
MIT Open Access Articles

COIM: An Object-Process Based Method for Analyzing Architectures
of Complex, Interconnected, Large-Scale Socio-Technical Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Osorio, Carlos A., Dov Dori, and Joseph Sussman. “COIM: An Object-process Based
Method for Analyzing Architectures of Complex, Interconnected, Large-scale Socio-technical
Systems.” Systems Engineering 14.4 (2011): 364–382. CrossRef. Web.

As Published: http://dx.doi.org/10.1002/sys.20185

Publisher: John Wiley & Sons, Inc.

Persistent URL: http://hdl.handle.net/1721.1/78281

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/78281
http://creativecommons.org/licenses/by-nc-sa/3.0/

MMaassssaacchhuusseettttss IInnssttiittuuttee ooff TTeecchhnnoollooggyy
EEnnggiinneeeerriinngg SSyysstteemmss DDiivviissiioonn

Working Paper Series

ESD-WP-2009-12

COIM: AN OBJECT-PROCESS BASED METHOD FOR

ANALYZING ARCHITECTURES OF COMPLEX,
INTERCONNECTED, LARGE-SCALE

SOCIO-TECHNICAL SYSTEMS

Carlos A. Osorio1, Dov Dori2, Joseph Sussman3

1Universidad Adolfo Ibáñez,
Santiago, Chile

carlos.osorio@uai.cl

2Technion, Israel Institute of Technology,
Haifa, Isreal, and

Massachusetts Institute of Technology,
Cambridge, MA

dori@mit.edu

3Massachusetts Institute of Technology,
Cambridge, MA

sussman@mit.edu

August 2009

COIM: An Object-Process Based Method for Analyzing
Architectures of Complex, Interconnected, Large-Scale

Socio-Technical Systems

Carlos A. Osorio1 (carlos.osorio@uai.cl), Universidad Adolfo Ibáñez (Santiago, CHILE)

Dov Dori (dori@mit.edu), Technion, Israel Institute of Technology (Haifa, ISRAEL), and
Massachusetts Institute of Technology (Cambridge, MA)

Joseph Sussman (sussman@mit.edu), Massachusetts Institute of Technology,
(Cambridge, MA)

Version 1.6, date August 8th, 2009.

Abstract
There is growing evidence of the relevance of human behavioral factors in the

success of development of new products, processes and services. The evidence is
even clearer when the forces affecting the development and evolution of long-
lived, large, and open complex socio-technical systems are researched. Methods
that study the architecture of such types of systems can help scholars and
practitioners to better understand, manage, and develop socio-technical systems.
We propose an approach and a method to address these needs that is grounded in
the theory of systems architecture and builds on the strengths of Object Process
Methodology (OPM) and the process for representing Complex Large-scale
Interconnected Open Socio-technical (CLIOS) systems. We do so by integrating
these methods into the CLIOS-OPM Integrated Method (COIM). COIM is
conducive to studying a system’s architecture and its evolution, as it is enhanced
by a set of qualitative methods for answering questions about the reasons (why)
and process (how) of change in human-made systems over time.

Keywords: system architecture, evolution, legacy, Object Process Methodology (OPM),
complex large-scale interconnected open socio-technical system (CLIOS).

1 The original research for this article was generously supported by MIT Communications Futures
Program (CFP), its industry sponsors, and NSF grant #EIA-0306723. The opinions and conclusions
of this report, however, represent my views only and do not imply any endorsement by the
National Science Foundation, CFP, or its sponsors.

 2

1. Introduction and Research Objectives
This paper is motivated by an effort to study and model the forces affecting the

development and evolution of long-lived, large, and open complex socio-technical
systems, building on research outcomes of scholars who have effectively worked in
this area.

Osorio (2007) focused on studying the architectural evolution of a specific type
of long-lived socio-technical systems, namely municipal electric utilities (MEUs). In
doing so, he encountered limitations on the theory and available methods and
processes for answering his research questions, as there was no single satisfactory
method for studying the evolution of the architecture of MEUs and explaining
their diversification into broadband provision. Since this evolution was contrary to
predictions made by scholars and practitioners as to how and why this would
happen, a new way to study and understand this evolution became necessary.

Beyond the particular interest in understanding the phenomena underlying the
evolution of MEUs into broadband providers, there is a more general need to
understand the underlying factors affecting the architectural evolution of complex,
interconnected socio-technical systems. This need is highlighted when we study
long-lived, large, and complex socio-technical systems that are open to the
influences of social actors or have significant impact on society. Some examples are
networks of critical infrastructure, such as transportation, electric power, and
telecommunication systems, aircrafts and spacecrafts, such as the B52 and the
International Space Shuttle, and software systems, such as SAP Enterprise
Resource Planning, or Chile´s nationwide Government Procurement Online
System.

The original architecture, design, and implementation of systems of this type are
normally carried out through careful study and documentation of the functional,
structural, and procedural aspects of the system under development. However,
throughout the lifetime of such systems, humans change them in attempts to
enhance their performance, maintain some or all of their components or
subsystems, update some of their underlying technologies, and adjust their
structure or functions to the changing needs of varying environments. A recurrent
problem with these changes is that they are rarely documented, and even if they
are, the documentation is often inaccessible to the numerous architects and
designers involved in such changes over timeframes that can last many decades
and often transcend the work lifespan of the involved individuals.

Improving this state of affairs requires adequate tools for studying and
representing the architecture of this type of systems. Building on prior research,
this paper proposes COIM—CLIOS-OPM Integrated Method—as an integrated
approach, method, and notation for representing and studying architectures of
complex, large-scale interconnected socio-technical systems and their evolution
over time.

While no single approach can serve all purposes, a combination of methods
under a guiding theory could facilitate the study of the architecture of socio-
technical systems. We base our analysis on the theory of system architecture,

 3

which provides a useful overarching framework for understanding the various
factors influencing the overall form, function, and concept of a system’s
architecture.

We review the literature on systems architecture and system representation,
with special focus on methods, strategies, and processes of representing the
structure and behavior of systems. Based on the guiding theory of system
architecture, COIM is an integrated methodology that builds on the representation
stage of the Complex Large-scale Interconnected Open Socio-technical (CLIOS)
Process and Object Process Methodology (OPM).

When appropriate and necessary, we illustrate COIM with examples from our
previous research on the diversification of municipal electric utilities into
broadband services, intelligent transportation systems, and others.

2. Literature Review and Contributions to Theory
System architecting is a developing field of study (Whitney, Crawley et al. 2004).

What some have called an “art” (Rechtin and Maier 2000) is increasingly gaining
characteristics of science and engineering. Despite these developments, the
question of how to study the architecture of large-scale socio-economic systems
and their evolution has remained open. Necessary steps in our research are to
understand (i) what do we mean by system architecture, (ii) what evolution a
system's architecture can undergo, and (iii) what frameworks might be useful and
how can they effectively be combined to represent the architecture and its
evolution.

What is System Architecture?

Many disciplines in engineering and management sciences provide their own
definitions for system architecture. Computer science has been an important
source of contributions to the study of the architecture of complex systems. Blaaw
(1997) defined computer architecture as “the minimal set of properties that
determine what programs will run and what results they will produce.” It is thus
concerned with the “functional appearance” of the computer, or “what should it
do.” In Blaaw's view, the structure is not part of the architecture; rather it
corresponds to different domains of computer design: implementation (logical
structure) and realization (physical structure). In this perspective, the nature of
computer architecture is no different from that of language or software
architecture, ranging from microcode to application. Consequently, Blaaw defined
computer architecture as the outcome of the design of a “programming language
when expressions are costly”.

Also from the field of computer science, (Black 1989) presented a view for
analyzing network architectures and protocols. For Black, network architecture is
the definition of “what things exist” in a network, “how they operate” (protocols)
and “what form they take” (topology). A common feature of the different network
architectures analyzed by Black is the decoupling (Suh 1998) or orthogonality
(Blaaw 1997) between major functions arranged in “layers”. These layers provide
(i) a decomposition into logical subsystems, (ii) standard interfaces among them,

 4

(iii) functional symmetry across nodes (or peer elements), and (iv) command and
control.

In layered architecture, each layer operates independently and interacts with
others via a set of protocols. This idea underlies each of the network architectures
that (Black 1989) studied in his work: (i) Open Systems Interconnection (OSI), (ii)
U.S. Government Open Systems Interconnection Profile (GOSIP), (iii) Systems
Network Architecture (SNA), (iv) Digital Network Architecture (DECnet), and (v)
the Defense Data Network (DDN). Interestingly, all these networks presented the
same underlying concept of layered architecture described by Black.

Hans van Vliet (2001) presented the role of architecture in software
development by identifying and characterizing different architectural styles and
different forces affecting architecture. His focus was on how to identify and
describe different software architectures: shared data, abstract data type, implicit
evocation, and pipe-and-filter. He proposed that software architecture has three
major objectives: (i) communicating among stakeholders, (ii) capturing early
design decisions (legacy and compatibility with early versions), and (iii)
transferring and reusing the system as the basis for a product family (Meyer and
Utterback 1993) by providing access to common code.

In the context of information systems, the Open Group Architectural
Framework (TOG 2001) has defined architecture as “a set of elements (sometimes
called building blocks) depicted in an architectural model, and a specification of how
these elements are connected to meet the overall requirements of an information
system.” This definition requires that connections among elements, which is a
structural aspect of the architecture, be specified in a model. Indeed, model-based
systems engineering is an emerging area

From the literature of product development, Ulrich (1995) defined architecture
as the scheme by which function is allocated to physical components, and argued for its
importance in manufacturing. He stated that architecture is a key driver of
performance and managerial decision-making. More importantly, however, he
argued that architecture is specifically relevant to product change, variety, and
performance, component standardization and managing the product development
process. Ulrich argued that architecture is central to the change of products along
their lifetime, across generations, and within a company’s variety of products. He
suggested that product variety results from flexibility in architecture rather than
from core capabilities (e.g., a factory’s equipment). Ulrich proposed product
variety as a function of the flexibility in product architecture, component
processes, and standardization.

Finally, similarly to Ulrich (1995), Crawley and Weigel (2004) proposed that the
“architecture” of a technical system is defined as the way in which its concept
matches its form to its function. Recent work stating various architectural "views"
provides additional insights into this area (Rhodes, Ross et al. 2009).

We can find parallels among many of the works discussed in this section by
defining architecture in terms of form, function and concept (Crawley and Weigel
2004). From the perspective of Black (1989), the protocols, topology and “what
things exist” can correspond to function, form, and concept. We can also draw

 5

analogy between these ideas and the terms of Ulrich (1995) scheme (concept),
function (function) and physical components (form).

Dori (2002, p. 263) defined system architecture as follows: “System architecture
is the overall system’s structure-behavior combination, which enables it to attain
its function while embodying the architect's concept.” This definition combines the
elements of concept—how the architect envisions the solution of the problem of
combining structural elements and their behavior in a way that enables the system
to function as expected, thereby providing value to its beneficiaries.

Table 1 summarizes the various definitions of system architecture from the
surveyed authors along with the relationships between form, function, concept,
and behavior.

Table 1: Summary of System Architecture Definitions

Definition of System
Architecture

Function defined
in terms of

Concept
defined in
terms of

Form defined in
terms of Source

“the minimal set of properties
that determine what programs
will run and what results they will
produce”

Architecture as
the functional
appearance of the
computer

Not explicit
Structure is not part
of the architecture,
but rather falls into
a design domain

(Blaaw
1997)

“what things exist” in a network,
“how they operate” and “what
form they take”

The effect created
by network
components,
topology and
protocols,
decoupled by
layers

Network
topology,

Network
components are
the basis of form in
a network, and
protocols drive their
behavior

(Black
1989)

(i) a vehicle for communication
among stakeholders, (ii)
capturing early design decisions,
and (iii) providing a basis for
transferring and reusing parts of
the system.

Overall desired
performance of a
software

Understood
as different
architecture
styles

Code, which is
affected by external
forces

(van Vliet
2001)

“a set of elements… depicted in
an architectural model, and a
specification of how these
elements are connected to meet
the overall requirements of an
information system”

“Overall
requirements of
an information
system”

Specification
on how the
elements
are
connected

Elements on a
model

(TOG
2001)

“scheme by which function is
allocated to physical
components”

The function of a
product Scheme Physical

components
(Ulrich
1995)

“the way in which a concept
matches form to function”

A systemʼs
Externally
delivered function

Overall
systemʼs
concept

Form
(Crawley

and Weigel
2004)

“the overall systemʼs structure-
behavior combination, which
enables it to attain its function
while embodying the architect's
concept”

Overall systemʼs
function

A particular
architecting
concept

Structure-behavior (Dori 2002)

”conceptually design, evaluate
and select a preferred structure
for a future state enterprise to

The enterpriseʼs
value proposition
and desired

A particular
concept of
design,

The preferred
structure of a future
state enterprise

Nightingale
and

Rhodes

 6

realize its value proposition and
desired behaviors”

behavior evaluation
and
selection

(2009)

Proposed Definition:

A systemʼs architecture is the
embodiment of a concept for
achieving the desired systemʼs
function in terms of its form, i.e.,
its structure-behavior
combination.

A desired system
function

A particular
architecting
concept

Form as a
structure-behavior
combination

This paper

If we define “form” or “physical components” as “structure-behavior
combination”, then the definitions of Black (1989), Ulrich (1995), Dori (2002), The
Open Group (2001), and Crawley and Weigel (2004) coincide, expressing the same
idea, which we state as follows:

A system’s architecture is the embodiment of a concept for achieving the
desired system’s function in terms of its form, i.e., structure-behavior
combination.

This definition is valid for architecture of any man-made system, from
architecture of instruments and buildings, through software systems, to complex
socio-economic engineering systems.

A useful distinction can be made between intended and emergent architecture.
Intended architecture is a result of an orderly architecting process, which accounts
for requirements and weighs in alternatives before committing to a specific
architecture—the intended one. Emergent architecture is a result of natural or
social evolution over long periods of time. Examples of intended architectures are
those of a jet aircraft or a multi-core processor. Examples of emergent architectures
are those of a living organism (Jacob 1977), or a city.

The difference between architecture and design is subtle. While architectures could
be defined at higher hierarchical levels of abstraction, the different designs based
on an underlying architecture could be defined at lower hierarchical levels. The
BMW 3 Series, for instance, is defined as an entry-level luxury car. There have been
90 different models throughout this product’s lifetime, which can be grouped into
five differentiable types of vehicles based on the same platform: (i) the 3 series
BMW E21 (1975-1983), BMW E30 (1984-1994), BMW E36 (1992-1998), BMW E46
(1999-2006), (ii) BMW E90 (2005-) 3 Series Sedan, (iii) BMW E91 (2006-) 3 Series
Wagon, (iv) BMW E92 (2007-) 3 Series Coupé, and (v) BMW E93 (2007-) 3 Series
Convertible. The general idea is illustrated in the tree in Figure 1: Each architecture
is the distinct combination of Function-Concept-Form nodes that is a path in the
tree. Accordingly, Figure 1 depicts three distinct architectures: (1) Function –
Concept 2 – Form 1, (2) Function – Concept 2 – Form 2, and (3) Function – Concept
2 – Form 3.

 7

Figure 1: Different architectures of the same system, fulfilling the same function

Our working definition of a system’s architecture, as presented in Table 1, is the
way in which a concept maps the system’s form (structure-behavior combination)
onto its function. A first step in the analysis of the architecture of a socio-technical
system is to identify the dominant influences that affect these three major
dimensions of the architecture at the highest hierarchical level.

The theory of system architecture provides a guiding framework for the analysis
of the form (structure-behavior combination), function, and overall concept of a
socio-technical system and its subsystems, as well as the sources of dominant
upstream and downstream influences.

Dominant Upstream Influences (DUI) include the regulatory and legal
environment that affects form and function, corporate and marketing strategy, the
influences imposed by customers and beneficiaries through their needs, the effects
of the competitive environment, the evolution and availability of technology, and
other strategies and internal competences. Dominant Downstream Influences
(DDI) include those arising from the design, implementation, operation, and
evolution of the system.

Figure 2 shows that a system’s architecture can be affected by various factors
not only during its design, construction, and first implementation, but also
throughout its entire operational lifetime via changes in its form (structure,
behavior, or both), function, or concept. In the case of long-lived systems, one
might want to focus on the architectural evolution of a system during its
operational life. For example, we wish to understand how the architecture of a
MEU of interest has evolved, and how the legacy aspects of its architecture have
been playing a role in shaping its current architecture.

The literature review indicates that the theory of system architecture is not
sufficient in that it cannot answer questions of this type. This is the current state of
affairs because (i) system architecture theory is still not yet sufficiently developed,
(ii) system architecture provides guidelines for system decomposition, but it does
not offer methods for system representation, and (iii) system architecture does not
satisfactorily address non-technical issues that greatly impact socio-technical
systems.

 8

Adapted from Crawley and Weigel (2004)

 Figure 2: Dominant Influences on System Architecture

To gain more insight into what is still missing, in the next section we discuss the
evolution of a system’s architecture and methods for representing system
architecture.

Evolution of System Architecture

System architecture theory is in its early stages of development. However, it can
already provide a useful framework for analyzing complex socio-technical systems
and studying their evolution. Using this framework requires understanding of a
given system’s building blocks and its representation, how its architecture evolves,
and what useful ways can be employed to represent the system.

Herbert Simon (1997) presented four principles for complex systems design,
which might be useful for our purpose: homeostasis, membranes, specialization,
and near-decomposability.

Homeostasis is a system’s capacity to attenuate the internal effects of contextual and
environmental changes via feedback, or balancing loops in the system dynamics
jargon, thereby controlling or even reducing the system’s complexity.

Membranes insulate the system and its subsystems, and serve as mechanisms for
transporting information, material, and energy. This is the basis of a work by
Pimmler and Eppinger (1994), proposing strategies for product architecture and
decomposition.

Specialization refers to the diversification of complex functions, which has been
used in methods such as Axiomatic Design (Suh 1998), decomposition strategies
for products (Koopman 1995), and decomposition of the design process (Eppinger,
Whitney et al. 1994).

 9

Finally, near-decomposability is the ability of a system to be decomposed into
structural and dynamically stable subsystems, modules, or subunits.

These principles are different facets of the flexibility of complex systems, which
enables them to adapt and perform new functions. It is this architectural flexibility
that enables system evolution.

From the perspective of von Vliet (2001), the evolution of architecture is affected
by the developing organization—the organization actually “creating” the system.
Evolution has a cyclical relationship with its environment. Von Vliet focuses on the
architecture of software, an interesting contrast to the approach of Blaaw (1997) to
computer (hardware) architecture.

All the cases of computer architecture discussed by Blaaw (1997) occurred prior
to 1985. Once computer and software architecture shifted towards the personal
computer, and the operating system (OS) was separated from the computer, his
vision of architectural evolution ceased to be applicable. Computer and OS
architectures are currently distinctive, and their evolution is marked by different,
yet interrelated, clockspeeds (Fine 1998). Computer architecture evolves about
every other year, characterized by increasing memory and processing capacity,
while software architecture evolves continually. To a great extent, this gradual
software evolution is due to the constant Internet-based distribution of updates
and patches.

The case of computer and OS architecture is an interesting example of
architectural evolution that had initially comprised one integrated system—the
hardware-software monolithic computer—and evolved into two: the hardware
being the physical computer and the software—the OS and various applications.
This development in the computer arena is somewhat similar to a special case of
evolution with relevant implications for technology management, a case in which a
second line of business emerges from internal activities or functions of a socio-
technical system. Studying the relationships between the form and functions of the
components of the infrastructure supporting both services—hardware and
software—can shed light on such evolutions (Osorio 2007).

A key concept in this context is the system’s Externally Delivered Function
(EDF), which is the system’s function at its highest hierarchical level (Crawley and
Weigel 2004). Alternatively, in the terminology of OPM (Dori 2002), EDF is the
system’s (only) function, whereas internal functions are called processes. We shall
henceforth refer to EDF as “function.” The system's function is understood by
decomposing and disaggregating it into several processes (internal functions).
These are usually mutually exclusive, but comprehensively exhaustive (Pimmler
and Eppinger 1994). Thus, the study of architectural system evolution includes
three possible cases: (i) a change in the actual function, (ii) the emergence of a new
function, and (iii) internal process changes with no change to the existing function.

The first case, change in the system's actual function, pertains to the basic form
of architectural evolution. It is related to changes in processes and associated form
designed to enhance the original function of the system—the reason for developing
it in the first place. Sometimes, however, intended architectural evolution of a
system can result in severe hindrance of its performance, as was the case with the

 10

change from the old to the new Public Transportation System of the city of
Santiago, Chile, also known as Transantiago (Pelayo 2007; Mardones 2008).

In the second case of architectural evolution, emergence of a new function, the
deployment of a new function is a consequence of the many external and internal
influences affecting the system (Crawley and Weigel 2004; Whitney, Crawley et al.
2004; Osorio 2007). Investigators need to focus on the engineering system as a
technical system embedded in a defined policy, social, and economic context
(Dodder, Sussman et al. 2005; Mostashari and Sussman 2009). In the policy context,
several actors can affect the form, function, or concept of the system by various
regulatory means. In the social and economic contexts, residents and businesses
exhibit certain needs and demand certain services. The combined effect of changes
of the various types adds uncertainty to the system, creating new design spaces
(MacCormack and Verganti 2003; MacCormack 2005), many of which are not
observable to the managers of the system (Osorio 2007) due to bounded rationality
(Simon 1991).

The existence of regulatory effects, social and economic needs, and their effect
on decision-making are central to the evolution of an organization, accounting for
part of the third case of architectural evolution—internal process changes with no
change to the existing function. Analysis of these regulatory, social, and economic
factors can help explain why architectures of long-lived systems evolve in certain
ways. These systems are of special interest, because, in most cases, their evolution
is partially unintended—it has not been planned by a single architect throughout
the system’s life. Rather, their architecture has resulted from a series of incremental
unplanned or planned, changes by different actors. In these cases, possible paths
for evolution are constrained by the legacy of the pre-existing architecture, and
limited by each architect’s bounded rationality and insufficient information about
the evolutionary possibilities.

The open question we face is how to represent system architecture in a way that
would best cater to studying its evolution.

Decomposition and Representation of System Architecture

A useful representation of a system’s architecture has the following features: (i)
It results from a strategy for decomposing, relating and representing its underlying
structure (objects), behavior (processes) and design concepts, and (ii) It expresses
function—the high-level goal or purpose of the system, and the main reasons and
objectives for the particular system’s architecture.

Koopman (1995) proposed a framework for decomposing and representing
system architecture based on structures (form), behaviors (processes, or internal
functions), and goals (“desired emergent properties” or needs), creating a
taxonomy that allows for comparison across different strategies. While this
framework considers both technical and non-technical criteria, it is explicit in not
considering technical, regulatory, and political or business influences.

Koopman’s framework is based on decomposing the design according to the
three previous dimensions, which range from “pure”, when performed based on
only one of them, “split”, when separating dimensions into decoupled sub-designs

 11

and using pure decomposition in each, and “combined”, which considers two or
all three dimensions at the same time. The approach departs from ad-hoc
decomposition by allowing options for greater modularity. It does not, however,
differentiate between the design process and the resulting artifact—the final design
(Koopman 1995). This missing distinction between processes and objects is a major
tenet of OPM. From the perspective of our research in representing architecture of
socio-technical systems, this is a major limitation, which we relate to in the sequel
to this paper focused on applications.

Suh (1998) presented Axiomatic Design as a method for designing systems in
terms of minimizing the complexity arising from the interaction between
functional requirements (FRs), design parameters (DPs) and process variables
(PVs) for systems of fixed functional requirements. Koopman (1995), and Pimmler
and Eppinger (1994) followed a similar objective.

Axiomatic Design (AD) is based on two axioms: independence among functions
(Independence Axiom) and achieving the least possible information content on the
design (Information Axiom). The Independence Axiom is equivalent to the
Specialization of Simon (1997). The method consists of the following steps: (i)
defining the functional requirements (FRs) for the system, which requires finding
the customers’ attributes and needs, (ii) mapping FRs with physical elements in
order to create design parameters (DPs) and identify process variables (PVs), (iii)
testing the Independence Axiom between functions, and (iv) verifying the
information content of the system.

Besides the axioms, AD is based on the hierarchies among FRs, DPs, and PVs,
and the zigzagging between the functional and physical domains (FRs and DPs).
Hierarchy provides policy and supervisory functions that start at the highest
system level and progress to lower levels of detail, tracking up and down from the
beginning point, in a process called zigzagging, which is important for the design
decisions between FRs and DPs.

Pimmler and Eppinger (1994) presented a method for analyzing product design
decompositions and for understanding and evaluating the requirements of system
engineering. The method follows a three-step process of (i) decomposing the
system into elements, (ii) documenting their interactions in terms of proximity,
energy transfer, information, or of material interchange, and (iii) clustering them
into “chunks”. Each type of interaction ranges from –2 (interaction must be
prevented to achieve functionality) to +2 (interaction is necessary for
functionality). Clustering is achieved by reordering elements around a matrix
diagonal in order to reduce interaction complexity. While presenting
decomposition strategies, Pimmler and Eppinger do not stipulate a representation
method or process.

There is, however, a methodology that includes a language and a modeling
approach that draws on the theory of systems architecture to enable representation
and study of systems. There is also a process for analyzing socio technical systems.
Together, they provide for representing the architecture of socio-technical systems
and studying their evolution. The method, Object-Process Methodology (OPM),
developed by Dori (2002), has been used for conceptual modeling and system

 12

architecting in many domains, notably in product development, and specifically by
Crawley, to represent a system’s architecture based on form, functions and
concept. The process for analyzing socio technical systems was developed by
Sussman’s research group at MIT (Mostashari and Sussman 2009) for analyzing
Complex, Large Interconnected Open Socio-Technical (CLIOS) systems. OPM and
CLIOS are explained next.

Object Process Methodology

Originally, the study of a system’s architecture has focused on technical
systems, and has been supported by the use of Object Process Methodology
(OPM). OPM offers a consistent method for the study of the architecture of a
system. It provides operators for hierarchical decomposition, and helps identify
the underlying processes that link function and form. The result is a single
graphical and an equivalent textual model combining the structure and behavior of
the system under scrutiny at varying levels of detail. With respect to our study,
OPM is limited in that it does not specifically recognize the relevance of social,
organizational, and contextual dimensions; neither does it provide a way to
explicitly include them in the analysis.

OPM is a methodology that is used primarily in product design and systems
engineering. In OPM, a system is defined as an object that exhibits a function,
where the function is “the main intent for which [the system] was built, the
purpose for which it exists, [and] the goal it serves” (Dori 2002: 251).

The major features of OPM allow for hierarchical decomposition of the system
into objects, or physical elements, and processes – internal functions – in a well-
defined manner at various levels of hierarchy. This is done by expressing
relationships between objects and processes via structural and procedural links.
Agents, in OPM terms, are human operators—individuals that make the system
work. Operands are the most important objects on which processes operate in
order to carry out the system’s externally delivered function.

The OPM language employs certain symbols to represent the elements (form)
and processes (functions) of a system’s architecture (Dori 2002). OPM includes
notation for representing states (e.g., an alarm can be on or off), and can also be
used to study a system’s life cycle and evolution (Dori 2002: 289). OPM is bi-modal,
expressing the system model in both graphics and text—a subset of English, called
Object-Process Language (OPL), that is generated automatically on the fly if one
uses OPCAT (Dori, Reinhartz-Berger et al. 2003) for OPM-based modeling.

Symbols of OPM entities (objects, states, and processes), as well as of structural
and procedural links and corresponding OPL sentences are shown in Figure 3
(Dori and Choder 2007).

 13

Symbol Name Symbol Name

ENTITIES

PROCEDURAL LINKS

Object A:

A thing that exists
Agent Link

Things

Process B:
A thing that transforms

object.
Instrument Link

States s1, s2:

Situations of an object.
Instrument Condition Link

STRUCTURAL LINKS

Effect Link

 Aggregation-Participation

Consumption Link

Result Link

Exhibition-
Characterization

Input-Output Link Pair

Generalization-
Specialization Invocation Link

 Classification-Instantiation Instrument Event Link

Tagged structural links:
Unidirectional
Bidirectional Consumption Event Link

Figure 3: OPM Entities and Links

OPM has been combined with theory of system architecture for design and new
product development, but it presents limitations for the analysis of complex socio-
technical systems: OPM does not include the representation of direct effects of
organizations or political actors on the architecture of a system.

We borrow from system architecture the focus on form, function, and concept,
along with identification of needs, intent, processes and objects. The OPM
modeling process starts with the examination of the way in which (i) the externally
delivered function (EDF, or simply function) is associated with the needs of
beneficiaries from using the technical system, (ii) the intent to fulfill their needs,

 14

(iii) the operands and value attributes associated with the function, (iv) operators
of the system, and (v) first-level decomposition of the technical system among
functions and objects in at least one of the concepts for architecting the system.

We focus on the representation approach of OPM, which would enable us to
understand the extent to which the system meets the needs of beneficiaries
through its function. An effective way to achieve this is through hierarchical
decomposition. OPM naturally represents the decomposition of the system’s
function (processes) and form (objects, or components) in a top-down fashion from
the most general to the most detailed abstraction levels.

Form decomposition via aggregation-participation (whole-part) relation
includes links only among units of form. Likewise, functional decomposition using
the same relation includes links only among processes—functional elements. For
any given level of abstraction, the form and function decompositions can be shown
in a single Object-Process Diagram (OPD). Procedural links connect objects to
processes, expressing the dynamic aspect of the system. This is normally done up
to the third or fourth hierarchical level, which is possibly relevant for system
design and development but not necessarily for our research. Figure 4 shows a
typical example of how OPM is used for object-process representation of technical
systems.

 15

Figure 4: Object-Process Representation of a System’s Architecture

Depending on the architecting task at hand, it is necessary to find the
“adequate” level of disaggregation in form and function that allows understanding
of the underlying architecture or its evolution. The decision about the level of
decomposition is based on the complexity of the system and on the analysis goals.

 16

From this perspective, OPM has many characteristics one might want to use for
studying a system’s architecture. However, for modeling socio-technical systems,
OPM has two limitations:

i. It does not include any consideration of the broader social, organizational or
institutional context under which the system operates, is designed, or is
developed. While all these can be modeled as objects and processes, OPM does
not have specific means to relate to these entities as elements that need special
treatment.

ii. OPM does not explicitly consider social dimensions affecting form, function, or
concept beyond the interactions of the system with its operators and
consumers. Social dimensions include critical influences on a system’s
architecture (DeSanctis and Poole 1994; Crawley and Weigel 2004); its
organization (Orlikowski 2000), especially if it is public (Fountain 2001); and the
overall strategy that governs it (Arcelus and Schaefer 1982).

To complement the strengths of OPM with a method that could offset its
limitations, we have adopted the Complex, Large Interconnected Open Socio-
Technical (CLIOS) Process.

The CLIOS—Complex, Large Interconnected Open Socio-Technical—Process

CLIOS is a process for analyzing Complex, Large Interconnected Open Socio-
Technical systems in an iterative manner. The CLIOS Process consists of three
stages: (i) representation, (ii) design, evaluation and selection of strategic
alternatives, and (iii) implementation of the chosen alternatives (Mostashari and
Sussman 2009) .

In this research, we focus on the Representation Stage, the objective of which is
to “convey the structural relationships between the components of the CLIOS
system” (Dodder, McConnell, et al. 2006). CLIOS Systems are composed of a
complex Physical Domain (PD) that is nested into another complex Institutional
Sphere (IS), as represented in Figure 5. The institutional sphere is formed by
formal and informal organizational actors that interact with the Physical Domain.
The interactions between the PD and IS create “Nested Complexity” (Dodder,
McConnell, et al. 2006).

 17

Institutional
Sphere

Physical
Domain

Source: Dodder, Sussman et al. (2005)

Figure 5: Illustration of Nested Complexity

The Representation Stage of the CLIOS Process provides a framework for the
analysis of a socio-technical system, separating it into a physical domain nested in
an Institutional Sphere. This distinction complements the analysis of dominant
influences in a system’s architecture. Common drivers help identify objectives and
elements that can affect system evolution by being common to two or more
subsystems. The CLIOS Process, however, has two limitations: (i) it does not
provide a modeling framework for representing hierarchical relationships among
elements, be they elements of form (objects) or function (processes), and (ii) it does
not provide a way to represent functions or processes and differentiate them from
elements of form.

From the perspective of organizational theory, the concept of Nested
Complexity could explain some of the dynamics among the technical and
organizational dimensions of systems, as well as problems in their performance
and integration. The CLIOS Process approach to studying Nested Complexity
through the representation of the PD and IS is the major reason for the usefulness
of CLIOS to our research.

The Representation Stage of the CLIOS Process (CLIOSP-RS) follows five
iterative steps, which are described below and represented in Figure 6.

1. Describe
System: Issue
checklist and
initial goal
identification

2. Identify Major
Sub-Systems of the
Physical Domain
and Major Actors
Groups of the
Institutional Sphere

3. Populate the
Physical Domain
and the
Institutional
sphere in the
CLIOS diagram

4A. Describe Components
of the Physical Domain and
Organizations in the
Institutional Sphere
4B. Describe Links among
Components and Orgs.

5. Seek
Insight
About
System
Behavior

Structure Behavior

based on Dodder, Sussman et al. (2005)

Figure 6: CLIOS System Representation Stage

 18

1. System Description. The objective of this step is to describe the system, its major
characteristics, goals, and the main issues at stake. The description might
attempt to explain why this system is interesting, important, or generalizable.

2. Identification of major subsystems of the physical domain and major actors of the
institutional sphere. In this step, we identify the major subsystems of the CLIOS
System, their nature, and relationships among them. An important aspect here
is the definition of the Institutional Sphere and the identification of actors
within this sphere. Dodder, Sussman, McConnell and Mostashari (2006) have
proposed one institutional sphere for their concept of “Nested Complexity”,
which is created when the physical system is affected by formal or informal
organizational systems.

3. Populating the physical domain and the institutional sphere. In this step (3 in Figure
6), the functions and elements of each subsystem are described in greater detail.
This is done by nesting the physical systems in the institutional sphere, layering
the physical system into different subsystems and, if more detail is necessary,
exploring some subsystems by expanding the analysis of some subsystems at
finer granularity.

Dodder, Sussman et al. (2006) defined four types of system components (see Figure
7): (i) a physical component, represented by an oval, (ii) a policy lever, which is an
element of the technical system easily affected by actors in the IS, represented by a
rectangle, (iii) a common driver, which is a “component that is shared across
multiple subsystems of the physical domain”, represented by a diamond, and (iv)
an external factor, which is a component that affects the system, but for practical
purposes is not affected by the system, represented by a gray rectangle.

Source: prepared based on Dodder, Sussman et al. (2006)

Figure 7: Symbols of Components in the CLIOS Process

After populating the physical domain and institutional sphere, the CLIOS
process follows the description of components in the physical domain and

 19

institutions in the institutional sphere, and descriptions of links among
components in the physical domain and organizations in the institutional
sphere, as explained next.

4. Describing components in the physical domain and organizations in the institutional
sphere. In this step (4a in Figure 6) we add detail and understanding by
describing in detail the components on the physical domain and organizations
in the institutional sphere. Detailed description results from gaining deep
understanding of each component and organization’s dynamics, behavior,
relevance, critical factors for performance, and insights about their
relationships.

5. Identifying links among components and organizations. In this step, 4.b in Figure 6,
we identify the types of relationships between components, subsystems, and
the various actors. Dodder, Sussman et al. (2005) offer general guidelines for
defining the properties of such links in terms of their strength, timing of
influence, activity/inactivity, and, when possible, the directionality and
magnitude of influence. They define three classes of links:

(i) Class 1 links – links among elements of the physical system,

(ii) Class 2 links – links between the physical system and institutional
sphere, and

(iii) Class 3 links – links among components of the institutional sphere.

Considering the issues discussed in previous sections and the needs of our
research, we provide for representing functions and hierarchical
decomposition. We need to identify functions and describe the relationships
between existing and new functions of a system. The ability to represent
hierarchical relations among functions is important, as it allows us to identify
new functions added by design, new emergent functions, which appear
unexpectedly without being explicitly designed, and changes in an existent
function. This limitation of the CLIOS process can be solved by adopting ideas
and notations from Object Process Methodology (OPM).

6. Gaining insights about system behavior. A major objective of CLIOS system
representation is to understand its structure and behavior, at least to first order.
Understanding the overall system behavior (Step 5 in Figure 6) is achieved by
understanding its subsystems, components, relationships among them, and
relationships with components of the IIS (internal institutional sphere) and the
EIS (external institutional sphere).

The major strengths of the representation stage of the CLIOS Process are the
following:

i. The CLIOS representation is explicit in considering the physical and
institutional domains of socio-technical systems, allowing for analysis of the
relationships and possible behavioral interactions among them. The definition
of the institutional sphere is a major contribution to studying the effect of
external institution-based influences in architecture. Using this representation,
one can analyze how the various dominant influences on system architecture,

 20

represented in Figure 2, affect form, concept, and function of a given socio-
technical system.

ii. The physical domain in the CLIOS representation considers not only the
technical subsystem of interest—for instance, the electric power infrastructure
of a municipal electric utility (MEU)—but also other subsystems that explain
the broader context in which a technology is embedded, e.g., the economic
activity and municipal subsystems. These subsystems can have important
effects on the evolution of the architecture of the technical components of a
socio-technical system.

iii. The CLIOS representation includes the category of “common drivers. These
common drivers identify relationships among physical components and
between them and organizations in the institutional sphere.

As noted, the CLIOS representation has two main limitations with respect to
achieving the objectives of our research: (i) It does not have operators that
represent functions or processes as different types of elements. Since functions are
one of the three main components of a system’s architecture that need to be
represented, this lack is critical. (ii) It does not include an explicit way to define the
hierarchy of elements or functions.

To overcome these limitations we have created a derivative method—the
CLIOSP-OPM Integrated Method (COIM). COIM, presented next, builds on the
strengths of OPM and the CLIOS process while offsetting their limitations.

3. An Integrated Method for Representing Architecture of
Socio-technical System

The previous sections presented the literature of system architecture, as well as
the benefits and limitations of OPM and the representation stage of the CLIOS
process for studying the architecture of complex socio-technical system and its
evolution. Studying the architecture of this type of systems requires a combined
approach. This section discusses how CLIOS and OPM are combined into the
CLIOS-OPM Integrated Method (COIM), a robust analytical framework that offsets
the limitations of each one of its components when used separately (See Table 2).

With systems architecture providing the theoretical framework, the combination
of the CLIOS Process and OPM is the basis for our analytical framework. The
simplicity of the CLIOS Process for studying large-scale socio-technical systems is
enhanced with the rigor and orientation to details of OPM. An important outcome
of this OPM-CLIOS Process integration is that the analysis of upstream influences2
on system architecture becomes implicit in the system representation process

2 According to Crawley and Weigel (2004), Upstream Influences in system architecture include
regulation; the organization’s strategy; needs and goals of customers and beneficiaries; competitive
environment; and technologies. There are also Downstream Influences, which include the design,
evolution, operation and implementation. These could be matched to the latter stages of the CLIOS
Process with further development of COIM.

 21

through the inclusion of the first stages of the CLIOS Process under a System
Architecture framework. Upstream influences include regulation, the
organization’s strategy, needs and goals of customers and beneficiaries,
competitive environment, and technologies. We continue with a specification of
COIM.

Table 2: Summary on Focus, Strength and Limitations of Approaches

Source: Osorio (2007)

COIM Terminology and Representation Operators

An important aspect of a system's representation is the extent to which it can
provide insight into that system’s behavior (Sterman 2000; Dori 2002; Dodder,
Sussman et al. 2005). This is particularly relevant when we wish to understand the
reasons for the evolution of a system’s architecture over long periods of time, and
where numerous architects and other agents and factors have been making
intended and unintended changes that contributed to the current architecture. To
this end, we have adopted a distinction within the CLIOS Process between the
physical domain and its institutional sphere. We have also adopted OPM’s
distinction between elements of form—objects and those of function—processes.
The analysis is thus inspired by both the CLIOS Process and OPM.

The COIM representation operators have evolved from their original
counterparts in the CLIOS Process, adding the differentiation between elements,
or components, of form and function. In Figure 8, these components are depicted
and exemplified using examples from the electric power industry.

 22

Element or
Component

of Form

Element or
Component
of Function

Policy Lever

Common
Driver

External
Factor

E.g. transformers, transmission and distribution lines,
modems, firewalls, routers, etc.

E.g. Transmission and distribution, routing, encrypting,
monitoring, etc.

E.g. Coverage Reports (by FCC Form 477), Emergency
Alert (by FCC Disaster Warning System), Pricing (by State
PUC)

E.g. Economic Development, revenue of municipal
electric utilities

E.g. United States GDP, weather

Source: Osorio (2007)
Figure 8: COIM Components

• Components of form, indicated by a solid-line oval, are defined as the physical
elements that comprise a system. Some examples from the electric utility
domain are transformers and transmission and distribution.

• Components of function, represented by a dotted-line oval, characterize the
purposes and goals of the physical elements of a system, or, equivalently,
represent the functions associated with elements of form. For a distribution
line, for instance, the associated function would be distribution of electric
power from the distribution transformer to the customer premises.

• Policy levers, indicated by a white rectangle, are “components within the
physical domain that are most directly controlled or influenced by decisions of
actors…on the institutional sphere” (Dodder, McConnell et al. 2006 b). Thus,
policy levers are a way by which institutional actors can affect form or function
components of a subsystem in the physical domain (See Figure 10, case 3 for
example).

• Common drivers, represented by a diamond, are “components that are shared
across multiple and possibly all subsystems of the physical domain” (Dodder,
McConnell et al. 2006). Common drivers are important influences on
architecture, especially due to their influence across subsystems of the physical
domain.

• External factors, represented by a shaded rectangle, are exogenous parameters
that affect the system but are not affected by the system.

 23

Component
of Form

Component
of Function

Policy Lever

Common
Driver

A B

Component
of Function

Component
of Function

Component
of Form

Component
of Function

Institutional Actor

B affects A, and A affects B: e.g. control

A yields to B, and B yields to A: e.g.
Providing basic infrastructures services
affects economic performance

A affects B: e.g. regulations affect system
functions

B is handled by A. E.g. Energy
regulation is handled by state PUC,
System monitoring is handled by
SCADA software

Component
of Form

Component
of Function

B requires A: E.g. system monitoring
requires communication network

Policy Lever

1

2

3

4

5

6

Source: Osorio (2007)
Figure 9: Links for COIM Diagrams

Based on the CLIOS Process and OPM, COIM also includes the following set of
links, shown and exemplified in Figure 9.

1. Relationship of effect between components of form and function: These links are
used to represent the way in which a function affects an element of form,
similar to the effect link in OPM.

2. Relationship between functions and common drivers: The performance of
functions can affect a common driver in the same way that a common driver
can affect a function.

3. Effect of policy levers on functions: These are used to represent the way in
which functions are affected by specific components in the physical domain
that are controlled by actors in the institutional sphere.

4. Control of a function by a component of form: This type of relationship is used
to reflect the control of functions by specific elements of form, and is
represented by a solid line and black dot.

5. Control of a policy lever by an institutional actor: This is represented by a dotted
line and black dot, similar to the effect link in OPM.

6. Functional requirement of a component of form: A solid line ending in a white
dot represents the infrastructure requirements for performing a function.

 24

In summary, we might have a function affecting a component of form, or a
component of form affecting a function. Also, a function can affect a common
driver. For instance, the provision of broadband services by municipal electric
utilities affects economic development. In the same way, a common driver can
affect a function or element of form. For instance, adoption of new information
technologies by MEUs can affect Supervisory Control and Data Acquisition
(SCADA) and Automatic Meter Reading (AMR) systems, and lead to the adoption
of Internet Protocol (IP)-enabled solutions. Functions might also require a
component of form, but are controlled by another element. For instance, system
monitoring requires a communication network, but is controlled by the SCADA
system.

Institutional actors can affect functions directly or indirectly by regulating the
policy levers affecting the function. These relationships between the institutional
sphere and physical domain, called “projections”, are represented by dotted lines.
Functions and policy levers are controlled by components of form and actors in the
institutional sphere, respectively.

The symbols described above can be used to represent the relationships among
components of form, function, common drivers, policy levers, institutional actors,
and external factors. We can use them to represent relationships of cause and effect
(A affects B), control, or requirement among components.

 25

Name Symbol Semantics

 Aggregation-
Participation

A is the whole, B and C are parts.

 Exhibition-
Characterization

B is an attribute of A and process C is its
operation (method).

A can be an object or a process.

 Generalization-
Specialization

A specializes into B and C.

A, B, and C can be either all objects or all
processes.

Classification-
Instantiation

Object A is the class, for which B and C are
instances.

Applicable to processes too.

Source: Dori (2002)

Figure 10: Hierarchical Operators

Finally, we borrow a third group of operators from OPM that are especially
useful for representing structural and hierarchical relationships. As Figure 10
shows, these are:

1. Representation of hierarchies: A black triangle signals the decomposition of a
system into subsystems that are “mutually exclusive and comprehensively
exhaustive” (MECE). The hierarchical decomposition can be performed at as
many hierarchical levels as the modeler or researcher considers appropriate for
the purpose of the research.

2. Representation of attributes: A black triangle inside a white triangle signals the
attributes of a system, common drivers, components of form, or functions.

3. Specialization of components: A white triangle signals the characteristics of
elements in terms of their specialization.

 26

4. Class of components: A circle inside a white triangle signals inclusion into types
of classes.

Differentiating between the External and Internal Institutional Spheres

The CLIOS Process definition of nested complexity relates to the complexity
created by the embeddedness of the physical system in its surrounding
organizational and institutional domain (the institutional sphere). All technical
systems are directly affected by their immediate organizational environment,
culture, practices, and structural embeddedness.

We examine the effect of organizations on physical system at two levels: internal
and external. We thus extend the CLIOS Process by separating the institutional
sphere according to the types of organizational actors and their relationships. This
distinction is required due to the different nature of internal and external
influences on architecture.

The internal level of the institutional sphere is formed by the immediate
organizational environment of a technical system or, in other words, the
organization holding and operating the technical system. This defines the internal
institutional sphere (IIS). Many scholars in organizational theory and behavioral
policy sciences have studied the interaction between the internal institutional
sphere and the physical domain (Perrow 1986; Orlikowski and Baroudi 1991;
DeSanctis and Poole 1994; Orlikowski 2000; Fountain 2001).

Several formal and informal actors outside the IIS form the external level of the
institutional sphere, creating the external institutional sphere (EIS). Components of
the EIS can directly or indirectly affect the technical system under study through
federal or state regulation, local government rules, the practices of suppliers, or
national changes in customer needs. Scholars of the history of technology,
privatization, and regulation, have analyzed various ways in which public policies
have affected the architecture, design, or operation of technical systems in areas
such as emissions control and pollution, car safety, and electric power and
telecommunications (Hughes 1983; Donahue 1989; Viscusi, Vernon et al. 1997;
Newbury 1999; Laffont and Tirole 2000; Savas 2000). Theories about system
architecture and product development have explained how technical systems are
shaped by changes in customer needs and preferences (Rechtin and Maier 2000;
Crawley and Weigel 2004; Ulrich and Eppinger 2004).

Relationships between actors in the IIS and actors in the EIS give rise to a third
type of relationships that can have an indirect effect on the technical system.
Several scholars have analyzed the different ways in which organizations interact
in different economic and regulatory settings (Powell 1990; Powell and Smith-
Doerr 1994; Podolny and Page 1998; Polenske 2004), In such interactions, the
institutional sphere might impact the organization and affect the system’s
performance in ways other than the direct effect on the technical system.

Figure 11 shows the differentiation between the internal and external
institutional spheres in our modified model.

 27

ExternalExternal

InternalInternal

Influences from the outer
institutional sphere over the
organization that hosts the

technical system

Direct influences over the
technical system from the
outer institutional sphere

Direct influences over the
technical system from the
outer institutional sphere

Influences over the
technical system from its
organizational
environment

Influences over the
technical system from its
organizational
environment

Source: Osorio (2007)

Figure 11: Illustration of Extended Notion of Nested Complexity

The influences from within and outside the organization on the technical system
are of special interest, because it is necessary to show how actors from the external
institutional sphere are related to components of each subsystem and to the
organization that governs and directly manages the technical system. The way in
which the organization is related to the main components of the physical system
needs to be represented as well. To this end, COIM includes two distinctive
features for representing a subsystem and the institutional sphere. First, the
representation of subsystems in the physical domain includes projections from the
actors on the institutional sphere affecting the subsystems. Second, the
representation of the institutional sphere differentiates between IIS and EIS. It
includes projections from the EIS and IIS to a summarized representation of the
physical domain.

Combining Research Approaches in COIM

The study of the evolution of system architecture requires OPM to be capable of
historical analysis and analysis of dominant influences in system architecture.
Historical analysis allows for identifying how path dependence can affect a
system’s organization (structural embeddedness and culture) and technical system
(legacy of its architecture). Path dependence and legacy in architecture are
especially important when studying the evolution of a system’s architecture. We
therefore analyze the physical domain by investigating components of the
technical infrastructure that are likely to exhibit legacy influences and can affect
the evolution of the architecture of our system.

 28

Analysis of dominant influences allows identifying and understanding the
factors, sources and effects of regulatory, social, institutional, organizational
and contextual changes on system architecture. In what follows, we discuss
relationships between dominant influences in system architecture and the
CLIOS Process at the IIS, EIS, and common drivers levels.

At the internal institutional sphere (IIS) level, an organization’s corporate and
marketing strategy can affect the functions or forms of its technical
infrastructure. New organizational competencies can be generated by decision
making at operational and tactical levels. Other dominant influences in the IIS
include internal policies or decisions about operation of the technical system,
and strategies based on the identification of needs in the user base.

At the external institutional sphere (EIS) level, organizations exert three of the
most important types of dominant influence in a system’s architecture:
regulations, changes driven by competitive environment, and changes to the
needs to be satisfied by the system. From the perspective of system
architecture, the institutional actors can be divided into public and regulatory
organizations, private companies providing competitive services, and other
formal or informal organizations concerned about the direct or indirect effect of
the system on customer needs, regulatory aspects, or other issues such as
environment, labor, etc.

At the common drivers level, the dominant influences include two major
drivers of the evolution of a system’s architecture: new technology and
operational costs and efficiency. We consider the technical architecture of a
CLIOS as a major component of its physical domain. This technical architecture
can be represented as one or more subsystems. If there is more than one, then
new technology and efficiency will be drivers common to all subsystems,
including parts of the technical infrastructure of the system.

Historical analysis and analysis of dominant influences are included in the
analysis of system architecture, which can also be performed using OPM. We can
draw analogies between analysis of dominant influences and the CLIOS process.
Thus, by integrating system architecture with OPM and the CLIOS process, we
make it possible to integrate historical analysis and dominant influences into the
representation process. The integration among system architecture, OPM and the
representation stage of the CLIOS Process is illustrated in Figure 12.

In this integration OPM contributes with the detail and rigor from the object-
process decomposition. CLIOS Process adds the analysis of the Internal and
External Institutional Spheres from the Representation Stage, and System
Architecture adds historical analysis, and the study of dominant influences. The
purpose of this integration is creating a research method for studying the
architectural evolution of a system where most of the learning comes from (i)
understanding the system’s setting, (ii) understanding and identifying its sources
of legacy, influences and path-dependence, and (iii) learning about the system’s
evolution through the process of detailed representation of the system.

 29

1. Describe
System: Issue
checklist and
initial goal
identification

2. Identify Major
Sub-Systems of the
Physical Domain
and Major Actors
Groups of the
Institutional Sphere

3. Populate the
Physical Domain
and the
Institutional
sphere in the
CLIOS diagram

4A. Describe Components
of the Physical Domain and
Organizations in the
Institutional Sphere
4B. Describe Links among
Components and Orgs.

5. Seek
Insight
About
System
Behavior

Structure Behavior

High-Level DecompositionHigh-Level Decomposition

Form DecompositionForm Decomposition

Functional DecompositionFunctional Decomposition

Object Process RepresentationObject Process Representation

CLIOS System Representation

Upstream/Downstream Influences

Historical Analysis

Upstream/Downstream InfluencesUpstream/Downstream Influences

Historical AnalysisHistorical Analysis

“Data”: Case studies, fieldwork, interviews

OPM

System Architecture: focus on evolution of form, function and concept of
subsystems in the physical domain

Source: Osorio (2007)
Figure 12: Combined Activities of CLIOS Process and OPM for System
Architecture Analysis

 Focus on System Evolution

Three relevant dominant influences need to be accounted for: (i) evolution of the
architecture, (ii) implementation of the architectural changes, and (iii) design.
COIM is designed to focus on the process of studying and representing the forces
behind system evolution, and on identifying possible path dependencies and
architectural legacies. We are less interested in characterizing the behavior of the
system in the short run, as we focus on modeling and trying to explain the reasons
for the evolution of its architecture over the long run.

We test hypotheses by comparing how a COIM representation of a system
should look and how this representation compares with information gathered
from the field, including case studies, interviews, and review of documentation.
Then, we can revise our research questions and hypotheses accordingly. COIM-
based research is, thus, iterative; we refine the representation based on gathered
data and gain deeper understanding about the research questions. The process
reveals information about the factors affecting the evolution of the system’s
architecture and exposes evolutionary patterns of components and functions at
different hierarchical levels.

 30

Figure 13 illustrates this general approach. The figure includes a summary of
the difference in focus, strengths and weaknesses between the CLIOS process and
OPM, and the value of integrating them into one representation method.

Source: Osorio (2007)

Figure 13: CLIOS Process, OPM and COIM: Integration and Application

The input for COIM is the set of hypotheses about the architectural evolution of
a socio-technical system. We start by studying the overall technical and contextual
setting of the system, as well as analyzing its history. We can use data from the
literature and documentation on social, regulatory, technical and organizational
dimensions in order to identify path dependence, legacy and influences on
architecture.

We can then use detailed representation of the system’s architecture (physical
domain) and sources of influence (internal and external institutional sphere, and
general context) to learn about the evolution process. We can do this iteratively,
constructing our representation from lower to higher complexity. The
representation process results from combining the representation stage of the

 31

CLIOS process and OPM. As the analysis proceeds, we examine how each step
helps us to validate or reject our initial hypotheses.

After a certain point, the researcher might find out that his or her progress in
gaining insight about the system has stalled or stopped due to the decreasing
marginal productivity of a more detailed historical analysis or a more detailed
representation. At this point, one can turn back to fieldwork, using case studies
and interviews in order to validate or reject previous findings, and get information
that would allow further learning about reasons for and the process of
architectural evolution.

This iterative process would allow us to conclude (i) which are the most relevant
sources of influence for architectural evolution, (ii) how relevant was the system’s
architectural legacy and what role did it play in its evolution, (iii) how do the
various subsystems of a system interact to foster or hinder its architectural
evolution, and (iv) why did the system’s architecture evolve.

In some cases, the process will end with no changes to the original research
questions and hypotheses, while in others the researcher would have to revisit
them, maybe discovering a research path that was overlooked. The next section
presents a formalization of this process.

Using COIM: Steps in the Research Process

COIM analysis proceeds in four stages: (i) understanding the setting, (ii)
building a generic model of the system based on original hypotheses, (iii)
obtaining data through field research in order to validate or refute the model and
hypotheses, and (iv) validating the generic model and confirming findings. Figure
14 shows the steps in each stage.

Starting Point: Before starting a COIM analysis, the researcher must set up the
research questions and hypotheses that will be tested by qualitative analysis. This
also requires collecting documentation and information, securing the interviews,
and making arrangements for field research in order to assemble enough data to
test the hypotheses.

 32

Figure 14: The Steps of COIM-based Analysis

Stage 1 - Understanding the Setting: The first aim is to understand the setting of the
problem under study, identify sources of path dependence and architectural
legacy, and identify the major subsystems and actors in the external and internal
institutional spheres. This is done in four steps.

Step 1 – System Description: COIM analysis starts by presenting a summarized
view of the CLIOS System under study, including its goals, and major
regulatory factors affecting its most relevant subsystems (e.g., electric power
and broadband division). The objective is to highlight why the system is
interesting and why the problem under study is relevant.

Step 2 – Historical Analysis: We need to understand how the historical
evolution of the system has affected its present architecture and culture. If the
system under study is not one-of-a-kind, the researcher needs to pay special
attention to studying the evolution of the architecture of a class of systems,
rather than a particular system. The objective of the historical analysis is to
identify path dependence on various fronts, including (i) regulatory, (ii)
entrepreneurial activity, (iii) role in local economic development, (iv)
institutional isomorphism and diffusion of practices, and (v) technology. We
also need to understand how this history, which created path dependence,

 33

created a legacy that may be shaping the current state of the system’s
architecture.

Step 3 – Identification of Major Subsystems of the CLIOS System: In this step
we identify and define the subsystems in the physical domain and the
organization groups on the internal and external institutional sphere that are
relevant for the purpose of our research.

Step 4 – Population of Internal and External Institutional Sphere: We identify
the organizations in both spheres and explain their relevance and ways in
which they affect the physical domain directly and indirectly. We want to
understand how institutional actors affect the physical domain of our CLIOS
system. The traditional system architecture analysis of dominant influences
becomes part of the CLIOS representation process, making it possible to see
more clearly how various actors influence the functions and forms of the
different subsystems.

Stage 2 - Building a Generic Representation: In this stage we build a generic
representation based on our initial understanding of the problem and hypotheses.
Representing the system allows us to build understanding about it, the
relationships about technical components, and among them and actors in the
internal and external institutional spheres. In this stage, the “data” for representing
the system is found in publicly available information and literature. In essence, we
use the representation process as a research method that will allows us to learn
about the architectural evolution of the system and test our research hypotheses.
The result of this stage will be a graphic representation of our hypotheses and
assumptions. We build the model in five steps:

Step 5 – Form and Functional Decomposition: We start by creating a form and
functional decomposition of the subsystems in the physical domain to identify:
(i) sources of architectural legacy that could explain the architectural evolution
of the system, and (ii) the “appropriate” hierarchical level at which we would
make the object-process representation of the subsystems.

The researcher is responsible for defining and justifying the “appropriate” level
of hierarchical decomposition. OPM form and function decomposition of
technological systems can reach four or more hierarchical levels, but this might
not be necessary for all subsystems, as we are interested in understanding how
the legacy of the architecture of the main subsystems creates conditions for
deployment of a new external function.

Step 6 – Population of Each Subsystem in the Physical Domain: We create a
representation for each subsystem in the physical domain by combining our
hypotheses and information from industry documents and pertinent literature.
The objective is to build a generalized model by identifying common drivers
among subsystems as well as dominant influences from organizations in the
internal and external institutional spheres. These models will be later validated
with data from fieldwork.

Step 7 – Adding projections from the Internal Institutional Sphere and Identify
Common Drivers: Building on Step 6, we identify drivers common to the

 34

subsystems and projections from organizations in the IIS. We continually test
our hypotheses as we observe the phenomenon.

Step 8 – Adding projections from External Institutional Sphere: To the
representations created in Step 7, we add projections from organizations in the
EIS. As in the previous step, we want to represent the way in which different
institutional actors affect the various subsystems in the physical domain.

Step 9 – Representation of Institutional Sphere: In this step we build a
representation of the internal and external institutional spheres, which includes
relationships among actors in the Internal and External Institutional Spheres.

Stage 3 - Field Research: An important outcome of the previous stage is the
identification of information and questions that are still needed to complete the
testing of our initial hypotheses. These data and information requirements provide
for the creation of a quasi-structured interview protocol to be applied during field
research. Data from interviews and site visits will be used to test the hypotheses.

Step 10 – Case Studies and Interviews: The objective of this stage is to obtain
the data to test the validity of the representation made in Stage 2. COIM is
designed to be used with case studies and interviews. Observation,
ethnographic studies, interviewing methods, accessing public and confidential
documentation, attending industry and academic forums, meetings, and other
qualitative methods are various means for collecting missing data. For example,
in the research about architectural evolution of municipal electric utilities by
Osorio (2007), the author applied quasi-structured interviews and case study
research, with special focus on why and how the MEUs’ architecture evolved.

Once the interviews are done, the author needs to transcribe them and write the
case studies in terms of the architectural evolution of the individual systems. At
this point, there is no analysis of the case—the information is descriptive only,
and need to be totally free of judgments or opinions.

The objective of field research is to advance the level of knowledge about the
system and help validate or reject the research hypotheses about the
architectural evolution of our system.

In addition to providing important parts of the data for COIM, case study
research makes it possible to link the theory behind the problem to the
interaction between context and processes around the question of why and how
things happen (Yin 1984; Hartley 2004; Silverman 2005).

Stage 4 - Validation and Advancement of the Findings: In this stage we validate the
generic model using data from fieldwork and make observations about the
evolution of the architecture of our system.

Step 11 – Revision and Validation of COIM Representation: Once we have
finished field research, we proceed to revisit our understanding of the setting
and representation (steps 3 through 9). The main objective of Step 11 is to test
our generic model against data from the case studies, interviews, and other
documentation to further our understanding based on the initial hypotheses,
generate new insights, discover new research paths, and modify our

 35

understanding of the underlying phenomena involved. Again, our main focus
is on the reasons for and processes of change.

Step 12 – Observations about the Evolution of the System’s Architecture:
Finally, we should conclude by (i) stipulating the reasons and process of the
evolution of the system’s architecture, (ii) providing prescription about
possibilities for further change and recommended courses of action for future
architectural changes, and (iii) providing advice about how to manage the
social, political or organizational aspects related to the system under study. We
can do this by aggregating our findings from the study of the context, historical
analysis, the learning that comes from the process of representing our CLIOS
System, and fieldwork. We explain the architectural evolution as a process,
determine whether our hypotheses hold, and use this new knowledge for
further understanding and better management of the operation, enhancement
and engineering of the system. An application of COIM addressing these issues
is currently under development, building on the work of Osorio (2007) that
studies the architectural evolution of Municipal Electric Utilities in the United
States.

Through these steps, the researcher is able to deepen her understanding about
the structure and behavior of the technical subsystems in the physical domain of
the CLIOS System, as well as about its social, economic, political and
organizational dimensions.

4. Conclusions and Further Directions for Research
Good architecture should not prevent the evolution of the system to adjust and

positively respond to future changes of its environment, demand, or other external
of internal force. However, every so often, the reasons for architectural changes
and evolution are lost over time and do not cater to the rationality of the numerous
architects and designers of complex socio-technical systems. As result,
architectural decisions sometimes prevent adequate adaptation of a system to
external changes.

Our main objective in this research has been to propose an integrated approach
and method for addressing the difficult task of studying the state and evolution of
the architecture of complex socio-technical systems. Applying our proposed
framework would allow system architects and system architecture researchers to
(i) make sense and have a better understanding of the technical, social, political
and economic factors driving the evolution of the system over time, (ii) make
connections among these and other issues that become relevant to their systems by
studying the architecture of their systems, (iii) make choices about the possible
ways to address the technical, social, policy and economic problems that arise with
change and evolution, and (iv) make or facilitate their occurrence in a possibly
predictable, controllable way.

The qualitative research method we have proposed, CLIOS-OPM Integrated
Method (COIM), combines the representation stage of the Complex, Large-Scale,
Inter-Connected, Socio-Technical (CLIOS) Process (Mostashari and Sussman 2009)
with Object Process Methodology (OPM) (Dori 2002). COIM's theoretical

 36

framework encompasses system architecture, object-process based conceptual
modeling, and qualitative research methods that include historical analysis, case
studies, and semi-structured interviews.

We suggest that COIM fulfills the needs of researchers of socio-technical
systems, allowing them to:

i. build a general model of the architecture (form, functions, and general
concept) of a complex large open socio-technical system, including the
relationships between organizational actors;

ii. dissect the most important subsystems linking components and functions
at a hierarchical level of decomposition that is adequate for meaningful
analysis;

iii. identify relationships between components and functions that could
invoke evolution paths outside the desired original design. Such
evolution paths might result from the interaction between increased
structural complexity and technical, social, organizational, and contextual
changes that, without analysis of the architectural evolution, would likely
escape the organizational comprehension.

iv. based on the gained knowledge and awareness of the system’s
architecture, propose options and courses of action to follow.

Our work is incomplete in several ways. It has not discussed the differences
among small, medium and large-scale complex systems, such as nanodevices,
consumer products, and public transportation systems, respectively. It also has not
addressed the relevance of industry “clockspeed” in the build-up of architectural
legacy of significant importance. We have not discussed the applicability of COIM
for studying socio-technical systems that stand alone (e.g., only an electric power
system) or are interconnected (e.g., all critical infrastructure networks: electric
power, telecommunications, ground and air transportation). We propose that the
more interconnected a system is, the higher the need for an approach that could
help to uncover and understand the state and evolution path of its architecture.

Most importantly, for space limitation reasons, this paper does not cover an
application of COIM. In the second part of this research, the authors apply COIM
to the work of Osorio (2007) for explaining the evolution of municipal electric
utilities and their involvement on the broadband business. This companion paper
is a work in progress.

5. References

Arcelus, F. and N. Schaefer (1982). "Social Demands as Strategic Issues: Some
Conceptual Problems." Strategic Management Journal 3(4): 347-357.

Blaaw, G. (1997). What is Computer Architecture? Computer Architecture:
concepts and evolution. G. Blaaw and F. Brooks. Reading, MA, Addison-
Wesley: 3-62.

 37

Black, U. (1989). Layered Protocols, Network Architectures and OSI. Data
Networks:Concepts, Theory and Practice. U. Black, Prentice Hall: 269-302.

Crawley, E. and A. Weigel (2004). ESD.340 Class Lectures on Theory of System
Architecture, Massachusetts Institute of Technology.

DeSanctis, G. and M. S. Poole (1994). "Capturing the Complexity in Advanced
Technology Use: Adaptive Structuration Theory." Organization Science 5(2):
121-147.

Dodder, R., J. McConnell, et al. (2006 b). The CLIOS Process: a user's guide to
CLIOS Part 2, Massachusetts Institute of Technology: 14.

Dodder, R., J. Sussman, et al. (2005). The Concept of the "CLIOS Process":
Integrating the study of physical and policy systems using Mexico City as
an example. MIT Engineering Systems Symposium. Cambridge, MA,
Engineering Systems Division, Massachusetts Institute of Technology: 52.

Donahue, J. D. (1989). The Privatization Decision: Public Ends, Private Means. New
York, NY, Basic Books

Dori, D. (2002). Object-Process Methodology: A holistic Systems Approach. Berlin,
Springer-Verlag.

Dori, D. and M. Choder (2007). Conceptual Modeling in Systems Biology Fosters
Empirical Findings: The mRNA Lifecycle. Proceedings of the Library of
Science ONE (PLoS ONE).

Dori, D., I. Reinhartz-Berger, et al. (2003). Developing Complex Systems with
Object-Process Methodology using OPCAT, Springer. Lecture Notes in
Computer Science Series 2813: 570-572.

Eppinger, S., D. Whitney, et al. (1994). "A model-based Method for Organizing
Tasks in Product Development." Research in Engineering Design 6: 1-13.

Fine, C. (1998). Clockspeed. Reading, MA, Perseus Books.
Fountain, J. E. (2001). Building the virtual state: information technology and

institutional change. Washington, D.C., Brookings Institution Press.
Hartley, J. (2004). Case Study Research. Essential Guide to Qualitative Methods in

Organizational Research. C. Cassey and G. Symon. London, UK, SAGE. 1:
323-333.

Hughes, T. P. (1983). Networks of power: electrification in Western society, 1880-
1930. Baltimore, Johns Hopkins University Press.

Jacob, F. (1977). "Evolution and Tinkering." Science 196(June 10): 1161-1166.
Koopman, P. J., Jr. (1995). "A Taxonomy of Decomposition Strategies Based on

Structure, Behavior and Goals." Design Engineering 83(Design Engineering
Technical Conferences Vol. 2).

Laffont, J.-J. and J. Tirole (2000). Competition in Telecommunications. Cambridge,
MA, The MIT Press.

MacCormack, A. (2005). Innovation and Uncertainty. Technology and Operations
Management Seminar. Boston, MA, Harvard Business School.

MacCormack, A. and R. Verganti (2003). "Managing the Sources of Uncertainty:
Matching Process and Context in Software Development." Journal of
Product Innovation Management 20(3): 217-232.

Mardones, R. (2008). "Chile: Transatiago Reloaded." Revista de Ciencia Política
28(1): 103-119.

Mostashari, A. and J. Sussman (2009). "A Framework for Analysis, Design and
Management of Complex Large-Scale Interconnected Open Sociotechnical

 38

Systems." International Journal of Decision Support System Technology
1(2).

Newbury, D. M. (1999). Privatization, Restructuring and Regulation of Network
Utilities. Cambridge, MA, The MIT Press.

Orlikowski, W. and J. J. Baroudi (1991). "Studying Information Technology in
Organizations: Research Approaches and Assumptions." Information
Systems Research 2(1): 1-28.

Orlikowski, W. J. (2000). "Using Technology and Constituting Structures: A
Practice Lens for Studying Technology in Organizations." Organization
Science 11(4): 404-428.

Osorio, C. (2007). Architectural Innovation, Functional Emergence and
Diversification in Engineering Systems. Engineering Systems Division.
Cambridge, MA, Massachusetts Institute of Technology. PhD in
Technology, Management and Policy: 243.

Osorio, C., J. Sussman, et al. (2009). Integrating Methods for Analyzing System
Architecture. Part II: the application. working paper. Cambridge, MA,
Massachusetts Institute of Technology: 41.

Pelayo, M. C. (2007). Transantiago y su Impacto: transporte público y sus
repercusiones en la salud. Ciencia y Trabajo. Santiago, Chile. 9: 88-92.

Perrow, C. (1986). Complex Organizations: a Critical Essay, McGraw-Hill.
Pimmler, T. and S. Eppinger (1994). Integration Analysis of Product

Decomposition. Design Theory and Methodology, ASME.
Podolny, J. M. and K. L. Page (1998). "Network Forms of Organization." Annual

Review of Sociology 24: 57-76.
Polenske, K. (2004). "Competition, Collaboration, and Cooperation: an Uneasy

Triangle in Networks of Firms and Regions." Regional Studies 38(9): 1029-
1043.

Powell, W. (1990). "Neither Market Nor Hierarchy: Network Forms of
Organization." Research in Organizational Behavior 12: 295-336.

Powell, W. and L. Smith-Doerr (1994). Networks and Economic Life. The
Handbook of Economic Sociology. N. S. a. R. Swedberg. Princeton, NJ,
Princeton University Press: 368-402.

Rechtin, E. and M. W. Maier (2000). The Art of Systems Architecting. Boca Raton,
FL, CRC Press.

Rhodes, D., A. Ross, et al. (2009). Architecting the System of Systems Enterprise:
Enabling Constructs and Methods from the Field of Engineering Systems.
IEEE International Systems Conference. Vancouver, Canada, IEEE.

Savas, E. S. (2000). Privatization and Public-Private Partnerships, Chatam House,
Seven Bridges Press.

Silverman, D. (2005). Doing Qualitative Research: a practical handbook. London,
UK, SAGE.

Simon, H. (1991). "Bounded Rationality and Organizational Learning."
Organization Science 2(1): 125-134.

Sterman, J. (2000). Business dynamics: systems thinking and modeling for a
complex world. Boston, Irwin/McGraw-Hill.

Suh, N. (1998). Design of Systems. Axiomatic Design. N. Suh. Cambridge, MA,
Oxford University Press: 192-237.

TOG (2001) "Open Group Architectural Framework: Introduction to the
Architecture Development Method."

 39

Ulrich, K. and S. Eppinger (2004). Product Design and Development, McGraw-Hill
Ulrich, K. T. (1995). "The role of product architecture in the manufacturing firm."

Research Policy 24(December): 419-440.
van Vliet, H. (2001). Software Architecture. Software Engineering: Principles and

Practice. V. Vliet. New York, NY, John Wiley and Sons, Inc: 253-288.
Viscusi, W. K., J. M. Vernon, et al. (1997). The Economics of Regulation and

Antitrust. Cambridge, MA, The MIT Press.
Whitney, D., E. Crawley, et al. (2004). The Influence of Architecture in Engineering

Systems, Engineering Systems Division, Massachusetts Institute of
Technology: 30.

Yin, R. (1984). Case Study Research: designs and methods. Beverly Hills, SAGE.

