
MIT Open Access Articles

COIM: An Object-Process Based Method for Analyzing Architectures 
of Complex, Interconnected, Large-Scale Socio-Technical Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Osorio, Carlos A., Dov Dori, and Joseph Sussman. “COIM: An Object-process Based 
Method for Analyzing Architectures of Complex, Interconnected, Large-scale Socio-technical 
Systems.” Systems Engineering 14.4 (2011): 364–382. CrossRef. Web.

As Published: http://dx.doi.org/10.1002/sys.20185

Publisher: John Wiley & Sons, Inc.

Persistent URL: http://hdl.handle.net/1721.1/78281

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/78281
http://creativecommons.org/licenses/by-nc-sa/3.0/


MMaassssaacchhuusseettttss  IInnssttiittuuttee  ooff  TTeecchhnnoollooggyy
EEnnggiinneeeerriinngg  SSyysstteemmss  DDiivviissiioonn

Working Paper Series

ESD-WP-2009-12

COIM: AN OBJECT-PROCESS BASED METHOD FOR

ANALYZING ARCHITECTURES OF COMPLEX,
INTERCONNECTED, LARGE-SCALE

SOCIO-TECHNICAL SYSTEMS

Carlos A. Osorio1, Dov Dori2, Joseph Sussman3

1Universidad Adolfo Ibáñez,
Santiago, Chile

carlos.osorio@uai.cl

2Technion, Israel Institute of Technology,
Haifa, Isreal, and

Massachusetts Institute of Technology,
Cambridge, MA

dori@mit.edu

3Massachusetts Institute of Technology,
Cambridge, MA

sussman@mit.edu

August 2009



COIM: An Object-Process Based Method for Analyzing 
Architectures of Complex, Interconnected, Large-Scale 

Socio-Technical Systems 
 

Carlos A. Osorio1 (carlos.osorio@uai.cl), Universidad Adolfo Ibáñez (Santiago, CHILE) 

Dov Dori (dori@mit.edu), Technion, Israel Institute of Technology (Haifa, ISRAEL), and 
Massachusetts Institute of Technology (Cambridge, MA) 

Joseph Sussman (sussman@mit.edu), Massachusetts Institute of Technology, 
(Cambridge, MA) 

Version 1.6, date August 8th, 2009. 

Abstract 
There is growing evidence of the relevance of human behavioral factors in the 

success of development of new products, processes and services. The evidence is 
even clearer when the forces affecting the development and evolution of long-
lived, large, and open complex socio-technical systems are researched.  Methods 
that study the architecture of such types of systems can help scholars and 
practitioners to better understand, manage, and develop socio-technical systems. 
We propose an approach and a method to address these needs that is grounded in 
the theory of systems architecture and builds on the strengths of Object Process 
Methodology (OPM) and the process for representing Complex Large-scale 
Interconnected Open Socio-technical (CLIOS) systems. We do so by integrating 
these methods into the CLIOS-OPM Integrated Method (COIM). COIM is 
conducive to studying a system’s architecture and its evolution, as it is enhanced 
by a set of qualitative methods for answering questions about the reasons (why) 
and process (how) of change in human-made systems over time. 

 

Keywords: system architecture, evolution, legacy, Object Process Methodology (OPM), 
complex large-scale interconnected open socio-technical system (CLIOS). 
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1. Introduction and Research Objectives 
This paper is motivated by an effort to study and model the forces affecting the 

development and evolution of long-lived, large, and open complex socio-technical 
systems, building on research outcomes of scholars who have effectively worked in 
this area. 

Osorio (2007) focused on studying the architectural evolution of a specific type 
of long-lived socio-technical systems, namely municipal electric utilities (MEUs). In 
doing so, he encountered limitations on the theory and available methods and 
processes for answering his research questions, as there was no single satisfactory 
method for studying the evolution of the architecture of MEUs and explaining 
their diversification into broadband provision. Since this evolution was contrary to 
predictions made by scholars and practitioners as to how and why this would 
happen, a new way to study and understand this evolution became necessary. 

Beyond the particular interest in understanding the phenomena underlying the 
evolution of MEUs into broadband providers, there is a more general need to 
understand the underlying factors affecting the architectural evolution of complex, 
interconnected socio-technical systems. This need is highlighted when we study 
long-lived, large, and complex socio-technical systems that are open to the 
influences of social actors or have significant impact on society. Some examples are 
networks of critical infrastructure, such as transportation, electric power, and 
telecommunication systems, aircrafts and spacecrafts, such as the B52 and the 
International Space Shuttle, and software systems, such as SAP Enterprise 
Resource Planning, or Chile´s nationwide Government Procurement Online 
System. 

The original architecture, design, and implementation of systems of this type are 
normally carried out through careful study and documentation of the functional, 
structural, and procedural aspects of the system under development. However, 
throughout the lifetime of such systems, humans change them in attempts to 
enhance their performance, maintain some or all of their components or 
subsystems, update some of their underlying technologies, and adjust their 
structure or functions to the changing needs of varying environments. A recurrent 
problem with these changes is that they are rarely documented, and even if they 
are, the documentation is often inaccessible to the numerous architects and 
designers involved in such changes over timeframes that can last many decades 
and often transcend the work lifespan of the involved individuals. 

Improving this state of affairs requires adequate tools for studying and 
representing the architecture of this type of systems. Building on prior research, 
this paper proposes COIM—CLIOS-OPM Integrated Method—as an integrated 
approach, method, and notation for representing and studying architectures of 
complex, large-scale interconnected socio-technical systems and their evolution 
over time.  

While no single approach can serve all purposes, a combination of methods 
under a guiding theory could facilitate the study of the architecture of socio-
technical systems. We base our analysis on the theory of system architecture, 
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which provides a useful overarching framework for understanding the various 
factors influencing the overall form, function, and concept of a system’s 
architecture.  

We review the literature on systems architecture and system representation, 
with special focus on methods, strategies, and processes of representing the 
structure and behavior of systems. Based on the guiding theory of system 
architecture, COIM is an integrated methodology that builds on the representation 
stage of the Complex Large-scale Interconnected Open Socio-technical (CLIOS) 
Process and Object Process Methodology (OPM).  

When appropriate and necessary, we illustrate COIM with examples from our 
previous research on the diversification of municipal electric utilities into 
broadband services, intelligent transportation systems, and others.  

2. Literature Review and Contributions to Theory 
System architecting is a developing field of study (Whitney, Crawley et al. 2004).  

What some have called an “art” (Rechtin and Maier 2000) is increasingly gaining 
characteristics of science and engineering. Despite these developments, the 
question of how to study the architecture of large-scale socio-economic systems 
and their evolution has remained open. Necessary steps in our research are to 
understand (i) what do we mean by system architecture, (ii) what evolution a 
system's architecture can undergo, and (iii) what frameworks might be useful and 
how can they effectively be combined to represent the architecture and its 
evolution.  

What is System Architecture? 

Many disciplines in engineering and management sciences provide their own 
definitions for system architecture.  Computer science has been an important 
source of contributions to the study of the architecture of complex systems. Blaaw 
(1997) defined computer architecture as “the minimal set of properties that 
determine what programs will run and what results they will produce.” It is thus 
concerned with the “functional appearance” of the computer, or “what should it 
do.” In Blaaw's view, the structure is not part of the architecture; rather it 
corresponds to different domains of computer design: implementation (logical 
structure) and realization (physical structure). In this perspective, the nature of 
computer architecture is no different from that of language or software 
architecture, ranging from microcode to application. Consequently, Blaaw defined 
computer architecture as the outcome of the design of a “programming language 
when expressions are costly”.  

Also from the field of computer science, (Black 1989) presented a view for 
analyzing network architectures and protocols. For Black, network architecture is 
the definition of “what things exist” in a network, “how they operate” (protocols) 
and “what form they take” (topology).  A common feature of the different network 
architectures analyzed by Black is the decoupling (Suh 1998) or orthogonality 
(Blaaw 1997) between major functions arranged in “layers”. These layers provide 
(i) a decomposition into logical subsystems, (ii) standard interfaces among them, 
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(iii) functional symmetry across nodes (or peer elements), and (iv) command and 
control.  

In layered architecture, each layer operates independently and interacts with 
others via a set of protocols. This idea underlies each of the network architectures 
that (Black 1989) studied in his work: (i) Open Systems Interconnection (OSI), (ii) 
U.S. Government Open Systems Interconnection Profile (GOSIP), (iii) Systems 
Network Architecture (SNA), (iv) Digital Network Architecture (DECnet), and (v) 
the Defense Data Network (DDN). Interestingly, all these networks presented the 
same underlying concept of layered architecture described by Black.  

Hans van Vliet (2001) presented the role of architecture in software 
development by identifying and characterizing different architectural styles and 
different forces affecting architecture.  His focus was on how to identify and 
describe different software architectures: shared data, abstract data type, implicit 
evocation, and pipe-and-filter. He proposed that software architecture has three 
major objectives: (i) communicating among stakeholders, (ii) capturing early 
design decisions (legacy and compatibility with early versions), and (iii) 
transferring and reusing the system as the basis for a product family (Meyer and 
Utterback 1993) by providing access to common code. 

In the context of information systems, the Open Group Architectural 
Framework (TOG 2001) has defined architecture as “a set of elements (sometimes 
called building blocks) depicted in an architectural model, and a specification of how 
these elements are connected to meet the overall requirements of an information 
system.”  This definition requires that connections among elements, which is a 
structural aspect of the architecture, be specified in a model. Indeed, model-based 
systems engineering is an emerging area  

From the literature of product development, Ulrich (1995) defined architecture 
as the scheme by which function is allocated to physical components, and argued for its 
importance in manufacturing. He stated that architecture is a key driver of 
performance and managerial decision-making. More importantly, however, he 
argued that architecture is specifically relevant to product change, variety, and 
performance, component standardization and managing the product development 
process. Ulrich argued that architecture is central to the change of products along 
their lifetime, across generations, and within a company’s variety of products. He 
suggested that product variety results from flexibility in architecture rather than 
from core capabilities (e.g., a factory’s equipment). Ulrich proposed product 
variety as a function of the flexibility in product architecture, component 
processes, and standardization. 

Finally, similarly to Ulrich (1995), Crawley and Weigel (2004) proposed that the 
“architecture” of a technical system is defined as the way in which its concept 
matches its form to its function. Recent work stating various architectural "views" 
provides additional insights into this area (Rhodes, Ross et al. 2009).  

We can find parallels among many of the works discussed in this section by 
defining architecture in terms of form, function and concept (Crawley and Weigel 
2004). From the perspective of Black (1989), the protocols, topology and “what 
things exist” can correspond to function, form, and concept.  We can also draw 
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analogy between these ideas and the terms of Ulrich (1995) scheme (concept), 
function (function) and physical components (form). 

Dori (2002, p. 263) defined system architecture as follows: “System architecture 
is the overall system’s structure-behavior combination, which enables it to attain 
its function while embodying the architect's concept.” This definition combines the 
elements of concept—how the architect envisions the solution of the problem of 
combining structural elements and their behavior in a way that enables the system 
to function as expected, thereby providing value to its beneficiaries. 

Table 1 summarizes the various definitions of system architecture from the 
surveyed authors along with the relationships between form, function, concept, 
and behavior. 

Table 1:  Summary of System Architecture Definitions 

Definition of System 
Architecture 

Function defined 
in terms of 

Concept 
defined in 
terms of 

Form defined in 
terms of Source 

“the minimal set of properties 
that determine what programs 
will run and what results they will 
produce” 

Architecture as 
the functional 
appearance of the 
computer 

Not explicit  
Structure is not part 
of the architecture, 
but rather falls into 
a design domain 

(Blaaw 
1997) 

“what things exist” in a network, 
“how they operate” and “what 
form they take”  

The effect created 
by network 
components, 
topology and 
protocols, 
decoupled by 
layers 

Network 
topology, 

Network 
components are 
the basis of form in 
a network, and 
protocols drive their 
behavior 

(Black 
1989) 

(i) a vehicle for communication 
among stakeholders, (ii) 
capturing early design decisions, 
and (iii) providing a basis for 
transferring and reusing parts of 
the system. 

Overall desired 
performance of a 
software 

Understood 
as different 
architecture 
styles 

Code, which is 
affected by external 
forces 

(van Vliet 
2001) 

“a set of elements… depicted in 
an architectural model, and a 
specification of how these 
elements are connected to meet 
the overall requirements of an 
information system” 

“Overall 
requirements of 
an information 
system” 

Specification 
on how the 
elements 
are 
connected 

Elements on a 
model 

(TOG 
2001) 

“scheme by which function is 
allocated to physical 
components” 

The function of a 
product Scheme Physical 

components 
(Ulrich 
1995) 

“the way in which a concept 
matches form to function” 

A systemʼs 
Externally 
delivered function 

Overall 
systemʼs 
concept 

Form 
(Crawley 

and Weigel 
2004) 

“the overall systemʼs structure-
behavior combination, which 
enables it to attain its function 
while embodying the architect's 
concept” 

Overall systemʼs 
function 

A particular 
architecting 
concept 

Structure-behavior (Dori 2002) 

”conceptually design, evaluate 
and select a preferred structure 
for a future state enterprise to 

The enterpriseʼs 
value proposition 
and desired 

A particular 
concept of 
design, 

The preferred 
structure of a future 
state enterprise 

Nightingale 
and 

Rhodes 
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realize its value proposition and 
desired behaviors” 

behavior evaluation 
and 
selection 

(2009) 

Proposed Definition: 
 
A systemʼs architecture is the 
embodiment of a concept for 
achieving the desired systemʼs 
function in terms of its form, i.e., 
its structure-behavior 
combination. 
 

A desired system 
function 

A particular 
architecting 
concept 

Form as a 
structure-behavior 
combination 

This paper  

 

If we define “form” or “physical components” as “structure-behavior 
combination”, then the definitions of Black (1989), Ulrich (1995), Dori (2002), The 
Open Group (2001), and Crawley and Weigel (2004) coincide, expressing the same 
idea, which we state as follows:  

A system’s architecture is the embodiment of a concept for achieving the 
desired system’s function in terms of its form, i.e., structure-behavior 
combination.  

This definition is valid for architecture of any man-made system, from 
architecture of instruments and buildings, through software systems, to complex 
socio-economic engineering systems.  

A useful distinction can be made between intended and emergent architecture. 
Intended architecture is a result of an orderly architecting process, which accounts 
for requirements and weighs in alternatives before committing to a specific 
architecture—the intended one. Emergent architecture is a result of natural or 
social evolution over long periods of time. Examples of intended architectures are 
those of a jet aircraft or a multi-core processor. Examples of emergent architectures 
are those of a living organism (Jacob 1977), or a city. 

The difference between architecture and design is subtle. While architectures could 
be defined at higher hierarchical levels of abstraction, the different designs based 
on an underlying architecture could be defined at lower hierarchical levels. The 
BMW 3 Series, for instance, is defined as an entry-level luxury car. There have been 
90 different models throughout this product’s lifetime, which can be grouped into 
five differentiable types of vehicles based on the same platform: (i) the 3 series 
BMW E21 (1975-1983), BMW E30 (1984-1994), BMW E36 (1992-1998), BMW E46 
(1999-2006), (ii) BMW E90 (2005- ) 3 Series Sedan, (iii) BMW E91 (2006- ) 3 Series 
Wagon, (iv) BMW E92 (2007- ) 3 Series Coupé, and (v) BMW E93 (2007- ) 3 Series 
Convertible. The general idea is illustrated in the tree in Figure 1: Each architecture 
is the distinct combination of Function-Concept-Form nodes that is a path in the 
tree. Accordingly, Figure 1 depicts three distinct architectures: (1) Function – 
Concept 2 – Form 1, (2) Function – Concept 2 – Form 2, and (3) Function – Concept 
2 – Form 3. 
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Figure 1: Different architectures of the same system, fulfilling the same function 

Our working definition of a system’s architecture, as presented in Table 1, is the 
way in which a concept maps the system’s form (structure-behavior combination) 
onto its function. A first step in the analysis of the architecture of a socio-technical 
system is to identify the dominant influences that affect these three major 
dimensions of the architecture at the highest hierarchical level.  

The theory of system architecture provides a guiding framework for the analysis 
of the form (structure-behavior combination), function, and overall concept of a 
socio-technical system and its subsystems, as well as the sources of dominant 
upstream and downstream influences. 

Dominant Upstream Influences (DUI) include the regulatory and legal 
environment that affects form and function, corporate and marketing strategy, the 
influences imposed by customers and beneficiaries through their needs, the effects 
of the competitive environment, the evolution and availability of technology, and 
other strategies and internal competences. Dominant Downstream Influences 
(DDI) include those arising from the design, implementation, operation, and 
evolution of the system. 

Figure 2 shows that a system’s architecture can be affected by various factors 
not only during its design, construction, and first implementation, but also 
throughout its entire operational lifetime via changes in its form (structure, 
behavior, or both), function, or concept. In the case of long-lived systems, one 
might want to focus on the architectural evolution of a system during its 
operational life. For example, we wish to understand how the architecture of a 
MEU of interest has evolved, and how the legacy aspects of its architecture have 
been playing a role in shaping its current architecture.  

The literature review indicates that the theory of system architecture is not 
sufficient in that it cannot answer questions of this type. This is the current state of 
affairs because (i) system architecture theory is still not yet sufficiently developed, 
(ii) system architecture provides guidelines for system decomposition, but it does 
not offer methods for system representation, and (iii) system architecture does not 
satisfactorily address non-technical issues that greatly impact socio-technical 
systems. 

 



 8 

 
Adapted from Crawley and Weigel (2004) 

 Figure 2: Dominant Influences on System Architecture 

To gain more insight into what is still missing, in the next section we discuss the 
evolution of a system’s architecture and methods for representing system 
architecture. 

Evolution of System Architecture  

System architecture theory is in its early stages of development. However, it can 
already provide a useful framework for analyzing complex socio-technical systems 
and studying their evolution. Using this framework requires understanding of a 
given system’s building blocks and its representation, how its architecture evolves, 
and what useful ways can be employed to represent the system.  

Herbert Simon (1997) presented four principles for complex systems design, 
which might be useful for our purpose: homeostasis, membranes, specialization, 
and near-decomposability.  

Homeostasis is a system’s capacity to attenuate the internal effects of contextual and 
environmental changes via feedback, or balancing loops in the system dynamics 
jargon, thereby controlling or even reducing the system’s complexity.  

Membranes insulate the system and its subsystems, and serve as mechanisms for 
transporting information, material, and energy. This is the basis of a work by 
Pimmler and Eppinger (1994), proposing strategies for product architecture and 
decomposition.  

Specialization refers to the diversification of complex functions, which has been 
used in methods such as Axiomatic Design (Suh 1998), decomposition strategies 
for products (Koopman 1995), and decomposition of the design process (Eppinger, 
Whitney et al. 1994).  
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Finally, near-decomposability is the ability of a system to be decomposed into 
structural and dynamically stable subsystems, modules, or subunits. 

These principles are different facets of the flexibility of complex systems, which 
enables them to adapt and perform new functions. It is this architectural flexibility 
that enables system evolution. 

From the perspective of von Vliet (2001), the evolution of architecture is affected 
by the developing organization—the organization actually “creating” the system. 
Evolution has a cyclical relationship with its environment. Von Vliet focuses on the 
architecture of software, an interesting contrast to the approach of Blaaw (1997) to 
computer (hardware) architecture. 

All the cases of computer architecture discussed by Blaaw (1997) occurred prior 
to 1985. Once computer and software architecture shifted towards the personal 
computer, and the operating system (OS) was separated from the computer, his 
vision of architectural evolution ceased to be applicable.  Computer and OS 
architectures are currently distinctive, and their evolution is marked by different, 
yet interrelated, clockspeeds (Fine 1998). Computer architecture evolves about 
every other year, characterized by increasing memory and processing capacity, 
while software architecture evolves continually. To a great extent, this gradual 
software evolution is due to the constant Internet-based distribution of updates 
and patches.  

The case of computer and OS architecture is an interesting example of 
architectural evolution that had initially comprised one integrated system—the 
hardware-software monolithic computer—and evolved into two: the hardware 
being the physical computer and the software—the OS and various applications. 
This development in the computer arena is somewhat similar to a special case of 
evolution with relevant implications for technology management, a case in which a 
second line of business emerges from internal activities or functions of a socio-
technical system. Studying the relationships between the form and functions of the 
components of the infrastructure supporting both services—hardware and 
software—can shed light on such evolutions (Osorio 2007). 

A key concept in this context is the system’s Externally Delivered Function 
(EDF), which is the system’s function at its highest hierarchical level (Crawley and 
Weigel 2004). Alternatively, in the terminology of OPM (Dori 2002), EDF is the 
system’s (only) function, whereas internal functions are called processes. We shall 
henceforth refer to EDF as “function.” The system's function is understood by 
decomposing and disaggregating it into several processes (internal functions). 
These are usually mutually exclusive, but comprehensively exhaustive (Pimmler 
and Eppinger 1994). Thus, the study of architectural system evolution includes 
three possible cases: (i) a change in the actual function, (ii) the emergence of a new 
function, and (iii) internal process changes with no change to the existing function. 

The first case, change in the system's actual function, pertains to the basic form 
of architectural evolution. It is related to changes in processes and associated form 
designed to enhance the original function of the system—the reason for developing 
it in the first place. Sometimes, however, intended architectural evolution of a 
system can result in severe hindrance of its performance, as was the case with the 
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change from the old to the new Public Transportation System of the city of 
Santiago, Chile, also known as Transantiago (Pelayo 2007; Mardones 2008). 

In the second case of architectural evolution, emergence of a new function, the 
deployment of a new function is a consequence of the many external and internal 
influences affecting the system (Crawley and Weigel 2004; Whitney, Crawley et al. 
2004; Osorio 2007). Investigators need to focus on the engineering system as a 
technical system embedded in a defined policy, social, and economic context 
(Dodder, Sussman et al. 2005; Mostashari and Sussman 2009). In the policy context, 
several actors can affect the form, function, or concept of the system by various 
regulatory means. In the social and economic contexts, residents and businesses 
exhibit certain needs and demand certain services. The combined effect of changes 
of the various types adds uncertainty to the system, creating new design spaces 
(MacCormack and Verganti 2003; MacCormack 2005), many of which are not 
observable to the managers of the system (Osorio 2007) due to bounded rationality 
(Simon 1991). 

The existence of regulatory effects, social and economic needs, and their effect 
on decision-making are central to the evolution of an organization, accounting for 
part of the third case of architectural evolution—internal process changes with no 
change to the existing function.  Analysis of these regulatory, social, and economic 
factors can help explain why architectures of long-lived systems evolve in certain 
ways. These systems are of special interest, because, in most cases, their evolution 
is partially unintended—it has not been planned by a single architect throughout 
the system’s life. Rather, their architecture has resulted from a series of incremental 
unplanned or planned, changes by different actors. In these cases, possible paths 
for evolution are constrained by the legacy of the pre-existing architecture, and 
limited by each architect’s bounded rationality and insufficient information about 
the evolutionary possibilities. 

The open question we face is how to represent system architecture in a way that 
would best cater to studying its evolution. 

Decomposition and Representation of System Architecture 

A useful representation of a system’s architecture has the following features: (i) 
It results from a strategy for decomposing, relating and representing its underlying 
structure (objects), behavior (processes) and design concepts, and (ii) It expresses 
function—the high-level goal or purpose of the system, and the main reasons and 
objectives for the particular system’s architecture. 

Koopman (1995) proposed a framework for decomposing and representing 
system architecture based on structures (form), behaviors (processes, or internal 
functions), and goals (“desired emergent properties” or needs), creating a 
taxonomy that allows for comparison across different strategies. While this 
framework considers both technical and non-technical criteria, it is explicit in not 
considering technical, regulatory, and political or business influences.  

Koopman’s framework is based on decomposing the design according to the 
three previous dimensions, which range from “pure”, when performed based on 
only one of them, “split”, when separating dimensions into decoupled sub-designs 
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and using pure decomposition in each, and “combined”, which considers two or 
all three dimensions at the same time. The approach departs from ad-hoc 
decomposition by allowing options for greater modularity. It does not, however, 
differentiate between the design process and the resulting artifact—the final design 
(Koopman 1995). This missing distinction between processes and objects is a major 
tenet of OPM. From the perspective of our research in representing architecture of 
socio-technical systems, this is a major limitation, which we relate to in the sequel 
to this paper focused on applications. 

Suh (1998) presented Axiomatic Design as a method for designing systems in 
terms of minimizing the complexity arising from the interaction between 
functional requirements (FRs), design parameters (DPs) and process variables 
(PVs) for systems of fixed functional requirements. Koopman (1995), and Pimmler 
and Eppinger (1994) followed a similar objective. 

Axiomatic Design (AD) is based on two axioms: independence among functions 
(Independence Axiom) and achieving the least possible information content on the 
design (Information Axiom). The Independence Axiom is equivalent to the 
Specialization of Simon (1997). The method consists of the following steps: (i) 
defining the functional requirements (FRs) for the system, which requires finding 
the customers’ attributes and needs, (ii) mapping FRs with physical elements in 
order to create design parameters (DPs) and identify process variables (PVs), (iii) 
testing the Independence Axiom between functions, and (iv) verifying the 
information content of the system.  

Besides the axioms, AD is based on the hierarchies among FRs, DPs, and PVs, 
and the zigzagging between the functional and physical domains (FRs and DPs). 
Hierarchy provides policy and supervisory functions that start at the highest 
system level and progress to lower levels of detail, tracking up and down from the 
beginning point, in a process called zigzagging, which is important for the design 
decisions between FRs and DPs. 

Pimmler and Eppinger (1994) presented a method for analyzing product design 
decompositions and for understanding and evaluating the requirements of system 
engineering. The method follows a three-step process of (i) decomposing the 
system into elements, (ii) documenting their interactions in terms of proximity, 
energy transfer, information, or of material interchange, and (iii) clustering them 
into “chunks”. Each type of interaction ranges from –2 (interaction must be 
prevented to achieve functionality) to +2 (interaction is necessary for 
functionality). Clustering is achieved by reordering elements around a matrix 
diagonal in order to reduce interaction complexity. While presenting 
decomposition strategies, Pimmler and Eppinger do not stipulate a representation 
method or process.  

There is, however, a methodology that includes a language and a modeling 
approach that draws on the theory of systems architecture to enable representation 
and study of systems. There is also a process for analyzing socio technical systems. 
Together, they provide for representing the architecture of socio-technical systems 
and studying their evolution. The method, Object-Process Methodology (OPM), 
developed by Dori (2002), has been used for conceptual modeling and system 
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architecting in many domains, notably in product development, and specifically by 
Crawley, to represent a system’s architecture based on form, functions and 
concept. The process for analyzing socio technical systems was developed by 
Sussman’s research group at MIT (Mostashari and Sussman 2009) for analyzing 
Complex, Large Interconnected Open Socio-Technical (CLIOS) systems. OPM and 
CLIOS are explained next. 

Object Process Methodology 

Originally, the study of a system’s architecture has focused on technical 
systems, and has been supported by the use of Object Process Methodology 
(OPM). OPM offers a consistent method for the study of the architecture of a 
system. It provides operators for hierarchical decomposition, and helps identify 
the underlying processes that link function and form.  The result is a single 
graphical and an equivalent textual model combining the structure and behavior of 
the system under scrutiny at varying levels of detail. With respect to our study, 
OPM is limited in that it does not specifically recognize the relevance of social, 
organizational, and contextual dimensions; neither does it provide a way to 
explicitly include them in the analysis.  

OPM is a methodology that is used primarily in product design and systems 
engineering. In OPM, a system is defined as an object that exhibits a function, 
where the function is “the main intent for which [the system] was built, the 
purpose for which it exists, [and] the goal it serves” (Dori 2002: 251).  

The major features of OPM allow for hierarchical decomposition of the system 
into objects, or physical elements, and processes – internal functions – in a well-
defined manner at various levels of hierarchy. This is done by expressing 
relationships between objects and processes via structural and procedural links. 
Agents, in OPM terms, are human operators—individuals that make the system 
work. Operands are the most important objects on which processes operate in 
order to carry out the system’s externally delivered function. 

The OPM language employs certain symbols to represent the elements (form) 
and processes (functions) of a system’s architecture (Dori 2002).  OPM includes 
notation for representing states (e.g., an alarm can be on or off), and can also be 
used to study a system’s life cycle and evolution (Dori 2002: 289). OPM is bi-modal, 
expressing the system model in both graphics and text—a subset of English, called 
Object-Process Language (OPL), that is generated automatically on the fly if one 
uses OPCAT (Dori, Reinhartz-Berger et al. 2003) for OPM-based modeling.  

Symbols of OPM entities (objects, states, and processes), as well as of structural 
and procedural links and corresponding OPL sentences are shown in Figure 3 
(Dori and Choder 2007).  

 

 

 

 



 13 

 

Symbol Name Symbol Name 

ENTITIES 

 

PROCEDURAL LINKS 

 

 
Object A: 

A thing that exists  
Agent Link  

Things 

 

Process B: 
A thing that transforms 

object.  
Instrument Link 

 
States s1, s2: 

Situations of an object.  
Instrument Condition Link 

STRUCTURAL LINKS 

  
Effect Link 

 Aggregation-Participation 
 

 

 

Consumption Link 
 

Result Link 

 
 

Exhibition- 
Characterization 

 

Input-Output Link Pair 

 
Generalization- 
Specialization  Invocation Link 

 Classification-Instantiation  Instrument Event Link 

 

   

 

Tagged structural links:  
Unidirectional 
Bidirectional  Consumption Event Link 

Figure 3: OPM Entities and Links 

 

OPM has been combined with theory of system architecture for design and new 
product development, but it presents limitations for the analysis of complex socio-
technical systems: OPM does not include the representation of direct effects of 
organizations or political actors on the architecture of a system.  

We borrow from system architecture the focus on form, function, and concept, 
along with identification of needs, intent, processes and objects. The OPM 
modeling process starts with the examination of the way in which (i) the externally 
delivered function (EDF, or simply function) is associated with the needs of 
beneficiaries from using the technical system, (ii) the intent to fulfill their needs, 
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(iii) the operands and value attributes associated with the function, (iv) operators 
of the system, and (v) first-level decomposition of the technical system among 
functions and objects in at least one of the concepts for architecting the system.  

We focus on the representation approach of OPM, which would enable us to 
understand the extent to which the system meets the needs of beneficiaries 
through its function. An effective way to achieve this is through hierarchical 
decomposition. OPM naturally represents the decomposition of the system’s 
function (processes) and form (objects, or components) in a top-down fashion from 
the most general to the most detailed abstraction levels.  

Form decomposition via aggregation-participation (whole-part) relation 
includes links only among units of form. Likewise, functional decomposition using 
the same relation includes links only among processes—functional elements. For 
any given level of abstraction, the form and function decompositions can be shown 
in a single Object-Process Diagram (OPD). Procedural links connect objects to 
processes, expressing the dynamic aspect of the system. This is normally done up 
to the third or fourth hierarchical level, which is possibly relevant for system 
design and development but not necessarily for our research. Figure 4 shows a 
typical example of how OPM is used for object-process representation of technical 
systems.  
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Figure 4: Object-Process Representation of a System’s Architecture 

Depending on the architecting task at hand, it is necessary to find the 
“adequate” level of disaggregation in form and function that allows understanding 
of the underlying architecture or its evolution. The decision about the level of 
decomposition is based on the complexity of the system and on the analysis goals.  
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From this perspective, OPM has many characteristics one might want to use for 
studying a system’s architecture. However, for modeling socio-technical systems, 
OPM has two limitations:  

i. It does not include any consideration of the broader social, organizational or 
institutional context under which the system operates, is designed, or is 
developed.  While all these can be modeled as objects and processes, OPM does 
not have specific means to relate to these entities as elements that need special 
treatment.  

ii. OPM does not explicitly consider social dimensions affecting form, function, or 
concept beyond the interactions of the system with its operators and 
consumers. Social dimensions include critical influences on a system’s 
architecture (DeSanctis and Poole 1994; Crawley and Weigel 2004); its 
organization (Orlikowski 2000), especially if it is public (Fountain 2001); and the 
overall strategy that governs it (Arcelus and Schaefer 1982).   

To complement the strengths of OPM with a method that could offset its 
limitations, we have adopted the Complex, Large Interconnected Open Socio-
Technical (CLIOS) Process. 

The CLIOS—Complex, Large Interconnected Open Socio-Technical—Process 

CLIOS is a process for analyzing Complex, Large Interconnected Open Socio-
Technical systems in an iterative manner. The CLIOS Process consists of three 
stages: (i) representation, (ii) design, evaluation and selection of strategic 
alternatives, and (iii) implementation of the chosen alternatives (Mostashari and 
Sussman 2009) .  

In this research, we focus on the Representation Stage, the objective of which is 
to “convey the structural relationships between the components of the CLIOS 
system” (Dodder, McConnell, et al. 2006). CLIOS Systems are composed of a 
complex Physical Domain (PD) that is nested into another complex Institutional 
Sphere (IS), as represented in Figure 5. The institutional sphere is formed by 
formal and informal organizational actors that interact with the Physical Domain. 
The interactions between the PD and IS create “Nested Complexity” (Dodder, 
McConnell, et al. 2006).  
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Institutional 
Sphere

Physical 
Domain

 
Source: Dodder, Sussman et al. (2005) 

Figure 5: Illustration of Nested Complexity  

 

The Representation Stage of the CLIOS Process provides a framework for the 
analysis of a socio-technical system, separating it into a physical domain nested in 
an Institutional Sphere. This distinction complements the analysis of dominant 
influences in a system’s architecture. Common drivers help identify objectives and 
elements that can affect system evolution by being common to two or more 
subsystems. The CLIOS Process, however, has two limitations: (i) it does not 
provide a modeling framework for representing hierarchical relationships among 
elements, be they elements of form (objects) or function (processes), and (ii) it does 
not provide a way to represent functions or processes and differentiate them from 
elements of form. 

From the perspective of organizational theory, the concept of Nested 
Complexity could explain some of the dynamics among the technical and 
organizational dimensions of systems, as well as problems in their performance 
and integration. The CLIOS Process approach to studying Nested Complexity 
through the representation of the PD and IS is the major reason for the usefulness 
of CLIOS to our research.  

The Representation Stage of the CLIOS Process (CLIOSP-RS) follows five 
iterative steps, which are described below and represented in Figure 6. 

1. Describe 
System: Issue 
checklist and 
initial goal 
identification

2. Identify Major 
Sub-Systems of the 
Physical Domain 
and Major Actors 
Groups of the 
Institutional Sphere

3. Populate the 
Physical Domain 
and the 
Institutional 
sphere in the 
CLIOS diagram

4A. Describe Components 
of the Physical Domain and 
Organizations in the 
Institutional Sphere
4B. Describe Links among 
Components and Orgs. 

5. Seek 
Insight 
About 
System 
Behavior

Structure Behavior

 
based on Dodder, Sussman et al. (2005) 

Figure 6: CLIOS System Representation Stage 
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1. System Description.  The objective of this step is to describe the system, its major 
characteristics, goals, and the main issues at stake. The description might 
attempt to explain why this system is interesting, important, or generalizable. 

2. Identification of major subsystems of the physical domain and major actors of the 
institutional sphere.  In this step, we identify the major subsystems of the CLIOS 
System, their nature, and relationships among them. An important aspect here 
is the definition of the Institutional Sphere and the identification of actors 
within this sphere. Dodder, Sussman, McConnell and Mostashari (2006) have 
proposed one institutional sphere for their concept of “Nested Complexity”, 
which is created when the physical system is affected by formal or informal 
organizational systems.  

3. Populating the physical domain and the institutional sphere.  In this step (3 in Figure 
6), the functions and elements of each subsystem are described in greater detail. 
This is done by nesting the physical systems in the institutional sphere, layering 
the physical system into different subsystems and, if more detail is necessary, 
exploring some subsystems by expanding the analysis of some subsystems at 
finer granularity.  

Dodder, Sussman et al. (2006) defined four types of system components (see Figure 
7): (i) a physical component, represented by an oval, (ii) a policy lever, which is an 
element of the technical system easily affected by actors in the IS, represented by a 
rectangle, (iii) a common driver, which is a “component that is shared across 
multiple subsystems of the physical domain”, represented by a diamond, and (iv) 
an external factor, which is a component that affects the system, but for practical 
purposes is not affected by the system, represented by a gray rectangle.  

 

 
Source: prepared based on Dodder, Sussman et al. (2006) 

Figure 7: Symbols of Components in the CLIOS Process 

 

After populating the physical domain and institutional sphere, the CLIOS 
process follows the description of components in the physical domain and 
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institutions in the institutional sphere, and descriptions of links among 
components in the physical domain and organizations in the institutional 
sphere, as explained next.  

4. Describing components in the physical domain and organizations in the institutional 
sphere. In this step (4a in Figure 6) we add detail and understanding by 
describing in detail the components on the physical domain and organizations 
in the institutional sphere. Detailed description results from gaining deep 
understanding of each component and organization’s dynamics, behavior, 
relevance, critical factors for performance, and insights about their 
relationships. 

5. Identifying links among components and organizations. In this step, 4.b in Figure 6, 
we identify the types of relationships between components, subsystems, and 
the various actors.  Dodder, Sussman et al. (2005) offer general guidelines for 
defining the properties of such links in terms of their strength, timing of 
influence, activity/inactivity, and, when possible, the directionality and 
magnitude of influence. They define three classes of links:  

(i) Class 1 links – links among elements of the physical system,  

(ii) Class 2 links – links between the physical system and institutional 
sphere, and  

(iii) Class 3 links – links among components of the institutional sphere.  

Considering the issues discussed in previous sections and the needs of our 
research, we provide for representing functions and hierarchical 
decomposition. We need to identify functions and describe the relationships 
between existing and new functions of a system. The ability to represent 
hierarchical relations among functions is important, as it allows us to identify 
new functions added by design, new emergent functions, which appear 
unexpectedly without being explicitly designed, and changes in an existent 
function. This limitation of the CLIOS process can be solved by adopting ideas 
and notations from Object Process Methodology (OPM). 

6. Gaining insights about system behavior.  A major objective of CLIOS system 
representation is to understand its structure and behavior, at least to first order. 
Understanding the overall system behavior (Step 5 in Figure 6) is achieved by 
understanding its subsystems, components, relationships among them, and 
relationships with components of the IIS (internal institutional sphere) and the 
EIS (external institutional sphere).  

The major strengths of the representation stage of the CLIOS Process are the 
following:  

i. The CLIOS representation is explicit in considering the physical and 
institutional domains of socio-technical systems, allowing for analysis of the 
relationships and possible behavioral interactions among them. The definition 
of the institutional sphere is a major contribution to studying the effect of 
external institution-based influences in architecture. Using this representation, 
one can analyze how the various dominant influences on system architecture, 
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represented in Figure 2, affect form, concept, and function of a given socio-
technical system.  

ii. The physical domain in the CLIOS representation considers not only the 
technical subsystem of interest—for instance, the electric power infrastructure 
of a municipal electric utility (MEU)—but also other subsystems that explain 
the broader context in which a technology is embedded, e.g., the economic 
activity and municipal subsystems. These subsystems can have important 
effects on the evolution of the architecture of the technical components of a 
socio-technical system.  

iii. The CLIOS representation includes the category of “common drivers. These 
common drivers identify relationships among physical components and 
between them and organizations in the institutional sphere.  

As noted, the CLIOS representation has two main limitations with respect to 
achieving the objectives of our research: (i) It does not have operators that 
represent functions or processes as different types of elements. Since functions are 
one of the three main components of a system’s architecture that need to be 
represented, this lack is critical. (ii) It does not include an explicit way to define the 
hierarchy of elements or functions.  

To overcome these limitations we have created a derivative method—the 
CLIOSP-OPM Integrated Method (COIM). COIM, presented next, builds on the 
strengths of OPM and the CLIOS process while offsetting their limitations.  

3. An Integrated Method for Representing Architecture of 
Socio-technical System 

The previous sections presented the literature of system architecture, as well as 
the benefits and limitations of OPM and the representation stage of the CLIOS 
process for studying the architecture of complex socio-technical system and its 
evolution. Studying the architecture of this type of systems requires a combined 
approach. This section discusses how CLIOS and OPM are combined into the 
CLIOS-OPM Integrated Method (COIM), a robust analytical framework that offsets 
the limitations of each one of its components when used separately (See Table 2).  

With systems architecture providing the theoretical framework, the combination 
of the CLIOS Process and OPM is the basis for our analytical framework. The 
simplicity of the CLIOS Process for studying large-scale socio-technical systems is 
enhanced with the rigor and orientation to details of OPM.  An important outcome 
of this OPM-CLIOS Process integration is that the analysis of upstream influences2 
on system architecture becomes implicit in the system representation process 

                                                 

2 According to Crawley and Weigel (2004), Upstream Influences in system architecture include 
regulation; the organization’s strategy; needs and goals of customers and beneficiaries; competitive 
environment; and technologies. There are also Downstream Influences, which include the design, 
evolution, operation and implementation. These could be matched to the latter stages of the CLIOS 
Process with further development of COIM. 
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through the inclusion of the first stages of the CLIOS Process under a System 
Architecture framework. Upstream influences include regulation, the 
organization’s strategy, needs and goals of customers and beneficiaries, 
competitive environment, and technologies. We continue with a specification of 
COIM.  

 

Table 2: Summary on Focus, Strength and Limitations of Approaches  

 
Source: Osorio (2007) 

COIM Terminology and Representation Operators 

An important aspect of a system's representation is the extent to which it can 
provide insight into that system’s behavior (Sterman 2000; Dori 2002; Dodder, 
Sussman et al. 2005). This is particularly relevant when we wish to understand the 
reasons for the evolution of a system’s architecture over long periods of time, and 
where numerous architects and other agents and factors have been making 
intended and unintended changes that contributed to the current architecture. To 
this end, we have adopted a distinction within the CLIOS Process between the 
physical domain and its institutional sphere. We have also adopted OPM’s 
distinction between elements of form—objects and those of function—processes. 
The analysis is thus inspired by both the CLIOS Process  and OPM.  

The COIM representation operators have evolved from their original 
counterparts in the CLIOS  Process, adding the differentiation between elements, 
or components, of form and function. In Figure 8, these components are depicted 
and exemplified using examples from the electric power industry. 
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Element or 
Component

of Form

Element or 
Component
of Function

Policy Lever

Common 
Driver

External
Factor

E.g. transformers, transmission and distribution lines, 
modems, firewalls, routers, etc.

E.g. Transmission and distribution, routing, encrypting, 
monitoring, etc.

E.g. Coverage Reports (by FCC Form 477), Emergency 
Alert (by FCC Disaster Warning System), Pricing (by State 
PUC)

E.g. Economic Development, revenue of municipal 
electric utilities

E.g. United States GDP, weather
 

Source: Osorio (2007) 
Figure 8: COIM Components 

• Components of form, indicated by a solid-line oval, are defined as the physical 
elements that comprise a system. Some examples from the electric utility 
domain are transformers and transmission and distribution. 

• Components of function, represented by a dotted-line oval, characterize the 
purposes and goals of the physical elements of a system, or, equivalently, 
represent the functions associated with elements of form. For a distribution 
line, for instance, the associated function would be distribution of electric 
power from the distribution transformer to the customer premises. 

• Policy levers, indicated by a white rectangle, are “components within the 
physical domain that are most directly controlled or influenced by decisions of 
actors…on the institutional sphere” (Dodder, McConnell et al. 2006 b). Thus, 
policy levers are a way by which institutional actors can affect form or function 
components of a subsystem in the physical domain (See Figure 10, case 3 for 
example). 

• Common drivers, represented by a diamond, are “components that are shared 
across multiple and possibly all subsystems of the physical domain” (Dodder, 
McConnell et al. 2006). Common drivers are important influences on 
architecture, especially due to their influence across subsystems of the physical 
domain. 

• External factors, represented by a shaded rectangle, are exogenous parameters 
that affect the system but are not affected by the system.   
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Component
of Form

Component
of Function

Policy Lever

Common 
Driver

A B

Component
of Function

Component
of Function

Component
of Form

Component
of Function

Institutional Actor

B affects A, and A affects B: e.g. control

A yields to B, and B yields to A: e.g. 
Providing basic infrastructures services 
affects economic performance

A affects B: e.g. regulations affect system 
functions

B is handled by A. E.g. Energy 
regulation is handled by state PUC, 
System monitoring is handled by 
SCADA software

Component
of Form

Component
of Function

B requires A: E.g. system monitoring 
requires communication network

Policy Lever

1

2

3

4

5

6
 

Source: Osorio (2007)  
Figure 9: Links for COIM Diagrams 

 

Based on the CLIOS Process and OPM, COIM also includes the following set of 
links, shown and exemplified in Figure 9. 

1. Relationship of effect between components of form and function: These links are 
used to represent the way in which a function affects an element of form, 
similar to the effect link in OPM.  

2. Relationship between functions and common drivers: The performance of 
functions can affect a common driver in the same way that a common driver 
can affect a function. 

3. Effect of policy levers on functions: These are used to represent the way in 
which functions are affected by specific components in the physical domain 
that are controlled by actors in the institutional sphere. 

4. Control of a function by a component of form: This type of relationship is used 
to reflect the control of functions by specific elements of form, and is 
represented by a solid line and black dot. 

5. Control of a policy lever by an institutional actor: This is represented by a dotted 
line and black dot, similar to the effect link in OPM. 

6. Functional requirement of a component of form: A solid line ending in a white 
dot represents the infrastructure requirements for performing a function. 
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In summary, we might have a function affecting a component of form, or a 
component of form affecting a function. Also, a function can affect a common 
driver. For instance, the provision of broadband services by municipal electric 
utilities affects economic development. In the same way, a common driver can 
affect a function or element of form. For instance, adoption of new information 
technologies by MEUs can affect Supervisory Control and Data Acquisition 
(SCADA) and Automatic Meter Reading (AMR) systems, and lead to the adoption 
of Internet Protocol (IP)-enabled solutions. Functions might also require a 
component of form, but are controlled by another element. For instance, system 
monitoring requires a communication network, but is controlled by the SCADA 
system. 

Institutional actors can affect functions directly or indirectly by regulating the 
policy levers affecting the function. These relationships between the institutional 
sphere and physical domain, called “projections”, are represented by dotted lines.  
Functions and policy levers are controlled by components of form and actors in the 
institutional sphere, respectively.  

The symbols described above can be used to represent the relationships among 
components of form, function, common drivers, policy levers, institutional actors, 
and external factors. We can use them to represent relationships of cause and effect 
(A affects B), control, or requirement among components.  
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Name  Symbol Semantics 

 Aggregation-
Participation 

 

A is the whole, B and C are parts. 

 Exhibition- 
Characterization  

 

B is an attribute of A and process C is its 
operation (method). 

 

A can be an object or a process. 

 

 Generalization- 
Specialization 

 

A specializes into B and C. 

 

A, B, and C can be either all objects or all 
processes. 

Classification-
Instantiation 

 

Object A is the class, for which B and C are 
instances. 

Applicable to processes too. 

Source: Dori (2002) 

Figure 10: Hierarchical Operators 

Finally, we borrow a third group of operators from OPM that are especially 
useful for representing structural and hierarchical relationships. As Figure 10 
shows, these are: 

1. Representation of hierarchies: A black triangle signals the decomposition of a 
system into subsystems that are “mutually exclusive and comprehensively 
exhaustive” (MECE). The hierarchical decomposition can be performed at as 
many hierarchical levels as the modeler or researcher considers appropriate for 
the purpose of the research. 

2. Representation of attributes: A black triangle inside a white triangle signals the 
attributes of a system, common drivers, components of form, or functions. 

3. Specialization of components: A white triangle signals the characteristics of 
elements in terms of their specialization.   
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4. Class of components: A circle inside a white triangle signals inclusion into types 
of classes.  

Differentiating between the External and Internal Institutional Spheres 

The CLIOS Process definition of nested complexity relates to the complexity 
created by the embeddedness of the physical system in its surrounding 
organizational and institutional domain (the institutional sphere). All technical 
systems are directly affected by their immediate organizational environment, 
culture, practices, and structural embeddedness.   

We examine the effect of organizations on physical system at two levels: internal 
and external. We thus extend the CLIOS Process by separating the institutional 
sphere according to the types of organizational actors and their relationships. This 
distinction is required due to the different nature of internal and external 
influences on architecture. 

The internal level of the institutional sphere is formed by the immediate 
organizational environment of a technical system or, in other words, the 
organization holding and operating the technical system. This defines the internal 
institutional sphere (IIS). Many scholars in organizational theory and behavioral 
policy sciences have studied the interaction between the internal institutional 
sphere and the physical domain (Perrow 1986; Orlikowski and Baroudi 1991; 
DeSanctis and Poole 1994; Orlikowski 2000; Fountain 2001).   

Several formal and informal actors outside the IIS form the external level of the 
institutional sphere, creating the external institutional sphere (EIS). Components of 
the EIS can directly or indirectly affect the technical system under study through 
federal or state regulation, local government rules, the practices of suppliers, or 
national changes in customer needs.  Scholars of the history of technology, 
privatization, and regulation, have analyzed various ways in which public policies 
have affected the architecture, design, or operation of technical systems in areas 
such as emissions control and pollution, car safety, and electric power and 
telecommunications (Hughes 1983; Donahue 1989; Viscusi, Vernon et al. 1997; 
Newbury 1999; Laffont and Tirole 2000; Savas 2000). Theories about system 
architecture and product development have explained how technical systems are 
shaped by changes in customer needs and preferences (Rechtin and Maier 2000; 
Crawley and Weigel 2004; Ulrich and Eppinger 2004).  

Relationships between actors in the IIS and actors in the EIS give rise to a third 
type of relationships that can have an indirect effect on the technical system. 
Several scholars have analyzed the different ways in which organizations interact 
in different economic and regulatory settings (Powell 1990; Powell and Smith-
Doerr 1994; Podolny and Page 1998; Polenske 2004), In such interactions, the 
institutional sphere might impact the organization and affect the system’s 
performance in ways other than the direct effect on the technical system.  

Figure 11 shows the differentiation between the internal and external 
institutional spheres in our modified model. 
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ExternalExternal

InternalInternal

Influences from the outer 
institutional sphere over the 
organization that hosts the 

technical system

Direct influences over the 
technical system from the 
outer institutional sphere

Direct influences over the 
technical system from the 
outer institutional sphere

Influences over the 
technical system from its 
organizational 
environment

Influences over the 
technical system from its 
organizational 
environment

 
Source: Osorio (2007) 

Figure 11: Illustration of Extended Notion of Nested Complexity 

 

The influences from within and outside the organization on the technical system 
are of special interest, because it is necessary to show how actors from the external 
institutional sphere are related to components of each subsystem and to the 
organization that governs and directly manages the technical system. The way in 
which the organization is related to the main components of the physical system 
needs to be represented as well. To this end, COIM includes two distinctive 
features for representing a subsystem and the institutional sphere. First, the 
representation of subsystems in the physical domain includes projections from the 
actors on the institutional sphere affecting the subsystems. Second, the 
representation of the institutional sphere differentiates between IIS and EIS. It 
includes projections from the EIS and IIS to a summarized representation of the 
physical domain.   

Combining Research Approaches in COIM 

The study of the evolution of system architecture requires OPM to be capable of 
historical analysis and analysis of dominant influences in system architecture. 
Historical analysis allows for identifying how path dependence can affect a 
system’s organization (structural embeddedness and culture) and technical system 
(legacy of its architecture). Path dependence and legacy in architecture are 
especially important when studying the evolution of a system’s architecture. We 
therefore analyze the physical domain by investigating components of the 
technical infrastructure that are likely to exhibit legacy influences and can affect 
the evolution of the architecture of our system. 
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Analysis of dominant influences allows identifying and understanding the 
factors, sources and effects of regulatory, social, institutional, organizational 
and contextual changes on system architecture. In what follows, we discuss 
relationships between dominant influences in system architecture and the 
CLIOS Process at the IIS, EIS, and common drivers levels. 

At the internal institutional sphere (IIS) level, an organization’s corporate and 
marketing strategy can affect the functions or forms of its technical 
infrastructure. New organizational competencies can be generated by decision 
making at operational and tactical levels. Other dominant influences in the IIS 
include internal policies or decisions about operation of the technical system, 
and strategies based on the identification of needs in the user base. 

At the external institutional sphere (EIS) level, organizations exert three of the 
most important types of dominant influence in a system’s architecture: 
regulations, changes driven by competitive environment, and changes to the 
needs to be satisfied by the system. From the perspective of system 
architecture, the institutional actors can be divided into public and regulatory 
organizations, private companies providing competitive services, and other 
formal or informal organizations concerned about the direct or indirect effect of 
the system on customer needs, regulatory aspects, or other issues such as 
environment, labor, etc. 

At the common drivers level, the dominant influences include two major 
drivers of the evolution of a system’s architecture: new technology and 
operational costs and efficiency. We consider the technical architecture of a 
CLIOS as a major component of its physical domain. This technical architecture 
can be represented as one or more subsystems. If there is more than one, then 
new technology and efficiency will be drivers common to all subsystems, 
including parts of the technical infrastructure of the system.  

Historical analysis and analysis of dominant influences are included in the 
analysis of system architecture, which can also be performed using OPM. We can 
draw analogies between analysis of dominant influences and the CLIOS process. 
Thus, by integrating system architecture with OPM and the CLIOS process, we 
make it possible to integrate historical analysis and dominant influences into the 
representation process. The integration among system architecture, OPM and the 
representation stage of the CLIOS Process is illustrated in Figure 12. 

In this integration OPM contributes with the detail and rigor from the object-
process decomposition. CLIOS Process adds the analysis of the Internal and 
External Institutional Spheres from the Representation Stage, and System 
Architecture adds historical analysis, and the study of dominant influences. The 
purpose of this integration is creating a research method for studying the 
architectural evolution of a system where most of the learning comes from (i) 
understanding the system’s setting, (ii) understanding and identifying its sources 
of legacy, influences and path-dependence, and (iii) learning about the system’s 
evolution through the process of detailed representation of the system. 
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System: Issue 
checklist and 
initial goal 
identification

2. Identify Major 
Sub-Systems of the 
Physical Domain 
and Major Actors 
Groups of the 
Institutional Sphere

3. Populate the 
Physical Domain 
and the 
Institutional 
sphere in the 
CLIOS diagram

4A. Describe Components 
of the Physical Domain and 
Organizations in the 
Institutional Sphere
4B. Describe Links among 
Components and Orgs. 

5. Seek 
Insight 
About 
System 
Behavior

Structure Behavior

High-Level DecompositionHigh-Level Decomposition

Form DecompositionForm Decomposition

Functional DecompositionFunctional Decomposition

Object Process RepresentationObject Process Representation

CLIOS System Representation

Upstream/Downstream Influences

Historical Analysis

Upstream/Downstream InfluencesUpstream/Downstream Influences

Historical AnalysisHistorical Analysis

“Data”: Case studies, fieldwork, interviews

OPM

System Architecture: focus on evolution of form, function and concept of 
subsystems in the physical domain

 
Source: Osorio (2007) 
Figure 12: Combined Activities of CLIOS Process and OPM for System 
Architecture Analysis 

 

 Focus on System Evolution 

Three relevant dominant influences need to be accounted for: (i) evolution of the 
architecture, (ii) implementation of the architectural changes, and (iii) design. 
COIM is designed to focus on the process of studying and representing the forces 
behind system evolution, and on identifying possible path dependencies and 
architectural legacies. We are less interested in characterizing the behavior of the 
system in the short run, as we focus on modeling and trying to explain the reasons 
for the evolution of its architecture over the long run.  

We test hypotheses by comparing how a COIM representation of a system 
should look and how this representation compares with information gathered 
from the field, including case studies, interviews, and review of documentation.  
Then, we can revise our research questions and hypotheses accordingly. COIM-
based research is, thus, iterative; we refine the representation based on gathered 
data and gain deeper understanding about the research questions. The process 
reveals information about the factors affecting the evolution of the system’s 
architecture and exposes evolutionary patterns of components and functions at 
different hierarchical levels. 
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Figure 13 illustrates this general approach. The figure includes a summary of 
the difference in focus, strengths and weaknesses between the CLIOS process and 
OPM, and the value of integrating them into one representation method. 

  
Source: Osorio (2007) 

Figure 13: CLIOS Process, OPM and COIM: Integration and Application 

 

The input for COIM is the set of hypotheses about the architectural evolution of 
a socio-technical system. We start by studying the overall technical and contextual 
setting of the system, as well as analyzing its history. We can use data from the 
literature and documentation on social, regulatory, technical and organizational 
dimensions in order to identify path dependence, legacy and influences on 
architecture.  

We can then use detailed representation of the system’s architecture (physical 
domain) and sources of influence (internal and external institutional sphere, and 
general context) to learn about the evolution process. We can do this iteratively, 
constructing our representation from lower to higher complexity. The 
representation process results from combining the representation stage of the 
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CLIOS process and OPM. As the analysis proceeds, we examine how each step 
helps us to validate or reject our initial hypotheses.   

After a certain point, the researcher might find out that his or her progress in 
gaining insight about the system has stalled or stopped due to the decreasing 
marginal productivity of a more detailed historical analysis or a more detailed 
representation. At this point, one can turn back to fieldwork, using case studies 
and interviews in order to validate or reject previous findings, and get information 
that would allow further learning about reasons for and the process of 
architectural evolution. 

This iterative process would allow us to conclude (i) which are the most relevant 
sources of influence for architectural evolution, (ii) how relevant was the system’s 
architectural legacy and what role did it play in its evolution, (iii) how do the 
various subsystems of a system interact to foster or hinder its architectural 
evolution, and (iv) why did the system’s architecture evolve.  

In some cases, the process will end with no changes to the original research 
questions and hypotheses, while in others the researcher would have to revisit 
them, maybe discovering a research path that was overlooked. The next section 
presents a formalization of this process.  

Using COIM: Steps in the Research Process 

COIM analysis proceeds in four stages: (i) understanding the setting, (ii) 
building a generic model of the system based on original hypotheses, (iii) 
obtaining data through field research in order to validate or refute the model and 
hypotheses, and (iv) validating the generic model and confirming findings. Figure 
14 shows the steps in each stage. 

Starting Point: Before starting a COIM analysis, the researcher must set up the 
research questions and hypotheses that will be tested by qualitative analysis. This 
also requires collecting documentation and information, securing the interviews, 
and making arrangements for field research in order to assemble enough data to 
test the hypotheses.  
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Figure 14: The Steps of COIM-based Analysis 

Stage 1 - Understanding the Setting: The first aim is to understand the setting of the 
problem under study, identify sources of path dependence and architectural 
legacy, and identify the major subsystems and actors in the external and internal 
institutional spheres. This is done in four steps.  

Step 1 – System Description: COIM analysis starts by presenting a summarized 
view of the CLIOS System under study, including its goals, and major 
regulatory factors affecting its most relevant subsystems (e.g., electric power 
and broadband division). The objective is to highlight why the system is 
interesting and why the problem under study is relevant.   

Step 2 – Historical Analysis: We need to understand how the historical 
evolution of the system has affected its present architecture and culture. If the 
system under study is not one-of-a-kind, the researcher needs to pay special 
attention to studying the evolution of the architecture of a class of systems, 
rather than a particular system. The objective of the historical analysis is to 
identify path dependence on various fronts, including (i) regulatory, (ii) 
entrepreneurial activity, (iii) role in local economic development, (iv) 
institutional isomorphism and diffusion of practices, and (v) technology. We 
also need to understand how this history, which created path dependence, 
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created a legacy that may be shaping the current state of the system’s 
architecture.  

Step 3 – Identification of Major Subsystems of the CLIOS System: In this step 
we identify and define the subsystems in the physical domain and the 
organization groups on the internal and external institutional sphere that are 
relevant for the purpose of our research. 

Step 4 – Population of Internal and External Institutional Sphere: We identify 
the organizations in both spheres and explain their relevance and ways in 
which they affect the physical domain directly and indirectly. We want to 
understand how institutional actors affect the physical domain of our CLIOS 
system. The traditional system architecture analysis of dominant influences 
becomes part of the CLIOS representation process, making it possible to see 
more clearly how various actors influence the functions and forms of the 
different subsystems. 

Stage 2 - Building a Generic Representation: In this stage we build a generic 
representation based on our initial understanding of the problem and hypotheses. 
Representing the system allows us to build understanding about it, the 
relationships about technical components, and among them and actors in the 
internal and external institutional spheres. In this stage, the “data” for representing 
the system is found in publicly available information and literature. In essence, we 
use the representation process as a research method that will allows us to learn 
about the architectural evolution of the system and test our research hypotheses. 
The result of this stage will be a graphic representation of our hypotheses and 
assumptions. We build the model in five steps: 

Step 5 – Form and Functional Decomposition: We start by creating a form and 
functional decomposition of the subsystems in the physical domain to identify: 
(i) sources of architectural legacy that could explain the architectural evolution 
of the system, and (ii) the “appropriate” hierarchical level at which we would 
make the object-process representation of the subsystems. 

The researcher is responsible for defining and justifying the “appropriate” level 
of hierarchical decomposition. OPM form and function decomposition of 
technological systems can reach four or more hierarchical levels, but this might 
not be necessary for all subsystems, as we are interested in understanding how 
the legacy of the architecture of the main subsystems creates conditions for 
deployment of a new external function.  

Step 6 – Population of Each Subsystem in the Physical Domain: We create a 
representation for each subsystem in the physical domain by combining our 
hypotheses and information from industry documents and pertinent literature. 
The objective is to build a generalized model by identifying common drivers 
among subsystems as well as dominant influences from organizations in the 
internal and external institutional spheres. These models will be later validated 
with data from fieldwork. 

Step 7 – Adding projections from the Internal Institutional Sphere and Identify 
Common Drivers: Building on Step 6, we identify drivers common to the 
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subsystems and projections from organizations in the IIS.  We continually test 
our hypotheses as we observe the phenomenon.    

Step 8 – Adding projections from External Institutional Sphere: To the 
representations created in Step 7, we add projections from organizations in the 
EIS. As in the previous step, we want to represent the way in which different 
institutional actors affect the various subsystems in the physical domain. 

Step 9 – Representation of Institutional Sphere: In this step we build a 
representation of the internal and external institutional spheres, which includes 
relationships among actors in the Internal and External Institutional Spheres.  

Stage 3 - Field Research: An important outcome of the previous stage is the 
identification of information and questions that are still needed to complete the 
testing of our initial hypotheses. These data and information requirements provide 
for the creation of a quasi-structured interview protocol to be applied during field 
research.  Data from interviews and site visits will be used to test the hypotheses.  

Step 10 – Case Studies and Interviews: The objective of this stage is to obtain 
the data to test the validity of the representation made in Stage 2. COIM is 
designed to be used with case studies and interviews. Observation, 
ethnographic studies, interviewing methods, accessing public and confidential 
documentation, attending industry and academic forums, meetings, and other 
qualitative methods are various means for collecting missing data. For example, 
in the research about architectural evolution of municipal electric utilities by 
Osorio (2007), the author applied quasi-structured interviews and case study 
research, with special focus on why and how the MEUs’ architecture evolved.   

Once the interviews are done, the author needs to transcribe them and write the 
case studies in terms of the architectural evolution of the individual systems. At 
this point, there is no analysis of the case—the information is descriptive only, 
and need to be totally free of judgments or opinions.  

The objective of field research is to advance the level of knowledge about the 
system and help validate or reject the research hypotheses about the 
architectural evolution of our system.  

In addition to providing important parts of the data for COIM, case study 
research makes it possible to link the theory behind the problem to the 
interaction between context and processes around the question of why and how 
things happen (Yin 1984; Hartley 2004; Silverman 2005).   

Stage 4 - Validation and Advancement of the Findings: In this stage we validate the 
generic model using data from fieldwork and make observations about the 
evolution of the architecture of our system. 

Step 11 – Revision and Validation of COIM Representation: Once we have 
finished field research, we proceed to revisit our understanding of the setting 
and representation (steps 3 through 9). The main objective of Step 11 is to test 
our generic model against data from the case studies, interviews, and other 
documentation to further our understanding based on the initial hypotheses, 
generate new insights, discover new research paths, and modify our 
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understanding of the underlying phenomena involved. Again, our main focus 
is on the reasons for and processes of change.  

Step 12 – Observations about the Evolution of the System’s Architecture: 
Finally, we should conclude by (i) stipulating the reasons and process of the 
evolution of the system’s architecture, (ii) providing prescription about 
possibilities for further change and recommended courses of action for future 
architectural changes, and (iii) providing advice about how to manage the 
social, political or organizational aspects related to the system under study. We 
can do this by aggregating our findings from the study of the context, historical 
analysis, the learning that comes from the process of representing our CLIOS 
System, and fieldwork. We explain the architectural evolution as a process, 
determine whether our hypotheses hold, and use this new knowledge for 
further understanding and better management of the operation, enhancement 
and engineering of the system. An application of COIM addressing these issues 
is currently under development, building on the work of Osorio (2007) that 
studies the architectural evolution of Municipal Electric Utilities in the United 
States.  

Through these steps, the researcher is able to deepen her understanding about 
the structure and behavior of the technical subsystems in the physical domain of 
the CLIOS System, as well as about its social, economic, political and 
organizational dimensions.  

4. Conclusions and Further Directions for Research 
Good architecture should not prevent the evolution of the system to adjust and 

positively respond to future changes of its environment, demand, or other external 
of internal force. However, every so often, the reasons for architectural changes 
and evolution are lost over time and do not cater to the rationality of the numerous 
architects and designers of complex socio-technical systems. As result, 
architectural decisions sometimes prevent adequate adaptation of a system to 
external changes. 

Our main objective in this research has been to propose an integrated approach 
and method for addressing the difficult task of studying the state and evolution of 
the architecture of complex socio-technical systems. Applying our proposed 
framework would allow system architects and system architecture researchers to 
(i) make sense and have a better understanding of the technical, social, political 
and economic factors driving the evolution of the system over time, (ii) make 
connections among these and other issues that become relevant to their systems by 
studying the architecture of their systems, (iii) make choices about the possible 
ways to address the technical, social, policy and economic problems that arise with 
change and evolution, and (iv) make or facilitate their occurrence in a possibly 
predictable, controllable way.  

The qualitative research method we have proposed, CLIOS-OPM Integrated 
Method (COIM), combines the representation stage of the Complex, Large-Scale, 
Inter-Connected, Socio-Technical (CLIOS) Process (Mostashari and Sussman 2009)  
with Object Process Methodology (OPM) (Dori 2002). COIM's theoretical 
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framework encompasses system architecture, object-process based conceptual 
modeling, and qualitative research methods that include historical analysis, case 
studies, and semi-structured interviews. 

We suggest that COIM fulfills the needs of researchers of socio-technical 
systems, allowing them to:  

i. build a general model of the architecture (form, functions, and general 
concept) of a complex large open socio-technical system, including the 
relationships between organizational actors;  

ii. dissect the most important subsystems linking components and functions 
at a hierarchical level of decomposition that is adequate for meaningful 
analysis;  

iii. identify relationships between components and functions that could 
invoke evolution paths outside the desired original design. Such 
evolution paths might result from the interaction between increased 
structural complexity and technical, social, organizational, and contextual 
changes that, without analysis of the architectural evolution, would likely 
escape the organizational comprehension. 

iv. based on the gained knowledge and awareness of the system’s 
architecture, propose options and courses of action to follow. 

Our work is incomplete in several ways. It has not discussed the differences 
among small, medium and large-scale complex systems, such as nanodevices, 
consumer products, and public transportation systems, respectively. It also has not 
addressed the relevance of industry “clockspeed” in the build-up of architectural 
legacy of significant importance. We have not discussed the applicability of COIM 
for studying socio-technical systems that stand alone (e.g., only an electric power 
system) or are interconnected (e.g., all critical infrastructure networks: electric 
power, telecommunications, ground and air transportation). We propose that the 
more interconnected a system is, the higher the need for an approach that could 
help to uncover and understand the state and evolution path of its architecture.  

Most importantly, for space limitation reasons, this paper does not cover an 
application of COIM. In the second part of this research, the authors apply COIM 
to the work of Osorio (2007) for explaining the evolution of municipal electric 
utilities and their involvement on the broadband business. This companion paper 
is a work in progress. 
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