RESEARCH PAPER

Welton Becket
Norman 1. Badler

Department of Computer and Information
Science, University of Pennsylvania,
Philadelphia, PA 19104-6389, U.S.A.

SUMMARY

INTRODUCTION

The precision of image synthesis techniques
for rendering naturalistic scenes often works
contrary to the realism of the everyday world.
Pristine, crystalline, uniform and perfect may
describe the most idealized computer images:
the surfaces are smooth, neat and crisp in
appearance. Efforts to produce realism have
recently focused on light and the interaction of
light with surfaces.' The radiosity methods
have shown that proper treatment of light is
often critical to the proper visual effect in an
image. Even the best of these images is nearly
surrealistic in its precision, and thus belies
its synthetic origins.

A careful examination of the ‘real’ world,
however, yields more dimensions to the quest
for realism than lighting models. Image
synthesis techniques also require geometric
models and surface reflectance models that
incorporate accurate physical material proper-
ties and their response to light.® These are
critical to the microscopic (that is, pixel level)
generation of correct light reflectance. We
believe, however, that the present state of
modelling fails to account for an important
macroscopic dimension of realism in computer
synthesized images: real objects are dirty.

In this paper we describe a model for
adding imperfect textures to a surface to
achieve a more ‘natural’ appearance: the
surfaces will be ‘damaged’ by rust, mould,
stains, scratches, smudges and so on. The
microscopic level, for example, can tell us the
wavelength-dependent reflection coefficients
of rust, but not model the shape or location
of the rust itself. Of course, a skilled artist
can render such naturalistic details manually;
our challenge is to provide a system for
specifying and modifying such textures sym-
bolically. By-passing manual drawing
accomplishes several goals:

1. Textures are created algorithmically
from simple specifications. In fact, we
use a simple ‘natural language’ com-
mand syntax to specify the texture
parameters and their values qualitat-
ively.

2. Textures may be formally characterized
by various generative processes, such as
fractal or Gaussian distributions, and
combination operations.

THE JOURNAL OF VISUALIZATION AND COMPUTER ANIMATION VOL 1: 26-32 (1990)

Imperfection for Realistic
Image Synthesis

Creating objects with surface imperfections is accomplished through texture specification
and generation techniques. Based on fractal subdivision techniques and relatively simple
distribution models, a wide class of surface imperfections may be generated, combined
and rendered. The surface effects include scratches, splotches, smudges, corrosion, mould,
stains and rust. A rule-based system is used to position the various surface imperfections
on the texture map, and a simple natural language interface is used to specify the kinds
of imperfections and their generative parameters through adverbs and prepositional
phrases. Results along some of the imperfection dimensions are illustrated.

KEY WORDS: Texture Texture specification

Procedural texture

Texture generation Fractals

Reflectance models Imperfections Rule-based systems Natural language

3. Textures can be made dependent upon
the geometry of the surface; for exam-
ple, scratches and rust may be more
prevalent near exposed edges.

4. Textures are synthesized prior to ren-
dering rather than applied during a
post-rendering 2;DD compositing step.

5. Textures may be created by less artist-
ically-skilled individuals.

Naturally, some of these issues are
addressed by procedural textures anyway.”!°
Our contribution in this paper lies in defining
the kinds of procedures and their parameters
and combinations that create corroded, dirty
or otherwise blemished surfaces.

First we discuss an overall approach to
modelling imperfection. This paper will limit
the kinds of surface features considered to
those which do not intrinsically deform the
surface geometry. Then we present the
procedural models that formalize and realize
certain classes of these phenomena. Control
over the entire texture generation process is
through a rule-based system with a simple
natural language interface allowing adjective
and adverb modifications of texture par-
ameters, Some examples illustrate the system-
atic variation of the parameters on a simple
object. Finally, future efforts and extensions
are discussed.

AN APPROACH TO MODELLING
DIRTINESS

Dirtiness in the sense we will use is: any
deterioration of some preconceived, idealized
notion of perfection corresponding visually to the
result of human or natural processes.* We use
dirty, blemished and imperfect as interchange-
able, and call the set of all processes satisfying
the above property entropatic processes.

Our desire is to make more realistic scenes
employing the effect of dirtiness and not to
simulate entropatic processes unless their
implementation is necessary for realism or
most efficient.

Ideal modelling of object imperfection
involves intricate, time consuming, complex
simulation of moving particles, free liquids
and common actions of humans within a
given closed environment over time. An

1049-8907/90/010026-07$05.00
_ © 1990 by Tohn Wilev & Sons. Lid.

*Note that the constraint to a physical process
eliminates noise as a permissible imperfection.

approach using pure simulation is unsatisfac-
tory because:

1. Simulation of humans and natural pro-
cesses over time at a depth that could
adequately cause even the simplest
of imperfections is not practical, and
especially with respect to humans, not
currently possible.

2. Complete simulation of real world pro-
cesses would be overcomputation
because most imperfections are viewed
from distances where exact details of
distribution or local appearance are
indistinct.

For these two reasons we propose imper-
fecion modelling through a rule-based
approach where user-specified rules guide
and modify low-level, localized, general
simulation of blemish instances. This signifi-
cantly reduces application complexity by
replacing complicated environmental simul-
ation by general observation in rule form. The
only simulation is then low-level generalized
imperfection modelling.

The approach involves two steps:

1. Blemish instance modelling—finding some
technique to model a localized instance
or concept of a blemish.

2. Blemish placement—designing rules that
place or control distribution and local
simulation of instances. This process
constructs relevant statistical parameters
for local simulation given simple object
information such as shape and compo-
sitton and specific contextual infor-
mation such as the use of the object or
location of adjoining objects.

Example: Coffee stains
Coffee stains on tables generally stem from
either:

(a) drips, or
(b) coffee that escaped the top and resides
on the outside of the cup.

A stain instance of either type can be
modelled with concentric rings of fractal
Brownian motion (described below) defining
colour gradations. The second type requires

Received 30 Fanuary 1990

IMPERFECTION FOR REALISTIC IMAGE SYNTHESIS 2}

specialized smearing transformations corre-
sponding to the results of moving the cup
around.

Fach stain instance of either type can
be modelled locally by varying statistical
parameters and considering surface material.
To determine the type of stain to create the
system can use the simple heuristic that
we normally cause cup stains around the
perimeter of a workspace or around eating
areas and we cause drip stains near where
we obtain coffee.

BACKGROUND FOR BLEMISH
INSTANCE MODELLING

I'or simplicity the blemish types discussed in
this paper are ones which from standard
human distances appear two-dimensional.
The two-dimensional imperfections comprise
a large portion of our common notion of
imperfection and have a very simple and
potent application technique—texture map-
ping.

Although other approaches to modelling
are possible and in many cases necessary,
our example models are achieved through
2D fractal techniques and simple Gaussian
or random distribution functions. These
modelling techniques with appropriate
interpretation are powerful, yet simple to
describe and implement. The high-level
approach is easily extendable and more
complex modelling techniques can be incor-
porated. Aside from Gaussian or random
distributions, the two techniques used are as
follows.

Rule-guided aggregation

The Witten—Sander method of diffusion lim-
ited aggregation' can be generalized to what
is perhaps best thought of as rule-guided
aggregation in order to model other natural
phenomena.

Diffusion limited aggregation constructs tree-
like aggregates by simulating the diffusion
of randomly moving particles in a ‘sticky’
environment. One or more particles are
defined as sticky origins; during the diffusion
simulation whenever a particle collides with
a sticky origin or a stuck particle there is a
chance that particle will also stick. Higher
probabilities of sticking vield bushier trees.

If the moving particles are replaced by
growth of the aggregation and the sticking
probability replaced by a growth probability
based on any set of growth rules considering
such things as distance from the growth centre
and position of other particles, interesting
blemishes like rust and complex stains can
appear, and many others are possible (see
Figure 1)

2D fractal subdivision
T'wo-dimensional fractal techniques generate
a 2D array of values which, when post-
processed and interpreted appropriately, can
achieve blemishes exhibiting fractal bound-
aries or densities.

The fractal dimension of the array can be

(a) interpreted directly as a mapping
between two surface qualities (see
Figure 2)

(b) cut at a thresholding value to a binary
map giving filled regions of circular
fractal Brownian motion (fBm)f (see
Figure 3)

+Closed 1D fractal rings.

Figure 1. Rule-based aggregation of particles around the edges and around randomly placed seeds.
This is the basis of our rust model

Figure 2. Interpretation of a 2D fractal as an interpolation of white and black. The fractal dimension
is 2:5

28

(c) clipped to a range to form fBM rings
(see Iigure 4).

A particularly useful approach to interpret-
ation of 2D fractals is to allow interpolation
of attributes between pairs of contours. For
example, with a fractal dimension normalized
to [0-0, 1-0] the interval (0-0, 0-4] could be
black, [0-4, 0-8] could be an interpolation
from red to blue, and [0-8, 1-0] could be blue
to green.

In our implementation we use subdivision
techniques for their relative speed. The
creasing associated with subdivision' is not
as apparent in our use as when the fractal
dimension is interpreted as a height field to
create fractal mountains.

Dietmar Saupe’s chapter in Reference 1
on algorithms for random fractals has code
and good descriptions of a variety of 1D and
2D fractal techniques.

BLEMISH APPLICATION AND
EVALUATION

The approach to realistic image synthesis
shuld use the most effective rendering tech-
niques available, even when purposely making
imperfect objects. Although the most success-
ful techniques to date are perhaps the non-
diffuse environment radiosity method® and
the hybrid radiosity and ray-tracing method,
3 only approaches to rendering with ray-
tracing will be discussed. Since texture
mapping is the underlying application tech-
nique our approach is extendible to mixed
ray-tracing/radiosity methods.

Ray-tracing for testing

The highly reflective environments to which
ray-tracing is naturally suited tend to accentu-
ate dirtiness, making errors or possibilitics
clearer. For this reason we use ray-tracing
for testing blemish models. Since from one
test rendering to the next only surface
attributes change, a problem-specific render-
ing acceleration method described below can
be applied, which makes re-rendering on the
account of attribute changes unnecessary,
thus avoiding the enormous computational
costs associated with ray-tracing.

Texture mapping techniques
At present we render dirtiness by using
various models as texture maps on object
surfaces. This avoids the computational bur-
den of ray-tracing fractal densities, structured
particle systems, and instantiations of object
deformation methods without imposing
unbearable constraints—both imperfections
from normal human distances and the output
of our example models are two-dimensional.
The type of texture map used is a general-
ized attribute map based on Cook’s shade
trees."* Associated with each mapping are the

arguments ‘from’ and ‘to’, and a list of

attributes. The ‘from’ and ‘to’ specify the
source and target, cither materials, other
texture maps, or the host surface, between
which the weights interpolate. The attribute
list defines which surface attributes are
modified (diffuse, specular, transparency,
etc.). Texture maps of arbitrary depth are
applied to a surface, and during rendering
materials referenced are retrieved from a
database of materials. This process keeps the
texture maps separate from source or target
and avoids writing all attributes into a file
specifying rendering.

Modelling of thin coatings on both metals
and non-metals requires weighted averaging

W. BECKET AND N. 1. BADLER

Figure 3. Fractal interpretation where [0-0, 0-3] is black and [0-5, 1-0] is an interpolation from white
to black. The fractal dimension is 29

Figure 4. Fractal where [0-0, 0:65] and [0-7, 1-0] are black and 1063, 0-7] is white. The fractal dimension
is 0:75

IMPERFECTION FOR REALISTIC IMAGE SYNTHESIS

Figure 5. Planes in a room increasing from left to right in scratches and from top to bottom in tar-blotches

of the complex indices of refraction, the
spectra, and the associated ambient, diffuse
and specular terms for the materials in
question. Storing averaging weights directly
in the attribute map and specifying the above-
mentioned attributes in the attribute list
accomplishes this. The lighting model can
then average the appropriate values at render-
ing time.

If the weight distribution for two attributes
is unrelated then two maps are made. In
many cases, however, the weights are pro-
portional, and the addition of a scale factor
to items of the attribute list avoids separate
maps.

In all cases of semi-transparent coatings
on materials it is appropriate to mix micro-
facet distributions. If stochastic sampling'*'*
is an option, then a realistic solution is for
the renderer, upon seeing a facet distribution

flag, to perform two separate evaluations of

the Monte Carlo integrals of incident light
over a pixel, once with the facet distribution
for the source and one for the target. The
resulting values are then averaged with the
weight defined in the texture map. During
testing of a model, however, for execution
speed’s sake, using only one integral with an
averaged facet distribution is perhaps better,
Maps of surface normal perturbations'’
can be used in addition to attribute maps to
evince three-dimensionality when coating
thickness is severe enough to demand it

Storing shade trees
Storing symbolic representations of shade
tress produced during ray-tracing rather than

the resulting pixel values can substantally
decrease re-rendering time, although incur-
ring somewhat limiting increases in storage.
Expressions such as
*faceB.colorlu=0-2,v=0-51]
*tace8.specular

+ 0.23 * ambient

pixel 13: 0-77

can be encoded into some relatively compact,
binary format, independent of surface attri-
butes. An instance of the shade tree file
can then be rapidly displayed from a file
containing surface attributes for each face.
This makes testing different attributes and
texture maps very fast.

This method has the additional benefit of
not requiring the renderer to load a potentially
large number of texture maps and permits
image compilation in several passes when the
number of texture maps or the complexity of
a scene does not allow simultancous loading.

The obvious drawback of storing shade
trees, aside from the much larger file size, is
its requirement than an environment be static
with respect to attribute changes, ruling out
both change of colour when using wavelength
dependency and change of facet distribution
when employing glossiness through stochastic
sampling. The speed benefits, however, are
enough to warrant such a move, especially
while testing large numbers of images of the
same scene,

A recent advancement and formalization
of our simple notion is given in Reference
16.

IMPERFECTION MODELS

The imperfection models given are designed
for realism at normal human distances and
do not attempt to describe the close-up
details. Our model construction emphasis has
been on capturing the way an imperfection
modifies a surface’s attributes. Our fractal
dimensions and distribution functions are
found through visual experimentation. Cor-
rect and more realistic values can be obtained
for our examples by

(a) collecting data about the distribution
of instances on real objects

(b) measuring the fractal dimension of
real blemish instances through box
coverings.''

This approach is reasonable, since good
modelling of an imperfection’s attribute
modification characteristics appears to domi-
nate statistical details about physical shape
or shape of the intensity distribution. A dried
splotch can easily be recognized as such if
the correct basic modelling is used, even if
the fractal dimension is obviously wrong and
the colour is unusual.

It is important to restate that the emphasis
is always on how a model looks in final form
at realistic distances and not how closely
the simulation corresponds to the physical
process.

The modelling approach

The high-level approach for synthesis of
real-world dirty objects should certainly be
through looking at actual objects. The appear-
ance of objects, however, should not be

considercd as a single unit, but rather as a
composition of several imperfection tvpes
acting together. The acting classes can be
isolated and approached independently since
instances of classcs in realistic quantities do
not interact.

A workable approach for modeiling a class
is the follewing:

1. Decide whether there is some visible,
wtomic unit for the class, as with scratches
or fingerprints, or whether the class is
best deseribed as only a distribution of
iptensity, as with mud or smudges.

2. If the class has an atomic unit then do
onc of the following:

(a) If the atom is composed of a simple
geometric primitive such as a line
or a circle thea goro step 4.

(b) [f the atom is some fractal boundary
then model it cither with rule-
guided aggregation or with a circu-
lar fBm approach,

(¢) If the atom is an intensity distri-
bution then model it with step 3.

(d) If the atom is composed of a
number of smaller primitives such
as points or lines, then find a
function, perhaps Gaussian or ran-
dom, for modelling the distribution
of subprimitives within the atom.

‘Then goto step 4,

3. If the class is hest described as anm
intensity distribution then model it
possibly as cither a fractal distribution
approach or a growth of rule-guided
aggregation. Use only loose approxi-
mations for fractal dimension, growth
tules or distribution function.

4. Decide how the class modifies a surfa-
ce’s appcarance by deciding which attri-
bute flags to se1 in the attribute map or
structurc of maps to achieve the desired
effeet.

5. Iind a region-dependent approach to
writing the class instance or instances
mio maps based on simple positional
noun phrascs such as ‘centre’ or ‘lower
edge’ (describcd i the Rule-base
Section). A quick solution is to write
fractal distributions directly into the
map in the density distribution case,
or to write many, randomly placed
primitives in the atomic case, then
subtract from weights in unwanted
arcas. A better approach for densitics
is to controi the generating process by
some slatistical function, and a better
approach for atomic classes is to write
instances into map regions based on a
distribution function.

6. Refine distribution functions, fractal
dimensions and growth rules, where
applicable.

Simple example models

Given herc are, frst, detailed accounts of
both scratches and splotches to clarify the
approach, then secondly, brief descriptions
outlining the approach to other more involved
imperfections,

Scratches
Scratches, being very casy to model in their
simple form, are a good first example. They
are simple geometric primitives, just lines,
modifying surfaces either by increasing the
facet-distribution value or by revealing what
is underncath a composite surface,
Scratches on non-composite surfaces and
light seratches on composite surfaces increase

the facet distribution and the diffuse, and
decrcase specular by interpolation between
material-x and completely scratched material-x.
Scratches on composite surfaces that pierce
the external laver turn one material into
another.
Writing scratches into the attributc map
reduces to writing lines whose lengths are
Gaussian deviants of some given line size.
Scratches tend to appear oriented towards
some dominant axis, sometimes due ta their
actually occurring that way becausc abuse of
an object is normally in the same manner,
and sometimes because scratch visibility tends
to be anisotropic. Correct modelling of
scratches will most probably require consider-
ation of the scratches’ anisotropic behaviour
through appropriate modifications to the
lighting modcl as discussed by Kajiya.'’
Quick approximations, however, can exploit
only the tendency for scratches to actually
occur along a primary axis, accomplished
easily by writing lines of Gaussian-deviant
orientation from the given dominant axis.
‘The intensities of the scratches should then
vary as a Gaussian of a given intensity.
Regional dependency can be accounted
for, as mentioned above, cither through
randomly generating scratches and subtract-
ing non-scratched regions or through control-
ling the line gencration through some function
of antribute map posidon.

Splotches
Splotches of very viscous fluids or solutions,
such as tar or mud, after having hit a surface,
appear as several boundaricd occurrences
appearing to have fractal characteristics.
Although the occurrences could be thought
of as atemic units, it is better to mode! them
as fractal densitics, since there is normally a
coherence between the splofches on a surface.
Modclling dried splotches is easily
accomplished by interpreting a 2D norma-
lized fractal of some approximate fractal
dimension with:

10-0,2): non-cxistent {zero alpha valuc)
[#,1:0): an interpolatien from surface-
quality o dried-splotch.

Higher values for n give sparser splotches.
Still wer splotches have fractal boundaried
regions where some parts within the region
are wet and some parts arc dry.

A very opaque, drving splotch could be
modelled by a single fractal generated texture-
map as

{0-0,5]: non-existent
{#,1-0]: interpolation from the dried-splotch
attribute into the mwet-splotch attribute.

Other methods

(a) Swmudges and corrosion: these can be
modelled as fractal-bascd intensity dis-
tributions using the fractal dimension
as an interpolation from the normal
surface to the disturbed surface.
Smudges are typically seen through
their lowering specular. Corrosion
interpolates from the original surface
to the atrribute of an oxide,

{b) Mould: a spccial casc of mould, such
as mould on cheese, can be just a
Gaussian distribution of dots off central
points choscn in randomly centred
clusters.

{c) Stains: stains from a distance appear
as just fractal boundaries, perhaps with

W. BECKET AND N, L BADLER

areas close to the boundary darker
than areas further inside. As mentioned
above, coffce stains in particular, tend
to have & dark border, which appears
as a ring of fBm, and a light interior.
Stains from normal or closer distances
should probably use a low resolution
fractal, spline interpolated berween
points on the boundary to make it

smoother.
(d) Rust: ruston a surface can be modelled
through rule-guided aggregation.

Points near edges have a small prob-
ability of rusting, points in the interior
have a very small probability, and
points next to alrcady rusted points
have a high probability of rusting, The
scverity can be controlled by number
of itcratiuns,

RULE-BASED APPLICATION
Creating appropriate imperfection attribute
maps for a scenc implies application of several
imperfection models to cvery surface of a
scenc, considering surface material, object
type, face size, location within the face and
severity of the various blemishes. Aside from
consuming an imposing quantity of time, the
process requires that a user defining a scene
have substantial expericnce in setting the
multitude of statistcal and intensity par-
ameters to the various low-icvel simulations.
The knowledge required for gencrating attri-
bute maps, however, can be defined in scts
of context-sensitive rules, making the process
eligible for control through a rule-based
system.

Natural language intcrfacing

A powerful approach o the use of such a
map-generating rule-based svstem is through
z natural language interface. Natral human
language is not only potent at visual descrip-
tion, but also, not surprisingly, a more natural
expression medium than menu interfaces
or context-free languages contrived for the
occasion. An interface of this type can also
disambiguate most of the context-sensitive
aspects, simplifying the rule-base construc-
tion process by breaking it into two separate
picces, a high-level part handled by the parser
which uses adjectives and adverbs to compute
gencralized statistical parameters, and 2 low-
level part applying imperfection-specific rules
using context information and provided or
language~implicd surface matcrial and
geometry information. The standard barrier
to interfacing through natural language is the
immense quantity of common knowledge
required for most applications. By limiting
the allowable context-sensitivity, however,
natural languagc becomes a possible interfac-
ing technique, although the resulting language
is then a subset of English.

An input languagc
The parscr could accept command construc-
tions such as

Make a very rusty, shiny, copper cube that is
slightly smudged near the center of the lefi
ace.

Our commands consist of a verb, a noun part
and an optional compound relative clause,
The structure gencrated by a parser® is
analvsed by various rules considering the
matcrial, the object, the scverity of the
imperfection, and wherc the imperfection is
to occur to create appropriate attribute man

IMPERFECTION FOR REALISTIC IMAGE SYNTHESIS

structures. When any of the arguments to
the map rules are missing the system can
introduce partially randomized, rclevant
default valucs. If in the above example
command no scverity adverb like ‘very was
supplicd for rust, the system could use some
slight Gaussian deviant of the average severity
of rust applied to copper.

T'o keep the ruie base manageable, knowl-
edge called upon by sentences or any other
chosen input language should be limited to:

1. attribute adjective parts directly modify-
ing vendering such as ‘very shiny’ or
‘bright red’

2, imperfection adjective parts for which
there ¢xists a model such as ‘rusty” or
‘extremcly scratched’

3. complete object nouns such as ‘teapot’
or ‘cube’, and noun parts referencing
subparts of those objccts such as ‘the
tip of the spout’ or ‘the top face’

4. locational prepositional phrases refer-
ring te a noun or subnoun part such as
‘very close to the cdges’ or ‘near the
top facc’.

Allowing sentences such as
make a used-looking teapot

would call on too much external knowledge.
But sentences such as

make a copper teapot that i stained around
the spout, rusted and slightly scratched on the
lid, and extremely scraiched on the botiom

are interpretable if the rule-based system
knows about the structure of a tcapot and
how stains, scratches, and rust are applied 1o
each part.

Numerical interpretation of adverbs
The intensity or severity of a rendering
or imperfection adjective and the specific
interpretation of locational prepositional phr-
ascs are achieved through interpreting
adverbs numerically. Adverbs arc assigned
numbers, as in the following for adverbs
applied to imperfection adjectives:

advislight, 0-05}
advipartially, 0-10)
adv{somewhat, 0-20}
adv(defautt, 0-25)
advimoderatelly, 0-35)
adv{very, 0-55)
advlextremely, 0-75)
advi{completely, 1-00)

The values are the cstimated coverages of the
imperfection. Adverbs modifying rendering
qualities such as shininess or glossiness can
take the same set of adverbs but with different
values. Adverbs modifying colour would,
however, have a different set of adverbs,
perhaps ‘dark’, ‘bright’, ‘light’, and ‘dull’.

Making attribute maps
The rules for each imperfection type can
consider the following arguments: matcrial

*Qur parser, written in Common Lisp, uses a
chart-parsed combinatory categorial grammar to
convert the commands into a functional semantics.
Combinatory categorial grammar was chosen for
its particularly nice properties with respect to co-
ordination and extraction. For a good description
of combinatory catcgorial grammar sce Reference
18, for a description of chart parsing such a
orammar see Reference 19,

type, object type, object size, location within
the objcct, severity of imperfection, and
contextual information. From thesc the rule-
base can construct attribute maps and invoke
the renderer in the following way:

1. Materiai—the material type may modify
severity, but most importantly must be
given to the renderer as either the
‘from’ or ‘to” field for a map, or as an
attribute inherent in the surface.

2. Object type—the object type is used 1o
decide how many attribute maps to
make and what kind of coherence is
necessary between them, if any coher-
ence at all.

3. Object size—used to scale size of blem-
ishes. For cxample, scratches of the
same severity will normally be the same
size although the object size may vary,
so scrarches on a map for a small abject
should be larger than scratches for a
large object if map size is constant,

4. Laocation—information about location is
either encoded into some identificr to
tell the map-generation function where
within a map the imperfection is, or
used by the system to choesc faces on
which to place blemishes.

3. Severity—the severity is used to give
cxternal functions fractal dimension,
cut-off height, standard deviation,
weight average or number of primitives.

6. Contextual information—contexiual
information for each imperfection can
be such things as former or current
locations of objects or some high-level
indication (such as specifying the whole
left-bottom of an object) of which faces
are exposed to human-hands, humidity,
or whatever is being considered. This
information is used to determine overall
placement and intensity and statistical
parameters as a function of position.

EXAMPLES
‘The first example is an exaggeration to show
what our models look like in extreme,
enfarged cases. The images in Figure 5
increase in scratch severity along the left-to-
right axis and increase in tar-splotch severity
along the top-to-bottom axis. T'hey werc
gencrated and rendercd by the rule-based
system from English commands. The system
added a default environment of an open-
ceiling room with fractal clouds mapped
above it.

The actual sentences given to the system
were for (tar-axis, scratch-axis):

(1,1): make a very shiny, apper plane
whick is somewhal scratched near
the edges and somewhat blotched.
make a very shiny, copper plane
which Is }}Mdﬂatf’; seratched near
the edges and somewhat blotched.
make @ very shiny, wpper plane
which s somewhat scratched near
the edges and moderately blotched.
make « very shiny, wopper plane
which is moderately scratched near
the edges and moderately blotched.

(1,2):
(2,1

2.2y

The images in Figures 6 and 7 are
composed of several objects generated by
the rule-based system.* Figure 6 contains
exaggerated blemishes and shows some subtle

*With the exception of text and graffid.

3l

uses of imperfections such as the specular-
reducing smudges on the floor. Figure 7
shows several extreme uscs of imperfection.

FUTURE WORK

I'uture work will concentratc on including
three-dimensional imperfections, incrcasing
the number of imperfections, tuning the
rcalism of the instance-models and the rule-
base, and increasing the power of the language
intcrface.

3D imperfections

Exciting possibilities for modclling surfacc
deforming processes such as d::lenorauon,
fracture duc to inelastic deformation?' or
deformations from collisions exist and can be
placed appropriately with a rulc-based system
as with two-dimensional phenomena.

More 2D imperfections

A predominant 21D imperfection is dust.
Dust poses interesting distribution problems
because the appearance of dust is primarily
thmugh its negative space where objects have
recently been removed or where an object
has been dragged along the surface. It
involves reasoning over a geomettic database
constructed from the scene to determine the
shape of objects specified as once having
been on the object in question.

Enhanced realism

I'inding exact fracral dimensions and distri-
butions of existing blemish models can help
the realism, but perhaps most important is
to include a strong notion of actual, physical
materials in the low-level instance modelling
to give morc realistic appearances to models
for corrosion and thin-coating-based imper-
fections.

Language extensions

A good extension to the language interface,
aside from allowing more complex sentence
structure, is to incorperate simple pronoun
reference that is either local to a sentence or
relative to some well known, single, discourse
focus (like a cube defined in a given scssion’s
first sentence). Adding such references (‘more
scratches’ or ‘less shiny’, for example) will
simplify the itcrated cxpression of parameters
while trving to create a particular image.

ACKNOWLEDGEMENTS

This rescarch is partially supported by
Lockhced Engineering and Management
Services (NASA Johnson Space Center),
NASA Ames Grant NAG-2-426, YMC Cor-
poration, Martin-Marietta Denver Aero-
space, NSF CER Grant MCS-82-19196, and
ARO Grant DAAT03-89-C-0031 including
participation by the U.S. Army Iluman
Engineering Laboratory.

REFERENCES

1. Tomoyuki Nishita and Fihachiro Nakamae
‘Continucus tone represcatation of three
dimensional objects taking account o
shadows and inrerreflection’, Compute
Graphics, 19, (3), 23-30 (1985).

2. David S. Immel, Michael F. Cohen an
Donald P. Grccnbcrg, ‘A radiosity metho
for non-diffuse environmems’, Compus
Craphics, 20, (4), 133-142 (198())

3. James T. Kajiya, “The rendcring equation
Computer Graphics, 20, (4), 143150 (1986

W. BECKET AND N. I. BADLER

. Michael F. Cohen, Shenchang Eric Chen,
John R. Wallace and Donald P. Greenberg,
‘A progressive refinement approach to fast
radiosity image generation’, Computer
Graphics, 22, (4), 75-84 (1988).

5. Min-Zhi Shao, Qun-Sheng Peng and You-
Dong Liang, ‘A new radiosity approach by
procedural refinements for realistic image
synthesis’, Computer Graphics, 22, (4),
93-101 (1988).

6. Robert L. Cook and Kenneth E. Torrance,
‘A reflectance model for computer graphics’,
Computer Graphics, 15, (3), 307-316 (1981).

7.K. S. Fu and S. Y. Lu, ‘Computer
gencration of texture using a syntactic
approach’, Computer Graphics, 12, (3),
147-152 (1978).

8. Geoffrey Y. Gardner, ‘Simulation of natural
scenes using textured quadric surfaces’,
Computer Graphics, 18, (3), 11-20 (1984).

9. Darwin R. Peachey, ‘Solid texturing of
complex surfaces’, Computer Graphics, 19,
(3), 279-286 (1985).

10. Ken Perlin, ‘A image synthesizer’, Computer
Graphics, 19, (3), 287-296 (1985).

11. M. F. Barnsley, R. L. Devancy, B. B.
Mandelbrot, H.-O. Peitgen, D. Saupe and
R. F. Voss, The Science of Fractal Images,
Springer-Verlag, 1988.

12. Robert L. Cook, ‘Shade trees’, Computer
Graphics, 18, (3), 223-231 (1984).

13. Robert L. Cook, Thomas Porter and Loren
Carpenter, ‘Distributed ray tracing’, Com-
puter Graphies, 18, (3), 137-144 (1984).

14. Robert L. Cook, ‘Stochastic sampling in
computer graphics’, ACM Transactions on
Graphics, 5, (1), 51-72 (1986).

15. James Blinn, ‘Simulation of wrinkled surfa-
ces’, Computer Graphics, 12, (3), 286297
(1978).

16. Carlo H. Séquin and Eliot K. Smyrl,
‘Parameterized ray tracing’, Computer
Graphics, 23, (3), 253-262 (1989).

17. James T. Kajiya, ‘Anisotropic reflection
models’, Computer Graphics, 19, (3), 15-21
(1985).

18. Mark Steedman, ‘Dependency and coordi-
nation in the grammar of Dutch and
English’, Language, 61, 523-368 (1985).

19. Remo Pareschi and Mark Steedman, ‘A
lazy way to chart parse’, Proceedings of the
25th Amnual Meeting of the Association for
Computational Linguistics, July 1987, pp.
81-88.

. Ken Perlin and Eric M. Hoffert, ‘Hypertex-
ture’, Computer Graphics, 23, (3), 253-262
(1989).

21. Demetri Terzopoulos and Kurt Fleischer,
‘Modecling inclastic deformation: viscosity,
plasticity, fracture’, Computer Graphics, 22,
(4), 93-101 (1988).

22. J. P. Lewis, ‘Generalized stochastic subdivi-
sion', ACM Transactions on Graphics, 6, (3),
167-190 (1987).

23. Robert Siegel and John R, Howell, Thermal
Radiation Heat Transfer, McGraw-Hill,

Figure 7. Another image composed of several objects generated by the rule-based system 1972.

4=

Figure 6. Image composed of several objects generated by the rule-based system

2

