
Testing-based process for component substitutability

Andres Flores1,∗,† and Macario Polo2

1GIISCo Research Group, Department of Computer Science, University of Comahue, Buenos Aires 1400,
8300 Neuquen, Argentina

2Alarcos Research Group, School of Informatics, University of Castilla-La Mancha, Paseo de la Universidad 4,
E-13071 Ciudad Real, Spain

SUMMARY

Software components have emerged to ease the assembly of software systems. However, updates of
systems by substitution or upgrades of components demand careful management due to stability risks of
deployed systems. Replacement components must be properly evaluated to identify if they provide the
expected behaviour affected by substitution. To address this problem, this paper proposes a substitutability
assessment process in which the regular compatibility analysis is complemented with the use of black-box
testing criteria. The purpose is to observe the components’ behaviour by analysing their internal functions
of data transformation, which fulfils the observability testing metric. The approach is conceptually based
on the technique Back-to-Back testing. When a component should be replaced, a specific Test Suite TS
is built in order to represent its behavioural facets, viz. a Component Behaviour TS. This TS is later
exercised on candidate upgrades or replacement components with the purpose of identifying the required
compatibility. Automation of the process is supported through the testooj tool, which constrains the
conditions and steps of the whole process in order to provide a rigorous and reliable approach. Copyright
q 2010 John Wiley & Sons, Ltd.

Received 1 May 2008; Revised 5 May 2010; Accepted 17 May 2010

KEY WORDS: component-based software; testing automation; component assessment

1. INTRODUCTION

Component-based development has emerged as an engineering approach to enable faster deploy-
ment while reducing costs and effort. The promise of an extensive reusability, however, results
usually associated with concerns on the reliability of component services [1, 2]. Similarly, mainte-
nance of component-based systems, which involves replacing or upgrading components, concerns
a serious risk upon the stability of functioning systems [3, 4].

Substitutability comprises a major issue on upgrading any software product, due to the evolutive
nature of software and the unlikely controllable impact of changes. Particularly, on successive
releases of a component, changes might spread across most of the codified functions and structures,
affecting stable execution paths. Therefore, a massive difference could be evidenced with respect

∗Correspondence to: Andres Flores, GIISCo Research Group, Department of Computer Science, University of
Comahue, Buenos Aires 1400, 8300 Neuquen, Argentina.

†E-mail: aflores@uncoma.edu.ar

Contract/grant sponsor: MCIT/PEGASO; contract/grant number: TIN2009-13718-C02-01
Contract/grant sponsor: JCCM-PRALIN; contract/grant number: PAC-08-0121-1374
Contract/grant sponsor: UNComa-IEUCSoft; contract/grant number: 04-E072
Contract/grant sponsor: ANPCYT-MHSMD; contract/grant number: PAE PICT 2007 2312

Copyright q 2010 John Wiley & Sons, Ltd.

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2012; 22:529–561
Published online 2 August 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.438

A. FLORES AND M. POLO

to the original component. For instance, releases that incorporate novel technologies or novel
architectural solutions are likely to introduce many structural differences. This fact is even truer
when components are acquired from different vendors, where system integrators cannot control
deployment and are unable to know if the same environment (e.g. compiler and compiling options,
among others) was used on components that are presumably alike [5].

Vendors frequently release new versions of popular components, to keep their products compet-
itive in the market. For instance, Crystal Reports (http://www.businessobjects.com), a popular
component for creating reports, is updated on a monthly frequency basis. Consequently, a tough
responsibility falls upon system integrators to bear in mind keeping the overall system up-to-date
and also competitive [5, 6].

Furthermore, system integrators become additionally overloaded with the typical tasks
concerning unit and integration testing, which therefore affects the promise of effort reduction
in component-based engineering. For this reason, the main concern to be addressed in this paper
is to assist integrators to maintain the integrity of component-based systems, while attending its
practical side to simplify everyday tasks.

Therefore, the intent of this paper is to provide an Assessment Process as a support for
Substitutability, from where one can identify whether new releases or newly acquired components
can safely replace the current components from a component-based system that is already
deployed, released and in-use. This approach assumes the usual unavailability of internal aspects
(such as source code or specifications) from candidate replacement components. The only
information that is considered accessible concerns the set of interfaces provided by candidate
components. Particularly, the approach is focused on Component Models where the underlying
framework should support introspection in order to automatically extract interfaces information
(e.g. the reflection mechanism on Java and .Net frameworks). Interfaces information is then
used on a specific phase whose goal is to identify the level of syntactic interfaces equiva-
lence from a component and its replacement, recognizing at the same time severe cases of
mismatch [7].

The syntactic compatibility analysis is complemented by a subsequent phase that makes use
of the black-box testing criteria. The purpose is to fulfil the observability testing metric [4, 8] to
analyse the operational behaviour of a component, which is defined by its expected input and
output data, and how data are transformed into another—i.e. its output as a function of its input.
Therefore this phase is settled at a semantic level, for which specific testing coverage criteria
have been selected to design an adequate Test Suite (TS) as a representation of behaviour for
components, namely, a Component Behaviour TS. On a preceding phase, such TS is developed
for the component that requires the substitution, and later the TS is exercised against candidate
replacement components to observe the level of behaviour compatibility. The entire approach can
also be understood through the technique called Back-to-Back testing [9], in which a reference
component is used to judge the correctness of a certain unit under test (a candidate replacement
component in this approach).

Automation of the approach is currently fully supported for the Java framework by means of the
testooj tool [10]. While at the beginning of this research, the use of the .Net framework was also
checked with successful results [11], Java was finally selected due to other opened working lines of
our group. The testooj tool allows Test Case generation by the integration of well-known testing
frameworks such as JUnit and MuJava [12, 13] both for building the Component Behaviour TS and
executing this TS against replacement components to analyse compatibility. The tool additionally
helps to achieve a rigorous and more reliable approach through automated steps and conditions.

The remainder of the paper is organized as follows. Section 2 introduces preliminary concepts
and related work. Section 3 presents an overview of the Substitutability Assessment Process,
and introduces a case study that will be developed along the remaining sections for illustration
purposes. Section 4 describes aspects concerning the Component Behaviour TS. Section 5 presents
the Syntactic Interface Compatibility phase. Section 6 describes the Test-based Behaviour Semantic
Evaluation phase. Section 7 presents an additional experiment that helps to validate the approach.
Finally, conclusions and future work are presented.

530

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

2. BACKGROUND

A widely accepted definition of the term software component is from Szyperski [14], who defines it
as ‘a unit of composition with contractually specified interfaces and explicit context dependencies,
which can be deployed independently and is subject to composition by third parties’.

Complementary to the previous definition are the following concepts:
Interface: A component encapsulates specific knowledge that is accessible only by its interfaces

[6]. Thus, an interface acts as an access point for a component, through which services declared
in the interface can be requested by a client component.

Events: Interactions with components’ interfaces can be identified as consequences of triggering
events. An event is therefore an incident in which the resulting effect is the invocation of an
interface. Particularly, components’ interactions occur by external events in which the responding
entity is external to the invoking entity. The incident may be triggered by a different interface,
through an exception or simply through a user action such as pushing a button. In general, an
event can be defined as an invocation of an interface through another interface [15].

Component model: The rules for creation, composition and communication of individual compo-
nents are defined by component models. The specification of a software component may also
contain the semantics of its interfaces, constraints, data formats and protocols as well as detailed
information about timeouts or quality of services. Such a specification may be described by means
of predicate calculus or graphical notation such as state charts or Petri nets. The higher the degree
of formalization of such descriptions, the better the utilization by verification mechanisms [6].

In current component models, there is no obligation to enrich components with that kind of
information. Actually, since component-based development is an inherently complex technology,
it might look even more difficult for developers if they were forced to adopt formal specifications.
Thus, components are usually provided as a binary code with simple and informal descriptions of
integration and deployment aspects, by means of natural language narrative. However, the lack of
both source code and complete specifications hinders the applicability and effectiveness of many
classic testing and analysis techniques, and challenges system integrators and test designers [5, 6].

Component substitutability: Components are assembled with others in order to build more
complex structures or ‘composable’ software systems. Both the composition mechanism and the
set of specific techniques applied to glue together a collection of components impose a strong
influence on the dependency between components. Such dependencies have an impact on the
degree of substitutability of a component into a system [16]. The stronger the dependency of a
component to other components within a system, the harder it is to upgrade with new component
versions.

Java components: According to the analysis of the state-of-the-art about component evolution by
Stuckenholz [6], a Java package can be considered as the unit of deployment, being seen therefore
as a component. Java maps classes to single files, whereas Java packages may contain structures of
directories, together with a physical organization of classes, resources and a manifest. In order for
a Java package to suit the definition of a ‘software component’, there should be a particular class
in the package that acts as a facade [17] representing the interface of the component. In that case
the facade class could also be designed by resembling what in UML is the stereotype ‘interface’.
For instance, both javabeans and Enterprise Java Beans (EJB), which represent the Java answer
for the component technology, are deployed as jar files with a Java ‘interface’ class acting as the
facade or interface of the Java package. Assembly and communication with javabeans and EJB
are achieved by means of method calls between classes in the jar files. The standard class loader
resolves references along the CLASSPATH and returns the first occurrence of the component [6].

Not all Java packages, however, perfectly fit to the previous features by a clear differentiation
of an interface. For example, Java packages based on the Java 2 Standard Edition (J2SE) and
Java 2 Enterprise Edition (J2EE) may not be initially designed to work as third-party components.
Nevertheless, in some cases those Java packages may contain a class that distinguishes from the
others by describing the main functionality and making use of the rest of the classes within the
package. Besides, those Java packages are also deployed as jar files, and may communicate to

531

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

others by method calls as well. This means, although not initially intended to work as components,
Java packages based on J2SE and J2EE may also give an opportunity of reuse under the component-
based paradigm.

As Java binaries contain meta information, reflection mechanisms can be used to get infor-
mation from types and exported interfaces of components at runtime. In addition, Java packages
could be enriched with coarse-grained version information to improve a versioning system by
using the manifest, which usually includes the package name, version number, specification name
and specification version [18]. However in Java, component users are responsible for evaluating
version information by themselves, since developers are not forced to enrich components with
such metadata and there is a lack of a rigorous version policy from which metadata may not be
actually useful. The Package class contains a method named isCompatibleWith, which is supposed
to receive a specification version to check the compatibility of the current component to the given
version. Even when developers might provide a vague notion of compatibility on such a method,
since there are no automatic tools on Java to do these kinds of calculations, developers could make
wrong assumptions producing integration failures on a current system [6].

Component testing: As the approach proposed in this paper is based on testing techniques, some
definitions regarding component coverage criteria are introduced as follows. Such definitions are
particularly based on the concepts previously presented [4].

• All-Methods: [19]. Components may have several interfaces, each one composed of a set of
methods or services. This criterion requires that every interface must be executed at least
once. This means that every service from each interface is invoked at least once. This criterion
is also called all-interfaces [20].

• All-Events [20]. An event is an incident in which the resulting effect is the invocation of an
interface. Events could be synchronous (e.g. direct invocations to services) or asynchronous
(e.g. triggering exceptions). The criterion requires that every event (synchronous or asyn-
chronous) from a component must be covered by some test. Thus, this criterion covers the
specific criterion all-exceptions [19, 21].

• All-Context-dependence [20]. Events can have sequential dependencies on each other causing
distinct behaviours according to the order in which they (i.e. services or exceptions) are
invoked. The criterion requires to traverse each operational sequence at least once.

The criteria above have been presented according to the subsumes relationship, from lower to
higher coverage. In case of all-context-dependence, two cases apply: intra- or inter-component
interface dependence, as follows [21]:

• Intra-component dependence. When events present interdependence among each other within
a component interface. These events are called internal events, and could be invocations to
service members of a component interface (or exceptions from those services).

• Inter-component dependence. When events from a component interface present a depen-
dence with external events. External events are generated by one component and attended
by a different component. This requires to design tests with a client and a server
component.

All the concepts presented in this section concerning component and coverage criteria will be
referenced in the remaining sections. Next, testing notions are particularly considered to give a
comparative perspective of the current work related to the proposal of this paper.

2.1. Related work

The proposal of this paper is closely related to Regression Testing, which according to Orso
et al. [22] is usually involved with applying reduction strategies on a TS in order to improve the
efficiency without losing safety—i.e. exposing expected faults on targeted pieces. This is achieved
by identifying parts affected by changes on successive versions and recognizing ‘dangerous’
testing factors—e.g. paths, transitions, branches, sentences, etc. However, such reduction strategies
are based on some knowledge about the changed pieces, that is, source code (white-box) or

532

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

specifications (black-box). The proposal of this paper, on the other hand, assumes no existence of
other information but the one accessible through the reflection mechanism. Additionally, candidate
components are not assumed to be actual new versions of an original component. Therefore, no
identification could be done of changed pieces, which thus exposes the usefulness of this approach,
which tries to distinguish the behaviour compatibility between an original component and an
a priori unknown candidate replacement component.

The approach from Mariani et al. [5] has similarities with the proposal of this paper. The
approach takes a previously generated TS that is executed against the system. During execution,
a monitoring mechanism synthesizes specific models of interaction and data exchanged from
participating components. Those models are then used to carry out test selection in order to
extract a reduced TS focused on a given component under substitution for efficiency during the
compatibility testing process. On the other hand, the process of this paper is based on designing
a specific TS for compatibility purposes, by a thorough selection of testing coverage criteria. The
reason for this is to be aware of the TS adequacy, which otherwise may give inappropriate testing
coverage affecting the reliability of the approach. With this consideration in mind, the process may
also utilize any previously developed TS, even those designed from specific models (by applying
minimal adjustments). Moreover, the process of this paper includes an automatic procedure to
work with non-syntactic equivalent components, by discovering interface matching that helps to
execute a TS against candidate components.

Another important related work is summarized by Jaffar-Ur Rehman et al. [4] where approaches
concerning Built-in Testing (BIT), testable architectures, metadata-based and user’s specification-
based testing are properly covered. In particular, approaches regarding a BIT strategy require
from developers (vendor side) instrument components with an adequate TS that will later help to
automatically check whether the component behaves in an expected way when inserted into a system
(client side). This is to verify the contract-compliance of the server components (participating in
the interactions), including the underlying platform. For instance, the approach by Edwards [9] is
based on a RESOLVE formal specification, and the approach by Atkinson et al. [23] is based on a
KobrA specification. These specifications are used to build assertions instrumented on components
that will be verified upon the TS execution.

The main difference with those approaches concerns the underlying purpose of the proposal of
this paper, which is not based on strategies to find faults to check the correctness of a component
execution. The intent of this paper is to provide a process for component selection, that is to
identify that a certain component may supply the required behaviour, among a set of candidate
components. This is achieved through valid configurations of test cases, i.e. those that do not fail
during testing.

3. TESTING-BASED COMPATIBILITY ASSESSMENT

Users take for granted the availability of a daily used functionality, which challenges system
integrators to appropriately maintain the expected stability affected by continuous upgrades
required by the system. Hence any replacement component (i.e. a new release or a new
acquired component) must be carefully managed, even when purchased from the same
vendor. A basic need for a system integrator is an effective mechanism to select a certain
replacement component from a set of candidate components, and find out whether the
selected component can safely replace another currently integrated on a component-based
system.

The proposal of this paper, that is, the substitutability assessment process, has been conceptual-
ized under the basis of the technique called Back-to-Back testing, which makes use of a reference
implementation for a component to generate a TS and then exercises both a unit under test and the
reference implementation. Then, results from the reference component help to judge the correctness
of the unit under test (i.e. the candidate component in this proposal) [9]. The proposal considers an

533

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

original component C (i.e. a reference implementation) and a candidate replacement component K,
and the whole process consists of the following three main phases, which are depicted in Figure 1:
First Phase. A TS is generated with the purpose of representing behavioural aspects from an

original component C, which requires to be replaced. That is, to generate a description, based
on test cases, concerning the likely interactions of component C with other components in a
software system. However, the goal of this TS is not to find faults (commonly addressed through
failed test cases). The design of the TS is based on a specific selection of the coverage criteria,
such as those listed in Section 2, from which components’ interactions can be conveniently
described. In addition, the selected testing criteria are also used to check the adequacy of the
TS. This is fully explained in Section 4.

Second Phase. Interfaces offered by C and a candidate replacementK are compared syntactically.
If K offers an interface compatible with that of C, then K is passed to the next phase. The
analysis to be performed considers whether the set of offered services from K contains the
services offered by C. At this stage, there can be compatibility although services from C and
K have different names, different orders in the parameters, etc. The outcome of this phase is a
list where each service from C may have a correspondence with one or more services from K .
Details of this phase are given in Section 5.

Third Phase. Component K that has passed the interface compatibility analysis must be eval-
uated at a semantic level. This implies to execute the TS generated for C in the first phase,
against K . The purpose is to find the true service correspondences from the list generated in the
second phase. For this, such a list is processed in order to generate a set of wrappers (adapters)
W for K . The ultimate goal is to find a wrapper w∈W that could replace C to allow current
C’s clients to interact with the K ’s interface. To achieve this, each wrapper w is taken at a
time as the target class under test by running the TS from C. After the whole set W has been
tested, the results are analysed to conclude if a compatibility has been found. This also implies
that at least one wrapper w∈W can be selected as the most suitable to allow tailoring K to be
integrated into the system as a replacement for C.
The subsequent sections provide detailed information about each step. The application of the

process is illustrated by means of the following case study, which will be used to initially confirm
(or definitively refute) the following research hypothesis:

‘The testing-based process for component substitution makes possible to select a replacement
component for an original component with a measurable degree of compatibility’.

Particularly, compatibility can be expressed in terms of the syntactic and semantic distance
(being respectively interface and behaviour compatibility). A more formal experiment description
is given in Section 7, where the following case study is included, and different experimental aspects
are thoroughly analysed and discussed.

3.1. Case study

Let us consider a system developed in Java in which one of the components provides the function-
ality of a calculator. Such a component has been developed in-house and is called JCalculator.
This component does not present a user front-end (or GUI) but only the main functionality related
to mathematical operations, as can be seen in Figure 2(a). As the system needs to evolve, some
components may require a redeployment. This is the case with JCalculator, for which external
components have been considered as potential substitutes.

From the wide spectrum of Java calculators available in the market nowadays, 13 components
have been selected to evaluate their compatibility with JCalculator. Table I presents those
components: their name, the web site from where they have been downloaded and the version (or
versions).

In order to clearly illustrate the Substitutability Assessment Process, the case study is initially
explained with the first version of component JCalc (i.e. version 0.1a). This version includes
five Java files: three the front-end (GUI) and two the back-end. Figure 2 shows the back-end

534

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Select component C

Generate TS for C

:Test Suite :CTestResults
Select component K

Interface Compatibility
from C and K

Generate
Wrappers for K

:Interface
Matching List

:Wrappers

Run TS of C on
ith Wrapper

Evaluate Results

:WTestResults

[Yes]

[No]

Select Wrapper
:selected
Wrapper

[until last wrapper]

3rd Phase

2nd Phase

1st Phase

Figure 1. Testing-based substitutability assessment process for software components.

Figure 2. Case study Java Calculator—software components: original (JCalculator)
(a) and replacement (JCalc0.1a) (b).

classes that represent the main functionality of the package, which therefore could be consid-
ered as the component-oriented ‘facade’ to be evaluated on this case study. The evaluation of
the remaining components is presented in Section 7, where the whole developed experiment is
adequately uncovered.

To give a conclusive decision on compatibility between JCalculator and JCalc0.1a, the
first phase of the process must be initiated, which is explained in the following section.

535

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

Table I. Java calculators to evaluate compatibility w.r.t. JCalculator.

Component Web site Versions

JCalc http://sourceforge.net 0.1a; 0.1b;
0.0.3a; 0.0.4a;

0.1.5
NumberMonkey http://sourceforge.net/projects/NumberMonkey/ 3.0b
TerpCalc http://www.cs.umd.edu/∼atif/TerpOfficeWeb/TerpOffice/TerpCalc/ 4.0
GCalc http://gcalc.net, http://sourceforge.net 3.0
JAC http://www.samnhum.net/, http://sourceforge.net 1.1.232
JSciCalc http://jscicalc.sourceforge.net 2-0.3
OpenCalculator http://sourceforge.net/projects/openCalculator/ 0.19
PocketCalc http://www.df.lth.se/∼mikaelb/, http://pocketCalc.softonic.com/pocketpc/ 1.1
SolCalc http://sourceforge.net 1.1

dom(C (mod) K) ran(C (nar) K)
a

b

K
C

d

c

Figure 3. Functional mapping of components C and K.

4. COMPONENT BEHAVIOUR TS

Given a component C and a candidate replacement K, each one accepts certain input data (domain)
on their services, from where an internal transformation function returns specific output data
(range). It is expected that domain and range from both components should match. However,
there is still another concern, which implies the right generation of a particular output from a
specific input. This is referred to as the functional mapping between domain and range data, and
is particularly reflected by the observability testing metric [4, 8]. Figure 3 shows a case where
domain and range intersect but do not coincide, and the functional mapping does not match as
well. For example, for the individual data b from the domains’ intersection, the corresponding
outputs are not the same—� for K and � for C, which can be explained as C is ‘semantically
distant’ from K. A case like this should be properly identified to avoid an undesirable situation in
order to maintain the expected system stability.

Therefore, it is very important to analyse the data functional mapping performed by a component
to understand its behaviour. When such a behavioural perspective is conveniently exposed from two
different components, and then the adequate knowledge is extracted for a comparison procedure, a
potential compatibility could be identified—as discussed in [24, 25]. While exploring a complete
functional mapping could be extensive, focusing on specific aspects and representative data is
more efficient and is also highly effective. To do so, a specific selection of testing coverage criteria
provides a useful manner to address functional mapping analysis, which is the option followed in
this approach.

After identifying from a component-based system that a given original component C requires
a substitution, a TS is built as a representation of the behaviour for that component, for which
specific coverage criteria for component testing have been selected. The TS named Component
Behaviour TS is composed of test cases that consist of a set of calls to services of component C.
The goal of this TS is to be finally exercised against any candidate replacement component K in
order to check if K coincides on behaviour with the original component C. Therefore, the results

536

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

from testing the component C are saved on a repository for determining acceptance or refusal
when the TS is applied against component K.

Based on the concepts about components and testing coverage criteria introduced in Section 2,
the selected strategy implemented on this approach is explained as follows. The Component
Behaviour TS, particularly concerns intra-component dependence, from where it is required to
describe the interdependence of services (among each other) inside the interface of the original
component C. As no external interfaces are involved, no other component is required during testing,
which implies that no additional platform or environmental requisites will be involved.

In addition to the intra-component dependence, the Component Behaviour TS has been also
designed to cover the all-context-dependence criterion, which helps to describe the interdepen-
dences within the interface of component C by means of sequences of events—either synchronous
(like invocations to services) or asynchronous (like triggering exceptions). Such sequences of events
(or operational sequences) are formalized in this approach by means of regular expressions, where
the required alphabet comprises signatures from services of component C. Regular expressions
help to describe a general pattern, which can be considered as the ‘protocol of use’ for a component
interface.

This approach concerns maintenance of a component-based system, which makes components
within the system well known. Thus, for a component C to be replaced, the system can be explored
to analyse interactions from client components within the system. After this, a system integrator
can identify the sequences of invocations to services of the component C, to then compose the
regular expression to formalize the protocol of use.

Specific coverage criteria for regular expressions have been proposed in [26] concerning their
basic elements: the alphabet, the operators and the possibility to derive subexpressions. Table II
presents coverage criteria for regular expressions, where the all-operators criterion has been
extended on this approach according to [27]. The only quantifier or iteration operator considered
in [26] was the operator ‘∗’ (kleen). Extending to other quatifiers increases the formalization
expressiveness of a protocol of use, improving behavioural descriptions of components as well.
Criteria for regular expressions expose a relation with the criteria for components presented in
Section 2, which is depicted in Figure 4.

Table II. Coverage criteria for regular expressions.

Criteria for regular expressions Sample: a∗b(b|c)
All-Alphabets: For each symbol in the alphabet, there must
be at least a test case that contains the symbol

TS={abc} satisfies all-alphabet for the
regular expression sample

All-Operators: For each operator: TS={bb,abc,aabb} satisfies all-operator for
the regular expression sample

• ‘|’ (union) there must be at least a test case that
contains the first operand and some other containing
the second operand

• ‘+’ there must be at least a test case corresponding
to exactly one iteration and at least another test case
for more than one iteration of the operand

• ‘∗’ (kleen) similar to previous and also there must be
at least a test case corresponding to zero iteration of
the operand

• ‘?’ there must be at least a test case corresponding
to exactly one iteration and also at least a test case
corresponding to zero iteration of the operand

All-Expressions: For each choice of operators that results
in different sentences of likely different lengths, there must
be at least a test case to cover them

TS={bb,bc,abb,abc,aabb,aabc} satisfies
all-expressions for the regular expression
sample

537

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

all-operators

a*b(b|c)

component a_Component{

public void a() { … }

public void b() { … }

public void c() { … }
}

Software Components Regular Expressions Finite State Machines

all–context-
dependence

all-expressions

snoitisnart-llastneve-lla

all-exceptions all-methods all-alphabets

1 2 3

a

b

b

c

Figure 4. Subsumption and equivalence relation among different criteria.

As component services supply the symbols for the alphabet of regular expressions, the all-
alphabets criterion allows to invoke all services from a component, therefore covering the all-
methods criterion. Additionally, the set of operators for regular expressions (e.g. ‘|’, ‘∗’, etc.)
helps to describe patterns that include more cases of operational sequences. Thus, the all-operators
criterion is almost equivalent to all-context-dependence. Finally, the all-expressions criterion may
give a more complete set of operational sequences by describing other meaningful cases that
involve additional combinations of operators. For instance, the TS satisfying the all-expressions
criterion for the regular expression sample in Table II, includes extra test cases not considered
for all-operators. However, only component services (synchronous events) have been considered
on the protocol of use, which does not fully cover the all-events criterion. That is, exceptions
(asynchronous events) must also be included.

In this approach, exceptions are described in a subsequent step by their link to a service
invocation and setting what particular data will make the exception to occur. Thus, each declared
exception is finally inserted into those operational sequences that include the corresponding service
invocation and data. In this way, the all-exceptions criterion and therefore the all-events criterion
are covered. This allows the all-exceptions criterion to provide an equivalent coverage to the
all-context-dependence criterion for components (as can be seen in Figure 4).

The reflection mechanism of the Java framework allows to access elements from a Java compo-
nent interface to be able to automate Test Case generation. Thus, service signatures can be extracted
from an original component C to be used as the alphabet symbols for regular expressions. Addi-
tionally, those declared exceptions collected from services (also available via reflection) help in
improving the behavioural representation of components. In fact, some exceptions require the
component to be on a specific state which may only occur after previous executions of other
events (e.g. invocations to certain services); therefore, operational sequences (context-dependence)
usually imply the only strategy for a proper coverage.

In a complementary approach, operational sequences could also be derived from Finite State
Machines (FSM), which in fact have been widely used in the Testing field for representing
behaviour and deriving test cases [28–30]. In this context, the edges of an FSM would represent
service signatures, which could be processed to describe different operational sequences—e.g.
the example in Figure 4 that is based on the regular expression sample of Table II. Certainly,
FSMs can also be used for complex representations of component behaviour with its abstract
states and the way they are reached and traversed. As FSMs can be actually represented by
regular expressions, equivalence or subsumption relationships can be found on criteria from both
notations. For example the FSM’s all-transitions criterion (called all-edges in [26]) subsumes
all-alphabets. However, all-operators has been defined as a wider criterion thus subsuming
all-transitions.

538

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Select component C

Run TS on C
with JUnit

Evaluate Coverage
:Test

Results

[coverage < threshold]

Set Test Data
Set Protocol of Use &
Generate Templates

:Test data
Files

:Test
TemplatesGenerate Test Files

on JUnit format

[extend TS]

Set Constraints

:Constraints
Files

:JUnitTS

Generate Test Files

on MuJava format
:MuJavaTS

Figure 5. Generation of component behaviour test suite.

This section has given the necessary basis to properly understand the main intent of this approach:
to provide a process for Component Selection—i.e. to identify that a certain component K (from
a set of candidate replacements) may supply the required behaviour. This is achieved by observing
a compatibility on behaviour through valid configurations of test cases—i.e. those that either do
not fail during testing or help in recognizing the presence of exceptions at specific and controlled
circumstances.

By means of the case study introduced in the previous section, the procedure to build the
Component Behaviour TS is illustrated subsequently, by also explaining how it deals with the
analysis concerning coverage criteria.

4.1. TS for JCalculator

In order to build a Component Behaviour TS for JCalculator, a set of steps depicted in
Figure 5 must be carried out, which are supported by the testooj tool [10]. Test cases can be
generated on two formats allowed by the tool, which are JUnit [12] and MuJava [13]. Both JUnit
and MuJava are testing tools for Java programs—the former being focused on unit testing and the
latter on applying mutation strategies.

The TS is initially generated on JUnit format with the intent to run their test cases against
the original component—i.e. JCalculator in this case study. The purpose is to conve-
niently validate this TS, which is achieved when 100% of successful results are obtained.
The reason is that the TS is actually designed to include configurations of test cases that
either do not fail or raise controlled exceptions. In this way, the TS achieves the goal of
representing the behavioural facets of the original component. After the TS has been properly
validated, then a TS on MuJava format will be derived for being used on the third phase of the
compatibility process, as this eases the analysis tasks on that phase—this is fully explained in
Section 6.1.

According to Figure 5, one of the initial steps for building the TS implies to specify the protocol
of use (in the form of a regular expression). By analysing the current use of JCalculator in the

539

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

enclosing system, it was found that an integrator could achieve the following regular expression:

JCalculator putInBuffer [(setAdd |setSubtract |setMultiply |setDivide)

putInBuffer]+ setExpression evalExpression

From the regular expression above, the testooj tool makes use of the Java.util.regex.Pattern
class to derive sentences in order to create test templates describing operational sequences. Such
templates are generated according to the expected length for each sentence (amount of alphabet
symbols included into a sentence). The minimum length for sentences in this case would be six,
which derives four sentences with only one math service, which is initially enough to cover the all-
alphabets criterion, although, this implies only one iteration for the ‘+’ operator. Some sentences
derived from the previous regular expression can be seen as follows, where the first two (columns)
are samples with a length of six:

JCalculator JCalculator JCalculator JCalculator JCalculator

putInBuffer putInBuffer putInBuffer putInBuffer putInBuffer

setAdd setSubtract setMultiply setAdd setDivide

putInBuffer putInBuffer putInBuffer putInBuffer putInBuffer

setExpression setExpression setAdd setAdd setSubtract

evalExpression evalExpression putInBuffer putInBuffer putInBuffer

setExpression setExpression setExpression

evalExpression evalExpression evalExpression

Concerning the all-operators criterion, in the previous samples the union ‘|’ operator has been
fully covered, and the last three columns show sentences with an additional iteration for the ‘+’
operator. Nevertheless, only one of such sentences with an extra iteration is actually required for
the all-operators criterion, which added to the four sentences previously mentioned gives a total
of five test templates. This means, just adding one of the last three columns (from the sample
sentences above) would be more than enough to cover the all-operators criterion. Although, the
remaining combinations of math services would be excluded, leading to achieve a TS does not
adequately describe all meaningful operational sequences.

Therefore, the TS should be generated based on the all-expressions criterion, which in this
case requires a minimum length of eight. From this, 16 sentences are derived that expose all
combinations of math services. Therefore, added to the four sentences previously mentioned gives
a total of 20 test templates finally generated.

The following steps involve some other settings for constraints, exceptions and test values.
In order to load test values for service parameters, a previous analysis must be carried out on
selecting a representative set of test data, in which techniques such as Equivalence Partitioning
and Boundary Value Analysis [28, 31], among others, could be very helpful. Figure 6 shows the
test values (0,1,3) which have been assigned to the only parameter of putInBuffer service,
which will be used in pairs according to the protocol of use—i.e. one value before and after a call
to a math service.

When specific constraints or assertions need to be added before and/or after an invocation to
a certain service, they can be loaded in the precode and postcode areas—see Figure 6. These
constraints are later inserted on test cases before and after the call to the corresponding service.
Some reserved words are provided to manipulate elements and to invoke services, such as argX
(e.g. arg1 and arg2 in Figure 6) that is used to reference arguments for parameters, and result that
is used to hold the value that must be returned by a test case.

The complete description of the correct behaviour for a component may require the triggering of
exceptions. The list of exceptions is extracted from services signatures to be able to specify when
they should be raised. Figure 6 (right-hand side, bottom) illustrates how an exception (from the
list of exceptions throwable by a given method) can be selected and is associated with a specific
test value previously loaded. Similar to settings for the protocol of use, the test data related to
exceptions are selected by a system integrator by identifying in the original component and its

540

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Figure 6. Constraints, exceptions and test values.

client components, how these kinds of interactions actually occur within the system. In the case
of JCalculator, there is an exception for the evalExpression service upon a division
(setDivide) by 0 (zero).

As test cases on JUnit format require to include an oracle, the Assert class from the JUnit
framework provides some operations that help to check the state of a CUT instance. For example,
within the postcode area (Figure 6) was used the assertTrue operation for the evalExpression
service. After this, test values were used in combinations with the 20 test templates (operational
sequences) and constraints files (pre/post-code). Such combinations are carried out according to
one of the four algorithms that are provided by the testooj tool, which are particularly useful
when more than one test value has been loaded. Such algorithms are: each choice [32], antirandom
[33], pairwise [34] and all combinations [35], for which extended comparative explanations are
given in [10, 35]. Particularly, the all combinations algorithm was applied for the JCalculator
TS, which produces the biggest amount of combinations and helps to describe a wider range of
interactions from client components (within the system) to JCalculator.

From the 20 test templates, four of them are combined with test data pairs from a set of three,
generating 4∗32=36 test cases. The remaining 16 test templates were combined with three test
data, generating 16∗33=432 test cases. Each test case becomes a method inside a test driver file,
which is saved on a repository. In the case of JCalculator, 468 test cases were generated as
methods into a class called JUnitJCalculator. Figure 7 lists the generated test cases on JUnit
format, and particularly shows one of the test cases, the method testTS 3 3, which exercises
the setDivide math service with test values 3 and 0 on their arguments. This case implies a
division by zero, which should raise an exception. Hence, an additional Assert operation (fail) was
inserted into the test case to capture this kind of exception and properly identify the originating
cause.

After this, the generated TS can be validated by its execution against the JCalculator
component. To do so, the testooj tool launches the JUnit tool with the JUnitJCalculator
class and iterates through their test cases. Evaluation of test cases makes use of the included Assert
operations that act as the test oracle. Hence, test cases produce a binary result: either success or
failure. The results produced 72 test cases which raised the expected exceptions (upon a division
by zero) and the rest gave successful results, thus validating the TS.

Thus, JUnitJCalculator represents the Component Behaviour TS for JCalculator,
which was the goal to be accomplished in this initial phase of the whole process. Then, the last
step of this phase implies to derive a version of the TS on MuJava format, which will be used
in the third phase of the process. Thus, the MuJavaJCalculator class was generated with
minimal variations: neither pre/post-code was necessary nor oracle (since these methods return
a String). Figure 8 shows the same method testTS 3 3 in MuJava format, where the main

541

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

Figure 7. JUnit test cases from JCalculator’s TS.

Figure 8. MuJava version of a specific test case for JCalculator.

difference concerns the return type and the fact that all MuJava test cases are prepared to catch
exceptions.

4.2. Additional experiment: Validation of black-box testing criteria with white-box criteria

In order to measure the effectiveness of the criteria selected for the Component Behaviour TS as a
strategy to evaluate behaviour compatibility, an additional experiment has been performed, in which
the original component (JCalculator) was processed by a white-box mutation technique. The
availability of a source code for JCalculator offered the chance to apply this type of technique.
The set of mutant operators applied are classified as class-level and method-level according to
[13, 36]. This step was particularly performed by the support of the new version of the MuJava
tool which was developed as a plug-in for Eclipse, named MuClipse [37, 38]. This tool is also
based on the JUnit framework by accepting a TS on JUnit format to exercise the corresponding
mutants.

After running the mutation tool, 144 mutants were generated for JCalculator: 3 class-
mutants and 141 method-mutants. Then the JUnitJCalculator class corresponding to
the JUnit format of the Component Behaviour TS for JCalculator was run against the
mutants. The time required to exercise 468 test cases against the 144 mutants is about 5 h in

542

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

a regular Pentium 1.83GHz 2GB RAM. The results indicate that 33 mutants remained alive
and 111 mutants were killed, which implies a mutation score of 77%. However, the alive
mutants involved a certain change that actually made them functionally equivalent to the orig-
inal JCalculator. This means that the TS developed for JCalculator exhibited the
required effectiveness, exposing the adequacy of the criteria selected to design the Component
Behaviour TS.

The following section concerns the second phase of the process, which is carried out when a
candidate replacement component must be integrated into a system.

5. INTERFACE COMPATIBILITY

When a component is considered as a potential replacement for a given component into a system,
the Interface Compatibility phase should be initiated. This particular evaluation is focused on
components’ interfaces, which are compared from a syntactic point of view.

A services matching schema has been developed for this phase, which comprises four levels.
Each matching level implies a different case describing a specific set of syntactic conditions.
Table III summarizes the set of conditions for service matching, which are classified according
to the element (return, name, parameter, exception) of a service signature. Particularly, some
subconditions were identified for parameters and exceptions, which are distinguished in Table III.
Every condition is explained in detail in Section 5.1. The schema of four levels for syntactic
services matching is introduced as follows:

• Exact-Match. Two services under comparison must have identical signature. This includes
service name (N1), return type (R1), and for both parameters and exceptions: amount, type,
and order (P1,E1). Thus, there is an exact-match between two services when the following
conjunction of conditions is satisfied: R1∧N1∧P1∧E1, which is also condensed by giving
a value of 4 (the addition of value 1 from each condition).

• Near-Exact-Match. Similar to previous, though the order in the list might be relaxed for
parameters and exceptions (P2,E2), for service names there could be a substring equivalence
(N2). Then the conditions are roughly grouped as follows: R1∧(N1∨N2)∧(P1∨P2)∧(E1∨
E2), but at least P2, N2 or E2 exist, which gives a condensed value between 5 and 7.

• Soft Match. Two mutually exclusive cases are considered. The first one is similar to previous;
although service name could be ignored (N3), for parameters there can be subtyping equiv-
alence (P3) and exceptions can be relaxed to only identify the existence of any (E3). The
second one implies subtyping equivalence for the return (R2) and parameters (P3), where the
service name cannot be ignored, and for exceptions it is not relaxed to the existence of any.
This gives a value between 6 and 9.

• Near-Soft Match. Only the subtyping equivalence for parameters (P3) and the existence of at
least one exception (E3) is considered at this level. In case of the return type, there can be
either equality (R1) or subtyping equivalence (R2), where for the former the service name
cannot be ignored. This gives a value between 8 and 11.

The outcome of this step is a matching list where each service correspondence is characterized
according to the four levels previously presented. As the number of services offered by a candidate
component may be equal or greater than the original, it has been enforced that every service of
an original component must have a correspondence in the matching list. Whether a mismatch is
found for any original service, the process requires a decision from an integrator. Thus, a system
integrator might either manually define a service matching in order to follow with the process or
simply end up the process by concluding the incompatibility of the candidate component.

In an object-oriented framework like Java, there exists a set of methods that are always inherited
from the Object class [39]. Those methods may help to find matchings when they are conveniently
overridden; however, they do not usually provide meaningful aspects to be included into a compar-
ison. Thus, a first option could be omitting those methods, and observe if no mismatch is found

543

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

Table III. Summary of syntactic service matching conditions for interface compatibility.

Signature element Condition Description

Return type R0 Not compatible
R1 Equal return type
R2 Equivalent return type (subtyping)

Service name N1 Equal service name
N2 Equivalent service name (substring)
N3 Service name ignored

Parameters P0 Not compatible
P1 Equal amount (Pc1), type (Pc1) and order (Pc3) for parameters into

the list
P2 Equal amount (Pc1) and type (Pc1) for parameters into the list
P3 Equal amount (Pc1) and type at least equivalent (subtyping) (Pc2.1)

for parameters into the list

Exceptions E0 Not compatible
E1 Equal amount and type (Ec1), and also order (Ec2) for exceptions into

the list
E2 Equal amount and type (Ec1) for exceptions into the list
E3 If non-empty original’s exception list, then non-empty candidate’s list

(no matter the type)

for any service of the original component C. Otherwise, such Object methods could be included
the next time to improve chances of the matching procedure.

The procedure for Interface Compatibility builds the matching list, linking each service sC from
an original component C to a list containing services from a replacement component K, which
presents some degree of syntactic compatibility with sC . For example, let C be a component with
three services sCi , 1≤ i≤3, and K another component with five services sK j , 1≤ j≤5. After the
procedure, the matching list may look as follows:

{(sC1, {(n exact,sK1), (soft,sK2), (n soft,sK5)}), (sC2, {(exact,sK2), (soft,sK4),

(soft,sK5)}), (sC3, {(soft,sK3)})}

The procedure performs the discovery of matches initiating by a strong level to then continue
with the weaker ones (i.e. from exact to near-soft). Identifying strong constrained matches is very
important since the outcome of this phase denotes a pre-analysed knowledge from components
under evaluation, which is used as a basis for the third phase to finally get a conclusive result of
compatibility. In addition, the higher the level of matching found on services, the better it will
be for reducing computation on the third phase. This is because on a higher matching level, the
amount of correspondences is usually lower—e.g. in case of exact-match, only one correspondence
can be found. This is explained in-depth in the third phase, by means of the case study.

5.1. Conditions for syntactic service matching

Let C be an original component and K its candidate replacement component. For all pair of
services (sC ∈C,sK ∈K), a set of individual conditions are described as follows. For brevity
reasons, a short explanation is given for conditions of parameters and exceptions.

Return Type (Service Type)

• Condition R1. The return types of both services are the same: typeOf(sC)=typeOf(sK).
typeOf(x) is a function returning a type, where x can be a service, a parameter or an
exception.

544

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Table IV. Built-in direct subtyping.

First Type Second Type

Byte <1 Short
Short <1 Int
Int <1 Long
Long <1 Float
Float <1 Double

Table V. Subtyping equivalence for services.

Type on sC Type on sK

Char String
Byte Short, int, long, float, or double
Short Int, long, float, or double
Int Long, float, or double
Long Float or double
Float Double

• Condition R2. The return types of both services are equivalent: typeOf(sC)≈typeOf(sK).
Data-type equivalence concerns the subsumption relationship of data types, also referred to
as subtyping (written <:) [39, 40], which is particularly established for built-in types in this
approach, according to the direct subtyping (written <1) from the Java language [39], that
is shown in Table IV. Thus, for services signatures are considered as subtyping relations as
shown in Table V, where types on sK must have at least as much precision as types on sC .
For instance if service sC includes an int type, then a corresponding service sK cannot
have a lower precision such as short or byte (among numerical types).

Service Name

• Condition N1. The names of both services are the same: nameOf(sC)=nameOf(sK).
• Condition N2. The names of both services are equivalent: nameOf(sC)≈nameOf(sK).
Service name equivalence implies trying to find substring similarity. For instance, on services
putInBuffer and addToBuffer (from the case study that is being developed along the
sections), there is similarity on the substring ‘Buffer’.

Parameters

• Condition Pc1. The number of parameters on both services is the same.
• Condition Pc2. The number of parameters on both services is the same and the parameter
types are the same in both services, although their order may vary. For example, services
sC(int,float) and sK(float,int) fulfill this condition.

• Condition Pc2.1. The number of parameters on both services is the same and the parameter
types are at least equivalent, in the sense of condition R2. The order of the parameters may
vary.
Equivalence is similar to Condition R2. For example, according to Table V, services
sC(int,float) and sK(long,double) fulfill this condition (since int<1long and
float<1double).

• Condition Pc3. Both services have the same order in the parameters list and the type of the
i th parameter in sC coincides with the type of the i th parameter in sK .

Exceptions

• Condition Ec1. The number of exceptions on both services is the same, and every excep-
tion type thrown by sC also appears in the list of exceptions thrown by sK , though the
order of declaration of the exceptions may vary. For example, services sC() throws

545

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

AException,BException and sK() throws BException,AException fulfill
condition Ec1.

• Condition Ec2. The number of exceptions on both services is the same and each exception
type thrown by sC also appears, in the same order and with the same type, in the list of
exceptions thrown by sK .

• Condition E3. If the exceptions list for service sC is not empty, then the exceptions list for
service sK cannot be empty.

After a detailed view of the conditions for a syntactic interface matching, the Interface Compat-
ibility phase will be illustrated in the following section by means of the case study introduced in
Section 3.1.

5.2. Interface matching between JCalculator and JCalc01a

When running the Interface Compatibility procedure between JCalculator and JCalc01a,
the testooj tool presents the results on a table like that shown in Figure 9. As some of the
required services are inherited from a superclass on JCalc01a component, the option ‘consider
inherited operations’ has been set. In case a service from the original component does not match
any service from the candidate component, it is displayed with a dark grey cell in the table;
otherwise, the cell is light grey as in Figure 9. A summary of such results can be seen in
Table VI, which shows that the total value for Interface Compatibility is 92. As a reference, the
best value would be 76, when only exact-matches are obtained—i.e. 4 * 19 (amount of services on
JCalculator). Some interesting aspects from this syntactic interface matching are pointed out
as follows:

• A match has been found for all services of JCalculator, except for the service
evalExpression which is shown with a dark grey cell in Figure 9. There should be
a correspondence with the calculate service from JCalc01a, condition E3 being the
mismatching aspect. That is, an empty exception list on calculate service, whereas on
evalExpression there is an exception to control a division by zero. Therefore, for the
process not coming to an end, it was required to manually set the corresponding matching
for the third phase of the process. This correspondence has been classified as a special case
of soft-match in Table VI.

• Those methods inherited from the Object class were included in the comparison, and they
resulted with only an exact-match. The exception was in services notify and notifyAll,
which have found a crossed-relation to their counterparts in JCalc01a component (a near-
exact-match), and also obtained soft-matches with 20 other services.

• Among the Object class methods, which might be meaningless for a comparison (as discussed
in Section 5), the toString service from JCalc01a found it important to produce a
matching with the getExpression service, which otherwise would make a service not
finding a correspondence, thus leading to the situation explained in the first item.

• High compatibility level is important for the third phase as will be fully explained.
This was the case with the first set of services shown in Table VI, among which the
clear service also obtained an exact-match—highlighted in Figure 9 with a light
grey cell. This is a propitious case since it also obtained a soft-match with 21
services from JCalc01a, which otherwise had made more complex the tasks on the
third phase.

• Three services obtained a near-exact-match, where the substring equivalence allowed to find a
higher level than a soft-match. Among that set of services, setDivide and setMultiply
had a similar helpful case like clear service since they also obtained a soft-match with 21
services from JCalc01a.

The matching list obtained on this phase gives the chance to discover a potential component
compatibility by providing information for the next phase, which involves the test-based semantic
compatibility.

546

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Figure 9. Interface compatibility between JCalculator and JCalc components.

Table VI. Summary of interface compatibility for JCalculator–JCalc01a.

Exact Near-exact Soft Near-soft (Amount) Services Best value

1 (7) getClass, toString, wait, etc. 4
1 1 20 (2) notify, notifyAll 4
1 21 (1) clear 4

1 (1) isNumberInBuffer 5
1 2 (1) putInBuffer 5
1 21 (2) setMultiply, setDivide 5
6 16 (1) setAdd 5

1 (1) getExpression 6
22 (2) setExpression, setSubtract 6
1 (1) evalExpression (manually set) 9

Total JCalculator services 19 Total compatibility 92∗
∗Best compatibility value=76.

6. BEHAVIOUR COMPATIBILITY

This phase does not only give a differentiation from syntactic similar services, but mainly assures
that interface correspondences also match at the semantic level. This means that the purpose is
finding services from a candidate replacement component that exposes a similar behaviour with
respect to the original component. In the approach of this paper, this implies to exercise the
Component Behaviour TS, generated in the first phase of the process, against the upgrade or
replacement component.

The automation of this phase is based on the syntactic matching information from the Interface
Compatibility analysis, which is used to build wrappers for the candidate replacement component.
Each wrapper will be a class that can replace the original component, since it includes the same
interface and even the same class name. A wrapper thus behaves as an adapter (i.e. an adapter
pattern [17]), which simply forwards requests to the candidate component. The amount of wrappers
is set according to combinations from the matching of services. Instead of simply making a blind
combination, it is possible to obtain a reduced amount through the previous syntactic evaluation.

The wrapping approach thus makes use of concerns from interface mutation [19, 41] by applying
operators to change service invocations and also to change parameter values. The former is done
through the list of matching services from the original to a candidate component; the latter, by
varying arguments on parameters with the same type, while calling to a candidate component

547

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

root

sC1()

sC2()

sC3(1, 2, .. , L)

sKa()

sKb()

sKd(1, 2, .. , L) sKd(2, 1,.. , L) sKd(L , .. , 2, 1)

...

...

...

C services

sCj()sKe() sKe() sKe()

sCj+1()sKf1() sKf2() sKfV(). . . sKf1() sKf2() sKfV().

sCj+2()sKg() sKg() sKg(). . . sKg() sKg() sKg().

sCj+3()sKh1() sKh2() sKhU(). . . sKh1() sKh2() sKhU().

...

sCN()sKi() sKi() sKi(). . . sKi() sKi() sKi().

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

K services

1 j N1 a, b, d, e, g, f , h , i 1,M V, 1 U1 L,

Figure 10. Generation of wrappers by building a tree of services.

service after setting one particular correspondence from the matching list. Figure 10 shows how for
each service from the original component C its correspondences from the candidate component
K are arranged by means of a tree structure. Each level in the tree implies correspondences for a
different service from the C’s interface. If a service includes a parameter list of size greater than
one, then each combination from types matching produces a new wrapper, which implies another
child node in the tree—i.e. a new branch. This can be seen in Figure 10, where the sC3 service
includes a parameters list of size L .

Each path in the tree (from the root to one leaf) represents a different wrapper to be generated,
where the leaves’ level gives the total amount of wrappers. This amount proceeds from the
correspondences obtained by each service from component C. For example in Figure 10, service
sC j+1 (among others) has a correspondence with V services from component K , which produces
V branches under each current leaf from the tree.

Nevertheless, the amount of correspondences can be reduced by taking the highest compatibility
level obtained in the Interface Compatibility analysis from the second phase of the process. Note,
for example, that the clear service from the case study, which had an exact-match, and other
lower compatibility levels (see Table VI): taking only such correspondence and omitting the rest,
this service does not produce an additional branch on the tree—e.g. services sC1 and sC2 (among
others) in Figure 10.

In summary, the total amount of wrappers can be calculated by multiplying the number of
matchings for those services from C with more than one correspondence to services of K , and also
those which have parameter correspondences. The corresponding formula for the set of wrappers
W is introduced as follows:

size(W)=
N∏

i=1

Vi∑

j=1

Ti∏

t=1
pt ! (1)

where N is the size of interface for C, M the size of interface for K , Vi the amount of matching
from sCi to K interface, 1≤Vi ≤M , Li the size of parameter list for sCi , Ti the amount of
different types on parameter list for sCi , 0≤Ti ≤ Li , pt the amount of occurrences for a type in
the parameter list for sCi , 0≤ pt ≤ Li and pt ! the permutations of the occurrences for a parameter
type on service sCi .

Since the size of W could be quite big (considerably affecting the timing for the current
phase), a different option could also be considered. The previous phase, which analyses Interface
Compatibility, provides an important knowledge from services correspondences, by highlighting

548

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

:CTestSuite

:C TestResults

:Wrapper 1

:Wrapper 2

:Wrapper N

:w1 TestResults

:w2 TestResults

:wN TestResults

:C comp

:K comp

Save Test Results

1.1.

1.2.

[Foreach wi W]

2.1.

Save TR2.2.1.

Save TR2.2.2.

Save Test Results2.2.N.

:CTestSuite

:RunTS
against C Return TR

1.1.1.

:RunTS on
wi W

Run TS on wi 2.1.1.

2.1.2.

2.1.N.

2.1.1.1.

2.1.2.1.

2.1.N.1.

•••

:Evaluate
Results

3.1.Get Test Results from C

[Foreach wi W]

3.2.Get Test Results from wi

:testooj GUI
3.3. Show Compatibility Results & Selected wi

•••

Figure 11. Running TS against both C and K ’s wrappers, and evaluation of their results.

the likely purpose (or behaviour) of different services. This basically concerns the relation between
a service name and its intended purpose as a part of the whole functionality provided by the
components under comparison. Thus, for some services it might become clear what the appropriate
correspondence would be.

Therefore, an integrator could decide to manually set all correspondences, one by one, to
build only one wrapper. And for this the testooj tool also provides ad hoc facilities to do it.
In case no success is obtained with the generated wrapper, another correspondence could be
applied, or even a decision to change to an automatic generation of a bigger set of wrappers could
be made.

After building the wrappers set (W), the Behaviour Compatibility may proceed by taking
each wrapper as the target testing component and executing the Component Behaviour TS.
Figure 11 shows three steps of the process: (1) how test results are obtained from the original
component C ; (2) how wrappers of candidate component K are tested against the TS gener-
ated for C and (3) how results from tested wrappers are compared with those from C. Test
cases evaluation is done by means of the returned value, which is a serialized String. Thus, the
evaluation on each test case gives a binary result: either success or failure. The percentage of
successful tests from each wrapper determines its acceptance or refusal, that is either killing
the wrapper (as a mutation case) or allowing it to survive. The greater the killed wrappers, the
better it is, because it might facilitate making decisions on compatibility for the component under
evaluation.

The Behaviour Compatibility phase is illustrated as follows by using the case study that has
been developed in the previous sections.

549

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

addBufferToList

root

putInBuffer

clear

setAdd

addToBuffer

clear

addPlus addBufferToList addMinus addMultiply addDivide

setMultiplyaddMultiply addMultiply addMultiply addMultiply addMultiply

addDot

addMultiply

JCalculator

setExpressionaddPlus clear. . . addBufferToList addPlus clear.

setDivideaddDivide addDivide addDivide. . . addDivide addDivide addDivide.

setSubtractaddMinus addPlus clear. . . addBufferToList addPlus clear.

notifynotify notify notify. . . notify notify notify.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

JCalc

evalExpressioncalculate calculate calculate calculate calculate calculate

getExpressiontoString toString toString toString toString toString

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 12. Tree from where wrappers to JCalc01a are generated.

Figure 13. JCalculator’s wrappers to the JCalc component.

6.1. Testing-based compatibility between JCalculator and JCalc01a

In order to initiate the Behaviour Compatibility between JCalculator and JCalc01a, it is
required to build the wrappers setW according to the syntactic matching list generated in the second
phase of Interface Compatibility. The highest level of compatibility has been then considered
for building the wrappers in this case study. Figure 12 shows the tree that is generated before
building wrappers, where the size of the leaves level rises to 2904—i.e. the size of W . Only three
services from JCalculator involved a matching with more than one service from JCalc01a:
the setAdd service with six matches and both setExpression and setSubtract with
22 matches each—as can be seen in Table VI from Section 5.2. Formula (1) gives the size(W):
6∗22∗22=2904. Figure 13 shows how the testooj tool presents the list of generated wrappers,
where in particular the first wrapper is displayed, which corresponds to the first path (to the left)
in the wrappers tree in Figure 12—marked with dashed lines. Generation of the wrapper set W
was done in about 1.5 h.

550

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Figure 14. Execution of JCalculator’TS to analyse semantic compatibility of JCalc01a.

Table VII. Summary of results from running JCalculator’s TS on JCalc01a.

Case Success (%) Wrappers

1 100 1
2 77.77 1
3 75 20
4 72.22 20
5 69.44 6
6 52.77 80
7 50 163
9 8.33 1290
10 0 1323

Total 2904

In order to evaluate the semantic compatibility, the next step is to run the Component Behaviour
TS saved on the MuJavaJCalculator file on each wrapper from W . For this the testooj
tool provides an executor facility, which executes the MuJava test cases, and takes the testing file
iterating through the wrappers list. For this case study, the execution was done in about 7 h.

Then by pressing the ‘Result Analysis’ button, testooj shows a table with the list of wrappers,
whose cells are marked with ‘X’ if the corresponding test case shows a different result when
comparing with the original component JCalculator (see Figure 14). Those failed wrappers
correspond to killed mutants (in mutation language), since they were generated by the application
of the interface mutation technique. Table VII shows a summary of results where only one wrapper
passed successfully the tests, which then corresponds to an alive mutant. This means that a specific
wrapper has been identified whose behaviour is exactly equal to the original component, and
has been checked with an adequate TS according to the selected black-box coverage criteria.
Therefore, the example reveals that JCalc01a is a fair option as a replacement component for
JCalculator.

Nevertheless, there is another wrapper with a quite high percentage of successful results, i.e.
77.77%, which actually involves only one wrong service matching: from the setSubtract
service to del service of JCalc01a (instead of addMinus which implies the true matching).
Even when this wrapper is clearly a faulty version of the ‘alive’ wrapper (with 100%), it could
represent an alternative good choice by describing a percentage above 70%.

The survivor wrapper not only helps to discover compatibility between JCalculator and
JCalc01a, but it also represents a potential artifact to be used by an integrator to adapt the
candidate component (JCalc01a in this case study) to be effectively assembled into the system.

551

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

Table VIII. Results from running the second group of wrappers for JCalc01a.

Case Success (%) Wrappers

1 100 1
2 16.66 90
9 8.33 20
10 0 170

Total 281

6.2. Size reduction of wrappers set

The set of wrappers could grow on size pretty high according to matching cases identified on
the Interface compatibility phase. Nevertheless, most of them certainly will correspond to faulty
versions of a target wrapper—the one that can describe the true service matching. Thus, many
wrappers in the set do not qualify as interesting artefacts to be considered on an evaluation.

For example, the amount of wrappers for the developed case study could grow over a thousand
million when only soft-matches are considered. Instead, the wrapper set has a size of only 2904,
which is far lower from that hypothetical initial size. This reduces the testing effort and increases
the performance of the process.

Reduction strategies are applied on the Interface compatibility phase, with the intention to
increase the amount of higher levels of compatibility—i.e. exact-matches cases or at least near-
exact-matches. Hence, the practical approach that was implemented involves to analyse service
names in order to find substring correspondences—as mentioned in Section 5. In the case study
for example, there is a near-exact-match for services setMultiply and setDivide with
addMultiply and addDivide, respectively. Even setAdd service obtained a less amount of
correspondences (6 instead of 22), by using such strategy.

A second group of 281 wrappers has been built concerning interface mutation cases not consid-
ered on the set of 2904 wrappers. This means, lower compatibility levels were applied this time. For
instance, the two soft-match correspondences for the putInBuffer service were considered this
time (instead of near-exact-match), which can be seen in Figure 9 (Section 5.2). The results after
running the Component Behaviour TS for JCalculator can be seen in Table VIII, where one
wrapper passed successfully the tests and the rest obtained either zero or a very low percentage of
success. This means that there is another wrapper that could actually survive. This second survivor
wrapper has the only difference of a matching from putInBuffer service to add(String
s) service (see Figure 9)—which in fact represents a true matching as well, although actually
inherited from a superclass in the JCalc01a component.

This second survivor wrapper could pass unrecognized in a normal process when only high
compatibility levels are considered. Nevertheless, the important goal is being able to properly
recognize a semantic compatibility, which was perfectly achieved with the first set of wrappers,
that was even closer to find survivors on most of their members. This second set of 281 wrappers
on the contrary, besides the survivor, was too far from finding survivors. This means that the first
set was based on a stronger basis, which thus expose the importance of the Interface Compatibility
procedure.

7. DESCRIPTION OF THE EXPERIMENTS

In Section 3.1 it was mentioned that the case study concerning the Java calculator JCalculator
was actually developed with 13 components. Only one component has been shown so far for
running a comparison, the JCalc01a component. This section exposes the evaluation of the
remaining components to observe different situations when dealing with externally developed
components. After that, another experiment is introduced, concerning a completely different set
of components.

552

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Table IX. Java calculators evaluated on compatibility w.r.t. JCalculator.

Component Versions Content (classes) Source code available Compatible

JCalc 0.1a 5 Yes C
0.1b 4 Yes C
0.0.3a 6 Yes X
0.0.4a 6 Yes X
0.1.5 17 Yes X

NumberMonkey 3.0b 5 Yes C
TerpCalc 4.0 32 Yes C
GCalc 3.0 >100 Yes X
JAC 1.1.232 20 Yes X
JSciCalc 2–0.3 >100 Yes X
OpenCalculator 0.19 38 No X
PocketCalc 1.1 3 Yes X
SolCalc 1.1 3 Yes X

However, before giving details of the two case studies, the whole experiment is presented in a
formal way by describing its associated features. The first aspect implies the research hypothesis
that was presented before introducing the case study of a Java calculator in Section 3.1, and was
stated as follows:

‘The testing-based process for component substitution makes possible to select a replacement
component for an original component with a measurable degree of compatibility’.

Particularly, compatibility is expressed in terms of the syntactic and semantic distances (being,
respectively, interface and behaviour compatibility), which then represent the dependent variables.
Independent variables involve the elements used to obtain a syntactic and semantic distance, as
follows:

• Syntactic distance. Independent variables concern the elements from each service signatures,
which are analysed to obtain a service matching level. They are defined in Section 5.

• Semantic distance. Independent variables concern each successful or failed test case for each
wrapper, from where the percentage of successful results is calculated to obtain at least a
wrapper that may be considered adequate to exhibit a semantic compatibility. This was defined
in Section 6.1

7.1. Thirteen java calculators

Thirteen Java calculators have been downloaded from different web sites and used for evaluation
against the JCalculator component. The JCalc component particularly includes five versions,
from where version 0.1a was already observed along the previous sections, since it was used
to illustrate the whole assessment process presented on this paper. Table IX shows the amount
of classes comprising each component (Java packages) in order to have a perception of their
complexity, together with the final result on compatibility (in a reduced form: acceptance or
refusal). Each case of comparison is explained in a more detail as follows.

7.1.1. Compatible components. Table X presents a summary of second and third phases of the
assessment process applied on the four compatible components, including version 01a of JCalc,
in order to contrast the results of each case. Additionally, Table XI shows the results of running
the TS for JCalculator against the four compatible components.

JCalc01b: This component is very similar to the previous version, although it provides an extra
mathematical service called addNegative. Although this produces additional correspondences
on the Interface Compatibility phase, the resulting value remains the same as in the first version of
JCalc (seeTableX), evenwhen the same situation of amanualmatching set forevalExpression
service was required this time as well. However, the additional correspondences have affected the

553

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

Table X. Compatible Java calculators w.r.t. JCalculator.

Behaviour compatibility

Component Facade class Interface∗ compatibility Wrappers Best wrapper

JCalc01a JCalcList.class 92† 2904 100% success
JCalc01b CalculatorList.class 92† 4608 100% success
NumberMonkey CalcData.class 124‡ 2500 100% success
TerpCalc TCBackendInterface.class 164§ 1458 100% success

∗Best interface compatibility value=76.
†One match manually set.
‡Seven matches manually set.
§Eight matches manually set.

third phase, by making the wrapper set to grow up to 4608 in size. As can be seen in Table XI, the
set of successful cases for JCalc01b is the same as in JCalc01a.

NumberMonkey: For this component, the second phase revealed an important situation of
mismatching. The reason seem to be an existing difference in the distribution of functionality
among the component services. Thus the initial result included three mismatches, which required
a manual set of correspondences, hence not to end up the process at this point. The mismatches
involve services putInBuffer, evalExpression and isNumberInBuffer. In addition,
after doing a thorough inspection of the remaining correspondences, four other required matches
were set, involving services with the mathematical operations. After this, the resulting value for
Interface Compatibility could be calculated, as can be seen in Table X, which is bigger than the
result for the previous two components. This means that there is a bigger compatibility distance
between JCalculator and NumberMonkey.

However, for the third phase a smaller set of wrappers (2500) was generated (see Tables X
and XI), where more cases of successful results where discovered and one of the wrappers passed
successfully 100% of the test cases. The last fact allows to have a certainty of compatibility
between the comparing components.

TerpCalc: Similar to NumberMonkey component, the Interface Compatibility procedure
discovered a high condition of mismatching for this component. The initial result included two
mismatches concerning services: isNumberInBuffer and evalExpression—the latter
with a similar case as on the first two versions of JCalc component. However, after a deep
analysis of the remaining correspondences, six other services required a manual set of matches.
Such services are those related to mathematical operations together with services putInBuffer
and clear. The Interface Compatibility result has the highest value, as shown in Table X, which
may also indicate about the complexity to integrate TerpCalc component as a replacement for
JCalculator.

The third phase in this case produced the smallest set of wrappers (1458), with the smallest set
of successful cases as well, as shown in Tables X and XI. Moreover, from the wrappers set, three
wrappers passed successfully 100% of the test cases. Such wrappers involve true correspondences
for all services, except for service clear, which seems to not affect the execution of the remaining
services. Thus, the incorporated manual matching was not really required, since the other two
initial matches were already enough.

7.1.2. Incompatible components. Table XII presents a summary of incompatibility reasons discov-
ered for 8 out of the 13 components used to apply the substitutability assessment process. Basically
for components JCalc003a, JCalc004a, PocketCalc and SolCalc, the problem that has
been found is that no back-end interface is provided, just a front-end GUI. This means that
those components were not developed to interoperate with other components, but only to work
in isolation. For the remaining components, some particular adaptation in order to achieve the
required integration could be applied. However, since there is a massive difference with respect to

554

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Table XI. Results of running JCalculator’s TS on compatibleComponents.

Case Success(%) Wrappers

JCalc01a
1 100 1
2 77.77 1
3 75 20
4 72.22 20
5 69.44 6
6 52.77 80
7 50 163
9 8.33 1290
10 0 1323

Total 2904

JCalc01b
1 100 1
2 77.77 6
3 75 25
4 72.22 30
5 69.44 9
6 52.77 165
7 50 271
9 8.33 1779
10 0 2322

Total 4608

NumberMonkey
1 100 1
2 83.33 4
3 77.77 8
4 75 4
5 61.11 32
6 55.55 16
7 58.33 15
8 52.77 32
9 30.55 64
10 36.11 128
11 8.33 849
12 0 1347

Total 2500

TerpCalc
1 100 3
2 75 16
3 50 32
4 25 48
5 61.11 32
6 55.55 16
7 11.11 124
8 0 1235

Total 1458

JCalculator component, the effort for adaptation may be highly unreasonable. Those compo-
nents represent calculators with an unexpected complexity, which will not be initially exploited in
the targeted system.

7.1.3. Component selection. After a whole view of the results obtained on the subsequent execu-
tions of the assessment procedure on the different components, a final decision must be made for
selecting one of the components as a replacement for JCalculator. Four out of 13 components

555

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

Table XII. Incompatible Java calculators w.r.t. JCalculator.

Component Incompatibility

JCalc003a Fully user oriented. Input only through GUI. No loose couple back-end
JCalc004a Almost no difference with JCalc003a
JCalc015 Very different from the other versions. The expected input implies a whole mathematical

expression, instead of accepting operands and operators to build an expression and then
doing the evaluation and getting a result

GCalc Not easy to solve a matching. Change of internal representation of a mathematical expression
by using a tree structure, due to its purpose which implies the rendering of graphics from
mathematical functions

JAC Similar reason to GCalc, although it does not provide graphical drawing of mathematical
functions

JSciCalc Similar reason to JAC
OpenCalculator Similar reason to JAC and also JCalc015
PocketCalc Similar reason to JCalc003a
SolCalc Similar reason to JCalc003a

resulted with an evident compatibility. From that set of four compatible components, however,
the two first versions of JCalc component involved the minimum effort on additional setting of
manual matching. From these two JCalc versions, JCalc01a seems to be the initial consider-
ation as a replacement for JCalculator. However, the system where the selected component
will be integrated has been presented in a situation of evolution (see Section 3.1). Therefore, an
attractive option could be the selection of TerpCalc component, from its additional functionality
related to scientific mathematical functions and the graphical drawing capability.

7.2. JTopas project

Another experiment was carried out in order to observe the effectiveness of the process. In
this occasion, the set of components was downloaded from the Software-artefact Infrastructure
Repository (SIR) [42] http://esquared.unl.edu/sir, which is a public repository intended to be used
as a benchmark for testing experiments.

The JTopas Java package was selected, which provides a generic, multi-purpose tokenizer
for ‘readable’ text (e.g. source code, HTML, XML, ASCII text), to be integrated into a parser
component. JTopas is also available at http://jtopas.sourceforge.net. For this experiment the
PluginTokenizer class has been selected, which represents the main functionality and makes
use of the rest of the classes in the package. The whole project of JTopas includes four versions,
from where version0 (zero) has been considered as the original component, and the other three
versions as the candidate components.

The first phase of the Substitutability Assessment Process was then initiated in order to develop
the Component Behaviour TS for version 0 of PluginTokenizer. Together with the project
available at the SIR, a TS on JUnit format is also provided, which was used as a base for learning
about the component with the intend to develop the corresponding TS. Thus, the initial step for
describing the protocol of use (to represent operational sequences) has been done to achieve an
adequate TS for uncovering the required testing coverage criteria—as discussed in Section 4. As
a result of this step, three test templates were generated.

The downloaded TS from the project also provided a set of test data, which consist of 14
HTML files to be ‘tokenized’. These test data were then combined into the three test templates
to generate a TS comprising 42 test cases (on JUnit format) that were saved on a file called
JUnitPluginTokenizer.

After that, the TS was run against version 0 of PluginTokenizer, that is the original compo-
nent, in order to validate the TS. Since results were successful, the next step was to derive a version
of the TS on MuJava format which was saved on a file called MuJavaPluginTokenizer, to
be used on the third phase of the process.

556

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

Figure 15. Interface compatibility between version 0 and 1 of PluginTokenizer.

The second phase was then initiated, that is the Interface Compatibility, which is partially shown
in Figure 15, where it is particularly displayed with version 1 of PluginTokenizer as the
candidate component. As can be seen, the results involved only exact-matches. In fact, version 1
has a bigger interface, which can be perfectly discovered if version 1 is assumed as the original
component. In this case, the table displays dark cells for the additional services.

After version 0, the remaining versions actually maintain the same interface for the
PluginTokenizer class. However, in version 3 an important change has been done to part of
the package, which basically involves some optimizations to their internal functions.

As only exact-matches has been found, only one wrapper needs to be generated. The only
additional concern may involve those services whose parameter list has a size bigger than one.
Some of them include parameters with the same (or equivalent) types—like addBlockComment
with two String parameters (see Figure 15). Those parameters might be located on a different
order (into the parameter list) for different versions. However, since those components correspond
to successive versions (i.e. upgrades), the initial assumption is that no such changes are done to
those services—in which there is no externally apparent change. This is even more clear, when
the major changes that were observed involve the addition of extra services into the interface.

One wrapper was generated for each of the three remaining versions, from where the execution
of the TS gave 100% successful results. Therefore, the need for generating other wrappers is not
required to make a decision on compatibility for the set of upgrades.

Whether hypothetically the generated wrappers would give unsuccessful results, the next option
would be among the combinations of parameters for those whose type is identical. As four services
involve two alike parameters and three others involve six alike parameters, the amount of wrappers
by considering that option can actually grow to 3456—according to the wrappers size formula (1)
described in Section 6.1.

7.3. Discussion of results

Concerning the research hypothesis, the two instances of the experiment give a clear evidence of the
capability of the approach to select a replacement component from a set of candidate components.

557

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

The testing-based process for component substitution has provided the compatibility degree of
all candidate components based on the syntactic and semantic distance, which are, respectively,
calculated in terms of the interface and behaviour compatibility.

The experiment consisted of two different substitution cases. The first one involved the substi-
tution of a given component by considering a set of candidates including both upgrades from the
same provider and completely different components from other providers. As a result, four fully
compatible components were identified (shown in Tables X and XI). The second one is referred
to the substitution of a component by a new version (upgrade) proceeding from the same vendor,
where a perfect match was also discovered.

Therefore, the applicability of this approach is not constrained only to evaluate subsequent
releases of a certain component, but also to include components from different providers. However
such an application requires a previous searching step for potential components, in order to establish
a set of candidates to be considered for evaluation. Therefore, when such set of candidates does
not contain any component offering neither a compatible interface nor a similar behaviour, the
process will certainly provide a negative result, thus preventing a lower-grade on the current system
stability.

With these considerations, the research hypothesis has been visibly confirmed, since the testing-
based process for component substitution makes possible to select a replacement component for
an original component with a measurable degree of compatibility.

7.4. Threats to the validity of the experiment

This section discusses several issues that could threaten the validity of the experiment and how
they have been alleviated.

7.4.1. Construct validity. The construct validity is the ‘degree to which the independent and
the dependent variables are accurately measured by the measurement instruments used in the
experiment’ [43].

In this experiment, the dependent variables are defined by the syntactic and semantic distance,
which are, respectively, calculated by means of the interface and behaviour compatibility. For inter-
face compatibility, the independent variables involve the basic elements from services signatures,
which are syntactically compared to measure the matching level for interface compatibility. For
the behaviour compatibility, the independent variable is deterministically counted as the number
of faults in each wrapper.

7.4.2. Internal validity. The internal validity is the degree of confidence in a cause–effect rela-
tionship between factors of interest and the observed results [43].

According to the nature of both experiments—automatic and deterministic generation of a TS,
comparison of components interfaces, generation of a set of wrappers, execution of test cases and
deterministic result analysis—all variables have been controlled, and therefore threats to internal
validity are minimized.

7.4.3. External validity. The external validity is the ‘degree to which the research results can
be generalized to the population under study and other research settings’ [43]. The greater the
external validity, the more the results of an empirical study can be generalized to actual software
engineering practice.

In both case studies, components were downloaded from public repositories. In the first case
study, 13 components were used, which involved a wide range of different features to deal with.
In the second case study, four versions of a component from a different domain were evaluated,
which presented a more complex functionality and interface. Therefore, a wide experience has been
gained with component samples from different domains and also different sizes, each providing a
representative case which is likely to occur in actual scenarios of substitution.

Even when the approach seems to be good enough for managing components’ substitution, more
experimentation could certainly be very rewarding. Nevertheless, since dependent and independent

558

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

variables are associated with a clear and objective set of methods and equations, the whole approach
presents an appropriate validity. Therefore, the main effort could be focused on improving the
user-friendly automation of the approach, in order to release a version which could be finally
adopted by the software industry.

8. CONCLUSIONS

The approach presented in this paper is focused on the maintenance stage where component-
based systems require updates by replacing certain components with new releases (upgrades)
or completely different software units (i.e. components from a different vendor). The proposal
involves a specific process that uses testing coverage criteria to describe components’ behaviour
with the purpose to analyse compatibility on candidate replacement components. In this way, the
Substitutability Assessment Process presented in this paper integrates two aspects: component
selection and also testing tasks. Therefore, the approach provides integrators in a concrete manner
to reduce their usual effort under the support of a reliable process.

Automation of the whole process is currently supported by the testooj tool, which helps to
reduce time and effort and also reinforces control over conditions of each phase in order to achieve
a rigorous approach. However, an additional experience was achieved in a previous work [11] with
a similar prototype of this tool implemented in the .Net framework, where a reflection mechanism
is also available which could therefore easily allow the application of the process.

A subject that requires additional advance concerns scalability upon the generation and manage-
ment of wrappers (as mutation cases). Although some heuristics were already defined, an enhanced
set of heuristics could highly improve the efficiency of the approach. Another helpful strategy may
imply to minimize branching in the wrappers generation tree, which could be achieved by searching
repeated nodes on each path from the tree, that is, a service from a candidate component which
is used more than once in correspondence to different services from the original component—e.g.
the service addPlus in the second path (to the left) from the tree in Figure 12 (Section 6.1).

Additionally, the particular features concerning testing strategies, which are the basis of this
approach, give high opportunities to automate other aspects from the generation of the TS. For
instance, the protocol of use could be derived from a monitoring mechanism of the actual interac-
tions of components within a system. In this case the generation of a log file at run-time could be
an effective manner, where either components could be instrumented or an intermediate wrapper
focused on the logging task could be used as a non-invasive strategy.

Finally, another issue also related with efficiency concerns the size of the TS, for which appro-
priate reduction strategies might give the chance to work with a smaller set of test cases without
affecting the required efficacy and reliability of the process. This may involve to select a different
combination algorithm from those mentioned in Section 4.1, a reduced set of test data, and even
to design the TS with a less restrictive testing criteria—like covering the all-operators criterion
instead of all-expressions, according to what has been highlighted in Section 4.1.

REFERENCES

1. Heineman G, Council W. Component-based Software Engineering—Putting the Pieces Together. Addison-Wesley:
Reading, MA, 2001.

2. Warboys B, Snowdon B, Greenwood R, Seet W, Robertson I, Morrison R, Balasubramaniam D, Kirby G, Mickan K.
An active-architecture approach to COTS integration. IEEE Software 2005; 22(4):20–27.

3. Cechich A, Piattini M, Vallecillo A. Component-based Software Quality: Methods and Techniques (Lecture Notes
in Computer Science, vol. 2693). Springer: Berlin, 2003.

4. Jaffar-Ur Rehman M, Jabeen F, Bertolino A, Polini A. Testing software components for integration: A survey
of issues and techniques. Software Testing, Verification and Reliability 2007; 17(2):95–133. Available at:
http://www.interscience.wiley.com.

5. Mariani L, Papagiannakis S, Pezzè M. Compatibility and regression testing of COTS-component-based software.
Twenty-ninth International Conference on Software Engineering (ICSE’07), Minneapolis, U.S.A. IEEE Computer
Society Press: Silver Spring, MD, 2007; 85–95.

559

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

A. FLORES AND M. POLO

6. Stuckenholz A. Component evolution and versioning state of the art. ACM SIGSOFT Software Engineering Notes
2005; 30(1):7–20.

7. Flores A, Polo M. Towards software component substitutability through black-box testing. Fifth Workshop
on System Testing and Validation (STV’07), During 20th International Conference on Software and Systems
Engineering and their Applications (ICSSEA’07). Fraunhofer IRB Verlag: Paris, France, 2007; 111–120.

8. Freedman RS. Testability of software components. IEEE Transactions on Software Engineering 1991; 17(6):
553–564.

9. Edwards SH. A framework for practical automated black-box testing of component-based software. Software
Testing, Verification and Reliability 2001; 11:97–111. Available at: http://www.interscience.wiley.com.

10. Polo M, Tendero S, Piattini M. Integrating techniques and tools for testing automation. Software Testing,
Verification and Reliability 2007; 16(1):1–37. Available at: http://www.interscience.wiley.com.

11. Flores A, Garcia I, Polo M. Net approach to run-time component integration. Third Latin American Web Congress
(LA-WEB’05), Buenos Aires, Argentina. IEEE Computer Society Press: Silver Spring, MD, 2005; 45–48.

12. JUnit Home Page. JUnit.org resources for test driven development, 2008. Available at: http://www.junit.org/home.
13. �Java Home Page. Mutation system for Java programs, 2008. Available at: http://cs.gmu.edu/∼offutt/mujava/.
14. Szyperski C. Component Software: Beyond Object-oriented Programming (2nd edn). Addison-Wesley: Reading,

MA, 2002.
15. Wu Y, Chen MH, Offutt J. UML-based integration testing for component-based software. Second International

Conference on Cots-based Software Systems (ICCBSS’03) (Lecture Notes in Computer Science, vol. 2580),
Ottawa, Canada. Springer: Berlin, 2003; 251–260.

16. Mann S, Borusan A, Ehrig H, Große-Rohde M, Mackenthun R, Sunbul A, Weber H. Towards a component
concept for continuous software engineering. Technical Report, Fraunhofer ISST, Berlin, Germany, October 2000.

17. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley: Reading, MA, 1995.

18. Riggs R. JavaTM product versioning specification. Technical Report—Online, SUN Microsystems Inc., November
1998. Available at: http://java.sun.com/j2se/1.5.0/docs/guide/versioning/spec/versioningTOC.html [November
2007].

19. Ghosh S, Mathur AP. Interface mutation. Software Testing, Verification and Reliability 2001; 11:227–247.
Available at: http://www.interscience.wiley.com.

20. Wu Y, Pan D, Chen MH. Techniques for testing component-based software. Seventh International Conference
on Engineering of Complex Computer Systems (ICECCS’01), Skovde, Sweden. IEEE Computer Society Press:
Silver Spring, MD, 2001; 222–232.

21. Wu Y, Pan D, Chen MH. Techniques of maintaining evolving component-based software. Sixteenth International
Conference on Software Maintenance (ICSM’00), San Jose, CA, U.S.A. IEEE Computer Society Press: Silver
Spring, MD, 2000; 236.

22. Orso A, Do H, Rothermel G, Harrold MJ, Rosenblum D. Using component metadata to regression test
component-based software. Software Testing, Verification and Reliability 2007; 17:61–94. Available at:
http://www.interscience.wiley.com.

23. Atkinson C, Grob HG, Barbier F. Component integration through built-in contract testing. Component-based
Software Quality: Methods and Techniques (Lecture Notes in Computer Science, vol. 2693). Springer: Berlin,
2003.

24. Alexander R, Blackburn M. Component assessment using specification-based analysis and testing. Technical
Report SPC-98095-CMC, Software Productivity Consortium, Herndon, VA, U.S.A., May 1999.

25. Cechich A, Piattini M. Early detection of COTS component functional suitability. Information and Software
Technology 2007; 49(2):108–121.

26. Mariani L, Pezze M, Willmor D. Generation of integration tests for self-testing components. Inter-
national Workshop of Testing Methodologies (ITM’04) held at FORTE’04 (Lecture Notes in Computer
Science, vol. 3236), Toledo, Spain. Springer: Berlin, 2004; 337–350.

27. The JavaTM utorials. Lesson: Regular expressions. Sun Microsystem Inc., 2008. Available at: http://java.sun.com/
docs/books/tutorial/essential/regex/index.html.

28. Binder R. Testing Object Oriented Systems—Models, Patterns and Tools. Addison-Wesley: Reading, MA, 2000.
29. OMG. Unified modeling language: Superstructure version 2.0. Technical Report, Object Management Group,

Inc., 2005. Available at: http://www.omg.org.
30. Kirani SH, Tsai WT. Method sequence specification and verification of classes. Journal of Object-oriented

Programming 1994; 7(6):28–38.
31. Myers GJ. The Art of Software Testing (2nd edn). Wiley: New York, 2004.
32. Ammann P, Offutt A. Using formal methods to derive test frames in category-partition testing. Ninth Annual

Conference on Computer Assurance (COMPASS’94), Gaithersburg, MD, U.S.A. IEEE Computer Society Press:
Silver Spring, MD, 1994; 69–80.

33. Malaiya Y. Antirandom Testing: Getting the most out of Black-box Testing. International Symposium on Software
Reliability Engineering (ISSRE’95), Toulouse, France. IEEE Computer Society Press: Silver Spring, MD, 1995;
86–95.

34. Czerwonka J. Pairwise testing in real world. Twenty-fourth PNSQC, Portland, OR, U.S.A., 2006; 419–430.
35. Grindal M, Offutt A, Andler S. Combination testing strategies: A survey. Software Testing, Verification and

Reliability 2005; 15(3):167–199. Available at: http://www.interscience.wiley.com.

560

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

TESTING-BASED PROCESS FOR COMPONENT SUBSTITUTABILITY

36. Offut A. A practical system for mutation testing: Help for the common programmer. Twelfth International
Conference on Testing Computer Software, Washinton, DC, U.S.A., 1995; 99–109.

37. MuClipse Home Page. Eclipse Plugin for the MuJava mutation engine, 2008. Available at:
http://muclipse.sourceforge.net/.

38. Smith B, Williams L. An empirical evaluation of the MuJava mutation operators. Testing: Academic and Industrial
Conference Practice and Research Techniques (TAICPART-MUTATION), Windsor, U.K., 2007; 193–202.

39. Gosling J, Joy B, Steele G, Bracha G. JavaTM Language Specification (3rd edn). Sun Microsystems Inc.,
Addison-Wesley: U.S.A., 2005. Available at: http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf.

40. Zaremski AM, Wing J. Specification matching of software components. ACM Transactions on Software
Engineering and Methodology 1997; 6(4):141–172.

41. Delamaro M, Maldonado J, Mathur A. Interface mutation: An approach for integration testing. IEEE Transactions
on Software Engineering 2001; 27(3):228–247.

42. Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering: An International Journal 2005; 10(4):405–435.

43. Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A. Experimentation in Software Engineering:
An Introduction. Kluwer Academic: Norwell, MA, 2000.

561

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:529–561
DOI: 10.1002/stvr

	stvr438_web.pdf

