%
100%

() Melax, 100% () Melax, 70% (k) Melax, 40% (Y) Melax, 10%

Figure 3: Sample Results of Different Mesh Simplificatioodgtams.

5.1.2 Test Cases and Dataset 6AT 1

Chanetal.[11, 12] use a supervised machine learning apiptodabel test cases in two categories:
passedandfailure-causing We use their results in our empirical study. We describerief their
experiment to produce the test cases and datasets in thimsec

The previous experiment in [11, 12] executes a set of 44 gpemee 3D polygonal models
with up to 17,000 polygons in each reference model. We dethateset of models byp. We
observe that viewing a spider from the front is definitelyfetént from viewing it from the rear.
Thus, even for the same input model, a failure from one petsgemay not occur in another
perspective image. In order to better utilize the 3D polyaanodels, the previous experiment
rotates each one in 22 different orientations. They comedpo rotating a model about the
axis every 22.5 degrees and rotating aboutyta&is every 45 degrees. Each orientation is further

5 Downloaded fromnttp://www.melax.com/polychop/lod_demo.zip. According to this source, they are “big demol[s]
...to convince skeptical visitors”.

14

augmented with 11 different simplification percentagesn(fiO to 100 with increments of 10) to
produce 11 3D polygonal models. In other words, we have edeapool of 44« 22x 11= 10,648
test cases. To ease our discussion about the experimept getulenote this pool of test cases by
TP. We further us@ P(m) to denote the entire subset of test caseBRproduced by the same 3D
polygonal modem (which is in®).

To collect training sampleSs for thepassedtlass, it executes every subject program over every
test case iMP to produce an output. It then extracts black-box featuras fevery such graphics
output. These black-box features are as follows. (1) Chafgatios of major and minor image
frequencies under fast Fourier transform [27]. (2) The agerbrightness of the graphic. All these
vectors of black-box features are putSa

Informally, a simplified polygonal model will have a higheravall frequency value than the
original polygonal model. This is because when fewer pohgyare used to model an image,
smaller amounts of image frequencies of the original modéramain in the simplified version.
The stronger the strength, the more it will contribute toithage. Signals with major contributions
are low frequency signals contributing major image freques of the original model. Signals
with minor contributions are high frequency signals cdniting minor image frequencies of the
original model. Hence, we sort the image frequencies aawgro signal strengths and compute
the mean and the mean plus or minus one (two and three) sthdeaation(s). By covering up
to three standard deviations, the effect of over 99% of teguencies in an image are considered
in the previous experiment. The average brightness fesuoaemedy the use of ratio as the first
classification feature, which eliminates the effect of angr@es that happen to be proportional.

To collect training sampleSt for the failed class, it uses MuJava [39] to generate program
mutants from every subject program. A total of 3,060 nonheent mutants are created, and the
previous experiment uses all of them to produce experirhesdalts. It executes every of these
mutants over every test caseliR to create a vector of non-equivalent mutations. The expartm
discards the vector if the vector already exist§in In total, the experiment executes the mutants
with more than 440,000 program executions. All such veabbrson-equivalent mutations form
the datase®-. Table 2 shows the numbers of mutants of the three subjegtgores used in [11, 12].

| Melax | Quadric | QuadricTri |
401 | 1122 | 1187 |

Table 2: Numbers of Mutants Used.

The experiment randomly picks one polygonal madétom © and picks one subject program
R to train the classical C4.5 classifier [22]. It selects fr§all the training samples produced
from executingR over T P(m) as the passed training samplesRofSimilarly, it selects fromg:
all the training samples produced by executing the programants ofR over T P(m) as the failed
training samples dR. It applies the two selected sets of training samples to thea C4.5 classifier.

In the testing phase, the previous experiment does not yssaamples oflf P(m) from Sp. It
executes the IUT (which is another subject program diffeirem the above reference model) over
all the remaining samples &. For instance, if we us@uadricto train the classifier, then either
QuadricTrior Melax (but notQuadrig can be the IUT. In other words, we let the classifier label

15

Expected outcome
TRUE | FALSE
. . False Positive Postiive predicative
Positive True positive - . .
(or Type 1 error) value (or Precision)
Test
outcome
. Fase Negative . Negative predicative
Negative True Negative —
(or Type Il error) value
2)
Sensitivity Specificity

(or Recall Rate)

Table 3: Relationships among Sensitivity, Specificity, &eRate and Precision

the test verdicts of individual test cases produced froneensnput models for another subject
program. We repeat the same experiment using the test chises imput models to training the
classifier, followed by three, four, and finally five input pgbnal models. We repeat the entire
procedure for every pair of subject programs.

5.1.3 Effectiveness and ER-Score

To evaluate a technique, we need some metrics. In stafistiashine learning, and medical
researchsensitivity andspecificity are a standard pair of measures for binary classification [29
33]. Sensitivity measures how well a binary classificationrectly tests a condition whereas
specificity measures how well the binary classification ettty identifies the negative cases [29,
33]. In some disciplines such as information retrieval,s#nty is known as therecall rate.
However, specificity is not the same @®cision [33]. To help readers appreciate the differences
between sensitivity/specificity and recall/precision, wee a confusion matrix [33] in Table 3
(adapted from [62]) for illustration. We can observe frone tfable that both sensitivity and
specificity evaluate the experiment results along the dgiwenof expected outcomes (as indicated
by the direction of arrows). On the other hand, recall rat recision evaluate the experiment
results along different dimensions, with an overlappirlt(t®ie positive). To cater for the software
engineering community and other general audiences, we ersstigity and specificity as the
terminology in this paper.

Sensitivity and specificity are defined in statistics asoio8:

no. of true positives « 100%

Sensitivity= — .
no. of true positives + no. of false negatives

no. of true negatives 1
no. of true negatives + no. of false positives

To cast the two measures into software testing, we shouldtrmappositivestrue negatives
false positivesandfalse negativeso the binary classification used in our experiment, and the

Specificity= 00%

16

mapping is as follows. LeE be the expected classifier, afidbe the actual classifier used. The
four cases are as follows.

(1) Atrue positive is a test case such that b6tand.4 label the test case as failed. In other words,
a failure-causing test case is correctly identified.

(2) A true negative is a test case such that bBthnd 4 label the test case as passed. In other
words, a passed test case is correctly identified.

(3) Afalse positive is a test case such tiidabels the test case as passed, bldbels the test case
as failed. In other words, a passed test case has been mistakessified as failure-causing.

(4) Afalse negativeis atest case such thBdabels the test case as failed, Bulabels the test case
as passed. In other words, a failure-causing test case basiissed by a testing technique.

Because we are testers, we interest in studying the eféewtss and false alarms of a testing
technique. We thus use more tester-friendly terminologiagdefine sensitivity and specificity.
We further define an ER-score as a measure to combine ségstid specificity.

Effectiveness= Sensitivity
Robustness= Specificity
ER-score = Effectiveness Robustness

Intuitively, effectivenesss the percentage of failure-causing test cases that haredwgrectly
classified by a binary classification scheme. Similambustnessis the percentage of passed
test cases that have been correctly classified by the saramectWe deem that testers generally
would like to maximize both the failed test cases and passstdcases to be correctly classified.
As a result, dnigher valuein either measure meandatter resulin a testing experiment.

The ER-scoreis a product of effectiveness and robustness. We use thiscnetcombine
effectiveness and robustness into one value. This scoreesdhe properties that we consider
important in evaluating test experiments. When the eWfeaess is zero, the ER-score must also
be zero, irrespective of the robustness. Similarly, wherrtibustness is zero, the ER-score must
also be zero. On the other hand, only when both effectivemedsobustness are 1, the ER-score
can attain its maximal value. Lastly, when effectiveness@bustness) remains unchanged, the
ER-score will vary proportionally to robustness (or effeenhess). Thus, a higher ER-score also
indicates a better result.

5.1.4 Metamorphic Relations

Researchers in metamorphic testing advocate the use ofesimgitamorphic relations to ease the
test oracle problem. To follow this advice, we use three &mmpetamorphic relations in the
experiment to check thpassedest cases produced in tRaT 1 phase. As defining an adequate
set of metamorphic relations is still an open problem, wé& ghe following generic metamorphic
relations so that they are not tied to any particular singaifon strategy.

17

e The first metamorphic relatioMMR;) checks the size of the bounding box rendered from an
initial test case against that from the non-simplified 3Dygohal model (that is, when the
simplification percentage is 100). This is akin to a commacfice in assertion checking
to check the size of the bounding box after each iterationth&smetamorphic relation is
graphics-based, we depict the ideavRR; in Figure 48

To present the metamorphic relation, we need some helpetidums. Letu be a function
accepting an image and returning an outline of a shape imthage. Further, lebhoScale
be a function accepting a 3D polygonal model and returnieg3 polygonal model with
simplification percentage being 100. Given an im&ge) produced by a prograra over

an inputm. The metamorphic relation is as follows:

u(P(m) Cc u(P(noScalém))),

whereC. is a two-polygon containment relation [26], which assent t(P(m)) should be
within u(P(noScalém))).

In the experiment, we use the built-in function of Adobe RIisbbp 7.0 batch processing
to produce the outline of the shape in every image. The impleation ofnoScales also
responsible to produce a follow-up test case. Since thel$icagion percentage is an integer
in the input 3D polygonal model, the implementation alwagsigns 100 to this integer.

Source image (e.g., at 20%)

Step 3. Check the
inner bounding box
against the outer
bounding box.

Step 1. Produce a
follow-up image
without simplification.

Step 2. Construct the
bounding box of the
follow-up image.

Figure 4. An Illustration oMRy

6 Note that we compare the outlines of shapes rather than aimgphe outline against a shape. We illustrate the
inner apply object rather than the outline of the inner appthe figure to ease readers to spot the comparison between
outlines.

18

e The second metamorphic relatioMR>) reverses the order of the vertices of a given
polygonal model to produce the reversed sequence of thg@ady model. It further checks
whether the image outputs of the program over two polygor@dets are the same. It is
analogous to requesting the program to visualize the saapdhps using different sequences
of operations. We depid#lR, in Figure 5.

A 3D polygonal model in a PLY file is a sequence of verticgs,Vvo,...,Vn—1,Vn)-
Let reverse be a standard sequence reversal functioihat accepts a sequence
(V1,V2,...,Vn_1,Vn), reverses the order of the elements in the specified sequemteeturns
the reversed sequen¢@, vn_1,...,V2,Vv1). Letmbe a test case. The metamorphic relation
is as follows:

P(m) = P(reversém)).

The construction of the follow-up test case is not diffictitthe implementation, we extract
the sequence from a source PLY file, and then reverse thersagjud/e further replace the
original sequence in the source PLY file by the reversed sexpu produce another PLY
file (i.e., the follow-up test case). The simplification pErtage of the follow-up test case is
set to be the same as that of the given polygonal model. Toeirmgxht the equality of the

metamorphic relation, we compare the images via vectorstodeed features directly.

Step 1. Revise the vertex
order in the input 3D model

<a, b,c,defg, h> » <h,g,f, e dcb,a>

Step 2. Compare
the image

Figure 5: An lllustration oMR,

e The third metamorphic relatiorMRs) changes the input so that the image output should
be upside down. This is similar to the “flip vertical” funation the drawing toolbar of
Microsoft Office. Then, it further changes the image so thistupside down again. The net
result should be as if no any flip operation were applied tarnpets and the outputs. We
depictMR3 in Figure 6.

7 Such as “static void java.util.Collections.reverse(li&t)”.

19

The implementation of this metamorphic relation is also matd. Each verteg in a 3D
polygon model is a 3D coordinatedor, cooly, coor,), where each coordinate component
is a number. Thus, for the sequence of vertices represetitea@D polygon model, we
simply compute a new-coordinate of every vertex in the sequence by the Equafipio(
form (coory, coor§, COO0K):

coor, = —CoO¥y. (1)

It produces a follow-up 3D polygonal model that will turn thieginal 3D polygonal model
upside down. To compare the image output of the originaldest and that of the follow-up
test case, the implementation runs Photoshop 7.0 to irhverttage output of the follow-up
test case. It then compares this inverted image directlythié image output of the initial test
case via vector of extracted features. Like the implementaif the second metamorphic
relation, the simplification percentage of the follow-ugygmnal model is the same as that
of the initial test case.

Formally, letylnvert be a function that accepts a 3D polygonal model, performsythe
coordinate transformation stated in Equation (1) over dmriences of vertices in the model,
and returns a 3D polygonal model that its z-coordinates rasstormed. Leflip be a
function to invert an input image. L&t be an initial test case. The metamorphic relation is
as follows:

P(m) = flip(P(yInvert(m)).

h
I g

f e Step 1. Flip input ***********************

»

Step 2. Flip output 1

>

Step 3. Compare
the image

Figure 6: An Illustration oMR3

20

Let us firstly estimate the overall capability of failure idiéication by these MRs. Because of
the sheer size of the test pool used in the experiments, wetdo the estimation by applying the
MRs exhaustively to all the test cases. We randomly selegbset as initial test cases. Using our
implementation for exercising MT, we construct follow-@gst cases and then check whether they
reveal a failure. The results show that 29.4% of the faitagsing test cases fbtelax, 34.1% for
Quadric, and 36.3% foQuadricTriare detected.

Readers may express a concern that these metamorphiomslappear to be weak. We thus
refineRQ1 to a more tractable research question below:

RQ1*: Can the effectiveness of failure identification be imprdweg@iping results of
a pattern classification approach to weak MRs?

5.2 Experimental Procedure

In this section, we describe the experimental proceduredtuatePAT 2. First, the classification
result ofPAT 1.r andPAT 1.d are directly obtained from the dataset of the previous emysert [12]
(see Section 5.1.2). To produce the test resultefdf1.0, we group the classification result of
PAT 1.r and that ofPAT 1.d to denote the result AT 1.0. They serve as the baseline for evaluating
the performance dfAT 2.0.

To produce the test results ®RT 2.r for a particular IUT, we first use the passed test
cases ofPAT 1.r for that IUT, and apply every such passed test case as aal itast case of
each metamorphic relation. The MT module uses each metdmecamgdation implementation to
construct a follow-up test case based on the initial test.Calsen PAT 1.r determines whether the
follow-up test case has passed or is failure-causing. Hfebkeverdict of the follow-up test case has
been marked as passed, the MT module will continue to contpariaitial test case, the follow-up
test case, and their outputs based on the metamorphimrelatplementation that constructs the
follow-up test case. If the MT module reveals a failure, waserthe previous labels of the initial
test case and the follow-up test case, and mark them assgfaiursing instead. We iterate the same
procedure for every subject program. We further repeatdheesprocedure foPAT 2.d by using
the passed test caseRAT 1.d as the initial test cases for the MT module. Similarly°&T 1.0, we
group the classification result BAT 2.r and that ofPAT 2.d to denote the result ¢#AT 2.0.

In summary, the variables of the controlled experiment arikows:

Independent Variables. There are four independent variables. They are the subjegtams to
train a classifier, the subject programs used as the I[UTgudih or not, and the number of
input models to train a classifier.

Dependent Variables. There is only one dependent variable, which is the label o ¢éest case.

Control Variables. There are a number of control variables. They are the imphatien
languages to implement the subject programs (Java in oej),che chosen classifier (the
C4.5 classifier), the metamorphic relations (the thrediogla stated in Section 5.1.4), the
polygonal models to construct the test case p&9] the features used for classification (the

21

black-box features), the way to construct faulty versiansrain a classifier and simulate
faulty behavior in the program under test (the program nanapproach usingiuwlava).

5.3 Empirical Results and Analysis

In this section, we present the results of the empiricalystud

5.3.1 Investigations on Effectiveness Improvement

In this section, we examine whether the introduction of anfddule improve the effectiveness
of PAT 1.

Figures 7(a) and (b) present box-and-whisker plots of tfezg¥eness oPAT 1.0 andPAT 2.0,
respectively. Thg-axis shows the effectiveness and haxis shows the number of 3D polygonal
models applied to train the C4.5 classifier during BA€ 1.0 phases. Unless specified, in the rest
of the paper, readers can interpret the pairs of axes in datkimilar to the plot in Figure 7(a).
Figure 7(c) shows the difference in effectiveness betwadn2.0 and PAT 1.0 by the formula:
Effectiveness oPAT 2.0 — Effectiveness oPAT 1.0.

We observe from the three plots that MT improves the effeci@ss of the classification
module. Thisis adirect consequence of our new methodolegguse the main difference between
PAT 1.0 andPAT 2.0 is the presence of an MT module, which constructs followagh tases from
the passed initial test cases to identify potential add#idailures. The trends in the plots show
that the marginal improvement in the effectivenessH&T 1.0 decreases as the number of input
3D polygonal models used in the training phase of the claasidin module BAT 1.0) increases.
This is understandable: As the effectiveness improveggaa for further improvement reduces.

To study the improvement statistically, we apply the twadesi Mann-Whitney test (denoted
by U-test) on the effectiveness values of the classificatiomaggh with and without the MT
module (i.e., comparing the effectivenesse$Ar 1.0 and PAT 2.0). The results are z-score =
3.060 and p-value = 0.0022:(0.05). We further apply the Wilcoxon Matched-Pairs Signed-
Rank Test (rank-test) to check the hypothesis, giving: Ipevax 0.0000 & 0.05). Therefore, we
reject hypothesisi; at the 5% significance level, and conclude that piping to tienvbduledoes
improve the effectiveness of the classification approaghistantly.

Next, we continue to study the impact of using MT owal 1.r and overPAT 1.d. In other
words, we compareAT 2.r with PAT 2.d. Figure 8 shows the trends of effectivenesgaxf 2.r and
PAT 2.d, respectively.

Each plot in Figure 8 shows that having an MT module improves dffectiveness of the
approach without the MT module. We also perform théest and rank-test on them. For the
comparison betweeRAT 1.r and PAT 2.r, U-test shows that z-score = 1.663 p-value = 0.0963
(<0.10), while rank-test shows that p-value = 0.00200¢10). On one hand, we reject hypothesis
H, at the 10% significance level. On the other hand, the restittsechypothesis test reveal that
improvements by the MT module are observable, but not higiggificant. At first sight, it may
be relevant to the use of weak metamorphic relations.

22

90

Original Overall Effectiveness

90

Enhanced Overall Effectiveness

80 , 80 & (L
o 701 l ¢ l < 701 <|> %
S = |
~ 60 - l ! ~ 60 -
8 50 ! ! 8 50
g I 5]
= 40+ o = 40+
3 30 A | 3 30 A
W 20 - W 20 -

10 A 10 A

0 . . . 0

1 2 3 4 5 2 3 4 5

No. of trained models

No. of trained models

(a) Classification OnlyRAT 1.0) (b) Classification Piped to MTPAT 2.0)

Effectiveness Difference (%)

25

Effectiveness Difference

20 A

15 A

10 A

No. of trained models

(c) Difference between (b) and (a)

Figure 7: Changes in Overall Effectiveness by the Use of MT

However, a comparison betwe®AT 1.d andPAT 2.d shows that, fotJ-test, z-score = 2.408
and p-value = 0.0161< 0.05), while for rank-test, p-value = 1.91e-06 (0.05). On one hand, we
reject hypothesibls at the 5% significance level. On the other hand, the metamorelations are
already strong enough to make a significant difference ErRAT 1.d andPAT 2.d.

The above hypothesis testing results show that:

(1) If we do not distinguish the types of reference model @ntra classifier, MT provides a
significant improvement (thus, rejectihtj). Intuitively, this finding relieves testers from the
worry that a resembling reference model may be mistaken thdsémilar, and makes MT to

23

be a good complement to a classification approach. Howeseaveawill discuss in the next
section, it is not the case when we also consider robustri¢ise olassification scheme.

(2) If a tester heeds the advice of [10] and uses a resembdifegence model to train up a
classifier, the advantages of piping the results of the iflesson module to an MT module
may be not traditionally significant. The experiment resldés not support us to rejeb
at a high, say 5%, significance level. On the other hand, tfiereince is noticeable (see
Figure 8(a)). Indeed, the finding supports us to rei¢cat a good (10%) significance level.
Viewing the results from another perspective, it may alyesttbw thaPAT 1's advice is useful,
andPAT 2 is a healthy option for testers to improve the effectiveradsdentifying failures in
testing their programs. We will further study this point iaclon 5.3.2.

Average Effectiveness Average Effectiveness

35

-3
S

@
s

:
:

Effectiveness (%)

Effectiveness (%)

N

N
S

T T l 20 T T T T
1 2 3 4 5 1 2 3 4 5
No. of trained models No. of trained models

‘ ——PAT1r —=—PAT 2.r ‘ ‘ —e—PAT1.d —=—PAT 2.d ‘

(a) PAT 1.r vs. PAT 2.r (b) PAT 1.d vS.PAT 2.d

Figure 8. Effectiveness ¢#AT 2.r overPAT 1.r, andPAT 2.d overPAT 1.d

Average Effectiveness Gain by MT Average Effectiveness Gain by MT (in releative %)
s 25 I 90.00%
a3 S = 80.00% hN
,3, 20 a 70.00%
2 € 60.00%
§ 15 s - v\\ S 50.00%
E-] ~ ° ¥
i oo = R —
& e L] U 20009 RN ——
I g 2000% .- w2
& o0 8 000% . . ,
H 1 2 3 4 5 £ 1 2 3 4 5
© No. of trained models S No. of trained models

\ —e—PAT2r —m-PAT2d | ‘ —e—PAT2r —m-PAT2d |

(a) Changes in (Absolute) Effectiveness (b) Changes in (Relative) Effectiveness

Figure 9: Comparing the Changes in Effectivenes220f2.r overPAT 1.r andPAT 2.d overPAT 1.d

Figure 9 compares the differences in effectivenesBfdf2.r over PAT 1.r to that of PAT 2.d
overPAT 1.d. We want to study whether the effectiveness improvement dfddided taPAT 1.r is
the same as that addedRart 1.d. We calculate the change in effectiveness betwaam2.r over
PAT 1.r by the formula (F1): Effectiveness 8AT 2.r — Effectiveness oPAT 1.r. For comparison
in relative terms, we divide the result of formula (F1) by #fectiveness oPAT 1.r.

24

Similarly, we calculate the change in effectiveness betwes 2.d over PAT 1.d by the
formula (F2): Effectiveness d?AT 2.d — Effectiveness oPAT 1.d. For comparison in relative
terms, we divide the result of formula (F2) by the effectiess ofPAT 1.d.

Figure 9 shows the average effectiveness improvememaf.r andPAT 2.d (overPAT 1.rand
PAT 1.d, respectively) in both absolute and relative terms. We fesenat the solid line is always
higher than the dotted line in either plot. It indicates tiiat average improvementseAT 2.r are
always more than those ®AT 2.d, which may indicate that the former type of improvement is
better than the latter type.

Since we have observed that MT has a positive effect on eféewtss, we further conduct a
one-tailedU-test to compare the two types of improvement. We find thatjmfigprovements in
the absolute terms, the two distributions are differenemglz-score = 1.716 and p-value = 0.0431
(<0.05). Similarly, for relative improvements, the two distitions are also different, where z-
score = 1.408 and p-value = 0.07960.10). The findings support us to reject hypothégjst the
10% significance level. It indicates that the improvemenisihg a resembling reference model
is better than that using a dissimilar reference model. Wefwiher study the issue in the next
section and in Section 6.

We note that rank-test requires the lists to have the sam®&auaof elements. This is the case
when comparing an approach with the same approach enhapdéd. I©n the other hand, among
the three subject programs in our empirical stueyT 1.r use the paiQuadric and QuadricTri
because they resemble each othBAT 1.d uses other two pairs of subject programs, namely
Quadric and Melax, and QuadricTri and Melax Consequently, we do not apply rank-test to
hypothesidHs. Table 4 summarizes the hypothesis testing results pegénthis section.

| Hypothesis | Brief Description | Result | Sign. Level |
Hiy PAT 1.0 =PAT 2.0? rejected 5%
Ho PAT 1.r = PAT 2.r ? rejected 10%
Hs PAT 1.d = PAT 2.d? rejected 5%
Ha (PAT 2.r — PAT 1.r) = (PAT 2.d — PAT 1.d) ? | rejected| 10%

Table 4: Summary of Analysis of the Use of an MT module on Top @flassification Approach
(Effectiveness)

In the next section, we shall consider the issue of robustaed re-examine our findings.

5.3.2 Taking Robustness into Account

In this section, we further consider both effectiveness rafistness when evaluating a testing
technique that involves pattern classification. Just fer shke of argument, a classifier may
always label all test cases as passed, meaning that it wilrmaise a false-positive case and
keep all potential failed test cases as false negatives i$hindesirable from the testing point of
view because the sole purpose to train the classifier is ttifgidailures from program outputs.
Similarly, the other extreme situation is to force a classifo always label a test case as failed. It
always reveals failures (with potentially many false-pigsicases).

25

Recall from Section 5.1.3 thabbustnesss the percentage of the number of false positives to
the sum of the numbers of false positives and true negat@gequires multiple test cases to be
checked against a metamorphic relation. As we will explaiBection 6, MT may mark a passed
test case as failure-causing. In other words, it may movetses from the true positive category
to the false negative category (but not vice versa). Theewtltr will affect the robustness of the
testing technique. To take robustness into consideratienyse the ER-score as the measure.

Weighted Effectiveness Weighted Effectivness
80.00% 90.00%
70.00% » 80.00%
o /\
60.00% = 70.00% — e
,\‘/ 60.00% >
50.00%
° o 50.00% &
4 P = Z
3 40.00% o A BN 8 / PN
: - B & 40.00% = =
&) 2 ~~_ g 2000% P _
30.00% - P ~<g
/ 7/ 30.00%
s o '
20.00%
w 20.00%
o
10.00% 10.00%
0.00% T - - T | 0.00%
1 2 3 4 5 1 2 3 4 5
No. of trained models No. of trained models
‘ —— PAT 1.1 — B - PAT1d ~=-—t——- Pareto Principle ‘ ‘ ——PAT 2.r — B -PAT2d ———— Pareto Principle ‘
(a) ComparingPAT 1.r and PAT 1.d (b) ComparingPAT 2.r andPAT 2.d

Figure 10: Comparing the ER-scoreRAT 1.r andPAT 1.d with and without MT

Figures 10(a) and (b) show observable differences betwa®n.r andPAT 1.d, and between
PAT 2.r andPAT 2.d, respectively. Thg-axis of each plot is the ER-score, and thaxis is same
as that in Figure 7(a). We follow the same hypothesis teséagnique as presented in Section 5.3
and find that, for the comparison the differences in ER-scbetweerPAT 2.r over PAT 1.r and
PAT 2.d overPAT 1.d, U-test yields z-score = 3.696 and p-value = 0.00@2D(05). We thus reject
hypothesid, at the 5% significance level.

Similarly, for the comparison betwed@AT 1.r and PAT 2.r, U-test gives z-score = 1.890 and
p-value = 0.05884 0.05) while rank-test gives p-value = 0.0020 0.05). We conclude that
we may marginally reject, at the 5% significance level. We note that in statistics,ghemo
firm rule to draw a fine line between a level of significance dreddtherwise. To be conservative
about the analysis, we also conclude tHais rejected at the 10% significance level. Nonetheless,
when we conduct hypothesis testing ldpandHs, our findings do not support us to reject either
hypothesis even at the 10% significance level for eithdest or rank-test.

We have computed the average improvement in ER-scoreRram.r to PAT 2.r, and that from
PAT 1.d to PAT 2.d; the results are 12.16% and 4.86%, respectively. The fisdimgher indicate
that the improvement on the use of resembling reference im@enore significant than that on
the use of dissimilar reference models.

26

In Figure 10, we also show a horizontal line labeled as thetBdprinciple (also known as
the 80-20 rule) [55]. Since we have two dimensions (effectess and robustness) in the ER-
score, in order to apply this principle, we should have a tdrewvn at 64%, which means 80%
in effectiveness and 80% in robustness (8.8.8 = 0.64). Figure 10(b) shows that, with the
improvement orPAT 1.r by PAT 2.r, constructing a pseudo-oracle that exceeds (or is clog@eto
threshold defined by the Pareto Principle is possible. Oodhé&ary, Figure 10(a) shows that such
a threshold is less attainable by a classification approditiout the MT module, oPAT 2.d.

Thus, if we interpret the Pareto Principle as a practicadelime to offer a solution to
practitionersPAT 2.r is more useful thaRAT 2.d. We also summarize the analysis result in Table 5.

| Hypothesis | Brief Description | Result | Sign. Level |
Hiy PAT 1.0 =PAT 2.07 accept 10%
Ho PAT 1.r = PAT 2.r? rejected 10%
Hs PAT 1.d = PAT 2.d? accept 10%
Ha (PAT 2.r — PAT 1.r) = (PAT 2.d — PAT 1.d) ? | rejected 5%

Table 5: Summary of Analysis of the Use of an MT module on Top @flassification Approach
(ER-score)

Table 4 and Table 5 help us answer the research queR@ri: When resembling reference
model is used, in both effectiveness and ER-score, the meprent of having an MT module is
significant. With the comparison to the Pareto Principles #uvice can be practical.

5.4 Threats to Validity

In this section, we discuss the threats to validity of our eiogl study.

Internal validity concerns whether our findings truly regaet a cause-and-effect relationship
that follows logically from the design and execution of owperiment. The choice of the
three metamorphic relations is based on our experience. ake implemented the metamorphic
relations in Java in general, and used a commercial toolt@Bhop) to process the images. As
we have described how we implement them in Section 5.1.4aatk of their implementations
are simple. We have conducted code inspection and run a s&e/tteassure the quality of these
implementations. Photoshop is a popular product, and itsepeed output quality is reliable.
In the experiment, we compare the results against the basedisults provided by the C4.5
classifier. C4.5 is a classic classifier and has been widelgl ismachine learning, data mining,
and visualization research. The tool (WEKA) that implensethie C4.5 classifier is also widely
used in research studies. We have surveyed over the Intdyoat the problems of using WEKA.
We are not aware of any reported problem about the accuratye @@4.5 implementation.

External validity concerns the applicability and gengyabf our results. The quality of
metamorphic relations can be important to reveal failuré¢e have deliberately used simple
metamorphic relations in our study. The results of our expents serve as a baseline for further
investigations. OpenGL is used in the implementations ef sbbject programs to visualize
graphics. While OpenGL is a popular standard, there arer atheices such as DirectX and

27

Flash. Itis interesting to know whether different implertaion languages would have significant
differences in testing effectiveness. We have only expemted with a few implementations of
mesh simplification algorithms. There are many other vigatibn algorithms. The generalization
of our proposal, therefore, warrants more research. Alsowmrk is built on top of the C4.5
classifier. While it is an important and classical algorittm@data mining, using other classifiers
may give different results. This is thus interesting to krtbe/ results of using the other classifiers
in the future. Our experiment uses a set of 44 open-sourc®Big@nal models to create test cases.
They include a portrait of Beethoven, a chair, a spider, pdga tennis shoe, a weathervane, a
street lamp, a sandal, a cow, a Porsche car, an airplanepas 9 he collection includes many
different graphics of diverse shapes and many represeaggiometric appearances. Some of the
polygonal models such as the portrait of Beethoven have Wadely used in graphics research.
We have done our best to conduct the experiment. We have Wsedathines at our student
laboratory to execute the experiment for more than two cantsee months. We believe that it
simulates the practical testing effort in real life.

Because of the test oracle problem in verifying graphicapots, we have used feature
extraction techniques to tackle the issue instead of dyreomparing the actual outputs RAT 1.
We realize from the machine learning community that feagekection plays a central role in
the effectiveness of a classifier. Intuitively, using a eliént set of features in an experiment to
train a classifier and use the trained classifier to revehiré&s may affect the result. This will
affect whether an initial test case of our metamorphic ngspihase has been classified correctly.
Therefore, it affects both the effectiveness and ER-schifeecexperiment. To ease this threat, we
use generic features such as the standard frequency spenttiie experiment to evalualaT 1.

To produce failed test results to train a classifier, we haedunutation analysis in general
and the mutants generated by muJava in particular. Andreals[2] find that the use of mutation
operators can yield trustworthy results for test experisieldapoor [31] proves that the coupling
hypothesis of mutation testing holds in many classes otkidault, and further extend the fault
class hierarchy for logical faults of Lau and Yu [35] in hisnkavith Bowen [32]. On the other
hand, developers may produce other realistic faults in grara. Apart from using mutation
analysis, therefore, one potential way to complement ouhaamlogy is to extract the faults from
the repository of mesh simplification programs and simulagen as faulty versions of a reference
model. We leave the evaluation of the feasibility of suchrategy as future work.

Construct validity seeks agreement between our intent @fsore and the procedures of our
measurement used in the experiment. We are dealing witlahzsition-intensive software in
our study. The way to sample frequencies from the image t¢sitpnd summarize them into
vectors of extracted features may affect the results. As awe ldescribed in the setup of the
experiment, many frequency values may be extracted frommage. We sample at the mean
plus/minus one to three standard deviations to avoid bi@sesrd particular ranges of frequency
values. We use effectiveness and ER-score to measure tined eesults of the test experiment.
Effectiveness is defined as sensitivity, which is widelydige measuring the performance of a
binary classification scheme. The ER-score combines sgtysdand specificity into one value.
We intend to measure how the effectiveness of our approaghbmaffected when specificity
varies. We have designed the ER-score with care so that & doefavor either sensitivity or

28

Expected outcome

TRUE FALSE

. True positive False Positive

Positive (T) (T)

Test
outcome

. Fase Negative True Negative

Negative 1 !

(V) (V)

Table 6: The Impact OPAT 2 overPAT 1

specificity, and varies proportionally to either sensitivor specificity when the corresponding
counterpart is kept as a constant.

6 Discussion

In this section, we further discuss the findings obtainedeati®ns 5.3.1 and 5.3.2. We generally
look at the impact of MT from the perspective of effectivenesd ER-score over a binary
classification scheme. Finally, we will examine the resglttonclusions of the hypothesis tests.

Our basic idea irPAT 2 is to apply MT on test cases marked as passedAly1 and, if
MT reveals a failure, re-label a passed test case as faihusing. As we have described in
Section 5.1.3, a passed test case of a classifier (producedrby) may be true negative (TN)
or false negative (FN). In other words, an initial test casne MT phase may be true negative or
false negative, and a follow-up test case of the MT phase.akkpair of passed initial test case
and passed follow-up test case may thus fall within one ofdbhepossible combinations, namely,
TN-TN, FN-FN, TN-FN, and FN-TN.

Three of the above four combinations involve at least oneci&se that is false negative. For
each of these three combinations, the MT phase may thubettlee test cases as failure-causing.
It means that MT may move a test case from the false negatigga@y to the true positive category
in our binary classification scheme. At the same time, bex®iE identifies a failure through a
relation over test cases (rather than through one partitedacase), MT may mark a passed test
case as failure-causing, which means that MT may also moestacase from the true negative
category to the false positive category.

Table 6 summarizes the changes in the classification catégsed on the above analysis on
the impact of MT over a binary classification scheme. In Tahleach of the four categories
shows an arrow pointing either upwards or downwards. Itateghe direction of impact of MT
overPAT 1. An upward (downward) arrow indicates that MT adds (remptest cases to (from)
the category.

Therefore, according to the specificity formula presente8ection 5.1.3, MT may improve
(but not worsen) the sensitivity of a binary classificaticheme, and worsen (but not improve)
the specificity of the same scheme. In statistics, Type Iremna Type Il error describe possible

29

errors made in a statistical decision process. Type | eafers to the error of rejecting a correct
null hypothesis, while Type Il error refers to the error ot ngjecting a false null hypothesis. In
essenceRAT 2 trades Type 1 error dPAT 1 for Type Il error of PAT 1 through the application of
MT.

To examine such tradeoff, we have used the ER-score as thsureem the experiment
presented in this paper. However, because of tester pnefereve have separately studied the
effectiveness of the testing technique.

We have rejected both hypothesésandHs in Section 5.3.1 when we measure effectiveness
only; and yet, we have failed to do them again when using EfResas the metric to measure the
above-mentioned tradeoff in Section 5.3.2. The combinsdlte show that the effectiveness of
PAT 1 does improve significantly through the application of MTt ylee Type 1 error has also
increased to the extent that prevents significant improwenee be claimed. In Figure 10(b),
we have however observed noticeable improvemerrAdf 2.d over PAT 1.d. They show that
the improvement on effectiveness (sensitivity) versusdiierioration in robustness (specificity)
produced by MT is asymmetric but not significantly differet/e believe that there are types
of MT that can be symmetric or significantly asymmetric in gensitivity-specificity tradeoff
perspective. It may be worth studying the types of MT to stildytradeoff more comprehensively
in the future.

AcceptingHs in the tradeoff analysis shows that testers may not blinglylyaan arbitrary
reference model to obtain a significantly better result freAT 2 over PAT 1. In practice,
it means that testers need spending efforts to confirm whetheference model resembles
the implementation under test. We tend to believe that, ectmre, the developers of the
implementation under test can provide such expert judgment

Nonetheless, not every version AT 2 can be practical. We have compared our results with
the Pareto Principle in the tradeoff analysis (see Figu€¢a)lor (b)). We have found that both
PAT 1.d andPAT 2.d are less effective than the threshold lines that reprebenPareto Principle.
To usePAT 2 effectively, again, the identification of resembling refece models is important.

We have further rejectedl, and Hs in both Section 5.3.1 and Section 5.3.2 at the 10%
significance level successfully. We have however arguedhasd two sections that typically,
rejecting a hypothesis test in statistics would require stgmificance setting at the 5% level.
Nonetheless, we believe that having results establishéteat0% significance level represents
a promising effect.

We have assessed tiRAT 2.r can attain the threshold level of Pareto Principle. We beltbat
PAT 2.r is thus more accessible to the practitioners than the ottrsrons that we have studied in
the empirical study.

7 Conclusion

Mesh simplification is a technique to create graphics atedbfiit levels of details. It simplifies
a three-dimensional (3D) polygonal model to the one withelepolygons and aims to preserve
the appearances of the original model as much as possibferddit such techniques, however,

30

optimize different perspectives such as speed or grapsizaow of the shape. As a result, they
produce different graphics, although the graphics looksag similar in appearance. Defining

the expected results of test cases is thus hard, which causss oracle problem when testing
mesh simplification programs. Our previous work recogniresuse of resembling reference
models to guide the training phase. Still, owing to the stal nature of classifiers, many test
cases classified into the passed category may, in fact, lnesfaausing, thus lowering the testing

effectiveness in identifying failures.

In this paper, we have proposed an integrated approachifies {he test results from a pattern
classification module to a metamorphic testing (MT) modalgéllow-up testing. Specifically, it
uses the metamorphic testing approach to check the tesdtsresarked as passed by a classifier.
We have reported an empirical study that applies three simptl general metamorphic relations
to produce follow-up test cases to evaluate our proposaleffectiveness, the integrated approach
significantly improves the pure pattern classification apph. When we consider robustness
as well, the integrated approach using a resembling referemodel gives significantly better
improvement over the one using a dissimilar reference modkel have also explained why and
how MT in our methodology represents a technique to tradeifsgey for sensitivity.

Our proposal has showed a strategy that aligns a statiappabach with an analytical approach
to give better results. We believe that such a strategy ieigeinas applicable scenarios in other
application domains to gain fruit results. Future work utgs new techniques to filter out false-
positive cases in the failed category, a tighter integratibpattern classification and metamorphic
testing, and an underpinning theory. We have not studidetirea testing issues in assuring mesh
simplification programs. We will study these issues in therfe.

Acknowledgements

We would like to thank the anonymous reviewers for their temne constructive comments, and
Prof. Jeff Offutt for the discussion on the representatgsof mutation analysis to real faults.

References

[1] M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, and T.iday. A modified fuzzy c-
means algorithm for bias field estimation and segmentatidiRI data.|[EEE Transactions
on Medical Imaging21 (3): 193-199, 2002.

[2] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation appropriate tool for testing
experiments? IfProceedings of the 27th International Conference on Soéwagineering
(ICSE 200%, pages 402-411. ACM, New York, NY, 2005.

[3] L.Baresi, G. Denaro, L. Mainetti, and P. Paolini. Asgars to better specify the Amazon bug.
In Proceedings of the 14th International Conference on Soéagineering and Knowledge
Engineering([SEKE 2002, pages 585-592. ACM, New York, NY, 2002.

31

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J. Berstel, S.C. Reghizzi, G. Roussel, and P. San Piatscalable formal method for design
and automatic checking of user interfacA&M Transactions on Software Engineering and
Methodology 14 (2): 124-167, 2005.

A. Bierbaum, P. Hartling, and C. Cruz-Neira. Automatesting of virtual reality application
interfaces. InProceedings of the Eurographics Workshop on Virtual Envinents(EGVE
2003, pages 107-114. ACM, New York, NY, 2003.

R.V. Binder.Testing Object-Oriented Systems: Models, Patterns, antsTaddison Wesley,
Reading, MA, 2000.

J.F. Bowring, J.M. Rehg, and M.J. Harrold. Active leargifor automatic classification of
software behavior. IfProceedings of the 2004 ACM SIGSOFT International Symposiul
Software Testing and AnalyqIESSTA 2004 ACM SIGSOFT Software Engineering Notes
29 (4): 195-205, 2004.

L.C. Briand, M. Di Penta, and Y. Labiche. Assessing angroving state-based class testing:
a series of experiment&€ EE Transactions on Software EngineerjB8@ (11): 770-783, 2004.

W.K. Chan, T.Y. Chen, H. Lu, T.H. Tse, and S.S. Yau. In&ggn testing of context-sensitive
middleware-based applications: a metamorphic apprdatdrnational Journal of Software
Engineering and Knowledge Engineerjrig (5): 677—703, 2006.

W.K. Chan, M.Y. Cheng, S.C. Cheung, and T.H. Tse. Auttiorgoal-oriented classification
of failure behaviors for testing XML-based multimedia saite applications: an
experimental case studjournal of Systems and Softwar® (5): 602-612, 2006.

W.K. Chan, S.C. Cheung, J.C.F. Ho, and T.H. Tse. Referenodels and automatic oracles
for the testing of mesh simplification software for graphiesadering. InProceedings of
the 30th Annual International Computer Software and Aggians Conferenc€COMPSAC
2006, volume 1, pages 429-438. IEEE Computer Society, Los AtzsnCA, 2006.

W.K. Chan, S.C. Cheung, J.C.F. Ho, and T.H. Tse. PAT: ttepa classification approach
to automatic reference oracles for the testing of mesh #icgiion programsJournal of
Systems and Softwar2008. doi.10.1016/}.jss.2008.07.019.

W.K. Chan, J.C.F. Ho, and T.H. Tse. Piping classifiaatto metamorphic testing: an
empirical study towards better effectiveness for the ifieation of failures in mesh
simplification programs. IProceedings of the 31st Annual International Computengut
and Applications Conferend€OMPSAC 200y, volume 1, pages 397-404. IEEE Computer
Society, Los Alamitos, CA, 2007.

T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic testia new approach for generating
next test cases. Technical Report HKUST-CS98-01. DepattofeComputer Science, Hong
Kong University of Science and Technology, Hong Kong, 1998.

32

[15] S.C. Cheung, S.T. Chanson, and Z. Xu. Applying genanang tests for distributed
multimedia software systemdEEE Transactions on Reliabilifp3 (3): 329-341, 2004.

[16] P. Cignoni, C. Rocchini, and G. Impoco. A comparison asm simplification algorithms.
Computers and Graphi¢22 (1): 37-54, 1998.

[17] R.L. Cook, J. Halstead, M. Planck, and D. Ryu. Stocleastnplification of aggregate detail.
ACM Transactions on Graphig26 (3): Article No. 79, 2007.

[18] B. d’Ausbourg, C. Seguin, G. Durrieu, and P. Roch. Hedythe automated validation process
of user interfaces systems. Rroceedings of the 20th International Conference on Saéwa
EngineeringICSE 1998, pages 219-228. IEEE Computer Society, Los Alamitos, G881

[19] C. DeCoro and N. Tatarchuk. Real-time mesh simplifaatising the GPU. IProceedings
of the 2007 Symposium on Interactive 3D Graphics and Gapagges 161-166. ACM, New
York, NY, 2007.

[20] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints orstelata selection: help for the
practicing programmetEEE Computerll (4): 34—41, 1978.

[21] L.K. Dillon and Y.S. Ramakrishna. Generating oraclesnf your favorite temporal logic
specifications. InProceedings of the 4th ACM SIGSOFT Symposium on Foundatibns
Software EngineeringSIGSOFT '96/FSE-¥4 ACM SIGSOFT Software Engineering Ngtes
21(6):106-117, 1996.

[22] R.O. Duda, P.E. Hart, and D.G. Stofkattern ClassificationWiley, New York, NY, 2000.

[23] C. Fahn, H. Chen, and Y. Shiau. Polygonal mesh simptibcawith face color and
boundary edge preservation using quadric error metricProceedings of the 4th IEEE
International Symposium on Multimedia Software Enginegp{MSE 2002, pages 174-181.
IEEE Computer Society, Los Alamitos, CA, 2002.

[24] P. Francis, D. Leon, M. Minch, and A. Podgurski. Treesdxh methods for classifying
software failures. IfProceedings of the 15th International Symposium on So&wafiability
Engineering(ISSRE 2004 pages 451-462. IEEE Computer Society, Los Alamitos, CA,
2004.

[25] M. Garland and P. Heckbert. Surface simplification gsiquadric error metrics. In
Proceedings of the 24th Annual Conference on Computer Gecaphnd Interactive
Technique$SIGGRAPH 199y, pages 209-216. ACM, New York, NY, 1997.

[26] R.B. Grinde, and T.M. Cavalier. A new algorithm for tlvea-polygon containment problem.
Computers and Operations Researg (3):231-251, 1997.

[27] R.C. Gonzalez and R.E. Wood3igital Image ProcessingPrentice Hall, Englewood Cliffs,
NJ, 2002.

33

[28] R.M. Hierons. Avoiding coincidental correctness inubdary value analysisACM
Transactions on Software Engineering and Methodoldy(3):227-241.

[29] D.W. Hosmer and S. Lemeshoipplied Logistic RegressiolViley, New York, NY, 2004.

[30] P. Hu, Z. Zhang, W.K. Chan, and T.H. Tse. An empirical gamson between direct and
indirect test result checking approachesPhoceedings of the Third International Workshop
on Software Quality Assuran¢8OQUA 200%(in conjunction with the 14th ACM SIGSOFT
International Symposium on Foundations of Software Ereging (SIGSOFT 2006/FSE-
14)), pages 6-13. ACM, New York, NY, 2006.

[31] K. Kapoor. Formal analysis of coupling hypothesis fogical faults.Innovations in Systems
and Software Engineering@ (2): 80-87, 2006.

[32] K. Kapoor and J.P. Bowen. Test conditions for fault sisin Boolean specificationACM
Transactions on Software Engineering and Methodagldgy(3): 1-12, 2007.

[33] R. Kohavi and F. Provost. Glossary of terrvachine Learning30 (2/3): 271-274, 1998.

[34] M. Last, M. Friedman, and A. Kandel. The data mining a@wh to automated software
testing. InProceedings of the 9th ACM SIGKDD International ConferenoeKnowledge
Discovery and Data MiningkDD 2003, pages 388-396. ACM, New York, NY, 2003.

[35] M.F. Lau and Y.T. Yu. An extended fault class hierarcby$pecification-based testingCM
Transactions on Software Engineering and Methodoldgy(3): 247-276, 2005.

[36] P. Lindstrom and G. Turk. Imagine-driven simplificaticACM Transactions on Graphics
19 (3): 204-241, 2000.

[37] D.P. Luebke. A developer’s survey of polygonal simphfiion algorithmslIEEE Computer
Graphics and Application®1 (3): 24-35, 2001.

[38] D.P. Luebke, M. Reddy, J.D. Cohen, A. Varshney, B. Watsmd R. HuebneLevel of Detalil
for 3D Graphics Morgan Kaufmann, San Francisco, CA, 2003.

[39] Y.-S. Ma, A.J. Offutt, and Y.-R. Kwon. MuJava: an autdeth class mutation system.
Software Testing, Verification and Reliabilitys (2): 97-133, 2005.

[40] J. Mayer. On testing image processing application$ wtatistical methods. liSoftware
Engineering 2008SE 2009, Lecture Notes in Informatics, pages 69-78. Gesellsdhaft
Informatik, Bonn, 2005.

[41] J. Mayer and R. Guderlei. An empirical study on the ssbaf good metamorphic relations.
In Proceedings of the 30th Annual International Computer &a® and Applications
Conferenc(l COMPSAC 2005 volume 1, pages 475-484. IEEE Computer Society, Los
Alamitos, CA, 2006.

34

[42] S. Melax. A simple, fast, and effective polygon redaatialgorithm.Game Developer
Magazine pages 44-49, November 1998.

[43] A. Memon, |. Banerjee, and A. Nagarajan. What test @atiould | use for effective GUI
testing?. InProceedings of the 18th IEEE International Conference otofated Software
Engineering(ASE 2003 pages 164-173. IEEE Computer Society, Los Alamitos, @832

[44] A.M. Memon, M.E. Pollack, and M.L. Soffa. Automated tesracles for GUIs. In
Proceedings of the 8th ACM SIGSOFT International Symposiuffoundations of Software
Engineering(SIGSOFT 2000/FSE}®ages 30—-39. ACM, New York, NY, 2000.

[45] B. Meyer.Eiffel: the LanguagePrentice Hall, New York, NY, 1992.

[46] E.B. Moore, A.V. Poliakov, P. Lincoln, and J.F. BrinkléVlindSeer: a portable and extensible
tool for visualization of structural and functional neunaiging dataBMC Bioinformatics
8:389, 2007.

[47] ISO/IEC. The MPEG Standards. Moving Picture Expertsoupr Available at:
http://www.chiariglione.org/mpeg/standards.htm. flascessed: June 15, 2008.)

[48] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, and C. Zajpn experimental determination
of sufficient mutant operatorCM Transactions on Software Engineering and Methodqglogy
5(2):99-118, 1996.

[49] T. Ostrand, A. Anodide, H. Foster, and T. Goradia. A waistest development environment
for GUI systems. InProceedings of the 1998 ACM SIGSOFT International Symposiu
on Software Testing and AnalyqIiSSTA 1998 pages 82-92ACM SIGSOFT Software
Engineering Note23 (2): 82-92, 1998.

[50] D.K. Peters and D.L. Parnas. Using test oracles gesgrfiom program documentation.
IEEE Transactions on Software Engineeri24y(3): 161-173, 1998.

[51] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,Sun, and B. Wang. Automated
support for classifying software failure reports. Rioceedings of the 25th International
Conference on Software Engineeriif@SE 2003, pages 465-475. IEEE Computer Society,
Los Alamitos, CA, 2003.

[52] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold. Teaste prioritization.|EEE
Transactions on Software Engineerjigy (10): 929-948, 2001.

[53] S. Rusinkiewicz and M. Levoy. Efficient Variants of théR Algorithm. InProceedings of
the third International Conference on 3D Digital ImagingdaModeling (3DIM 2001,)pages
145-152, IEEE Computer Society, 2001.

[54] M. Segal and K. AkeleyThe OpenGL Graphics System: a Specificatid@rsion 2.0. Silicon
Graphics, Mountain View, CA, 2004.

35

[55] G.G. Shulmeyer and T.J. McCabe. The Pareto principiieghto software quality assurance.
In Handbook of Software Quality Assuran@rd Edition, pages 291-328. Prentice Hall,
Upper Saddle River, NJ, 1998.

[56] Stanford University. The Stanford 3D Scanning Repmogit Available at:
http://graphics.stanford.edu/data/3Dscanrep/. (Lestssed: June 27, 2008.)

[57] Y. Sun and E.L. Jones. Specification-driven automagstinig of GUI-based Java programs.
In Proceedings of the 42nd Annual Southeast Regional Cordfe(A&CM-SE 42, pages 140—
145. ACM, New York, NY, 2004.

[58] M. Vanmali, M. Last, and A. Kandel. Using a neural netwaor the software testing process.
International Journal of Intelligent Systents/ (1): 45-62, 2002.

[59] Web3D Consortium. X3D International Specification r@tards. Available at:
http://www.web3d.org/x3d/. (Last accessed: June 27, 2008

[60] E.J. Weyuker. On testing non-testable prografit'e Computer Journal25 (4): 465-470,
1982.

[61] Wikipedia. Binary Classification. Available at httfeh.wikipedia.org/wiki/Binaryclassification.
(Last accessed: June 30, 2008.)

[62] Wikipedia. Specificity Tests. Available at http://enkipedia.org/wiki/Specificity%28tests%29.
(Last accessed: June 30, 2008.)

[63] S.E. Yoon, C. Lauterbach, and D. Monocha. Rlods: fadtdased ray tracing of massive
models.The Visual ComputeR2 (9): 772—784, 2006.

[64] Y. Zhu. Uniform remeshing with an adaptive domain: a nesheme for view-dependent
level-of-detail rendering of mesheteEE Transactions on Visualization and Computer
Graphics 11 (3): 306—-316, 2005.

36

