
Universal Lattice Decoding: Principle and Recent Advances

Wai Ho Mow12

Dept. of EEE,

Hong Kong Univ. of Science and Technology,

Clear Water Bay,

Hong Kong S.A.R., CHINA.

Fax: (852) 2358-1485

w.mow@ieee.org

KEY WORDS

basis reduction

nearest lattice point

sphere decoder

maximum likelihood detection

optimal performance

complexity

1Correspondence to: Wai Ho Mow, Dept. of EEE, Hong

Kong Univ. of Science and Technology, Clear Water Bay,

Hong Kong S.A.R., CHINA.
2Contract/grant sponsor: Hong Kong RGC; Con-

tract/grant number: HKUST6246/02E

Contract/grant sponsor: NSFC/RGC; Contract/grant num-

ber: N HKUST617/02 (No.60218001).

Summary

The idea of formulating the detection of a lattice-type

modulation, such as M-PAM and M-QAM, transmitted

over a linear channel as the so-called universal lattice

decoding problem dates back to at least the early 1990s.

The applications of such lattice decoders have prolifer-

ated in the last few years because of the growing impor-

tance of some linear channel models, such as multiple-

antenna fading channels and multi-user CDMA chan-

nels. The principle of universal lattice decoding can

trace its roots back to the theory and algorithms devel-

oped for solving the shortest/closest lattice vector prob-

lem for integer programming and cryptoanalysis appli-

cations. In this semi-tutorial paper, such a principle as

well as some related recent advances will be reviewed

and extended. It will be shown that the lattice basis

reduction algorithm of Lenstra, Lenstra and Lovász can

significantly improve the performance of suboptimal lat-

tice decoders, such as the zero-forcing and VBLAST de-

tectors. In addition, new implementation of the optimal

lattice decoder that is particularly efficient at moderate

to high signal-to-noise ratios will also be presented.
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1 Introduction

The idea of formulating the detection of a lattice-type

modulation transmitted over a linear channel as the so-

called universal lattice decoding problem dates back to

at least the early 1990s [1]. The resultant universal

lattice decoder is particularly attractive for bandwidth

efficent modulations, such as M-PAM and M-QAM, due

to its various desirable properties [1], [2] including:

• its decoding complexity is independent of the mod-

ulation alphabet size M;

• its performance is nearly optimal, especially for

large M;

• its average complexity is quadratic, as the signal-

to-noise ratio tends to infinity.

The applications of such lattice decoders have prolif-

erated in the past decade because of the growing impor-

tance of some linear channel models, such as intersym-

bol interference channels [1], [2], fading channels [3], [4],

uncoded and space-time block coded multiple-antenna

channels [5], multiuser CDMA channels [6], dispersive

multiple-antenna channels [7] and their combinations.

The principle of universal lattice decoding can trace

its roots back to the theory and algorithms developed

for solving the shortest/closest lattice vector problem

for integer programming and cryptoanalysis applica-

tions. The closest (lattice) vector problem (CVP) (also

called the nearest lattice point problem) is a class of

nearest neighbor searches or closest-point queries, in

which the solution set to be searched consists of all the

points in a lattice. Very efficient algorithms for solv-

ing the CVP [8, chap. 20], [9], [10] have been derived

for a special class of lattices — the root lattices, which

are generated by the root system of certain Lie alge-

bras. These algorithms are important for implementing

low-complexity lattice quantizers and coding schemes

for Gaussian channels. Nonetheless, these algorithms

cannot be generalized to solve the universal problem of

decoding arbitrary lattices.

A general solution for the CVP was proposed by Kan-

nan [11], [12] and was originally developed for solv-

ing some integer programming problems. Kannan was

mainly interested in deriving theoretical results on the

worst-case complexity. His algorithm does not lead to

an efficient practical solution to the CVP. However the

underlying ideas are simple and powerful, consisting of

two steps:

Step 1: For the given lattice, find a “short” and fairly

“orthogonal” basis, called the reduced basis.

Step 2: Enumerate all lattice points falling inside a

certain sphere centered at the query point so as

to identify the closest lattice point.

The procedure that transforms a lattice basis into a re-

duced one is known as the basis reduction algorithm,

while the one achieving the second step is called the

enumeration algorithm. We shall see that most efficient

universal lattice decoders known to date are based on

similar ideas.



Lattice algorithms related to the CVP have also been

widely applied in cryptoanalysis applications, where the

algorithmic complexity is of both practical and theoreti-

cal significance. In cryptoanalysis, it is well-known that

choosing a good lattice basis is important to finding a

good nearby lattice point, which can in turn speed up

the closest lattice point search significantly.

In this paper, the principle of some important lat-

tice algorithms related to the CVP and their recent ad-

vances will be reviewed and extended. After a brief

introduction to the necessary notation and preliminary

backgrounds on lattices in Section 2, we shall discuss

the main theory and detailed implementation of the lat-

tice basis reduction algorithm of Lenstra, Lenstra and

Lovász (LLL) in Section 3. Two algorithms of Babai

for finding a nearby lattice point based on the LLL re-

duction will be introduced in Section 4. Their relation-

ships with the well-known zero-forcing and VBLAST

detectors in communications will also be clarified in the

same section. Next, the extension of the results and

algorithms discussed in Sections 2 to 4 to the so-called

complex lattices will be discussed in Section 5. In Sec-

tion 6, the derivation and efficient implementation of

the Pohst-Fincke enumeration algorithm and its vari-

ants will be presented in details. To demonstrate the

efficiency of the introduced lattice algorithms as subop-

timal or optimal lattice decoders, the results of some

simulation experiments will be presented and discussed

in Section 7. Finally, Section 8 contains the concluding

summary.

2 Notation and Preliminaries

on Lattices

Let m and n be two positive integers with n ≤ m. A

subset L of Rm is called a lattice of dimension n if

there exist n linearly independent m-dimensional vec-

tors b1, · · · , bn ∈ Rm such that

L = L(B) = {η1b1 + · · · + ηnbn : ηi ∈ Z},

where B = [b1, · · · , bn] is a m × n matrix. The set of

column vectors b1, · · · , bn and the matrix B are said to

be the basis and the basis matrix of L, respectively. In

words, a lattice is an integer linear combination of the

basis vectors. Geometrically, the determinant det(L)

of a lattice L is defined as the common content of the

parallelepipeds spanned by any lattice bases. In gen-

eral, a lattice has many possible bases but it has the

same determinant. In the case of a full-rank square

basis matrix, the determinant of the lattice L(B) satis-

fies det(L) = |det(B)|. Hence the following inequality,

called Hadamard’s inequality, is natural from a geomet-

ric point of view:

‖b1‖ · · · ‖bn‖ ≥ det(L) (1)

with equality holds if and only if b1, · · · , bn are mutually

orthogonal.

Let us consider the Gram-Schmidt orthogonalization

of a given lattice basis. The m-dimensional orthogonal-



ization vectors b∗1, · · · , b∗n and the real numbers µij , for

1 ≤ j < i ≤ n, are defined recursively by

b∗i = bi −
i−1∑
j=1

µijb
∗
j , (2)

µij =
(b∗j )

T bi

‖b∗j‖2
, (3)

where (·)T denotes the matrix transpose of (·). The or-

thogonal vectors b∗1, · · · , b∗n obtained in this way depend

on the ordering of b1, · · · , bn. Note that, for 1 ≤ i ≤ n,

b∗1, · · · , b∗i and b1, · · · , bi span the same vector subspace.

By defining µii = 1, we have

bi =

i∑
j=1

µijb
∗
j , (4)

for 1 ≤ i ≤ n. It is obvious that

det(L(B)) =

n∏
i=1

‖b∗i ‖, (5)

whether the basis matrix B is square or not. Equation

(4) can be expressed in matrix form as

B = B∗[µij ]
T , (6)

where B∗ = [b∗1 , · · · , b∗n] and [µij ] is a n× n lower trian-

gular matrix with all diagonal elements equal to 1.

By letting ui = b∗i /‖b∗i ‖ and bi(j) = µij‖b∗j‖, for 1 ≤

j ≤ i ≤ n, we also have

bi =

i∑
j=1

bi(j)uj . (7)

Note that bi(i) = ‖b∗i ‖ for all i. The matrix form equiv-

alent of (7)

B = U [bi(j)]
T (8)

is in fact the QR factorization of B, where U =

[u1, · · · , un] gives an orthonormal basis for the column

space of B. We note that the upper triangular matrix

[bi(j)]
T is actually the Cholesky factor of BT B satisfy-

ing

BT B = [bi(j)][bi(j)]
T . (9)

The latter also follows immediately from (8).

Conceptually, it is useful to interpret the effect of U

in (8) as a change of the original m-dimensional Carte-

sian coordinate system, under which the basis vectors

b1, · · · , bn are specified, into a new one with n unit axis

vectors u1, · · · , un respectively. Under the new coordi-

nate system, the coordinates of the i-th basis vector are

listed in the i-th row of the n×n lower triangular matrix

[bi(j)]: 


b1(1) 0 · · · 0

b2(1) b2(2) · · · 0

...
...

. . .
...

bn(1) bn(2) · · · bn(n)




This lower triangular representation of the basis matrix

was used by Kannan in [12].

Finally, we describe two important operations on vec-

tors — projecting and lifting. Projecting a vector b onto

the hyperplane through the origin with normal vector

a yields b− aT b
‖a‖2 a, which can also be interpreted as the

projection of b perpendicular to a. Suppose that a is

a non-zero vector in L, and La is the projection of L

perpendicular to a. If ba is a vector in La, there is a

unique vector b̂ in L such that b̂ projects onto ba and

− ‖a‖
2

< aT b̂
‖a‖ ≤ ‖a‖

2
. The process is called lifting ba

to b̂. In fact, b̂ = ba − ηa, where η = round( aT ba
‖a‖2 ) is

the integer nearest to aT ba
‖a‖2 . Figure 1 illustrates a two-



dimensional example of projecting b perpendicular to a

producing ba and then lifting ba to b̂. Note that trans-

forming a vector by projecting and then lifting guaran-

tees that the resultant vector cannot be too long.

3 Lattice Basis Reduction

The concept of lattice basis reduction was proposed

more than a century ago. The early work on the topic

was formulated in terms of quadratic forms, instead

of lattices. Reduced bases have some nice properties,

which usually means that they consist of “short” and

fairly “orthogonal” vectors. The definition of basis re-

duction is not unique. One of the most important de-

finitions was given by Minkowski in 1890s. A basis is

Minkowski-reduced if, for i = 1, · · · , n, bi is a short-

est lattice vector that can be extended to a basis with

(b1, · · · , bi−1). In simple words, each basis vector in a

Minkowski-reduced basis has to be as short as possible.

The definition of a Minkowski-reduced basis is of fun-

damental importance in the geometry of numbers [13].

Basis reduction is naturally associated with the prob-

lem of finding the shortest non-zero lattice vector — the

shortest vector problem (SVP). The SVP in the case of

L∞-norm is known to be NP-hard [14]. But it is still

unclear whether the SVP in the case of Euclidean norm

is NP-hard or not.

In 1982, Lenstra, Lenstra and Lovász [15] (LLL)

achieved a breakthrough by constructing the celebrated

LLL reduction algorithm, which can produce the so-

called LLL-reduced basis from any given lattice basis in

polynomial time and thereby approximating the short-

est (non-zero) lattice vector up to a factor of 2(n−1)/2.

Based on their algorithm, more efficient algorithms for

solving the SVP and the CVP, achieving the Hermite

normal form and the Minkowski reduction have been

developed. In fact, their algorithm has given rise to

efficient solutions to a variety of research problems,

including integer programming [16], [12], finding irre-

ducible factors of polynomials [17], minimal polynomi-

als of algebraic numbers [18], simultaneous diophantine

approximation [15], ellipsoid method in linear program-

ming [19], attacks on knapsack-based crypto-systems

[20], [21], disproof of Mertens’ century-old conjecture

in number theory. All these applications were made

possible by the LLL-reduction algorithm.

References [15] and [22] have described the LLL-

reduction algorithm with proof of its correctess and

polynomial complexity. In the following, we shall red-

erive the reduction algorithm based on our own inter-

pretation.

3.1 Size Reduction

As transforming vectors by projecting and then lifting

can usually result in reasonably short vectors, such op-

erations may be used to convert a lattice basis into a

shorter one.

Consider the lower triangular representation [bi(j)] of

a given basis b1, · · · , bn. If, for j < i, the j-th coordinate



of bi is greater in magnitude than half of the length of

b∗j (i.e. |bi(j)| >
bj(j)

2
, or equivalently, |µij | > 1

2
), we

can always reduce the length of bi by projecting it onto

the subspace spanned by b∗1, · · · , b∗j and then lifting it.

The resultant vector b̄i = bi − ηbj , for some integer η,

must satisfy the condition that |̄bi(j)| ≤ bj(j)

2
. Notice

that the new basis b1, · · · , bi−1, b̄i, bi+1, · · · , bn spans the

same lattice as the original basis b1, · · · , bn. The process

can be repeated (n−1)(n−2)
2

times for all 1 < j < i ≤ n.

The resultant basis consisting of shorter basis vectors is

said to be size-reduced.

In summary, a basis b1, · · · , bn is size-reduced if

|µij | ≤ 1
2

for 1 < j < i ≤ n. Recall that µii = 1 and

µij = 0 for j > i. Any basis can be converted into a size-

reduced basis by the following Procedure Size Reduce,

which requires O(n3) operations to execute.

Procedure Size Reduce(B)

1. For i = 1 to n do

2. For j = i − 1 downto 1 do

3. If |µij | > 1
2

do

4. η := round(µij); bi := bi − ηbj .

5. For k = 1 to j − 1 do µik := µik − ηµjk.

6. µij := µij − η.

7. Endif.

8. Endfor.

9. Endfor.

10. Return bi’s and µij ’s.

Note that making |µij | ≤ 1
2

will change the values of

µi1, · · · , µi,j−1. Therefore the elements of matrix [µij ]

must be processed from right to left. Finally, we re-

mark that b∗1, · · · , b∗n obtained from the orthogonaliza-

tion process of the new basis is the same as before. This

is obvious if we interpret the procedure as projecting

and lifting operations of the basis vectors.

3.2 LLL Reduction

Given a basis and a specific orthogonalization b∗1, · · · , b∗n,

we can always apply Procedure Size Reduce to trans-

form it into a “better” basis. One may then ask how to

find a “better” orthogonalization of a given basis.

For any orthogonalization of a given lattice, the prod-

uct of the lengths of b∗i ’s must be a constant accord-

ing to (5). Intuitively, it is desirable that the lengths

of b∗i ’s are distributed as even as possible so that the

basis, after size reduction, appears to be “shorter”.

Lovász [22] observed that typically the shorter vectors

among b∗1, · · · , b∗n are at the end of the sequence. So

it is desirable to make the orthogonalization sequence

b1(1) = ‖b∗1‖, · · · , bn(n) = ‖b∗n‖ lexicographically as

small as possible.

For 1 ≤ j ≤ i ≤ n, define b(i, j) as the projection

of bi onto the orthogonal complement of the subspace

spanned by u1, · · · , uj−1, or mathematically,

b(i, j) =

i∑
k=j

bi(k)uk.

For some i < n, consider the lengths of the projections

of bi and bi+1 onto ui, · · · , un, i.e., b(i, i) = bi(i)ui and



b(i+1, i) = bi+1(i)ui +bi+1(i+1)ui+1. If b(i, i) is longer

than b(i + 1, i) (i.e., bi(i) > ‖b(i + 1, i)‖), we can al-

ways swap bi and bi+1 to get a lexicographically smaller

orthogonalization sequence b1(1), · · · , bi−1(i− 1), ‖b(i +

1, i)‖, · · · , bn(n). Hence a better orthogonalization is re-

sulted.

After swapping some basis vectors, the basis may not

be size-reduced any more. We can then apply Procedure

Size Reduce again to shorten the basis without chang-

ing the orthogonalization sequence. The two processes,

namely, finding a better basis via size reduction for a

given orthogonalization sequence and finding a better

orthogonalization sequence via swapping basis vectors

for a given basis, can be iterated until no further im-

provement is achievable. This is in essence the LLL-

reduction algorithm in its most preliminary form.

Algorithm LLL Reduction(b1, · · · , bn)

Step 1: Size-reduce the given basis.

Step 2: Check if there exists any i such that δ ·

‖b(i, i)‖2 > ‖b(i + 1, i)‖2. If found, swap bi and

bi+1, update the orthogonalization sequence, and

go to step 1. Otherwise, stop.

Note that a weaker test δ · ‖b(i, i)‖2 > ‖b(i + 1, i)‖2

is used in step 2 instead of ‖b(i, i)‖2 > ‖b(i + 1, i)‖2

to achieve faster convergence. (The convergence of the

algorithm will be proved in the next subsection). The

coefficient δ is chosen arbitrarily and may be replaced

by any number less than 1. (The value of δ was origi-

nally chosen as 3
4

in [15].) This suggests the following

definition of LLL-reduced bases.

Definition 1 A basis b1, · · · , bn of a lattice is LLL-

reduced if it is size-reduced and, for 1 ≤ i < n,

δ · ‖b(i, i)‖2 ≤ ‖b(i + 1, i)‖2. (10)

3.2.1 Convergence Analysis

Like any iterative algorithm, we need to guarantee its

termination. Let b̄∗i and b̄∗i+1 be the updated versions

of b∗i and b∗i+1, respectively, after swapping bi and bi+1.

Note that all orthogonalization vectors except the i-th

and (i+1)-th ones are unchanged since they lie in the or-

thogonal complement of the subspace spanned by b(i, i)

and b(i+1, i). If we do swapping in step 2, there is a pos-

itive number α <
√

δ such that ‖b(i+1, i)‖ = α‖b(i, i)‖.

Thus we have b̄∗i = b(i + 1, i), or ‖b̄∗i ‖ = α‖b(i, i)‖ =

α‖b∗i ‖. Also, by (5), ‖b̄∗i ‖‖b̄∗i+1‖ = ‖b∗i ‖‖b∗i+1‖. Then

i∏
k=1

‖b̄∗k‖ = α

i∏
k=1

‖b∗k‖,

and for all 1 ≤ j < n and j �= i,

j∏
k=1

‖b̄∗k‖ =

j∏
k=1

‖b∗k‖.

This suggests the definition of the positive function

D(b1, · · · , bn) =

n∏
j=1

j∏
k=1

‖b∗k‖2 =

n∏
k=1

‖b∗k‖2(n−k). (11)

The function can be interpreted as a measure of

achieved reducedness of the given basis because

log(D(b1, · · · , bn)) =

n∑
k=1

2(n − k) log(‖b∗k‖),

which is a weighted sum of the log length of the or-

thogonalization vectors. (Note that a basis with a nice



orthogonalization sequence need not be a short basis,

but we can always get a nice basis by making it weakly

reduced.) In consistent with our previous discussion,

the smaller the function D is, the (lexicographically)

smaller the orthogonalization sequence is. The value of

D is decreased after each swapping in step 2 due to the

multiplication of α. So the algorithm must terminate,

otherwise D will tend to zero which is impossible. In

fact, one can establish upper and lower bounds for the

value of D, as in [15].

3.2.2 Properties of LLL-Reduced Bases

Some nice properties of the LLL-reduced bases are sum-

marized in the following theorem, whose proof can be

found in [22].

Theorem 1 (Lovász) Let b1, · · · , bn be a LLL-reduced

basis of a lattice L. Denote λ(L) as the length of the

shortest vector in L. Then

1. ‖b1‖ ≤ 2(n−1)/2λ(L);

2. ‖b1‖ ≤ 2(n−1)/4 det(L)1/n;

3. ‖b1‖ · · · ‖bn‖ ≤ 2n(n−1)/4 det(L).

Parts 1 and 2 of the theorem guarantee that the LLL-

reduced basis includes a reasonably short vector while

part 3 ensures a reasonably “orthogonal” basis. In ad-

dition to the nice properties of the reduced basis, it is

the efficiency which enables its reduction algorithm to

have important applications in various areas.

3.2.3 Implementation Details

We now focus on the detailed procedure to obtain a

LLL-reduced basis. After swapping bk and bk−1 in step

2, exactly two of the orthogonalization vectors b∗k and

b∗k−1 are changed. Therefore, only the µij ’s associated

with bk, bk−1, b
∗
k and b∗k−1 need to be updated. For the

ease of understanding, we enclose in boxes these ele-

ments of the matrix


µ11 0 · · · · · · · · · 0

...
. . .

. . .
. . .

. . .
...

µk−1,1 · · · µk−1,k−1 0
. . .

...

µk,1 · · · µk,k−1 µk,k

. . .
...

...
. . .

...
...

. . . 0

µn1 · · · µn,k−1 µn,k · · · µnn




.

Denote b̄i, b̄
∗
i and µ̄ij as the updated values of bi, b

∗
i

and µij respectively. Then the following update formu-

las can be derived in a straightforward manner [15].

b̄k−1 = bk

b̄k = bk−1

b̄∗k−1 = b∗k + µk,k−1b
∗
k−1

b̄∗k = b∗k−1 − µ̄k,k−1b̄
∗
k−1

µ̄k,k−1 = µk,k−1
‖b∗

k−1‖2

‖b̄∗
k−1‖2

µ̄i,k−1 = µi,k−1µ̄k,k−1 + µik
‖b∗

k
‖2

‖b̄∗
k−1‖2 (k < i ≤ n)

µ̄ik = µi,k−1 − µikµk,k−1 (k < i ≤ n)

µ̄k−1,j = µkj (1 ≤ j ≤ k − 2)

µ̄kj = µk−1,j (1 ≤ j ≤ k − 2)

Recall that µii = 1 for all i, so the diagonal elements

need not be updated. Also, we simply need to swap µkj



and µk−1,j for 1 ≤ j ≤ k − 2, since b∗1, · · · , b∗k−2 are un-

changed. This also implies that only bk−1, · · · , bn need

to be considered to obtain a size-reduced basis in step

1. Besides, in step 2, we have to find an i such that

δ · ‖b(i, i)‖2 > ‖b(i+1, i)‖2. One straightforward way to

implement this is to use a counter k (with initial value

2) to keep track of the dimension of the sublattice that

has already been LLL-reduced. If the test is failed (i.e.

b1, · · · , bk−1 must be a LLL-reduced basis of the sublat-

tice they span), the counter is incremented. Otherwise,

we swap bk−1 and bk and decrement the counter. In this

way, the counter will count up and down during the run.

However, the counter will reach n + 1 sooner or later

as the algorithm must terminate. The process can be

thought of as extending the dimension of the sublattice

which is LLL-reduced in the current basis representa-

tion. Clearly, during the pass when the counter value is

k, we only need the first k basis vectors b1, · · · , bk to be

size-reduced. Since b1, · · · , bk−1 have been size-reduced

before the counter value is incremented or decremented

to k, only bk need to be considered in step 1. With

a closer look, further simplification for step 1 is pos-

sible. The test in step 2 requires the value of µk,k−1

only. Thus we can make |µk,k−1| ≤ 1
2

first, and process

µk,k−2, · · · , µk,1 only when the counter is incremented.

With this observations, the LLL-reduction algorithm

[15] can be constructed readily.

Procedure LLL Reduce(B)

1. Do Gram-Schmidt orthogonalization process to ob-

tain µij ’s and βi’s.

2. k := 2.

3. Make, if necessary, |µk,k−1| ≤ 1
2

and update bk and

µk1, · · · , µk,k−1.

4. If βk < (δ − |µk,k−1|2)βk−1 do

5. Swap bk−1 and bk, swap

µk−1,1, · · · , µk−1,k−2 and µk,1, · · · , µk,k−2,

and update βk−1, βk, µk+1,k−1, · · · , µn,k−1

and µk+1,k, · · · , µn,k.

6. If k > 2 do k := k − 1.

7. Else

8. For j = k − 2 downto 1 do make, if

necessary, |µkj | ≤ 1
2

and update bk and

µk1, · · · , µk,j .

9. If k �= n do k := k + 1; else goto line 12.

10. Endif.

11. Goto line 3.

12. Return bi’s, βi’s and µij ’s.

(Here, βi stores the value of ‖b∗i ‖2 for 1 ≤ i ≤ n.)

It is noteworthy that Procedure LLL Reduce does not

require the orthogonal vectors b∗i ’s and only bi’s, µij ’s

and βi’s need to be stored. To obtain µij ’s and βi’s

without involving b∗i ’s, instead of applying (2) and (3),

the Gram-Schmidt orthogonalization process in line 1

can be performed according to the following O(n2m)-

complexity procedure [23]:



Procedure Orthogonalize(B)

1. For i = 1 to n do

2. For j = 1 to i − 1 do

3. µij := (bT
i bj −

∑j−1

k=1
µjkµikβk)/βj .

4. Endfor.

5. βi := ‖bi‖2 −∑i−1

k=1
|µik|2βk.

6. Endfor.

7. Return βi’s and µij ’s.

Alternatively, one can obtain [bi(j)]
T as a Cholesky

factor of BT B and then set βi = b2
i (i) and µij =

bi(j)/bj(j). This approach was used by Fincke and

Pohst [24] (and also by Viterbo and his co-workers [3],

[4]).

3.2.4 Complexity analysis

We now compute the time complexity of Procedure

LLL Reduce. The Gram-Schmidt orthogonalization

process in line 1 needs O(n3) operations. Each execu-

tion of line 5 decreases the value of function D, defined

in (11), by multiplying a factor of δ = 3
4
, say. Let D0

be the initial value of D. Following the analysis in [15],

it can be proved that after j passes,

1 ≤
(

3

4

)j

D0 ≤
(

3

4

)j

βn(n−1)/2,

where β is the maximum squared length of the given

basis vectors. Hence, we have j ≤ 3
2
n(n− 1) log(β) and

the number of times we pass through lines 5 and 6 is

O(n2). As the test in line 4 cannot be succeeded n times

more than it is failed (otherwise k = n and the proce-

dure terminates), the number of times passing through

lines 8 and 9 is also O(n2). Thus each of the lines 3

to 11 is executed O(n2) times. Each execution of line

3, line 5 and line 8 take O(n), O(n) and O(nm) opera-

tions respectively. Therefore, the overall complexity of

Procedure LLL Reduce is O(n3m) operations.

4 Finding a Nearby Lattice

Point

Intuitively, it is expected that finding a lattice point

nearby a given query point could be much simpler than

finding the closest lattice point. Babai [25], [26] proved

that given a LLL-reduced basis, a nearby lattice point

that is closest, within a factor exponential in n, to the

query point can be found by two simple polynomial-time

algoirhtms, called Procedure Rounding Off and Proce-

dure Nearest Plane, respectively.

Denote the query vector q = Bϑ = ϑ1b1+· · ·+ϑnbn ∈

Rm, where ϑ ∈ Rn is a n-dimensional column vector.

Procedure Rounding Off simply finds a nearby lattice

point by rounding ϑi’s to their nearest integers. Namely,

the nearby lattice point found is

B · round(ϑ) = round(ϑ1)b1 + · · · + round(ϑn)bn,

which is clearly a valid lattice point in L(B). We observe

that the procedure is in fact equivalent to a classical

detector in communications.



It is well-known that the zero-forcing (ZF) detec-

tor takes the received output vector q and detects the

transmitted input vector as round(B†q), where B† =

(BT B)−1BT is the pseudo-inverse of B with m ≥ n

such that B†B = In. Thus we have

round(B†q) = round(B†Bϑ) = round(ϑ),

which implies that Procedure Rounding Off and the ZF

detector are algorithmically equivalent. Note that since

the basis matrix B corresponds to a (noiseless) channel

operator that linearly transforms the transmitted input

vector into the received output vector, the goal of any

detector to recover the channel input vector, rather than

the channel output vector. Therefore, the output of the

ZF detector is round(ϑ), instead of B · round(ϑ).

Given q as the input, the ZF algorithm has a com-

plexity of O(nm) operations, which is dominated by

the matrix vector product B†q. Here, we assume that

the nearby lattice point problem has to be solved many

times for a given lattice so that the pseudo-inverse ma-

trix B† can be pre-computed once only with a pre-

processing complexity of O(n2m) operations. The ZF

procedure can be summarized as below:

Procedure Zero Forcing(q, B†)

1. Return round(B†q).

Next, let us denote the query point q = B∗ζ = ζ1b
∗
1 +

· · · + ζnb∗n ∈ Rm, where ζ ∈ Rn is a n-dimensional

column vector. Procedure Nearest Plane introduced by

Babai [26] can be stated, for our purpose, as follows:

Procedure Nearest Plane(q, (B∗)†, [µij ])

1. ζ := (B∗)†q.

2. ηn := round(ζn).

3. For j = n − 1 downto 1 do

4. ηj := round(ζj −
∑n

i=j+1
ηiµij).

5. Endfor.

6. Return η.

Note that the procedure gives the same output

whether the basis is size-reduced (i.e., |µij | ≤ 1
2
) or

not.

As lines 2 to 5 involve O(n2) operations, Procedure

Nearest Plane has a complexity of O(nm), dominated

by the matrix vector product (B∗)†q in line 1. The

input parameters µij ’s and (B∗)† can be precomputed

with a preprocessing complexity of O(n2m).

We note that Procedure Nearest Plane is equiva-

lent to a specific type of decision feedback equaliza-

tion (DFE) algorithm in communications, called the

VBLAST nulling and cancellation detector [27], or sim-

ply VBLAST detector. A VBLAST detector distin-

guishes itself from other forms of DFE by adopting a

detection order (i.e., ηn, · · · , η1, in our notation) in ac-

cordance with the descending order of signal-to-noise

ratios (SNR) of different elements in a received vector.

Denote the m × n basis matrix of the lattice L′ by

[b′1, · · · , b′n] = (B†)T , where L′ = L((B†)T ) is called the

dual lattice of L(B). The VBLAST detection order is

achieved by ordering (or re-indexing) the basis vectors



such that ‖b′n‖ ≤ · · · ≤ ‖b′1‖. In other words, the detec-

tion order ensures that the transmitted vector element

corresponding to the shortest dual basis vector is to be

detected first, and so on. It is interesting to note that

the VBLAST detection ordering as a preprocessing step

for finding a nearby lattice point actually coincides with

a preprocessing step proposed by Fincke and Pohst [24]

for finding the closest lattice point. In fact, Fincke and

Pohst also suggested that the dual lattice should be re-

duced first. Refer to Section 6.2 for further details.

It is noteworthy that although the two aforemen-

tioned algorithms for finding a nearby lattice point have

been applied in communications in the form of ZF and

VBLAST detectors, their full power as (suboptimal)

universal lattice detectors have not been fully realized

because the lattice basis was never reduced. As can

be seen from Babai’s proofs in [26], the assumption of

a LLL-reduced basis is crucial to the goodness of the

nearby lattice point found by the two algorithms. A

first step in this direction has recently been taken by

Yao and Wornell [28]. They extended the famous Gauss

reduction algorithm for 2-dimensional real lattices to

the so-called complex lattices (to be discussed in the

next section) and showed that the symbol error rate

performance of both the ZF and the nearest plane algo-

rithms with the complex Gauss reduction preprocessing

is within 3dB in SNR from the optimal maximum like-

lihood detection (MLD) performance. Note that the

Gauss reduction is identical to the 2-dimensional LLL

reduction with δ = 1.

Finally, we should point out that VBLAST detectors

are also applicable to some non-lattice decoding prob-

lems, such as those with MPSK modulation, in which

lattice basis reduction is not well-defined. In Section

6, it will be clear that efficient algorithms for finding a

nearby lattice point can also lead to a better algorithm

for finding the closest lattice point as well.

5 Extension to Complex Lat-

tices

Due to the use of the passband channel models, many

communications detection problems are most naturally

formulated in terms of complex lattices when lattice-

type modulation schemes are used. If the modulation

scheme involves both in-phase and quadrature-phase

components (such as QPSK and QAM), the resultant

(complex) lattice is a complex integer linear combina-

tion of some complex-valued basis vectors. Mathemat-

ically, a n-dimensional complex lattice L ⊂ Cm is de-

fined as

L = {η1b1 + · · · + ηnbn : ηi ∈ Z + Z
√−1},

where b1, · · · , bn ∈ Cm are n linearly independent m-

dimensional complex basis vectors. It is noteworthy

that we have simply replaced the real vector space Rm

by the complex vector space Cm and the integer set Z

by the complex integer set Z + Z
√−1, respectively, in

the conventional definition of lattices.



As previously mentioned, Yao and Wornell [28] have

successfully extended the famous Gauss reduction al-

gorithm for 2-dimensional complex lattices. Since the

complex number field is well known to be an extension

of the real number field, one may wonder how easy it

is, if possible at all, to extend the general theory on

lattices from the real to the complex case. In fact, the

part of the theory reviewed up to here has already been

extended in a careful manner in Sections 2, 3 and 4. In

particular, the algorithms, the procedures and the com-

plexity analysis presented therein are valid, as long as

the operations involved are replaced by their complex

arithmetics counterparts. When interpreting the afore-

mentioned results for complex lattices, there are a few

points deserve special attention:

• (·)T becomes the matrix complex conjugate trans-

pose operator.

• |·| refers to the magnitude of the possibly complex-

valued argument. In particular, |µij |2 should not

be confused with µ2
ij .

• The real and imaginary parts returned by the

rounding operator round(·) are the integers near-

est to the real and imaginary parts of the possibly

complex-valued argument respectively.

• In (3), the role of bj∗ and bi are not exchangeable

in the complex case, unlike the real case.

In fact, since a n-dimensional complex lattice is iso-

morphic to a 2n-dimensional real lattice, every decod-

ing problem that has a complex lattice formulation can

also be re-formulated as a real lattice decoding prob-

lem. This re-formulation approach has been suggested,

for example, in [1] and [5] and has now become a stan-

dard approach. However, working directly on the com-

plex lattice can result in decoding algorithms with lower

complexity, because the exploitation of the complex lat-

tice structure allows the lattice dimension involved to be

only half of that of the equivalent real lattice. The com-

plexity advantage is particularly significant for high-

dimensional complex lattices. However, conventional

lattice algorithms and their complex counterparts are

generally inequivalent, even when they are applied to

equivalent lattices. In the Section 7, we shall compare

their BER performances by computer simulation for a

typical communications detection problem.

6 Finding the Closest Lattice

Point

A straightforward method to find the closest lattice

point is to enumerate all lattice points falling inside a

sphere centered at the query point so as to identify the

closest lattice point in the Euclidean metric. To avoid

enumerating an unnecessarily large number of points,

it is important to determine a reasonably small radius

of the sphere. In the following subsections, the proper

choice of the radius will be discussed first. Next, we

shall consider an efficient enumeration algorithm orig-

inally developed by Pohst [29] and later elaborated by



Pohst and Fincke in [24]. After that, we shall present

some important improvements and an efficient imple-

mentation of the improved Pohst-Fincke algorithm.

6.1 Choice of Initial Radius

The initial radius of the enumeration sphere has to be

carefully chosen. If the radius is too small, there is

no lattice point inside the sphere and the enumeration

process has to be re-started again with a re-selected

radius. If the radius is too large, there are too many

lattice points inside the sphere resulting in an unnec-

essarily large enumeration complexity. To avoid enu-

merating an unnecessarily large number of points, it is

important to determine a sufficiently small radius of the

sphere which is sufficiently large to contain at least one

lattice point.

One suggestion from [6] is to use the Rogers upper

bound on covering radius [8], which requires the knowl-

edge about the dimension and determinant of the lat-

tice.

An alternative upper bound on the covering radius is

1

2

(
n∑

k=1

‖b∗k‖2

)1/2

,

which follows from proposition 4.2 in [12]. Although

the values of ‖b∗k‖’s are required for calculating the

bound, they are typically required by other lattice algo-

rithms and do not induce additional complexity. In fact,

the nearby lattice point returned by Procedure Near-

est Plane, called the Babai point in [30], always satis-

fies this bound. If it is available, a better choice of the

initial radius is ‖b−q‖, where q and b denotes the query

point and the Babai point respectively.

6.2 Enumerating Lattice Points in a

Sphere

Let q = ϑ1b1 + · · ·+ϑnbn ∈ Rm be the query point. If a

lattice point a = η1b1 + · · · + ηnbn ∈ L(B) is inside the

sphere of radius r centered at q, it satisfies the sphere

constraint ‖a − q‖ ≤ r. The enumeration problem is to

determine all valid combinations of η1, · · · , ηn under the

sphere constraint, which can be expressed in terms of

b∗1, · · · , b∗n as:

n∑
i=1

(

n∑
k=i

(ηk − ϑk)µk,i)
2‖b∗i ‖2 ≤ r2.

This suggests a recursive enumeration algorithm based

on the following relationships:

rn = r, (12)

|ηn − ϑn| ≤ rn

‖b∗n‖ , (13)

and for i = n − 1, n − 2, · · · , 1,

ri = (r2
i+1 − |

n∑
i+1

(ηk − ϑk)µk,i+1|2‖b∗i ‖2)1/2, (14)

|ηi + (

n∑
k=i+1

(ηk − ϑi)µk,i)| ≤ ri

‖b∗i ‖
. (15)

The algorithm recursively divides an i-dimensional

enumeration problem with radius ri into (	 2ri
‖b∗

i
‖
 + 1)

(i − 1)-dimensional similar problems with radii ri−1’s.

Eventually, the actual enumeration process occurs in

many one-dimensional lattices. Geometrically speak-

ing, the (i− 1)-dimensional problems are similar to the



original i-dimensional problem because, after fixing the

values of ηi, · · · , ηn and projecting onto the subspace

spanned by b∗1, · · · , b∗i−1, the i-dimensional sphere be-

comes a (i − 1)-dimensional sphere. The number of

points to be enumerated is exactly those vectors shorter

than r. Thus this method is efficient in the sense that it

enumerates no invalid lattice points outside the sphere.

Fincke and Pohst [24] originally presented the algo-

rithm for finding the shortest lattice vector with the

sphere centered at the origin. The above enumeration

algorithm was adapted for a sphere centered at the given

query point. Unlike the derivation in [24] which is based

on the Cholesky factorization of BT B, the above deriva-

tion has the advantage that the geometric meaning of

the variables involved is more obvious.

Inspired by the method of Dieter [31] and Knuth [32],

Fincke and Pohst proposed a preprocessing procedure

to speed up the enumeration algorithm. Recall that

[b′1, · · · , b′n] = (B†)T is the m × n basis matrix of the

dual lattice of L(B). From [31], we have the inequality

|(a − q)T b′i| ≤ ‖a − q‖ · ‖b′i‖,

which implies

|ηi − ϑi| ≤ r‖b′i‖. (16)

To limit the search range of ηi, it is desirable to have

a smaller value of ‖b′i‖, especially in the early stages of

the enumeration (i.e., for large values of i). Based on

these arguments, Fincke and Pohst [24] suggested two

preprocessing steps, as follows:

Step 1: Use a reduction algorithm to obtain a “more

orthogonal” basis for the dual lattice.

Step 2: Reorder the indices of the basis vectors

b1, · · · , bn such that the lengths of the basis vec-

tors of the dual lattice are in descending order,

i.e., ‖b′1‖ ≥ · · · ≥ ‖b′n‖.

Since the enumeration algorithm recursively updates

the values of ηi’s, from i = n down to 1 (like traversing

a n-level multi-branch tree), steps 1 and 2 reduce the

range of values of ηi’s and hence the number of updating

operations. The simulation results in [24] support that

the above preprocessing steps can achieve a significant

reduction in the overall complexity, especially when a

LLL-reduction algorithm is used in step 1.

In the communications literature, the Pohst-Fincke

enumeration algorithm without the LLL-reduction pre-

processing is often called the sphere decoding algorithm,

following the nomenclature in [4].

6.3 Some Improvements and Imple-

mentation Details

From (12) and (15), it can be observed that the range

of ηi to be considered is inversely proportional to ‖b∗i ‖.

Thus a good orthogonalization of the lattice basis, for

which the sequence ‖b∗1‖, · · · , ‖b∗n‖ is lexicographically

small, is desired. In other words, the basis of the given

lattice, instead of its dual, should be reduced since (13)

and (15) in general give a much tighter bound than (16).



We thus propose to reduce complexity by replacing the

two preprocessing steps of Fincke and Pohst by the fol-

lowing one [1]:

Step 1’: LLL-reduce the basis of the given lattice to

obtain a lexicographically small orthogonalization

sequence.

Unlike the original preprocessing steps which require

matrix inversion, LLL reduction, sorting and permu-

tation, the proposed preprocessing step involves LLL

reduction alone and is both simpler and more effective.

Another improvement can be obtained by updating

the values of r1, · · · , rn with r′ replacing r whenever a

lattice point b with r′ = ‖b − q‖ < r is enumerated.

As suggested by Mow in [1], to avoid an unnecessarily

large amount of updating operations, we can enumerate

the values of ηi from its mid-value to its upper bound

and then from its mid-value to its lower bound, instead

of from the lower bound to the upper bound. In this

way, the short vectors are likely to be enumerated first.

Based on a similar observation, Schnorr and Euchner

[33] suggested an even better enumeration order, which

enumerates the value of ηi in the order of increasing

distance from the mid-value. As pointed out by Agrell

et al. [30], the first lattice point enumerated using the

Schnorr-Euchner ordering is the Babai point. Thus the

choice of the initial radius is naturally set according

to the Babai point, as suggested in Section 6.1, but

without an explicit execution of the nearest plane algo-

rithm and the associated complexity. Recently, Chan

and Lee [34] has rediscovered the Schnorr-Euchner or-

dering and their simulation results have demonstrated

that impressive complexity reduction can be achieved

when applied to 4-transmit and 4-receive antenna sys-

tems with 64-QAM. We shall present an efficient way to

implement the Schnorr-Euchner ordering scheme. The

key idea is to map the sequence 0, 1, 2, 3, 4, · · · into

0, 1,−1, 2,−2, · · · if the mid-value is rounded down, and

into 0,−1, 1,−2, 2, · · · otherwise. Our implementation

is apparently simpler than those in [33], [30] and [34]

since no sorting or multiplication is required.

In [1] and [2], Mow suggested that the average com-

plexity can be reduced by adding a simple stopping test

for detecting early if the closest lattice point has been

found. Let γ = γ(L) denote the packing radius of the

lattice L (i.e., half the length of the shortest lattice vec-

tor). If an enumerated lattice point is found to be at

a distance less than γ from the query point (i.e., the

stopping test is satisfied), it is clearly a nearest lattice

point and thus the enumeration process can be termi-

nated right away. In lattice decoding applications, the

query point is a noisy version of a lattice point. At a

sufficiently large SNR, most of the query points are lo-

cated very close to the original lattice point. Therefore,

a nearby lattice point, such as the Babai point, is likely

to be the nearest point as well. It was suggested in [2]

that the Babai point is first found by applying the near-

est plane algorithm and if it passes the stopping test,

the whole enumeration process is skipped. As the com-



putational cost of running the stopping test is very low,

we apply the test whenever a new lattice point known

to be currently the nearest is found.

Mow [2] argued that as the SNR tends to infinity,

the average decoding complexity becomes quadratic for

m = n (or in general, O(nm)), namely, the complex-

ity of the nearest plane algorithm with preprocessing.

This result on the asymptotic average complexity of a

universal lattice decoder is apparently consistent with

the recent theoretical analysis of Hassibi and Vikalo [35]

(see Figure 2 therein). The result remains valid for our

implementation of the enumeration algorithm here, be-

cause the complexity of the Pohst-Fincke enumeration

algorithm with the Schnorr-Euchner ordering up to the

first enumerated lattice point (i.e., the Babai point) is

also O(nm), ignoring the preprocessing complexity.

The following procedure implements the improved

Pohst-Fincke algorithm for finding the closest lattice

point:

Procedure Closest Point(q, B)

1. (Preprocessing) Find unimodular matrix T such

that B := BT is LLL-reduced and compute B†,

µij ’s and βi’s.

2. ϑ := B†q.

3. For i = 1 to n do INC i := 0; DEV i := 0.

4. RMIN := ∞; i := n; Ri := ∞; Ui := −ϑi;

Z := (Ri/βi)
1/2; UB i := floor(Z − Ui); LB i :=

ceil(−Z − Ui); Si := sign(−Ui − ηi).

5. While i ≤ n do

6. If INC i is even do

7. DEV i := −DEV i.

8. Else

9. DEV i := Si − DEV i.

10. Endif.

11. ηi := round(−Ui) + DEV i; INC i := INC i + 1.

12. If ηi < LB i or ηi > UB i do

13. i := i + 1.

14. Elseif i �= 1 do

15. i := i − 1; Ri := Ri+1 − βi+1(ηi+1 +

Ui+1)
2; Ui := −ϑi +

∑n

k=i+1
(ηk − ϑk)µik;

Z := (Ri/βi)
1/2; UB i := floor(Z − Ui);

LB i := ceil(−Z−Ui); Si := sign(−Ui−ηi);

INC i := 0; DEV i := 0.

16. Else

17. RX := Rn − R1 + βi(η1 + U1)
2.

18. If RX < RMIN do

19. η := [η1, · · · , ηn]T ; RMIN := RX.

20. If RMIN < γ do goto line 27.

21. If RMIN < 0.9Rn do

22. For k = 1 to n do Rk := Rk −Rn +

RX.

23. Endif.

24. Endif.

25. Endif.

26. Endwhile.

27. Return Tη.



In the above procedure, βi stores ‖b∗i ‖2, and Ri stores

r2
i . RMIN and RX hold the latest minimum squared

distance and the currently found squared distance re-

spectively. The function sign(·) returns the sign of the

input argument, and it returns 1 even if the input argu-

ment is 0. ceil(·) and floor(·) are the rounding-up and

rounding-down functions respectively. INC i simply in-

crements from 0 on until ηi exceeds one of the bounds

UBi or LBi . DEVi represents the actual deviation of

ηi from the middle value round(−Ui) in the Schnorr-

Euchner strategy, which is implemented through lines

6 to 10 as well as the initialization of both INC i and

DEVi to 0. Line 1 can be done once by preprocessing

if the lattice remains the same. The procedure output

Tη while the closest lattice point is BTη. If the LLL

reduction is not performed, we may simply regard T

as an identity matrix. Note that the factor 0.9 in line

21 is arbitrary, which ensures the Ri’s is not updated

too frequently, and may be replaced by any reasonable

value slightly less than 1. Finally, the value ∞ should

be implemented as a very large positive constant value.

Since γ is equal to half the length of the shortest lat-

tice vector, it can be found by a variant of the enumera-

tion algorithm. The key idea is to set the query point as

a lattice point and ensure that the algorithm excludes

the input point in the enumeration process. If it is nec-

essary to keep the preprocessing complexity small, we

may replace γ in line 20 by an easy-to-compute lower

bound on the packing radius. A useful lower bound for

this purpose is

γ ≥ 1

2
min

k
‖b∗k‖.

To avoid a very loose bound, it is desirable that the

lattice basis from which ‖b∗k‖’s are obtained is LLL-

reduced.

Finally, we note that although Procedure

Closet Point can always find a closest lattice point, it

may sometimes return an invalid transmitted vector.

As all practical modulation schemes have a finite

symbol alphabet, the set of valid transmitted vectors

are located inside a certain finite region of the infinite

lattice. If the closest lattice point is outside the finite

region, the so-called boundary error is resulted. As

pointed out by Viterbo and Boutros [4], for important

cubic-shaped modulation schemes (such as PAM and

QAM), it is easy to incorporate the alphabet constraint

by restricting the range of every vector component (i.e.,

ηi in our notation). This simple modification totally

eliminates the occurrence of boundary errors leading to

an exact MLD algorithm. The modified enumeration

region is in general not spherical, and might be empty

even if the initial radius is chosen according to the

Babai point. In the latter case, it is necessary to restart

the enumeration process with a larger initial radius

chosen according to some heuristics. In addition, to

enable the cubic-shaped alphabet constraint to be

easily incorporated into the enumeration algorithm, the

original lattice basis must be used. It means that the

MLD modification is incompatible with the complexity



reduction technique of applying the LLL reduction in

the preprocessing phase.

In [2], Mow demonstrated by simulation that the per-

formance degradation due to boundary errors is insignif-

icant and vanishes quickly as the alphabet size increases.

If the performance degradation is unacceptable, we can

lower the average complexity of the lattice MLD by tak-

ing advantages of the fact that the boundary errors

rarely occur and are detectable. Namely, Procedure

Closet Point with LLL reduction can be used to enumer-

ate lattice points in a spherical region as usual, and the

modified enumeration region using the original lattice

basis will be considered only if the closest lattice point

found is invalid. In this way, the resultant algorithm,

while achieving the optimal MLD performance, can also

take advantages of the LLL reduction preprocessing for

complexity reduction.

7 Simulation Experiments

In this section, the performance and complexity of var-

ious lattice decoding algorithms introduced in Sections

4 to 6 are evaluated and compared by computer sim-

ulation. The elements in the m × n basis matrix B

are assumed to be independently and identically dis-

tributed complex Gaussian random variables with zero

mean and unit variance. It corresponds to the channel

gain matrix in a typical multiple antenna communica-

tion system with n-transmit and m-receive antennas.

The i-th element ηi of the transmitted input vector η

represents the information symbol taken from a fixed

modulation alphabet to be transmitted by the i-th an-

tenna. Without loss of generality, the modulation al-

phabet is defined as ZM = {0, 1, · · · , M − 1} for M -

PAM, and as ZN + ZN

√−1 for M -QAM with squared

integer M = N2. The query point (corresponding to the

received output vector) is the transmitted input vector

transformed by the channel matrix and corrupted by an

additive noise vector w, or in symbols,

q = Bη + w.

The elements of the noise vector w are independently

and identically distributed white complex Gaussian ran-

dom variables with zero mean and unit variance, inde-

pendent of the channel gain coefficients Bij ’s.

A 2-transmit 3-receive antenna system with 4-PAM is

first considered. Although the basis matrix is complex-

valued, η is a 2-dimensional integer vector. Thus the

system gives rise to a 2-dimensional real lattice in a 6-

dimensional vector space. Figure 2 shows the BER per-

formance of the ZF detector, the Babai nearest plane

algorithm and the VBLAST detector with and without

applying LLL reduction of B as a preprocessing step.

These algorithms and their detailed implementations

have been discussed in Section 4. The MLD perfor-

mance is also shown in the figure. Although an efficient

implementation of the lattice MLD was discussed in Sec-

tion 6, any correct implementation of the MLD should

give the same optimal performance.

Let us take the performance of the Babai nearest



plane algorithm at a BER of 3 × 10−4 as the reference

point for the ease of comparison. The ZF detector per-

forms worse by about 1dB. The VBLAST detector is in

fact the nearest plane algorithm with the basis ordering

preprocessing (c.f. Section 4). It can be observed from

the figure that the basis ordering can provide almost

5dB gain. With the LLL reduction preprocessing, the

three detectors (abbreviated as LLL-ZF, LLL-Babai and

LLL-VBLAST, respectively) have similar performance

that offers about 10dB gain over the reference point. It

implies that the LLL basis reduction can provide an ad-

ditional 5dB gain over the VBLAST basis ordering as a

preprocessing step. Note that the LLL-VBLAST does

not perform any better than the LLL-Babai, in spite of

its higher complexity. It can be explained by the fact

that the VBLAST basis ordering is a kind of swapping-

only basis reduction, which is unlikely to further im-

prove a basis that has already been LLL-reduced. Fi-

nally, it can be seen from Figure 2 that the LLL-Babai

(as well as LLL-ZF and LLL-VBLAST) is only about

2.5dB from the MLD performance and has the same op-

timal diversity order. This observations are consistent

with and extends those of Yao and Wornell in [28] for

a 2-dimensional complex Gauss-reduced basis. Consid-

ering the low implementation complexity, the LLL-ZF

and LLL-Babai are very attractive suboptimal lattice

decoders.

Next, a 4-transmit 4-receive antenna system with 64-

QAM is considered. It gives rise to a 4-dimensional com-

plex lattice in a 4-dimensional complex vector space.

As discussed in Section 5, we may perform the complex

LLL reduction (abbreviated as CLLL) directly on the

complex lattice or we may apply the conventional LLL

reduction to an equivalent 8-dimensional lattice in a 8-

dimensional real vector space. Figure 3 shows the BER

performance of the 3 complex lattice based detectors

(i.e., CLLL-ZF, CLLL-Babai and CLLL-VBLAST) as

well as the 6 detectors previously considered.

For the ease of performance comparison, we shall take

the performance of the Babai nearest plane algorithm

at a BER of 10−3 as the reference point. Observations

similar to those made for the previous system still hold.

The ZF detector performs only a fraction of a dB worse.

The VBLAST basis ordering offers nearly 5dB gain.

The LLL-Babai provides an impressive gain of about

12dB. The LLL-VBLAST does not improve over the

LLL-Babai. Somewhat unexpected is that the perfor-

mance gap between the LLL-Babai and LLL-ZF widens

to about 1dB, while their gap almost vanishes in the

previous system. It is interesting to note that the com-

plex LLL reduction can provide the same performance

gain as the traditional real LLL reduction, in spite of

its lower complexity (c.f. Section 5). Also, the CLLL-

Babai (as well as LLL-Babai, CLLL-VBLAST and LLL-

VBLAST) is only about 2.5dB from the MLD perfor-

mance and achieves the same optimal diversity order.

Therefore, the CLLL-Babai is the most attractive low-

complexity suboptimal lattice decoder for the QAM sys-



tem under consideration.

The time complexities of different implementations

of the optimal lattice decoder applied to the previous

4-transmit 4-receive antenna system with 64-QAM are

evaluated and compared in Figure 4. For simplicity, no

LLL reduction preprocessing has been performed. Fig-

ure 4 shows the average CPU time per symbol of the

Pohst-Fincke enumeration algorithm and its Schnorr-

Euchner variant, with and without the stopping test

discussed in Section 6. The initial radius is set accord-

ing to the Babai point, explicitly for the Pohst-Fincke

algorithm and implicitly for the Schnorr-Euchner vari-

ant.

Figure 4 shows that the Schnorr-Euchner ordering

can speed up the Pohst-Fincke algorithm by about 3

times at 35dB. However, the speedup factor becomes

smaller than 2 as the SNR increases to 50dB. This can

be explained by the fact that as the SNR increases,

the enumeration sphere contains only a few number of

lattice points and hence the order of enumerating the

lattice points become less significant. It can also be

seen from the figure that the use of the stopping test

can significantly speed up the Pohst-Fincke algorithm

with both the original Pohst ordering and the Schnorr-

Euchner ordering, but at different SNRs. In particular,

the speedup factor for the former increases from 6% at

35dB to over 60% at 50dB, while that for the latter

decreases from 36% at 35dB to only 2% at 50dB.

Following the discussion in Section 6.3, with the stop-

ping test, the complexity of both the Pohst-Fincke algo-

rithm and its Schnorr-Euchner variant should converge

to that of the Babai nearest plane algorithm, as the SNR

tends to infinity. It can be concluded from Figure 4 that

the convergence has already occurred at 50dB. However,

at practical values of SNR (i.e., at 40dB or smaller),

the speedup factor due to the stopping test is signif-

icant only when combined with the Schnorr-Euchner

ordering. Finally, we note that the Pohst-Fincke algo-

rithm with both the Schnorr-Euchner ordering and the

stopping test is the most efficient implementation of the

optimal lattice decoder known, especially at moderate

SNRs.

8 Concluding Summary

The general principle and implementation methods of

several important lattice algorithms for performing the

lattice basis reduction and for finding a nearby or the

closest lattice point, have been reviewed. Specifically,

the LLL reduction algorithm, the Babai nearest plane

algorithm and the Pohst-Fincke enumeration algorithm

with the Schnorr-Euchner ordering were discussed in de-

tails. Our general treatment allows the LLL reduction

algorithm to be extended for complex lattices with un-

necessarily square basis matrices. This generalization

is important for designing low-complexity universal lat-

tice decoders for typical communications applications,

in which the passband quadrature phase modulation

schemes (such as QPSK and QAM) are used. Our sim-



ulation result verified the the complex LLL reduction

algorithm, if applicable, can reduce complexity without

degrading performance.

The interpretation of the well-known VBLAST de-

tector as the Babai nearest plane algorithm with basis

ordering was introduced. Based on Babai’s results on

finding a nearby lattice point, the use of LLL reduction

was shown to be a promising way to improve the per-

formance of the ZF and VBLAST detectors with man-

ageable additional complexity. Our simulation experi-

ments have verified that the LLL reduction preprocess-

ing improves the Babai nearest plane algorithm (and

the ZF detector) by about 10dB to 12dB and achieves

the optimal diversity order. To gain a further 2.5dB

to 3dB and attain the MLD performance, we can em-

ploy the Pohst-Fincke enumeration algorithm with the

Schnorr-Euchner ordering and the stopping test, which

is the fastest universal lattice decoder known, especially

at moderate SNRs.

Finally, we conclude by pointing out some promis-

ing new development of the Pohst-Fincke enumeration

algorithm. It is not difficult to see that the universal

lattice decoder based on the Pohst-Fincke enumeration

algorithm or its variants is a natural list output decoder,

from which soft output can be generated [36], [37], [38].

Hochwald and ten Brink [37] recently also realized the

idea and extended the Pohst-Fincke enumeration algo-

rithm to the so-called soft-output complex sphere de-

coder that is applicable to complex modulation schemes

(such as M-PSK) without a lattice structure. Vikalo

and Hassibi [39] further extended the algorithm to ef-

ficiently accept soft input. The soft-input soft-output

sphere decoders resulted appear to be near-optimal as

the channel capacity can be approached by applying the

famous Turbo decoding principle.
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Figure 1: A two-dimensional example of projecting b perpendicular to a to produce ba and then lifting ba

to b̂, where “o” represent the lattice points in L, “x” represent the lattice points in the projected lattice

La.
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Figure 2: Performance of the zero-forcing detector, the Babai nearest plane algorithm, and the VBLAST

detector, with and without the LLL reduction preprocessing, as well as the MLD in a 2-transmit 3-receive

antenna system with 4-PAM.
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Figure 3: Performance of the zero-forcing detector, the Babai nearest plane algorithm, and the VBLAST

detector, with and without the real or complex LLL reduction preprocessing, as well as the MLD in a

4-transmit 4-receive antenna system with 64-QAM.
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Figure 4: Time complexity of the Pohst-Fincke enumeration algorithm with the original Pohst ordering

or the Schnorr-Euchner ordering, and with or without the stopping test, as a function of the SNR.


