
Postprint of article inSoftware Testing, Verification and Reliability20 (2): 89–120 (2010)

Finding Failures from Passed Test Cases:
Improving the Pattern Classification Approach

to the Testing of Mesh Simplification Programs∗†

W.K. Chan‡, City University of Hong Kong, Hong Kong

Jeffrey C.F. Ho, wwwins Consulting Hong Kong Limited, Hong Kong

T.H. Tse, The University of Hong Kong, Hong Kong

Abstract

Mesh simplification programs create three-dimensional polygonal models similar to an
original polygonal model, and yet use fewer polygons. They produce different graphics even
though they are based on the same original polygonal model. This results in a test oracle
problem. To address the problem, our previous work has developed a technique that uses a
reference model of the program under test to train a classifier. Using such an approach may
mistakenly mark a failure-causing test case as passed. It lowers the testing effectiveness of
revealing failures. This paper suggests piping the test cases marked as passed by a statistical
pattern classification module to an analytical metamorphictesting module. We evaluate our
approach empirically using three subject programs with over 2700 program mutants. The result
shows that, using a resembling reference model to train a classifier, the integrated approach can
significantly improve the failure detection effectivenessof the pattern classification approach.
We also explain how metamorphic testing in our design tradesspecificity for sensitivity.

∗ c© 2009 John Wiley & Sons, Ltd. This material is presented to ensure timely dissemination of scholarly and
technical work. Personal use of this material is permitted.Copyright and all rights therein are retained by authors or
by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints
invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission
of the copyright holder. Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistributionto servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from John Wiley & Sons, Ltd.

† This research is supported in part by GRF grants of the Research Grants Council of Hong Kong (project nos.
123207 and 716507), a grant from City University of Hong Kong(project no. CityU 7002324), and a discovery grant
of the Australian Research Council (project no. DP0984760). A preliminary version of this paper was presented at the
31st Annual International Computer Software and Applications Conference (COMPSAC 2007) [13].

‡ All correspondence should be addressed to Dr. W.K. Chan at Department of Computer Science, City University
of Hong Kong, Tat Chee Avenue, Hong Kong. Tel: (+852) 2788 9684. Fax: (+852) 2788 8614. Email:
wkchan@cs.cityu.edu.hk

1

Administrator
 HKU CS Tech Report TR-2009-03

(a) 100% (b) 70% (c) 30%

Figure 1: Mesh simplification of polygonal models of a Beethoven statue

Keywords: test oracle problem, mesh simplification, non-testable software, metamorphic
testing, classification, testing methodology.

1 Introduction

Content-rich software applications with multimedia and graphics subsystems are popular and
increasingly complex. These applications accept specifications in formats such as Analyze 7.5 [46]
for medical imaging [1], X3D [59] and PLY [56] for image rendering, and MPEG4 [47] for video
and audio, and then create the graphics. For real-life interactive graphics-based applications such
as scene creation in computer games [17, 36, 63], slow visualization of graphical models is too
costly. To address this issue, for instance, computer gamesoften use low-resolution versions of
polygonal models to produce shadowing effects or to visualize distant objects [19].

A main category of general techniques to produce these low-resolution versions of polygonal
models ismesh simplification[16, 19, 23, 38, 64]. Mesh simplification converts a given 3D
polygonal model to one with fewer polygons while appearing to besimilar to the original. For
instance, Figure 1 shows three Beethoven statues in different numbers of polygon produced by
mesh simplification. The statue in Figure 1(a) has simplifiedinto the ones using only 70% and 30%
of the original 3D polygonal model as shown in Figures 1(b) and 1(c), respectively. Nonetheless,
different mesh simplification techniques aim to achieve diverse optimization goals such as little
memory storage, fastest speed, or best shadow accuracy of objects [37]. They thus produce
different changes on the same original polygonal models to create their versions of simplified
graphics. It is hard for testers to assess the accuracy of thetest output of a program. This results in
the test oracle problem.1

Two mesh simplification programs may be a variant of each other. They can be of the same
kind, or of different kinds, in the taxonomy of simplification algorithms [37]. For instance, a
topology-preserving simplification algorithm preserves the outline of the model at every step. If
there is a hole in an original model, the algorithm keeps the hole during and after the simplification
process. On the other hand, a topology-modifying one may close up holes in the model and merge
separate objects into one unit as simplification progresses. We say that a reference modelresembles

1 A test oracleis a mechanism to decide whether a program output is correct.When the test oracle is unavailable
or too costly to use, it leads to thetest oracle problem[60].

2

the implementation under test (IUT) if these two programs belong to the same kind in the taxonomy
of simplification algorithms. If the two programs belong to different kinds in the taxonomy, we
say that they aredissimilar.

Our previous work [11, 12], known asPAT, has shown empirically that the use of a resembling
reference model to train a classifier can be a better pseudo-oracle than the use of a dissimilar
reference model. On the other hand, owing to the statisticalnature of pattern classification [22],
many failure-causing test cases2 remain undiscovered. This hinders the effectiveness ofPAT.

Metamorphic testing (MT) [14] checks whether a set of test cases and their respective program
outputs satisfy a data relation. In the simplest form, MT creates afollow-up test case based on
an initial test case. It then compares the test outputs of the initial and follow-up test cases to see
whether they may contradict any given necessary relations expected by the correct version of the
IUT. Any such contradiction shows a failure. MT calls these necessary relations asmetamorphic
relations. Although MT can be useful, the need of additional test casesbecomes a hurdle in
employing MT to test content-rich software. Methods to easethis problem are desirable.

We believe that a classifier [22] trained by a reference modelprovides a complementary helping
hand: A test case labeled as failure-causing by a classifier suffices to catch the testers’ attention.
On the other hand, a passed test case may still be failure-causing. We may treat the test case as
an initial test case, and pipe it to the MT module to produce a follow-up test case. We then let
the classifier decide the class of the follow-up test case (i.e., the passed class or the failed class).
Because a test case marked as failure-causing will receive testers’ attention, we need not apply the
remaining MT output checking procedure to such a follow-up test case. On the contrary, when a
follow-up test case marked as passed, we apply the MT procedure to check whether the passed
initial test case, the passed follow-up case, and their testresults breach any metamorphic relations.
In short, by this scheme, we propose to apply MT to check the outputs of only those test cases that
a classifier has marked as passed. This motivates us to propose integrating MT withPAT.

The main contributions of the paper are as follows: It presents a formalized methodology
known asPAT 2.0 to integrate analytical and statistical techniques that identify failures for testing
mesh simplification programs and their kinds. It reports an experimental study. The empirical
result shows that MT significantly complements the classification approach to identifying failures.
It also explains why and how MT in our methodology presents a tradeoff between the sensitivity
and specificity of a binary classification scheme.

We organize the rest of the paper as follows: Section 2 reviews related work on the testing
of software with graphical interfaces. Section 3 gives the technical background of the work.
Section 4 presents our methodology. Section 5 presents our experimental setup, results, and threats
to validity. We then discuss our findings and explain how MT trades specificity for sensitivity in
Section 6. Finally, we conclude the paper in Section 7.

2 A failure-causing test case is a test case that reveals a failure from an IUT.

3

2 Related Work

We review related work that uses machine learning approaches as pseudo-oracles, as well as related
work on metamorphic testing and other approaches to ease thetest oracle problem. For brevity, we
shall focus on the testing of software with graphical interfaces.

Berstel and colleagues [4] design the VEG language to describe graphical user interfaces
and show that model checkers may verify properties against aspecification written in VEG
without referring to the source program. Our approach does not rely on the source code of the
program under test either, but our work involves dynamic analysis whereas their technique is
static. D’Ausbourg and colleagues [18] support the formal design of operations in user interface
systems by a software environment. One may use the techniquepresented in [4] to verify such
a design. Memon and colleagues [44] use a test specification of internal object interactions as
a means of detecting inconsistencies between the test specification and the resulting execution
sequence of events for each test case. Such an approach is also popular in conformance testing of
telecommunication protocols. Sun and Jones [57] propose a similar approach for test harnesses.
Memon and colleagues [43] further evaluate several types ofpseudo-oracle for GUIs. Their results
suggest the use of simple pseudo-oracles for large test setsand complex pseudo-oracles for small
test sets. Our work does not explore such kinds of tradeoff, but integrates a complex pseudo-oracle
(classification) with a simple one (metamorphic relation).

There are other approaches to testing programs with graphical outputs. gDEBugger3 checks
whether a list of commands issued by an application conformsto the usual underlying graphics
visualization application programming sequences used in OpenGL [54]. As explained in [5, 11,
12], however, many different sequences of commands may render the same graphical image.
Checking whether a particular sequence of commands has beenused to produce a particular
image may not be fully reliable. To test programs with interfaces with virtual reality applications,
Bierbaum [5] proposes a framework to record selected intermediate states of program executions
and contrast them against the expected ones. FollowingPAT [11, 12], we do not use the internal
states of the program under test. Cheung and colleagues [15]and Mayer [40] both use explicit
statistical formulas such as mean and distributions to check whether a test output carries desirable
characteristics. Mayer and Guderlei [41] evaluate the impact of different metamorphic relations
on Java programs that compute numerical determinants. Their study agrees with our previous
work [30] that metamorphic testing is useful in easing the test oracle problem.

Researchers also have studied the test oracle problem in other contexts. Ostrand and
colleagues [49] propose an integrated environment to ease testers to review and modify their test
scripts. Dillon and Ramakrishna [21] prune the search spaceof test oracles constructed from a
specification. Baresi and colleagues [3] add assertions [45] to programs to check their intermediate
states. Peters and Parnas [50] propose to construct preciseprogram documentations and generate
oracles from them.

Apart from statistics approaches, there are analytical approaches such as golden version [6]
and assertion checking [45]. Nonetheless, as we have explained when describing the test oracle
problem, different mesh simplification algorithms producesimilar but diverse outputs. Using a

3 Available athttp://www.gremedy.com/.

4

golden version may not help in this case. Assertion checkingverifies whether a program state or
the output of a program execution satisfies an expected condition. Many industrial applications,
such as the popular Microsoft .NET framework, have successfully applied assertion checking.

Applying pattern classifications to ease the test oracle problem is not new. Last and
colleagues [34, 58] train a classifier to augment the incomplete specification of a legacy system,
and treat the legacy system as a golden version. As we have explained, golden versions are often
unavailable for mesh simplification programs. Podgurski and his research group classify failure
cases into categories by machine learning [51] and then refine the categories using the classification
tree technique [24]. Bowring and colleagues [7] apply machine learning to regression testing of
a consecutive sequence of minor revisions of the same program to identify failures in subsequent
versions. Their approach is similar to the reference model approach proposed by us [11, 12].
However, their approach requires the source code of the program under test. Our previous work
does not have this requirement, but needs to produce mutantsof the reference models, which
are reusable when testing other mesh simplification programs of the same kind. Another pattern
classification approach in [10] does not use reference models.

3 Background

Our methodology builds on top ofPAT [12] and extends it with an analytical module, for which we
choose metamorphic testing. In this section, we present thebackground of these two techniques.
To ease our presentation, we rename our previous technique [12] from PAT to PAT 1. Readers who
are familiar with these background techniques may skip thissection and go directly to Section 4.

3.1 PAT 1

In our previous work [11, 12], we have developed a methodology now known asPAT 1,
which stands for “Pattern classification toAutomatic reference oracles for theTesting of mesh
simplification programs”. It trains a classifier using an IUT’s reference model, and then uses the
classifier [22] to identify failures from the test outputs ofthe IUT. In this section, we reviewPAT 1.

As we have described in Section 1, it is hard to identify a failure from the test results of a
mesh simplification program. On the other hand, to train a classifier (denoted byC) for binary
classification [61] of test results, we need a method to produce training samples for the passed and
failed classes.

To produce training samples for the passed class, we run an IUT’s reference model over a set
of 3D polygonal models to produce image outputs. We then extract values from such an output
for a vector of image features, and use all such value vectorsas training samples. In this way, we
obtain a dataset of training samples for the passed class. Toease our subsequent discussion, we
denote the dataset bySP.

To produce training samples of the failed classes, we createprogram mutants [2, 48] from the
reference model. We first run the program mutants over the same set of 3D polygonal models to
produce image outputs. We then extract values from each image output for the same vector of

5

image features. We include the value vector into in the dataset (denoted bySF) of training samples
for the failed class only ifSP does not already have this value vector.

In the testing phase, we run the IUT over a test case. Like the training phase, we extract values
from the corresponding image output for the same vector of image features. The classifierC then
decides the class of the value vector (namely, failed or passed). Finally, we mark the test case as
failure-causing if the value vector belongs to the failed class. Otherwise, we mark the test case as
passed.

Chan and colleagues [12] has formalized thePAT 1 procedure, which is also listed as follows:

Let C be a classifier to test an implementation under testIUT with a reference model
R. Let M = {m1, m2, . . . ,mi, . . . , mk} be a set of 3D polygonal models, serving as test
cases. ExecutingRoverM will produce a set of outputs{R(m1), R(m2), . . . , R(mk)}.
Suppose the program mutants [20, 48] ofR are denoted by{R1, R2, . . . , Ru}.
Executing eachRj of these mutants overM will produce a corresponding set of
outputs{Rj(m1), Rj(m2), . . . , Rj(mk)}.

Let 〈 f1, f2, . . . , fv〉 be a list of classification feature extraction functions that extracts
features from input polygonal models and program outputs. Given an input modelmi ,
the reference programR, and the outputR(mi), the above list of functions will extract
a list of features〈 f1(mi, R, R(mi)), f2(mi, R, R(mi)), . . . , fv(mi , R, R(mi))〉, known as
avector of extracted features.

Similarly, for each mutantRj , the list of functions will produce a corresponding vector
of extracted features〈 f1(mi, Rj , Rj(mi)), f2(mi, Rj , Rj(mi)), . . . , fv(mi , Rj , Rj(mi))〉.
If the vector of extracted features produced from mutantRj is identical with that
produced fromR, PAT 1 will discard the vector. We refer to the remaining vectors
asnon-equivalent mutation vectors.

PAT 1 labels every such vector of extracted features aspassedand every such non-
equivalent mutation vector asfailed. PAT 1 uses all these labeled vectors to train the
classifierC for binary classification.

To testIUT, PAT 1 executes it over a set of test cases, and constructs the vectors of
extracted features forIUT using the above scheme but replacingRby IUT. PAT 1 then
passes each of such vectors ofIUT to the trained classifierC, and let the classifier
label the vector. A vector labeled aspassedmeans observing no failure, and thus, the
corresponding test cases to produce the vector will be marked aspassed. On the other
hand, a vector labeled asfailed indicates a failure, and the corresponding test cases to
produce the vector will be marked asfailure-causing.

Two specific designs inPAT 1 are the use of reference model and the use of black-box features.
Based on empirical evaluation, we have also made a recommendation in [12] to testers when using
PAT 1. We discuss them further below.

6

Reference model.PAT 1 requires a reference modelR. As we have described in Section 1,
a reference model may resemble the IUT or be dissimilar to it.To know whether a
reference model resembles or is dissimilar to the IUT in the taxonomy of simplification
algorithms [37], we seek external advices. We have consulted the members of the graphic
research groups at The University of Hong Kong and searched the literature (such as [53]).
To our best knowledge, expert judgment is still necessary todecide the classification.PAT 1
presumes to know whether a reference model resembles the IUT.

Black-box features. A classification feature extracted from the program runtimebehavior may
be black-box (for example, the mean brightness of an image),white-box (for example, the
number of branch statements covered by a test case), or a combination of them. Coincidental
correctness [28] occurs when a program execution has activated a fault to become an error,
yet the error does not propagate to any output to become a failure. However, before finding
out the faults on an execution path, knowing whether coincidental correctness has occurred
in the execution is difficult.

Coincidental correctness thus distinguishes using black-box information from using white-
box information to stand for a classification feature for testing purposes. A white-box feature
generally needs the knowledge of program states. Owing to the occurrence of potential
coincidental correctness, the involved program states of apassed test case can be abnormal.
To use such a feature to train a classifier for the passed class, testers should confirm the used
white-box information indeed as expected. Otherwise, theymay confuse the classifier to
serve as a pseudo-oracle.

On the other hand, coincidental correctness does not affectthe output of a program execution.
Thus, if we extract features from an image output, coincidental correctness will not affect
these features. Therefore,PAT 1 uses black-box features.

Recommendation. In PAT 1, the reference modelR may resemble the IUT or be dissimilar to it.
In [11, 12], we have empirically evaluated that using a resembling reference model as the
reference modelRcan be significantly more effective to identify program failures than using
a dissimilar one. Thus, in [11, 12], we recommend testers to use a resembling reference
model whenever it is available as a means to train a classifierunderPAT 1.

Empirical Results. We also revisit the results ofPAT 1 in [12]. The purpose of this review is to let
readers know the effectiveness ofPAT 1 to identify failures for testing mesh simplification
programs. We first recall that inPAT 1, a classifier only has two classes of outcomes,
namely labeling a test case as passed or failure-causing. Inother words,PAT 1 is a binary
classification scheme.

According to [12], the average effectiveness ofPAT 1 when using a resembling reference
model (denoted byPAT 1.r) is 69.0%. However, when using a dissimilar reference model,
the average effectiveness ofPAT 1 (denoted byPAT 1.d) becomes 33.4%. In other words,
PAT 1.r can be 106.5% more effective thanPAT 1.d.

7

We have reviewedPAT 1. In the next section, we will review metamorphic testing, which is
another module in our new methodology.

3.2 Metamorphic Testing

This section revisits metamorphic testing (MT) [14]. A central idea of MT is to check the expected
necessary properties of the program under test that relate multiple test cases and their test results
with a view to revealing failures. It captures such a necessary property as a metamorphic relation.

A metamorphic relation(MR) [9, 14] is a relation over a set of distinct inputs and their
corresponding outputs of the target functionp that the programP under test aims to implement.
Let us take the sine function for example: For any inputsx1 andx2 such thatx1 +x2 = π, we must
have sinx1 = sin x2.

Given a test casex1 = π/6, a tester will obtain a follow-up test casex2 (= 5π/6) based on the
relationx1 + x2 = π. For instance, testers may use a constraint solving approach or implement a
program to generatex2 by subtractingx1 from the constantπ. 4

By executing the sine program over bothx1 andx2, the tester will obtain the corresponding
test results, say, 0.5000 and 0.5004, respectively. Then, the tester checks whether the two outputs
satisfy the relation sinx1 = sin x2, which means whether 0.5000 is equal to 0.5004. If the equality
does not hold, which is the case for this particular example,MT detects a failure.

A metamorphic relation is as follows [9]:

MR: If r(x1, x2, . . . , xk, p(x1), p(x2), . . . , p(xk), xk+1, xk+2, . . . , xn),

thenr ′(x1, x2, . . . , xk, xk+1, . . . , xn, p(x1), p(x2), . . . , p(xk), p(xk+1), . . . , p(xn))

Here,x1, x2, . . . , xk are initial test cases;xk+1, xk+2, . . . , xn are follow-up test cases;p(xi) is the
expected output of the functionp overxi ; andr andr ′ are relations.

Testers should study the problem domain to define metamorphic relations. This is akin to
requirements engineering, in which requirements engineers rather than automatic engines are
essential to elicit and specify the system requirements.

The following paragraph shows the definition of metamorphictesting.

Definition 1 (Metamorphic Testing) [9] Let P be an implementation of a target function p. The
metamorphic testingof the metamorphic relation

MR: If r(x1, x2, . . . , xk, p(x1), p(x2), . . . , p(xk), xk+1, xk+2, . . . , xn),

then r′(x1, x2, . . . , xk, xk+1, . . . , xn, p(x1), p(x2), . . . , p(xk), p(xk+1), . . . , p(xn))

involves the following steps:(1) Given a series of initial test cases〈x1, x2, . . . , xk〉 and
their respective results〈P(x1), P(x2), . . . , P(xk)〉, generate a series of follow-up test cases

4 For instance, in [30], we have experimented to request developers to specify metamorphic relations and implement
programs to generate follow-up test cases. Interested readers may contact us to obtain the source codes of these
implementations of metamorphic relations.

8

〈xk+1, xk+2, . . . , xn〉 according to the relation r(x1, x2, . . . , xk, P(x1), P(x2), . . . , P(xk), xk+1, xk+2,
. . . , xn) over the implementation P.(2) Check the relation r′(x1, x2, . . . , xk, xk+1, . . . xn, P(x1),
P(x2), . . . , P(xk), P(xk+1), . . . , P(xn)). If r ′ is evaluated to be false, then the metamorphic testing
of MR reveals a failure.

In the next section, we will describe our methodology and define the research question.

4 Our Methodology: PAT 2

This section proposes a testing methodology that combinesPAT 1 [11, 12] with metamorphic
testing [14]. It studies the integration of statistical techniques and analytical techniques for
alleviating the test oracle problem. We call the methodology PAT 2. As the name implies, it
extendsPAT 1.

In PAT 1, a trained classifier will label a test case asfailure-causingor passed. A test case
marked as failure-causing would catch the attention of testers. For instance, Scenario (A) in
Figure 2 sketches an example of the use ofPAT 1 to identify a failure-causing test case. On the top
left corner of Figure 2, there is a sample test case labeled asm1. As indicated by its comment line,
m1specifies a 3D polygonal model of a wind direction sign. The visual output of the IUT overm1
(labeled asOutput of IUT(m1)) is shown next to the test case for readers’ reference. Adjacent to the
visual output, we also show a zoom-in image of the chest part of the cock symbol, and highlight
the failure. As we have described in Section 1, this type of failure may intermix with inaccurate
expectations on the output by a tester. Thus, the failure canbe hard to be observed manually. This
particular scenario illustrates thatPAT 1 can help identify a failure successfully, so that we need
not applyPAT 2.

On the other hand, because of the statistical nature of a classifier, test outputs marked aspassed
by PAT 1 may still be failures. Thus, after classifier has checked that an (initial) test case does
not reveal any failure,PAT 2 pipes the test case (and its test output) to an MT module to conduct
further checking. Specifically, the MT module will construct a follow-up test case based on the
initial test case. Scenario (B) in Figure 2, for instance, shows that there is a test casem1which has
passed thePAT 1 phase.PAT 2 proceeds to construct a follow-up test casem2. For this particular
scenario, the test casem2 is constructed using the metamorphic relationMR3 (see Section 5.1.4),
which expects to turn the imagine output upside down. For example, we may observe from the test
casem2 in Figure 2 that they-component of each vertex has changed in sign, compared withthe
corresponding vertex ofm1.

We run the IUT over the follow-up test case to obtain the test result and use the classifier above
to label the test case. IfPAT 1 shows a failure in the follow-up test case, the latter shouldreceive
testers’ attention. By a token similar to the handling ofm1, we do not apply MT’s output checking
procedure onm2, as illustrated in Scenario (B) of Figure 2.

If the follow-up test case is labeled as passed,PAT 2 further compares the initial and follow-up
test cases and their test results to check whether they breach the given metamorphic relations. This
is shown in Scenario (C) of Figure 2. In the scenario, we have adecision box labeled as “m2 =
m1 (but inverted)?” It is the MT output checking procedure according toMR3 (see Section 5.1.4),

9

which compares whether the features vector of the output image from the IUT overm2agrees with
the features vector obtained by inverting the image output from the IUT overm1. On the top right
corner of Figure 2, we also show the output of the IUT overm2(labeled asOutput of IUT(m2)) and
the enlarged part of the cock chest. We may observe between these enlarged chests in the outputs
of m1andm2 that they are not identical, which breachMR3. Therefore,PAT 2 labels the pair of
test cases (m1andm2) as failure-causing.

ThePAT 2 methodology is as follows.

% render a

% wind direction sign

% simplification

% percentage = 10

vertex coordinates

<1, 1, 1>

<1, 2, 1>

Output of IUT (m1)Test case m1

PAT 1

% render a

% wind direction sign

% simplification

% percentage = 10

Vertex coordinates =

<1, 1, 1>

<1, 2, 1>

Output of IUT (m2)Test case m2

m1

m1 is failure-causing

straight,

unnatural

(failure)

curvy,

natural

PAT 1
m1

[m1 is passed]

construct

m2 from m1

PAT 1

m2

m2 is failure-causing

PAT 1
m1

[m1 is passed]

construct

m2 from m1

PAT 1

m2

[m2 is passed]

m2 = m1,
(but

inverted)?

the pair,m1 and m2, is failure-causing

[no]

Scenario (A) Scenario (B) Scenario (C)

Figure 2: Blueprint of the MethodologyPAT 2.

(1) Given a test casemi for testing a mesh simplification programP. PAT 1 labelsmi as either
passedor failure-causing.

(2) If PAT 1 labelsmi asfailure-causing, exit from the methodology.

(3) If PAT 1 labelsmi aspassed, we further apply the MT module for further verification. Let
{MR1, MR2, . . . , MRn} be a set of metamorphic relations of the expected function ofthe
programP. To simplify our presentation but without loss of generality, let us assume that the
implementation of eachMRk accepts one initial test case and produces one follow-up test case.

10

Using Resembling Using Dissimilar Arbitrary
Reference Model Reference Model Reference Model

PAT 1 without piping to MT PAT 1.r PAT 1.d PAT 1.0
PAT 1 with piping to MT PAT 2.r PAT 2.d PAT 2.0

Table 1: Different Naming Convention forPAT 1 andPAT 2

Applying the given implementations of the metamorphic relations to a test casemi will produce
a set of follow-up test cases{MR1(mi), MR2(mi), . . . , MRn(mi)}. Executing the IUT over these
follow-up test cases will produce the outputs{P(MR1(mi)), P(MR2(mi)), . . . , P(MRn(mi))}.

(4) We use the classifier ofPAT 1 again to determine whether the follow-up test cases reveal a
failure. For follow-up test cases labeled as failure-causing, exit from the methodology.

(5) We use the implementation of each applicable metamorphic relation{MR1, MR2, . . . , MRn}
to compare the initial test casemi , the follow-up test casesMR1(mi), MR2(mi), . . . , MRn(mi),
and their test outputs. IfMRk is breached for somek∈ {1, 2, . . . ,n}, we label the test casemi

and the follow-up test caseMRk(mi) as failure-causing.

In this way,PAT 2 saves the effort in applying MT by only checking the test cases thatPAT 1
classify asfailure-causing. Still, it is uncertain whether the extra step of applying MTis worth the
effort. A research question thus arises:

RQ1: During the testing of mesh-simplification software, how much improvement in
the effectiveness of failure identification will result by piping the results of a pattern
classification approach to MT?

As we have explained in Section 3.1, a reference modelR in PAT 1 can be a resembling
reference model or a model of a dissimilar kind. To evaluatePAT 2 rigorously, we thus want to
study whether using a resembling reference models or a dissimilar reference model as the reference
modelR in PAT 1 to have any significant impacts on thePAT 2 methodology.

In the sequel, to ease our presentation, we make the following naming convention to
differentiate various combinations of reference model,PAT 1 and MT. We denote the version of
PAT 1 that uses a resembling reference model byPAT 1.r. By the same token, we denote the version
of PAT 1 that uses a dissimilar reference model byPAT 1.d. BecausePAT 2 builds atop ofPAT 1,
we denote the versions ofPAT 2 based onPAT 1.r andPAT 1.d by PAT 2.r andPAT 2.d, respectively.

In some practical situations, testers may not decide whether a reference model resembles the
IUT, but just select an arbitrary reference model. Hence, wealso study whether it is useful to pipe
the results ofPAT 1 to MT if the pair of reference model and IUT is unclear to be resembling or
dissimilar. (That is, not knowing whetherPAT 1.r and PAT 1.d is being applied). We denote this
version ofPAT 1 by PAT 1.0. Following the naming convention above, we denote the version of
PAT 2 building on top ofPAT 1.0 by PAT 2.0. We show the naming convention in Table 1.

Thus, we define the following null hypotheses for our furtherstudy:

11

H1: There is no significant difference betweenPAT 1.0 andPAT 2.0 in failure identification ability.

H2: There is no significant difference betweenPAT 1.r andPAT 2.r in failure identification ability.

H3: There is no significant difference betweenPAT 1.d andPAT 2.d in failure identification ability.

H4: There is no significant difference in the improvement between PAT 2.r over PAT 1.r and
PAT 2.d overPAT 1.d in failure identification ability.

Following the advice given in [12], we do not hide our interests to study whetherPAT 2 can be
more effective thanPAT 1, which is a step toward understanding why the technique may or may
not be useful. Let us explain it further.

Rejecting the hypothesisH1 helps demonstrate that connecting a statistical techniqueto an
analytical technique can be useful to identify failures. Onthe other hand, if we could accept
the hypothesisH1 and yet reject either the hypothesisH2 or the hypothesisH3, the results may
indicate the integration being multi-modal. This may help define further research questions on
understanding the reasons on why such integration shows a multi-modal behavior in the future.
Another case is that we could accept all ofH1, H2, andH3. Although such a case shows a negative
result, yet it provides evidences that connecting statistical and analytical techniques to ease the test
oracle problems is more challenging than what we know at thisstage. Lastly, if we could reject
bothH2 andH3, we then want to know whether the improvement delivered byPAT 2.r overPAT 1.r
can be more significant than that delivered byPAT 2.d overPAT 1.d, which isH4. This helps give
practical advices to testers.

In the next section, we will describe the empirical study andanalyze the findings.

5 Empirical Study

In this section, we present an empirical evaluation of the research question. Section 5.1 will present
the setup of the experiment. In Section 5.1.1, we will describe the subject programs used in the
experiment. Section 5.1.2 presents how the test cases and datasets for the previous classification
experiment in [11, 12] are created. Section 5.1.3 introduces and explains the metrics to evaluate
the results of the current study. In Sections 5.1.4 and 5.2, we present the metamorphic relations of
the subject programs and the procedure of the experiment. Finally, we analyze the results of the
current study in Section 5.3.

5.1 Experimental Setup

In this section, we describe the setup of our empirical study. The study is built on top of
the previous experiments conducted in our previous work [11, 12]. We use their classification
dataset as the starting point of the current experiment. In the present study, we construct a few
metamorphic relations and pipe the test cases marked aspassedin the dataset to the MT module
to identify additional failures.

12

5.1.1 Subjects of the Experiment

We use the Java programs studied in [11, 12] as this would enable us to compare the findings with
PAT 1. Each program implements a distinct mesh simplification algorithm: Melax’s simplification
algorithm [42], the quadric algorithm [25], and a quadric algorithm weighted by the areas of
surrounding triangles [25]. We denote their implementations in the experiment byMelax, Quadric,
andQuadricTri, respectively. Each of these algorithms accepts a 3D polygonal model and outputs
a simplified one.

(1) Melax measures the cost of each edge in a polygonal model as a product of its length and
curvature. It iteratively picks the edges with the lowest costs to remove until the model has
reduced to the required number of polygons.

(2) Quadriccontracts pairs of vertices rather than edges, so that unconnected regions in a polygon
model may merge. It approximates contraction errors by quadric matrices. It picks the pairs
of vertices with the lowest costs to remove until the model has reduced to the required number
of polygons.

(3) QuadricTri improves onQuadric by considering also the sizes of triangles around vertices
during contraction.

Quadric andQuadricTri are topology-modifying mesh simplifications [37]. They resemble
each another, and are dissimilar fromMelax, which is of the topology-preserving kind [37].
Figure 3 shows a spider simplified by these programs for readers’ reference. Take Figure 3(d)
for example. The image shows a spider image output produced by Quadricusing 10% of polygons
of the given 3D polygon model of the spider. Other sub-figuresin Figure 3 can be interpreted
similarly. We may observe from Figure 3 that the outputs of the subject programs at any given
simplification percentage are quite close to one another.

Each of the three subject programs serves two roles in the experiment of [11, 12]. TakeQuadric
for illustration. The experiment has usedQuadric as a reference model to train up the classic
C4.5 classifier. The trained classifier will mark the test outputs of the other two subject programs
(QuadricTriandMelax) serving the role of the IUT. (Section 5.1.2 will describe the test cases used
in experiment.) In turn, when we useMelaxor QuadricTri to train the classifier,Quadricwill act
as the IUT.

Each program accepts a 3D polygonal model file in the standardPLY format [56] with an
integer (from 0 to 100) indicating the target percentage of polygons that will remain after mesh
simplification. We call this integer parameter assimplification percentage. For instance, if the
value of the simplification percentage is zero, it shows onlythe background. Similarly, when
the value of the simplification percentage is 100, it will show the original model without any
simplification effect. The backgrounds of all outputs are black in color. Each program fits the 3D
polygonal model in an area between (−1, −1, −1) and (1, 1, 1), centered at (0, 0, 0). The image
resolution is standardized to 800 pixels× 600 pixels.

To ease our presentation, we treat the simplification percentage as an attribute of the input 3D
polygonal model. Therefore, in this paper, we simply refer a3D polygonal model as an input to a
subject program.

13

(a) Quadric, 100% (b) Quadric, 70% (c) Quadric, 40% (d) Quadric, 10%

(e) QuadricTri
100%

(f) QuadricTri, 70%(g) QuadricTri, 40%(h) QuadricTri, 10%

(i) Melax, 100% (j) Melax, 70% (k) Melax, 40% (ℓ) Melax, 10%

Figure 3: Sample Results of Different Mesh Simplification Programs.

5.1.2 Test Cases and Dataset ofPAT 1

Chan et al. [11, 12] use a supervised machine learning approach to label test cases in two categories:
passedandfailure-causing. We use their results in our empirical study. We describe in brief their
experiment to produce the test cases and datasets in this section.

The previous experiment in [11, 12] executes a set of 44 open-source 3D polygonal models5

with up to 17,000 polygons in each reference model. We denotethe set of models byΘ. We
observe that viewing a spider from the front is definitely different from viewing it from the rear.
Thus, even for the same input model, a failure from one perspective may not occur in another
perspective image. In order to better utilize the 3D polygonal models, the previous experiment
rotates each one in 22 different orientations. They correspond to rotating a model about thex-
axis every 22.5 degrees and rotating about they-axis every 45 degrees. Each orientation is further

5 Downloaded fromhttp://www.melax.com/polychop/lod demo.zip. According to this source, they are “big demo[s]
. . . to convince skeptical visitors”.

14

augmented with 11 different simplification percentages (from 0 to 100 with increments of 10) to
produce 11 3D polygonal models. In other words, we have created a pool of 44×22×11= 10,648
test cases. To ease our discussion about the experiment setup, we denote this pool of test cases by
TP. We further useTP(m) to denote the entire subset of test cases ofTPproduced by the same 3D
polygonal modelm (which is inΘ).

To collect training samplesSP for thepassedclass, it executes every subject program over every
test case inTP to produce an output. It then extracts black-box features from every such graphics
output. These black-box features are as follows. (1) Changeof ratios of major and minor image
frequencies under fast Fourier transform [27]. (2) The average brightness of the graphic. All these
vectors of black-box features are put inSP.

Informally, a simplified polygonal model will have a higher overall frequency value than the
original polygonal model. This is because when fewer polygons are used to model an image,
smaller amounts of image frequencies of the original model will remain in the simplified version.
The stronger the strength, the more it will contribute to theimage. Signals with major contributions
are low frequency signals contributing major image frequencies of the original model. Signals
with minor contributions are high frequency signals contributing minor image frequencies of the
original model. Hence, we sort the image frequencies according to signal strengths and compute
the mean and the mean plus or minus one (two and three) standard deviation(s). By covering up
to three standard deviations, the effect of over 99% of the frequencies in an image are considered
in the previous experiment. The average brightness featureis to remedy the use of ratio as the first
classification feature, which eliminates the effect of any changes that happen to be proportional.

To collect training samplesSF for the failed class, it uses MuJava [39] to generate program
mutants from every subject program. A total of 3,060 non-equivalent mutants are created, and the
previous experiment uses all of them to produce experimental results. It executes every of these
mutants over every test case inTP to create a vector of non-equivalent mutations. The experiment
discards the vector if the vector already exists inSP. In total, the experiment executes the mutants
with more than 440,000 program executions. All such vectorsof non-equivalent mutations form
the datasetSF . Table 2 shows the numbers of mutants of the three subject programs used in [11, 12].

Melax Quadric QuadricTri

401 1,122 1,187

Table 2: Numbers of Mutants Used.

The experiment randomly picks one polygonal modelm from Θ and picks one subject program
R to train the classical C4.5 classifier [22]. It selects fromSP all the training samples produced
from executingR over TP(m) as the passed training samples ofR. Similarly, it selects fromSF

all the training samples produced by executing the program mutants ofRoverTP(m) as the failed
training samples ofR. It applies the two selected sets of training samples to train the C4.5 classifier.

In the testing phase, the previous experiment does not use any samples ofTP(m) from SP. It
executes the IUT (which is another subject program different from the above reference model) over
all the remaining samples inSP. For instance, if we useQuadric to train the classifier, then either
QuadricTri or Melax (but notQuadric) can be the IUT. In other words, we let the classifier label

15

TRUE FALSEPositive True positive False Positive(or Type 1 error) Postiive predicativevalue (or Precision)Negative Fase Negative(or Type II error) True Negative Negative predicativevalueSensitivity(or Recall Rate) Specificity
Testoutcome

Expected outcome

Table 3: Relationships among Sensitivity, Specificity, Recall Rate and Precision

the test verdicts of individual test cases produced from unseen input models for another subject
program. We repeat the same experiment using the test cases of two input models to training the
classifier, followed by three, four, and finally five input polygonal models. We repeat the entire
procedure for every pair of subject programs.

5.1.3 Effectiveness and ER-Score

To evaluate a technique, we need some metrics. In statistics, machine learning, and medical
research,sensitivity andspecificity are a standard pair of measures for binary classification [29,
33]. Sensitivity measures how well a binary classification correctly tests a condition whereas
specificity measures how well the binary classification correctly identifies the negative cases [29,
33]. In some disciplines such as information retrieval, sensitivity is known as therecall rate.
However, specificity is not the same asprecision [33]. To help readers appreciate the differences
between sensitivity/specificity and recall/precision, weuse a confusion matrix [33] in Table 3
(adapted from [62]) for illustration. We can observe from the table that both sensitivity and
specificity evaluate the experiment results along the dimension of expected outcomes (as indicated
by the direction of arrows). On the other hand, recall rate and precision evaluate the experiment
results along different dimensions, with an overlapping cell (true positive). To cater for the software
engineering community and other general audiences, we use sensitivity and specificity as the
terminology in this paper.

Sensitivity and specificity are defined in statistics as follows:

Sensitivity=
no. of true positives

no. of true positives + no. of false negatives
×100%

Specificity=
no. of true negatives

no. of true negatives + no. of false positives
×100%

To cast the two measures into software testing, we should maptrue positives, true negatives,
false positives, and false negativesto the binary classification used in our experiment, and the

16

mapping is as follows. LetE be the expected classifier, andA be the actual classifier used. The
four cases are as follows.

(1) A true positive is a test case such that bothE andA label the test case as failed. In other words,
a failure-causing test case is correctly identified.

(2) A true negative is a test case such that bothE andA label the test case as passed. In other
words, a passed test case is correctly identified.

(3) A false positive is a test case such thatE labels the test case as passed, butA labels the test case
as failed. In other words, a passed test case has been mistakenly classified as failure-causing.

(4) A false negative is a test case such thatE labels the test case as failed, butA labels the test case
as passed. In other words, a failure-causing test case has been missed by a testing technique.

Because we are testers, we interest in studying the effectiveness and false alarms of a testing
technique. We thus use more tester-friendly terminologiesto redefine sensitivity and specificity.
We further define an ER-score as a measure to combine sensitivity and specificity.

Effectiveness= Sensitivity

Robustness= Specificity

ER-score = Effectiveness× Robustness

Intuitively, effectivenessis the percentage of failure-causing test cases that have been correctly
classified by a binary classification scheme. Similarly,robustnessis the percentage of passed
test cases that have been correctly classified by the same scheme. We deem that testers generally
would like to maximize both the failed test cases and passed test cases to be correctly classified.
As a result, ahigher valuein either measure means abetter resultin a testing experiment.

The ER-score is a product of effectiveness and robustness. We use this metric to combine
effectiveness and robustness into one value. This score carries the properties that we consider
important in evaluating test experiments. When the effectiveness is zero, the ER-score must also
be zero, irrespective of the robustness. Similarly, when the robustness is zero, the ER-score must
also be zero. On the other hand, only when both effectivenessand robustness are 1, the ER-score
can attain its maximal value. Lastly, when effectiveness (or robustness) remains unchanged, the
ER-score will vary proportionally to robustness (or effectiveness). Thus, a higher ER-score also
indicates a better result.

5.1.4 Metamorphic Relations

Researchers in metamorphic testing advocate the use of simple metamorphic relations to ease the
test oracle problem. To follow this advice, we use three simple metamorphic relations in the
experiment to check thepassedtest cases produced in thePAT 1 phase. As defining an adequate
set of metamorphic relations is still an open problem, we pick the following generic metamorphic
relations so that they are not tied to any particular simplification strategy.

17

• The first metamorphic relation (MR1) checks the size of the bounding box rendered from an
initial test case against that from the non-simplified 3D polygonal model (that is, when the
simplification percentage is 100). This is akin to a common practice in assertion checking
to check the size of the bounding box after each iteration. Asthe metamorphic relation is
graphics-based, we depict the idea ofMR1 in Figure 4.6

To present the metamorphic relation, we need some helper functions. Letu be a function
accepting an image and returning an outline of a shape in the image. Further, letnoScale
be a function accepting a 3D polygonal model and returning the 3D polygonal model with
simplification percentage being 100. Given an imageP(m) produced by a programP over
an inputm. The metamorphic relation is as follows:

u(P(m)) ⊆c u(P(noScale(m))),

where⊆c is a two-polygon containment relation [26], which asserts thatu(P(m)) should be
within u(P(noScale(m))).

In the experiment, we use the built-in function of Adobe Photoshop 7.0 batch processing
to produce the outline of the shape in every image. The implementation ofnoScaleis also
responsible to produce a follow-up test case. Since the simplification percentage is an integer
in the input 3D polygonal model, the implementation always assigns 100 to this integer.

Source image (e.g., at 20%)

Step 1. Produce a
follow-up image
without simplification.

Step 2. Construct the
bounding box of the
follow-up image.

Step 3. Check the
 inner bounding box

against the outer

 bounding box.

Figure 4: An Illustration ofMR1

6 Note that we compare the outlines of shapes rather than comparing the outline against a shape. We illustrate the
inner apply object rather than the outline of the inner applein the figure to ease readers to spot the comparison between
outlines.

18

• The second metamorphic relation (MR2) reverses the order of the vertices of a given
polygonal model to produce the reversed sequence of the polygonal model. It further checks
whether the image outputs of the program over two polygonal models are the same. It is
analogous to requesting the program to visualize the same graphics using different sequences
of operations. We depictMR2 in Figure 5.

A 3D polygonal model in a PLY file is a sequence of vertices〈v1,v2, . . . ,vn−1,vn〉.
Let reverse be a standard sequence reversal function7 that accepts a sequence
〈v1,v2, . . . ,vn−1,vn〉, reverses the order of the elements in the specified sequence, and returns
the reversed sequence〈vn,vn−1, . . . ,v2,v1〉. Let m be a test case. The metamorphic relation
is as follows:

P(m) = P(reverse(m)).

The construction of the follow-up test case is not difficult.In the implementation, we extract
the sequence from a source PLY file, and then reverse the sequence. We further replace the
original sequence in the source PLY file by the reversed sequence to produce another PLY
file (i.e., the follow-up test case). The simplification percentage of the follow-up test case is
set to be the same as that of the given polygonal model. To implement the equality of the
metamorphic relation, we compare the images via vectors of extracted features directly.

a b

c

d
e

f

g

h

<a, b, c, d, e, f, g, h>

h g

f

e
d

c

b

a

<h, g, f, e, d, c, b, a>

Step 1. Revise the vertex
order in the input 3D model

Step 2. Compare
the image

Figure 5: An Illustration ofMR2

• The third metamorphic relation (MR3) changes the input so that the image output should
be upside down. This is similar to the “flip vertical” function in the drawing toolbar of
Microsoft Office. Then, it further changes the image so that it is upside down again. The net
result should be as if no any flip operation were applied to theinputs and the outputs. We
depictMR3 in Figure 6.

7 Such as “static void java.util.Collections.reverse(Listlist)”.

19

The implementation of this metamorphic relation is also nothard. Each vertexq in a 3D
polygon model is a 3D coordinate (coorx, coory, coorz), where each coordinate component
is a number. Thus, for the sequence of vertices representingthe 3D polygon model, we
simply compute a newy-coordinate of every vertex in the sequence by the Equation (1) to
form (coorx, coor′y, coorz):

coor′y = −coory. (1)

It produces a follow-up 3D polygonal model that will turn theoriginal 3D polygonal model
upside down. To compare the image output of the original testcase and that of the follow-up
test case, the implementation runs Photoshop 7.0 to invert the image output of the follow-up
test case. It then compares this inverted image directly with the image output of the initial test
case via vector of extracted features. Like the implementation of the second metamorphic
relation, the simplification percentage of the follow-up polygonal model is the same as that
of the initial test case.

Formally, let yInvert be a function that accepts a 3D polygonal model, performs they-
coordinate transformation stated in Equation (1) over the sequences of vertices in the model,
and returns a 3D polygonal model that its z-coordinates has transformed. Letflip be a
function to invert an input image. Letm be an initial test case. The metamorphic relation is
as follows:

P(m) = flip(P(yInvert(m))).

a b

c

d
e

f

g

h

h g

f

e
d

c

b

aStep 1. Flip input

Step 3. Compare
the image

Step 2. Flip output

Figure 6: An Illustration ofMR3

20

Let us firstly estimate the overall capability of failure identification by these MRs. Because of
the sheer size of the test pool used in the experiments, we cannot do the estimation by applying the
MRs exhaustively to all the test cases. We randomly select a subset as initial test cases. Using our
implementation for exercising MT, we construct follow-up test cases and then check whether they
reveal a failure. The results show that 29.4% of the failure-causing test cases forMelax, 34.1% for
Quadric, and 36.3% forQuadricTriare detected.

Readers may express a concern that these metamorphic relations appear to be weak. We thus
refineRQ1 to a more tractable research question below:

RQ1+: Can the effectiveness of failure identification be improvedby piping results of
a pattern classification approach to weak MRs?

5.2 Experimental Procedure

In this section, we describe the experimental procedure to evaluatePAT 2. First, the classification
result ofPAT 1.r andPAT 1.d are directly obtained from the dataset of the previous experiment [12]
(see Section 5.1.2). To produce the test results ofPAT 1.0, we group the classification result of
PAT 1.r and that ofPAT 1.d to denote the result ofPAT 1.0. They serve as the baseline for evaluating
the performance ofPAT 2.0.

To produce the test results ofPAT 2.r for a particular IUT, we first use the passed test
cases ofPAT 1.r for that IUT, and apply every such passed test case as an initial test case of
each metamorphic relation. The MT module uses each metamorphic relation implementation to
construct a follow-up test case based on the initial test case. Then,PAT 1.r determines whether the
follow-up test case has passed or is failure-causing. If thetest verdict of the follow-up test case has
been marked as passed, the MT module will continue to comparethe initial test case, the follow-up
test case, and their outputs based on the metamorphic relation implementation that constructs the
follow-up test case. If the MT module reveals a failure, we erase the previous labels of the initial
test case and the follow-up test case, and mark them as failure-causing instead. We iterate the same
procedure for every subject program. We further repeat the same procedure forPAT 2.d by using
the passed test case ofPAT 1.d as the initial test cases for the MT module. Similarly toPAT 1.0, we
group the classification result ofPAT 2.r and that ofPAT 2.d to denote the result ofPAT 2.0.

In summary, the variables of the controlled experiment are as follows:

Independent Variables. There are four independent variables. They are the subject programs to
train a classifier, the subject programs used as the IUT, using MT or not, and the number of
input models to train a classifier.

Dependent Variables.There is only one dependent variable, which is the label of each test case.

Control Variables. There are a number of control variables. They are the implementation
languages to implement the subject programs (Java in our case), the chosen classifier (the
C4.5 classifier), the metamorphic relations (the three relations stated in Section 5.1.4), the
polygonal models to construct the test case pool (Θ), the features used for classification (the

21

black-box features), the way to construct faulty versions to train a classifier and simulate
faulty behavior in the program under test (the program mutation approach usingmuJava).

5.3 Empirical Results and Analysis

In this section, we present the results of the empirical study.

5.3.1 Investigations on Effectiveness Improvement

In this section, we examine whether the introduction of an MTmodule improve the effectiveness
of PAT 1.

Figures 7(a) and (b) present box-and-whisker plots of the effectiveness ofPAT 1.0 andPAT 2.0,
respectively. They-axis shows the effectiveness and thex-axis shows the number of 3D polygonal
models applied to train the C4.5 classifier during thePAT 1.0 phases. Unless specified, in the rest
of the paper, readers can interpret the pairs of axes in each plot similar to the plot in Figure 7(a).
Figure 7(c) shows the difference in effectiveness betweenPAT 2.0 andPAT 1.0 by the formula:
Effectiveness ofPAT 2.0 − Effectiveness ofPAT 1.0.

We observe from the three plots that MT improves the effectiveness of the classification
module. This is a direct consequence of our new methodology because the main difference between
PAT 1.0 andPAT 2.0 is the presence of an MT module, which constructs follow-up test cases from
the passed initial test cases to identify potential additional failures. The trends in the plots show
that the marginal improvement in the effectiveness forPAT 1.0 decreases as the number of input
3D polygonal models used in the training phase of the classification module (PAT 1.0) increases.
This is understandable: As the effectiveness improves, theroom for further improvement reduces.

To study the improvement statistically, we apply the two-sided Mann-WhitneyU test (denoted
by U -test) on the effectiveness values of the classification approach with and without the MT
module (i.e., comparing the effectivenesses ofPAT 1.0 andPAT 2.0). The results are z-score =
3.060 and p-value = 0.0022 (< 0.05). We further apply the Wilcoxon Matched-Pairs Signed-
Rank Test (rank-test) to check the hypothesis, giving: p-value≈ 0.0000 (< 0.05). Therefore, we
reject hypothesisH1 at the 5% significance level, and conclude that piping to the MT moduledoes
improve the effectiveness of the classification approach significantly.

Next, we continue to study the impact of using MT overPAT 1.r and overPAT 1.d. In other
words, we comparePAT 2.r with PAT 2.d. Figure 8 shows the trends of effectiveness ofPAT 2.r and
PAT 2.d, respectively.

Each plot in Figure 8 shows that having an MT module improves the effectiveness of the
approach without the MT module. We also perform theU -test and rank-test on them. For the
comparison betweenPAT 1.r and PAT 2.r, U -test shows that z-score = 1.663 p-value = 0.0963
(<0.10), while rank-test shows that p-value = 0.0020 (< 0.10). On one hand, we reject hypothesis
H2 at the 10% significance level. On the other hand, the results of the hypothesis test reveal that
improvements by the MT module are observable, but not highlysignificant. At first sight, it may
be relevant to the use of weak metamorphic relations.

22

Original Overall Effectiveness

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

No. of trained models

E
ff

ec
ti

ve
n

es
s

(%
)

(a) Classification Only (PAT 1.0)

Enhanced Overall Effectiveness

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

No. of trained models

E
ff

ec
ti

ve
n

es
s

(%
)

(b) Classification Piped to MT (PAT 2.0)

Effectiveness Difference

0

5

10

15

20

25

1 2 3 4 5

No. of trained models

E
ff

ec
ti

ve
n

es
s

D
if

fe
re

n
ce

 (
%

)

(c) Difference between (b) and (a)

Figure 7: Changes in Overall Effectiveness by the Use of MT

However, a comparison betweenPAT 1.d andPAT 2.d shows that, forU -test, z-score = 2.408
and p-value = 0.0161 (< 0.05), while for rank-test, p-value = 1.91e-06 (< 0.05). On one hand, we
reject hypothesisH3 at the 5% significance level. On the other hand, the metamorphic relations are
already strong enough to make a significant difference between PAT 1.d andPAT 2.d.

The above hypothesis testing results show that:

(1) If we do not distinguish the types of reference model to train a classifier, MT provides a
significant improvement (thus, rejectingH1). Intuitively, this finding relieves testers from the
worry that a resembling reference model may be mistaken to bedissimilar, and makes MT to

23

be a good complement to a classification approach. However, as we will discuss in the next
section, it is not the case when we also consider robustness of the classification scheme.

(2) If a tester heeds the advice of [10] and uses a resembling reference model to train up a
classifier, the advantages of piping the results of the classification module to an MT module
may be not traditionally significant. The experiment resultdoes not support us to rejectH2

at a high, say 5%, significance level. On the other hand, the difference is noticeable (see
Figure 8(a)). Indeed, the finding supports us to rejectH2 at a good (10%) significance level.
Viewing the results from another perspective, it may already show thatPAT 1’s advice is useful,
andPAT 2 is a healthy option for testers to improve the effectivenessof identifying failures in
testing their programs. We will further study this point in Section 5.3.2.

20

35

50

65

80

1 2 3 4 5

E
ff

e
c
ti

v
e
n

e
s
s
 (

%
)

No. of trained models

Average Effectiveness

PAT 1.r PAT 2.r

(a) PAT 1.r vs. PAT 2.r

20

35

50

65

80

1 2 3 4 5

E
ff

e
c
ti

v
e
n

e
s
s
 (

%
)

No. of trained models

Average Effectiveness

PAT 1.d PAT 2.d

(b) PAT 1.d vs.PAT 2.d

Figure 8: Effectiveness ofPAT 2.r overPAT 1.r, andPAT 2.d overPAT 1.d

M1

M2

N1

N2

N3

N4

0

5

10

15

20

25

1 2 3 4 5

C
h

a
n

g
e
 i

n
 E

ff
e
c
ti

v
e
n

e
s
s
 (

%
)

No. of trained models

Average Effectiveness Gain by MT

PAT 2.r PAT 2.d

(a) Changes in (Absolute) Effectiveness

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 2 3 4 5

C
h

a
n

g
e
s
 i

n
 E

ff
e
c
ti

v
e
n

e
s
s
 (

%
)

No. of trained models

Average Effectiveness Gain by MT (in releative %)

PAT 2.r PAT 2.d

(b) Changes in (Relative) Effectiveness

Figure 9: Comparing the Changes in Effectiveness ofPAT 2.r overPAT 1.r andPAT 2.d overPAT 1.d

Figure 9 compares the differences in effectiveness ofPAT 2.r over PAT 1.r to that ofPAT 2.d
overPAT 1.d. We want to study whether the effectiveness improvement of MT added toPAT 1.r is
the same as that added toPAT 1.d. We calculate the change in effectiveness betweenPAT 2.r over
PAT 1.r by the formula (F1): Effectiveness ofPAT 2.r − Effectiveness ofPAT 1.r. For comparison
in relative terms, we divide the result of formula (F1) by theeffectiveness ofPAT 1.r.

24

Similarly, we calculate the change in effectiveness between PAT 2.d over PAT 1.d by the
formula (F2): Effectiveness ofPAT 2.d − Effectiveness ofPAT 1.d. For comparison in relative
terms, we divide the result of formula (F2) by the effectiveness ofPAT 1.d.

Figure 9 shows the average effectiveness improvements ofPAT 2.r andPAT 2.d (overPAT 1.r and
PAT 1.d, respectively) in both absolute and relative terms. We observe that the solid line is always
higher than the dotted line in either plot. It indicates thatthe average improvements ofPAT 2.r are
always more than those ofPAT 2.d, which may indicate that the former type of improvement is
better than the latter type.

Since we have observed that MT has a positive effect on effectiveness, we further conduct a
one-tailedU -test to compare the two types of improvement. We find that, for improvements in
the absolute terms, the two distributions are different, where z-score = 1.716 and p-value = 0.0431
(<0.05). Similarly, for relative improvements, the two distributions are also different, where z-
score = 1.408 and p-value = 0.0796 (<0.10). The findings support us to reject hypothesisH4 at the
10% significance level. It indicates that the improvement ofusing a resembling reference model
is better than that using a dissimilar reference model. We will further study the issue in the next
section and in Section 6.

We note that rank-test requires the lists to have the same number of elements. This is the case
when comparing an approach with the same approach enhanced by MT. On the other hand, among
the three subject programs in our empirical study,PAT 1.r use the pairQuadric andQuadricTri
because they resemble each other.PAT 1.d uses other two pairs of subject programs, namely
Quadric and Melax, and QuadricTri and Melax. Consequently, we do not apply rank-test to
hypothesisH4. Table 4 summarizes the hypothesis testing results presented in this section.

Hypothesis Brief Description Result Sign. Level
H1 PAT 1.0 = PAT 2.0 ? rejected 5%
H2 PAT 1.r = PAT 2.r ? rejected 10%
H3 PAT 1.d = PAT 2.d ? rejected 5%
H4 (PAT 2.r − PAT 1.r) = (PAT 2.d − PAT 1.d) ? rejected 10%

Table 4: Summary of Analysis of the Use of an MT module on Top ofa Classification Approach
(Effectiveness)

In the next section, we shall consider the issue of robustness and re-examine our findings.

5.3.2 Taking Robustness into Account

In this section, we further consider both effectiveness androbustness when evaluating a testing
technique that involves pattern classification. Just for the sake of argument, a classifier may
always label all test cases as passed, meaning that it will never raise a false-positive case and
keep all potential failed test cases as false negatives. This is undesirable from the testing point of
view because the sole purpose to train the classifier is to identify failures from program outputs.
Similarly, the other extreme situation is to force a classifier to always label a test case as failed. It
always reveals failures (with potentially many false-positive cases).

25

Recall from Section 5.1.3 thatrobustnessis the percentage of the number of false positives to
the sum of the numbers of false positives and true negatives.MT requires multiple test cases to be
checked against a metamorphic relation. As we will explain in Section 6, MT may mark a passed
test case as failure-causing. In other words, it may move test cases from the true positive category
to the false negative category (but not vice versa). The net result will affect the robustness of the
testing technique. To take robustness into consideration,we use the ER-score as the measure.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1 2 3 4 5

E
R

-s
c
o

re

No. of trained models

Weighted Effectiveness

PAT 1.r PAT 1.d Pareto Principle

(a) ComparingPAT 1.r and PAT 1.d

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 2 3 4 5

E
R

-s
c
o

re

No. of trained models

Weighted Effectivness

PAT 2.r PAT 2.d Pareto Principle

(b) ComparingPAT 2.r andPAT 2.d

Figure 10: Comparing the ER-score ofPAT 1.r andPAT 1.d with and without MT

Figures 10(a) and (b) show observable differences betweenPAT 1.r andPAT 1.d, and between
PAT 2.r andPAT 2.d, respectively. They-axis of each plot is the ER-score, and thex-axis is same
as that in Figure 7(a). We follow the same hypothesis testingtechnique as presented in Section 5.3
and find that, for the comparison the differences in ER-scores betweenPAT 2.r over PAT 1.r and
PAT 2.d overPAT 1.d, U -test yields z-score = 3.696 and p-value = 0.0002 (< 0.05). We thus reject
hypothesisH4 at the 5% significance level.

Similarly, for the comparison betweenPAT 1.r andPAT 2.r, U -test gives z-score = 1.890 and
p-value = 0.0588 (≈ 0.05) while rank-test gives p-value = 0.0020 (< 0.05). We conclude that
we may marginally rejectH2 at the 5% significance level. We note that in statistics, there is no
firm rule to draw a fine line between a level of significance and the otherwise. To be conservative
about the analysis, we also conclude thatH2 is rejected at the 10% significance level. Nonetheless,
when we conduct hypothesis testing onH1 andH3, our findings do not support us to reject either
hypothesis even at the 10% significance level for eitherU -test or rank-test.

We have computed the average improvement in ER-score fromPAT 1.r to PAT 2.r, and that from
PAT 1.d to PAT 2.d; the results are 12.16% and 4.86%, respectively. The findings further indicate
that the improvement on the use of resembling reference models is more significant than that on
the use of dissimilar reference models.

26

In Figure 10, we also show a horizontal line labeled as the Pareto Principle (also known as
the 80-20 rule) [55]. Since we have two dimensions (effectiveness and robustness) in the ER-
score, in order to apply this principle, we should have a linedrawn at 64%, which means 80%
in effectiveness and 80% in robustness (0.8× 0.8 = 0.64). Figure 10(b) shows that, with the
improvement onPAT 1.r by PAT 2.r, constructing a pseudo-oracle that exceeds (or is close) tothe
threshold defined by the Pareto Principle is possible. On thecontrary, Figure 10(a) shows that such
a threshold is less attainable by a classification approach without the MT module, orPAT 2.d.

Thus, if we interpret the Pareto Principle as a practical guideline to offer a solution to
practitioners,PAT 2.r is more useful thanPAT 2.d. We also summarize the analysis result in Table 5.

Hypothesis Brief Description Result Sign. Level
H1 PAT 1.0 = PAT 2.0 ? accept 10%
H2 PAT 1.r = PAT 2.r ? rejected 10%
H3 PAT 1.d = PAT 2.d ? accept 10%
H4 (PAT 2.r − PAT 1.r) = (PAT 2.d − PAT 1.d) ? rejected 5%

Table 5: Summary of Analysis of the Use of an MT module on Top ofa Classification Approach
(ER-score)

Table 4 and Table 5 help us answer the research questionRQ1+: When resembling reference
model is used, in both effectiveness and ER-score, the improvement of having an MT module is
significant. With the comparison to the Pareto Principle, this advice can be practical.

5.4 Threats to Validity

In this section, we discuss the threats to validity of our empirical study.
Internal validity concerns whether our findings truly represent a cause-and-effect relationship

that follows logically from the design and execution of our experiment. The choice of the
three metamorphic relations is based on our experience. We have implemented the metamorphic
relations in Java in general, and used a commercial tool (Photoshop) to process the images. As
we have described how we implement them in Section 5.1.4, allparts of their implementations
are simple. We have conducted code inspection and run a few tests to assure the quality of these
implementations. Photoshop is a popular product, and its perceived output quality is reliable.
In the experiment, we compare the results against the baseline results provided by the C4.5
classifier. C4.5 is a classic classifier and has been widely used in machine learning, data mining,
and visualization research. The tool (WEKA) that implements the C4.5 classifier is also widely
used in research studies. We have surveyed over the Internetabout the problems of using WEKA.
We are not aware of any reported problem about the accuracy ofthe C4.5 implementation.

External validity concerns the applicability and generality of our results. The quality of
metamorphic relations can be important to reveal failures.We have deliberately used simple
metamorphic relations in our study. The results of our experiments serve as a baseline for further
investigations. OpenGL is used in the implementations of the subject programs to visualize
graphics. While OpenGL is a popular standard, there are other choices such as DirectX and

27

Flash. It is interesting to know whether different implementation languages would have significant
differences in testing effectiveness. We have only experimented with a few implementations of
mesh simplification algorithms. There are many other visualization algorithms. The generalization
of our proposal, therefore, warrants more research. Also, our work is built on top of the C4.5
classifier. While it is an important and classical algorithmin data mining, using other classifiers
may give different results. This is thus interesting to knowthe results of using the other classifiers
in the future. Our experiment uses a set of 44 open-source 3D polygonal models to create test cases.
They include a portrait of Beethoven, a chair, a spider, a teapot, a tennis shoe, a weathervane, a
street lamp, a sandal, a cow, a Porsche car, an airplane, and so on. The collection includes many
different graphics of diverse shapes and many representative geometric appearances. Some of the
polygonal models such as the portrait of Beethoven have beenwidely used in graphics research.
We have done our best to conduct the experiment. We have used 10 machines at our student
laboratory to execute the experiment for more than two consecutive months. We believe that it
simulates the practical testing effort in real life.

Because of the test oracle problem in verifying graphical outputs, we have used feature
extraction techniques to tackle the issue instead of directly comparing the actual outputs inPAT 1.
We realize from the machine learning community that featureselection plays a central role in
the effectiveness of a classifier. Intuitively, using a different set of features in an experiment to
train a classifier and use the trained classifier to reveal failures may affect the result. This will
affect whether an initial test case of our metamorphic testing phase has been classified correctly.
Therefore, it affects both the effectiveness and ER-score of the experiment. To ease this threat, we
use generic features such as the standard frequency spectrum in the experiment to evaluatePAT 1.

To produce failed test results to train a classifier, we have used mutation analysis in general
and the mutants generated by muJava in particular. Andrews et al. [2] find that the use of mutation
operators can yield trustworthy results for test experiments. Kapoor [31] proves that the coupling
hypothesis of mutation testing holds in many classes of logical fault, and further extend the fault
class hierarchy for logical faults of Lau and Yu [35] in his work with Bowen [32]. On the other
hand, developers may produce other realistic faults in a program. Apart from using mutation
analysis, therefore, one potential way to complement our methodology is to extract the faults from
the repository of mesh simplification programs and simulatethem as faulty versions of a reference
model. We leave the evaluation of the feasibility of such a strategy as future work.

Construct validity seeks agreement between our intent of measure and the procedures of our
measurement used in the experiment. We are dealing with visualization-intensive software in
our study. The way to sample frequencies from the image outputs and summarize them into
vectors of extracted features may affect the results. As we have described in the setup of the
experiment, many frequency values may be extracted from an image. We sample at the mean
plus/minus one to three standard deviations to avoid biasestoward particular ranges of frequency
values. We use effectiveness and ER-score to measure the actual results of the test experiment.
Effectiveness is defined as sensitivity, which is widely used in measuring the performance of a
binary classification scheme. The ER-score combines sensitivity and specificity into one value.
We intend to measure how the effectiveness of our approach may be affected when specificity
varies. We have designed the ER-score with care so that it does not favor either sensitivity or

28

TRUE FALSEPositive True positive() False Positive()Negative Fase Negative() True Negative()Testoutcome
Expected outcome

Table 6: The Impact ofPAT 2 overPAT 1

specificity, and varies proportionally to either sensitivity or specificity when the corresponding
counterpart is kept as a constant.

6 Discussion

In this section, we further discuss the findings obtained in Sections 5.3.1 and 5.3.2. We generally
look at the impact of MT from the perspective of effectiveness and ER-score over a binary
classification scheme. Finally, we will examine the resulting conclusions of the hypothesis tests.

Our basic idea inPAT 2 is to apply MT on test cases marked as passed byPAT 1 and, if
MT reveals a failure, re-label a passed test case as failure-causing. As we have described in
Section 5.1.3, a passed test case of a classifier (produced byPAT 1) may be true negative (TN)
or false negative (FN). In other words, an initial test case of the MT phase may be true negative or
false negative, and a follow-up test case of the MT phase alike. A pair of passed initial test case
and passed follow-up test case may thus fall within one of thefour possible combinations, namely,
TN-TN, FN-FN, TN-FN, and FN-TN.

Three of the above four combinations involve at least one test case that is false negative. For
each of these three combinations, the MT phase may thus re-label the test cases as failure-causing.
It means that MT may move a test case from the false negative category to the true positive category
in our binary classification scheme. At the same time, because MT identifies a failure through a
relation over test cases (rather than through one particular test case), MT may mark a passed test
case as failure-causing, which means that MT may also move a test case from the true negative
category to the false positive category.

Table 6 summarizes the changes in the classification category based on the above analysis on
the impact of MT over a binary classification scheme. In Table6, each of the four categories
shows an arrow pointing either upwards or downwards. It depicts the direction of impact of MT
overPAT 1. An upward (downward) arrow indicates that MT adds (removes) test cases to (from)
the category.

Therefore, according to the specificity formula presented in Section 5.1.3, MT may improve
(but not worsen) the sensitivity of a binary classification scheme, and worsen (but not improve)
the specificity of the same scheme. In statistics, Type I error and Type II error describe possible

29

errors made in a statistical decision process. Type I error refers to the error of rejecting a correct
null hypothesis, while Type II error refers to the error of not rejecting a false null hypothesis. In
essence,PAT 2 trades Type 1 error ofPAT 1 for Type II error ofPAT 1 through the application of
MT.

To examine such tradeoff, we have used the ER-score as the measure in the experiment
presented in this paper. However, because of tester preference, we have separately studied the
effectiveness of the testing technique.

We have rejected both hypothesesH1 andH3 in Section 5.3.1 when we measure effectiveness
only; and yet, we have failed to do them again when using ER-score as the metric to measure the
above-mentioned tradeoff in Section 5.3.2. The combined results show that the effectiveness of
PAT 1 does improve significantly through the application of MT, yet the Type 1 error has also
increased to the extent that prevents significant improvement to be claimed. In Figure 10(b),
we have however observed noticeable improvement ofPAT 2.d over PAT 1.d. They show that
the improvement on effectiveness (sensitivity) versus thedeterioration in robustness (specificity)
produced by MT is asymmetric but not significantly different. We believe that there are types
of MT that can be symmetric or significantly asymmetric in thesensitivity-specificity tradeoff
perspective. It may be worth studying the types of MT to studythe tradeoff more comprehensively
in the future.

AcceptingH1 in the tradeoff analysis shows that testers may not blindly apply an arbitrary
reference model to obtain a significantly better result fromPAT 2 over PAT 1. In practice,
it means that testers need spending efforts to confirm whether a reference model resembles
the implementation under test. We tend to believe that, in practice, the developers of the
implementation under test can provide such expert judgment.

Nonetheless, not every version ofPAT 2 can be practical. We have compared our results with
the Pareto Principle in the tradeoff analysis (see Figures 10(a) or (b)). We have found that both
PAT 1.d andPAT 2.d are less effective than the threshold lines that represent the Pareto Principle.
To usePAT 2 effectively, again, the identification of resembling reference models is important.

We have further rejectedH2 and H4 in both Section 5.3.1 and Section 5.3.2 at the 10%
significance level successfully. We have however argued in these two sections that typically,
rejecting a hypothesis test in statistics would require thesignificance setting at the 5% level.
Nonetheless, we believe that having results established atthe 10% significance level represents
a promising effect.

We have assessed thatPAT 2.r can attain the threshold level of Pareto Principle. We believe that
PAT 2.r is thus more accessible to the practitioners than the other versions that we have studied in
the empirical study.

7 Conclusion

Mesh simplification is a technique to create graphics at different levels of details. It simplifies
a three-dimensional (3D) polygonal model to the one with fewer polygons and aims to preserve
the appearances of the original model as much as possible. Different such techniques, however,

30

optimize different perspectives such as speed or graphicalshadow of the shape. As a result, they
produce different graphics, although the graphics look coarsely similar in appearance. Defining
the expected results of test cases is thus hard, which causesa test oracle problem when testing
mesh simplification programs. Our previous work recognizesthe use of resembling reference
models to guide the training phase. Still, owing to the statistical nature of classifiers, many test
cases classified into the passed category may, in fact, be failure-causing, thus lowering the testing
effectiveness in identifying failures.

In this paper, we have proposed an integrated approach that pipes the test results from a pattern
classification module to a metamorphic testing (MT) module for follow-up testing. Specifically, it
uses the metamorphic testing approach to check the test results marked as passed by a classifier.
We have reported an empirical study that applies three simple and general metamorphic relations
to produce follow-up test cases to evaluate our proposal. For effectiveness, the integrated approach
significantly improves the pure pattern classification approach. When we consider robustness
as well, the integrated approach using a resembling reference model gives significantly better
improvement over the one using a dissimilar reference model. We have also explained why and
how MT in our methodology represents a technique to trade specificity for sensitivity.

Our proposal has showed a strategy that aligns a statisticalapproach with an analytical approach
to give better results. We believe that such a strategy in general has applicable scenarios in other
application domains to gain fruit results. Future work includes new techniques to filter out false-
positive cases in the failed category, a tighter integration of pattern classification and metamorphic
testing, and an underpinning theory. We have not studied real-time testing issues in assuring mesh
simplification programs. We will study these issues in the future.

Acknowledgements

We would like to thank the anonymous reviewers for their timeand constructive comments, and
Prof. Jeff Offutt for the discussion on the representativeness of mutation analysis to real faults.

References

[1] M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, and T. Moriarty. A modified fuzzy c-
means algorithm for bias field estimation and segmentation of MRI data.IEEE Transactions
on Medical Imaging, 21 (3): 193–199, 2002.

[2] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation anappropriate tool for testing
experiments? InProceedings of the 27th International Conference on Software Engineering
(ICSE 2005), pages 402–411. ACM, New York, NY, 2005.

[3] L. Baresi, G. Denaro, L. Mainetti, and P. Paolini. Assertions to better specify the Amazon bug.
In Proceedings of the 14th International Conference on Software Engineering and Knowledge
Engineering(SEKE 2002), pages 585–592. ACM, New York, NY, 2002.

31

[4] J. Berstel, S.C. Reghizzi, G. Roussel, and P. San Pietro.A scalable formal method for design
and automatic checking of user interfaces.ACM Transactions on Software Engineering and
Methodology, 14 (2): 124–167, 2005.

[5] A. Bierbaum, P. Hartling, and C. Cruz-Neira. Automated testing of virtual reality application
interfaces. InProceedings of the Eurographics Workshop on Virtual Environments(EGVE
2003), pages 107–114. ACM, New York, NY, 2003.

[6] R.V. Binder.Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison Wesley,
Reading, MA, 2000.

[7] J.F. Bowring, J.M. Rehg, and M.J. Harrold. Active learning for automatic classification of
software behavior. InProceedings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis(ISSTA 2004), ACM SIGSOFT Software Engineering Notes,
29 (4): 195–205, 2004.

[8] L.C. Briand, M. Di Penta, and Y. Labiche. Assessing and improving state-based class testing:
a series of experiments.IEEE Transactions on Software Engineering, 30 (11): 770–783, 2004.

[9] W.K. Chan, T.Y. Chen, H. Lu, T.H. Tse, and S.S. Yau. Integration testing of context-sensitive
middleware-based applications: a metamorphic approach.International Journal of Software
Engineering and Knowledge Engineering, 16 (5): 677–703, 2006.

[10] W.K. Chan, M.Y. Cheng, S.C. Cheung, and T.H. Tse. Automatic goal-oriented classification
of failure behaviors for testing XML-based multimedia software applications: an
experimental case study.Journal of Systems and Software, 79 (5): 602–612, 2006.

[11] W.K. Chan, S.C. Cheung, J.C.F. Ho, and T.H. Tse. Reference models and automatic oracles
for the testing of mesh simplification software for graphicsrendering. InProceedings of
the 30th Annual International Computer Software and Applications Conference(COMPSAC
2006), volume 1, pages 429–438. IEEE Computer Society, Los Alamitos, CA, 2006.

[12] W.K. Chan, S.C. Cheung, J.C.F. Ho, and T.H. Tse. PAT: a pattern classification approach
to automatic reference oracles for the testing of mesh simplification programs.Journal of
Systems and Software, 2008. doi.10.1016/j.jss.2008.07.019.

[13] W.K. Chan, J.C.F. Ho, and T.H. Tse. Piping classification to metamorphic testing: an
empirical study towards better effectiveness for the identification of failures in mesh
simplification programs. InProceedings of the 31st Annual International Computer Software
and Applications Conference(COMPSAC 2007), volume 1, pages 397–404. IEEE Computer
Society, Los Alamitos, CA, 2007.

[14] T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic testing: a new approach for generating
next test cases. Technical Report HKUST-CS98-01. Department of Computer Science, Hong
Kong University of Science and Technology, Hong Kong, 1998.

32

[15] S.C. Cheung, S.T. Chanson, and Z. Xu. Applying generic timing tests for distributed
multimedia software systems.IEEE Transactions on Reliability, 53 (3): 329–341, 2004.

[16] P. Cignoni, C. Rocchini, and G. Impoco. A comparison of mesh simplification algorithms.
Computers and Graphics, 22 (1): 37–54, 1998.

[17] R.L. Cook, J. Halstead, M. Planck, and D. Ryu. Stochastic simplification of aggregate detail.
ACM Transactions on Graphics, 26 (3): Article No. 79, 2007.

[18] B. d’Ausbourg, C. Seguin, G. Durrieu, and P. Roch. Helping the automated validation process
of user interfaces systems. InProceedings of the 20th International Conference on Software
Engineering(ICSE 1998), pages 219–228. IEEE Computer Society, Los Alamitos, CA, 1998.

[19] C. DeCoro and N. Tatarchuk. Real-time mesh simplification using the GPU. InProceedings
of the 2007 Symposium on Interactive 3D Graphics and Games, pages 161–166. ACM, New
York, NY, 2007.

[20] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: help for the
practicing programmer.IEEE Computer, 11 (4): 34–41, 1978.

[21] L.K. Dillon and Y.S. Ramakrishna. Generating oracles from your favorite temporal logic
specifications. InProceedings of the 4th ACM SIGSOFT Symposium on Foundationsof
Software Engineering(SIGSOFT ’96/FSE-4), ACM SIGSOFT Software Engineering Notes,
21 (6): 106–117, 1996.

[22] R.O. Duda, P.E. Hart, and D.G. Stork.Pattern Classification. Wiley, New York, NY, 2000.

[23] C. Fahn, H. Chen, and Y. Shiau. Polygonal mesh simplification with face color and
boundary edge preservation using quadric error metric. InProceedings of the 4th IEEE
International Symposium on Multimedia Software Engineering (MSE 2002), pages 174–181.
IEEE Computer Society, Los Alamitos, CA, 2002.

[24] P. Francis, D. Leon, M. Minch, and A. Podgurski. Tree-based methods for classifying
software failures. InProceedings of the 15th International Symposium on Software Reliability
Engineering(ISSRE 2004), pages 451–462. IEEE Computer Society, Los Alamitos, CA,
2004.

[25] M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In
Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques(SIGGRAPH 1997), pages 209–216. ACM, New York, NY, 1997.

[26] R.B. Grinde, and T.M. Cavalier. A new algorithm for the two-polygon containment problem.
Computers and Operations Research, 24 (3):231–251, 1997.

[27] R.C. Gonzalez and R.E. Woods.Digital Image Processing. Prentice Hall, Englewood Cliffs,
NJ, 2002.

33

[28] R.M. Hierons. Avoiding coincidental correctness in boundary value analysis.ACM
Transactions on Software Engineering and Methodology, 15 (3):227–241.

[29] D.W. Hosmer and S. Lemeshow.Applied Logistic Regression. Wiley, New York, NY, 2004.

[30] P. Hu, Z. Zhang, W.K. Chan, and T.H. Tse. An empirical comparison between direct and
indirect test result checking approaches. InProceedings of the Third International Workshop
on Software Quality Assurance(SOQUA 2006) (in conjunction with the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (SIGSOFT 2006/FSE-
14)), pages 6–13. ACM, New York, NY, 2006.

[31] K. Kapoor. Formal analysis of coupling hypothesis for logical faults.Innovations in Systems
and Software Engineering, 2 (2): 80–87, 2006.

[32] K. Kapoor and J.P. Bowen. Test conditions for fault classes in Boolean specifications.ACM
Transactions on Software Engineering and Methodology, 16 (3): 1–12, 2007.

[33] R. Kohavi and F. Provost. Glossary of terms.Machine Learning, 30 (2/3): 271–274, 1998.

[34] M. Last, M. Friedman, and A. Kandel. The data mining approach to automated software
testing. InProceedings of the 9th ACM SIGKDD International Conferenceon Knowledge
Discovery and Data Mining(KDD 2003), pages 388–396. ACM, New York, NY, 2003.

[35] M.F. Lau and Y.T. Yu. An extended fault class hierarchy for specification-based testing.ACM
Transactions on Software Engineering and Methodology, 14 (3): 247–276, 2005.

[36] P. Lindstrom and G. Turk. Imagine-driven simplification. ACM Transactions on Graphics,
19 (3): 204–241, 2000.

[37] D.P. Luebke. A developer’s survey of polygonal simplification algorithms.IEEE Computer
Graphics and Applications, 21 (3): 24–35, 2001.

[38] D.P. Luebke, M. Reddy, J.D. Cohen, A. Varshney, B. Watson, and R. Huebner.Level of Detail
for 3D Graphics. Morgan Kaufmann, San Francisco, CA, 2003.

[39] Y.-S. Ma, A.J. Offutt, and Y.-R. Kwon. MuJava: an automated class mutation system.
Software Testing, Verification and Reliability, 15 (2): 97–133, 2005.

[40] J. Mayer. On testing image processing applications with statistical methods. InSoftware
Engineering 2005(SE 2005), Lecture Notes in Informatics, pages 69–78. Gesellschaftfu”r
Informatik, Bonn, 2005.

[41] J. Mayer and R. Guderlei. An empirical study on the selection of good metamorphic relations.
In Proceedings of the 30th Annual International Computer Software and Applications
Conference(COMPSAC 2006), volume 1, pages 475–484. IEEE Computer Society, Los
Alamitos, CA, 2006.

34

[42] S. Melax. A simple, fast, and effective polygon reduction algorithm.Game Developer
Magazine, pages 44–49, November 1998.

[43] A. Memon, I. Banerjee, and A. Nagarajan. What test oracle should I use for effective GUI
testing?. InProceedings of the 18th IEEE International Conference on Automated Software
Engineering(ASE 2003), pages 164–173. IEEE Computer Society, Los Alamitos, CA, 2003.

[44] A.M. Memon, M.E. Pollack, and M.L. Soffa. Automated test oracles for GUIs. In
Proceedings of the 8th ACM SIGSOFT International Symposiumon Foundations of Software
Engineering(SIGSOFT 2000/FSE-8) pages 30–39. ACM, New York, NY, 2000.

[45] B. Meyer.Eiffel: the Language. Prentice Hall, New York, NY, 1992.

[46] E.B. Moore, A.V. Poliakov, P. Lincoln, and J.F. Brinkley. MindSeer: a portable and extensible
tool for visualization of structural and functional neuroimaging data.BMC Bioinformatics,
8: 389, 2007.

[47] ISO/IEC. The MPEG Standards. Moving Picture Experts Group. Available at:
http://www.chiariglione.org/mpeg/standards.htm. (Last accessed: June 15, 2008.)

[48] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, and C. Zapf. An experimental determination
of sufficient mutant operators.ACM Transactions on Software Engineering and Methodology,
5 (2):99–118, 1996.

[49] T. Ostrand, A. Anodide, H. Foster, and T. Goradia. A visual test development environment
for GUI systems. InProceedings of the 1998 ACM SIGSOFT International Symposium
on Software Testing and Analysis(ISSTA 1998), pages 82–92.ACM SIGSOFT Software
Engineering Notes, 23 (2): 82–92, 1998.

[50] D.K. Peters and D.L. Parnas. Using test oracles generated from program documentation.
IEEE Transactions on Software Engineering24 (3): 161-173, 1998.

[51] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J.Sun, and B. Wang. Automated
support for classifying software failure reports. InProceedings of the 25th International
Conference on Software Engineering(ICSE 2003), pages 465–475. IEEE Computer Society,
Los Alamitos, CA, 2003.

[52] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold. Testcase prioritization.IEEE
Transactions on Software Engineering, 27 (10): 929–948, 2001.

[53] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algorithm. InProceedings of
the third International Conference on 3D Digital Imaging and Modeling (3DIM 2001), pages
145–152, IEEE Computer Society, 2001.

[54] M. Segal and K. Akeley.The OpenGL Graphics System: a Specification. Version 2.0. Silicon
Graphics, Mountain View, CA, 2004.

35

[55] G.G. Shulmeyer and T.J. McCabe. The Pareto principle applied to software quality assurance.
In Handbook of Software Quality Assurance, 3rd Edition, pages 291–328. Prentice Hall,
Upper Saddle River, NJ, 1998.

[56] Stanford University. The Stanford 3D Scanning Repository. Available at:
http://graphics.stanford.edu/data/3Dscanrep/. (Last accessed: June 27, 2008.)

[57] Y. Sun and E.L. Jones. Specification-driven automated testing of GUI-based Java programs.
In Proceedings of the 42nd Annual Southeast Regional Conference(ACM-SE 42), pages 140–
145. ACM, New York, NY, 2004.

[58] M. Vanmali, M. Last, and A. Kandel. Using a neural network in the software testing process.
International Journal of Intelligent Systems, 17 (1): 45–62, 2002.

[59] Web3D Consortium. X3D International Specification Standards. Available at:
http://www.web3d.org/x3d/. (Last accessed: June 27, 2008.)

[60] E.J. Weyuker. On testing non-testable programs.The Computer Journal, 25 (4): 465–470,
1982.

[61] Wikipedia. Binary Classification. Available at http://en.wikipedia.org/wiki/Binaryclassification.
(Last accessed: June 30, 2008.)

[62] Wikipedia. Specificity Tests. Available at http://en.wikipedia.org/wiki/Specificity%28tests%29.
(Last accessed: June 30, 2008.)

[63] S.E. Yoon, C. Lauterbach, and D. Monocha. Rlods: fast lod-based ray tracing of massive
models.The Visual Computer, 22 (9): 772–784, 2006.

[64] Y. Zhu. Uniform remeshing with an adaptive domain: a newscheme for view-dependent
level-of-detail rendering of meshes.IEEE Transactions on Visualization and Computer
Graphics, 11 (3): 306–316, 2005.

36

