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ABSTRACT

In cognitive vehicular networks (CVNs), spectrum sensing and access are introduced as the promising technologies to
fully exploit the underutilized licensed spectrum. Because the sensing ability of a single secondary vehicular user (SVU)
is affected by high mobility, dynamic topology, and unreliable wireless environment, collaborative sensing is developed
to increase the sensing accuracy and efficiency. Generally, the synchronization is required in the collaborative sensing in
CVN. However, it is difficult to keep all SVUs synchronized with others for sensing under the high dynamic network
topology, and the sensing overhead of the synchronous cooperative action may be significant. In this paper, we first propose
an asynchronous cooperative sensing scheme in which each SVU provides an energy information (EI) that is tagged with
location and time information. The sensing decision will be made on account of the EI. Considering the temporal and
spatial diversities of each SVU, we assign different weights to each EI and formulate the probabilities of detection and
false alarm as the optimization problems to find the optimal weight of each EI. Then, based on the asynchronous sensing,
the specifications of the opportunistic spectrum access mechanism are elaborated in both centralized and decentralized
CVN:s for the sake of practical implementation. We analyze the system performance in terms of achievable throughput and
transmission delay. Numerical results show that the proposed scheme is able to achieve substantially higher throughput
and lower delay, as compared with existing schemes. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In vehicular networks, the explosive increase of vehicular
devices and applications poses a serious problem of
compelling need of numerous radio spectrum. In con-
trast, spectrum measurement shows that large portion of
the licensed spectrum is unused. According to the Federal
Communications Commission, 70% of the licensed spec-
trum in the USA is not utilized most of the time [1].
Cognitive radio (CR) [2,3], which has drawn inten-
sive attention, is designed to enable spectrum access of
these underutilized spectrum, especially for the vehicular
networks [4,5]. Enabling CR technology in vehicular
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networks, however, is never an easy task. One major
characteristic of the vehicular network is that there are mul-
tiple mobile communication nodes (vehicles) that make the
entire network high dynamic mobility. As a result, how to
discover and utilize the underused spectrum efficiently for
the mobile vehicles emerges as the critical issue.

Based on the CR technology, the vehicles with the
sensing function, which are called secondary vehicular
users (SVUs), are able to solve the spectrum shortage
problem by the simple and cooperative sensing. In the
simple sensing, an SVU periodically monitors the licensed
spectrum and identifies spectrum opportunities [6-14],
which is defined as the licensed spectrum band for SVUs to
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use without interfering the primary (licensed) users’ (PUs’)
transmission. In the cooperative sensing case, multiple
SVUs are employed to collaboratively sense the spectrum
to enhance the sensing performance. To guarantee the effi-
cient discovery of spectrum opportunities, synchronization
is required in the cooperative sensing in the traditional cog-
nitive systems [15-17]. However, in a cognitive vehicular
network (CVN), it is difficult to keep synchronous control
for all vehicles under a high dynamic network topology.

In this paper, we first propose a new asynchronous
cooperative sensing scheme (ACSS) by exploiting the
temporal and spatial diversities in CVNs. The coopera-
tive SVUs collect and store the energy information (EI),
which is defined as the energy of the received signal. Any
SVU who needs licensed channel information, called the
tagged SVU, collects the EI from the cooperative SVUs
and assigns relevant weight according to the EI’s storing
moment and location. Combining these information with
local sensing result, the tagged SVU makes the final deci-
sion of the PU’s presence or absence. Considering the
temporal and spatial diversities of each SVU’s sensing
behavior, the information from different SVUs has to be
assigned with different weights. We integrate the weight of
EI with two important parameters in spectrum sensing: the
probability of detection and the probability of false alarm.
An optimization problem is formulated to find the optimal
weights to maximize the detection probability and mini-
mize the false alarm probability. Then, the specifications of
the opportunistic spectrum access protocols are elaborated
in both centralized and decentralized CVNss for the sake of
practical implementation. By queueing theory, we evaluate
the performance in terms of throughput and packet delay
in multiple-user CVNs.

The objective of this paper is to propose a new ACSS
for opportunistic spectrum access in CVNs. To achieve
this, we have the following three major contributions in
this work.

e We study and exploit the spectrum temporal and spa-
tial dynamics and then incorporate them in a new
asynchronous spectrum sensing scheme for CVNs.

e We introduce the EI concept and allow vehicles to
collect them from neighboring nodes to eliminate the
sensing overhead. We identify the optimal weight of
each vehicle’s EI by considering the spatiotemporal
differences.

e An opportunistic spectrum access protocol is
specified in both centralized and decentralized CR
networks. An analytical model is constructed to
evaluate the performance of the proposed scheme in
multiple-user CVNs.

In addition, we present extensive numerical examples
to demonstrate the advantages of the proposed scheme
compared with the existing schemes and to show the
determination of the crucial parameters. Numerical results
indicate that our proposed scheme is able to achieve con-
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siderably higher throughput and lower delay, as compared
with existing mechanisms.

The rest of this paper is organized as follows. The
background and system model are introduced in Section 2.
In Section 3, we discuss the ACSS. The opportunistic spec-
trum access protocol is derived under both centralized and
decentralized networks in Section 4. Section 5 evaluates
the performance of the proposed ACSS and opportunistic
access mechanism in CVNs. Section 6 presents the numer-
ical results of the proposed scheme in CVN. Finally, we
conclude the paper in Section 7.

2. BACKGROUND INTRODUCTION
AND SYSTEM MODEL

2.1. Background

Spectrum sensing is a crucial technology for CVNs in
which SVUs and control node need sufficient spectrum
resources to exchange information and transmit data for
applications such as route planning and traffic management
[18,19]. In general CR networks, many researchers have
been devoted to study the efficient noncooperative sens-
ing scheme (NCSS). However, in a vehicular network, the
sensing accuracy may be limited because of radio propaga-
tion, traffic information diversity, and mobile environment
complexity. In addition, the discovery of spectrum oppor-
tunities has the cost of losing transmission opportunities.
This cost associated with spectrum sensing is referred to as
sensing overhead.

In order to increase the sensing performance, collabora-
tive sensing is employed in the CR network where multiple
secondary users are allowed to cooperate to seek spec-
trum opportunities [22-27]. The authors in [22] and [23]
studied the problem on how to determine the total sensing
time and how to distribute the total sensing time to differ-
ent channels in cooperative soft-decision spectrum sensing.
A rigorous analytical framework for cooperative spectrum
sensing with data fusion was provided in [24]. The authors
in the study [25] proposed two cooperative sensing mecha-
nisms, random sensing policy, and negotiation-based sens-
ing policy, which use secondary users to collaboratively
sense different channels to improve the sensing efficiency.
In the study of [26], the authors presented a coopera-
tive spectrum sensing using an optimal counting rule by
considering both fading and sensing time constraints. In
these cooperative models, the secondary users are used to
operate sensing at the same time. This type of sensing is
called synchronous cooperative sensing, in which the sens-
ing operation of all cooperative secondary users should
be synchronized so that all secondary users can detect the
channel’s availability.

The synchronized cooperation poses significant techni-
cal challenges and may lead to performance loss for CVNs.
First, there is a high requirement on hardware in order
to guarantee the precise synchronization operation among
all high-speed moving SVUs. Second, each mobile SVU
may have different location at any given moment. It is dif-
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ficult for these SVUs to collaboratively sense the same
PU (or the same set channels) at the same time. Third,
the synchronous operation may cause considerable sensing
overhead. When a cooperative SVU joins the cooperative
sensing, its own data transmission has to be stopped, which
results in the overhead in the secondary networks. In our
preliminary study in this direction [27], we found that the
sensing overhead cannot be omitted in the cooperative net-
work model. These considerations motivate us to propose
the asynchronous cooperation among SV Us.

There are two recent studies in the literature that have
considered the asynchronous sensing [28,29]. These two
studies observed that the synchronous cooperative sens-
ing schemes (SCSSs) incur performance loss in a scenario
where different SVUs may have different sensing sched-
ules and initiate spectrum sensing at different moments
[28,29]. In the study [28], the authors proposed a smart
sliding-window algorithm to make use of the latest reports
within an observation window for asynchronous coopera-
tive sensing. The study [29] presented a probability-based
combination scheme for asynchronous cooperative spec-
trum sensing, according to the Bayesian decision rule.

2.2. System model

We consider the vehicular network in which every SVU is
equipped with a single antenna by which the vehicle can
communicate with other vehicles and sense the PU’s activ-
ities within its receiving range. The mobility model of the
vehicles can be described as follows. The movement of
each vehicle is restricted to its own lane, and the speed of
vehicle i, at time ¢, v;(¢) obeys v;(t + At) = v;(t) + ea;(?),
where ¢ is a random variable uniformly distributed within
[—1, 1], and a;(r) is the acceleration of vehicle i at time z.
Also, the speed of the vehicle v;(t), V¢ is assumed to follow
a truncated Gaussian distribution with parameter (v,0,).
Let f(v) denote the probability density function (PDF) of
vi; then, f(v) can be expressed as

1 =02
e 2(7\77

V2mo, ’

f) =

Vimin £V < Vpax (1)
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where vy, and vy, represent the upper and lower speed
limits of any vehicles, respectively. This assumption is rea-
sonable to model the running vehicles on the freeway that
has the speed restrictions [18,20].

Consider a primary system in which the licensed spec-
trum is divided into €2 channels. The set of the channels
is denoted as Q = {1,2,...,Q} with | Q |= Q. In a par-
ticular region and time interval, some of the H channels
might not be occupied by a PU and are available for SVUs
to access. The licensed channel used by a PU alternates
between state ON and state OFF, of which the OFF time
is not used by PUs and hence can be exploited by SVUs.
Let o denote the probability that the channel transits from
state ON to state OFF. Let 8 denote the probability that the
channel transits from state OFF to state ON. We define the
channel availability as the normalized period that is avail-
able for SUs. Let p denote the channel availability. Then,
we have p = %.

We consider two CVN architectures: centralized net-
works and decentralized networks, as shown in Figure 1.
In the centralized networks, we employ the infrastructure-
based CR network that has a centralized base station (BS).
The CR BS is installed along highways at a regular inter-
val, which can be co-located with traffic lights, gas stations,
and rest areas, as discussed and evaluated in [30]. The BS
collects the sensing results from SVUs to make the final
decision of the channels’ availability. Then, the BS allo-
cates the available channels to the SVUs for access. In the
decentralized networks, SVUs sense the channel by their
own. To coordinate with other SVUs, each SVU exchanges
the control packets on the dedicated channel for channel
reserving and access [31].

2.3. Sensing behavior of secondary
vehicular users

We consider that each SVU has its own sensing-
transmission operation on a frame-by-frame basis. Each
frame has time duration 7 that can be divided into four
parts:

e Reservation phase: In this phase, the SVUs reserve
the channels via the BS in a centralized network or

Primary BS

-,

===
_ -~ Cooperative SVU,

m
= ==
Tagged SVU, Cooperative SVU;

(a)

(b)

Figure 1. The vehicular network structure: (a) centralized and (b) decentralized networks. BS, base station; CR, cognitive radio; SVU,
secondary vehicular user.
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negotiating with other SVUs in a distributed network
for the duration of T,.

e Sensing phase: In this phase, SVUs sense the channel
during the duration of 7.

e FExchanging phase: In this phase, the tagged SVU
exchanges the sensing information with the BS in a
centralized network, or other SVUs in a distributed
network, during the exchanging duration 7.

o Transmission phase: In this phase, the tagged SVU
transmits data on an available channel by using the
remaining duration of the frame 7, = T—T,—T;—T,.

3. ASYNCHRONOUS COOPERATIVE
SPECTRUM SENSING

In this section, we develop the ACSS involving multiple
SVUs so as to achieve sensing performance in a multiple-
user asynchronous network.

In order to discuss our problem, we employ energy
detection [32] for each SVU. Let 7, be the sensing time and
[ be the sample frequency during sensing time. We denote
N as the number of samples in a sensing period, that is,
N = tgf;. The received signal r;(n) at the nth sample and
the ith SVU is given by

wi(n), Hy

i) = i)+ wiln), Hy

where Hy represents the hypothesis that PUs are absent,
and H| represents the hypothesis that PUs are present. s;(n)
represents the PU’s transmitted signal with mean zero and
variance crsz. wi(n) denotes a Gaussian process with mean
zero and variance 2. Then, we denote e;(r) as the ith
SVU’s EI, which is defined as the measured energy of the
received signal r;(n) at the ith SVU. We can obtain ¢;(r) as

N
ei(r) =Y | r(n) |*

n=1

As shown in Figure 1, when the appearance of a PU is
detected, the tagged SVU (SVUp) should sense and ask
for cooperative sensing. We consider that the cooperative
SVUs (SVU; and SVU,) have sensed the appointed chan-
nel and stored the EI before SVUg. Without forcing SVU;
and SVUj to sense the appointed channel, SVUj only col-
lects the storing EI from SVU; and SVU, and makes the
decision of the PU’s activity on the appointed channel. By
using the EI from the neighboring SVUs, we observe that
such information of an identical PU has potential relation-
ship when the cooperative SVUs operate sensing within a
specified time and in a certain area. We define these fea-
tures of the cooperative SVUSs as temporal diversity and
spatial diversity.

Y. Liu et al.

3.1. Temporal diversity

In our model, each SVU is able to detect an identical PU
on the licensed channel following the SVU’s own sensing
period. Considering the variability of a PU’s activity, the
sensing results of a channel may not match with the chan-
nel’s actual state after ¢ seconds. However, the variation
of the channel state can be estimated by using past sens-
ing results [33]. Let Py,o() denote the probability that the
hth (h € Q,h = 1,---,Q) channel will be idle after 7 sec-
onds. Here, I, € {0, 1} with the interpretation that I, = 0
if the hth channel is idle and I;, = 1 if the Ath channel is
occupied by a PU. According to [33], we can express this
probability as

B+ aiﬂ @B =0

PI/xO(t) = % OL-E,B B _
arp g TN =

@

Similarly, we define Pj,1(¢) as the probability that the
hth channel will be occupied after 7 seconds.

e o _~th) =0
Ppa() = { R e + 3)
' atp +ape TN =1

It is shown that the future channel availability can be
predicted by probabilities Py,o(¢) and Py, (f) based on the
latest sensing result. Hence, there is an inherent temporal
connection between the current sensing result and the past
sensing result discovered by an SVU. This connection also
exists among the cooperative SVUs if they detect the same
channel even at a different sensing moment.

We define storing duration, which represents the time
duration from the moment sensing results obtained by the
ith SVU to the moment sensing results used by the tagged
SVU. Let #; denote the length of the storing duration of the
ith SVU. According to the length of the storing duration,
the temporal diversity has been considered by assigning
a proper weight to the cooperative SVUs’ sensing results.
The tagged SVU collects the weighted sensing results to
make a final decision of the PU’s activity. From the ith
SVU perspective, the requirement from the tagged SU can
be modeled as a Poisson process with arrival rate A;,, and
then, the storing duration is the random variable that fol-
lows exponential distribution. Let f(#;) denote the PDF of
;. Then, we havef (;) = A,e A4,

3.2. Spatial diversity

When the tagged SU requires the sensing results from dif-
ferent SVUs, the spatial diversity exists because the SVUs
detected the PU’s activity at different locations. Figure 2
illustrates the spatial diversity of the cooperative SVUs in
CVN. Suppose that the tagged SVU requires the sensing
results of an appointed channel from SVU; when SVUj is
at place C. The SVU;j will send back the sensing results
that are obtained and stored at place A, instead of sens-
ing the appointed channel immediately. Hence, the tagged
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——> Transmission Flow
————— > Sensing Flow

—-— — —> Exchanging Flow
Primary BS

Primary Receiver

_0 .
Tagged SVU

Figure 2. Spatial diversity of the cooperative secondary vehicu-
lar users (SVUs). BS, base station.

SVU should weight the sensing results, which is obtained
by SVU;j’s at place A.

Let r; and vf;‘ denote the distance from the PU’s BS to
the SVU;j and the speed of SVU; at place A, respectively.
Both 7; and v}'; are random variables, and ng follows the
distribution f(v) as shown in (1). According to Figure 2,
we can obtain the distance that SVU; moves from place A
to place C during a random storing duration #; as

i [
Si = Vuli + Eé‘aiti

where a; is the acceleration of the ith SVU, and ¢ fol-
lows uniform distribution within [—1, 1]. Then, we can
obtain 7; as

r= \/rl2 + sl.2 — 2r;is; cos p;

where r; denotes the distance between the PU’s BS
and the location where the SVU; is required to provide
the stored sensing results, that is, place C. p; stands for the
angle between r; and the road. Because the location of the
PU’s transmitter is known, the straight distance between
the PU’s transmitter and the road is a fix value, denoted by
S. Therefore, we have

= 2,2 .S

ri= \/rl. + s7 — 2r;s; cos arcsin .

Because of the stochastic characteristic of the velocity
of the vehicle, r; is the random variable. Next, we will find
the PDF of r;, which is denoted by f(r). Let PUr and PUg
denote the transmitter and receiver of a PU, respectively.
The transmission range of the PU’s BS is within radius R
in the network. In order to protect the PUs from interfer-
ence, the interference range of an SVU should be properly
determined. The interference range of an SVU is defined

Wirel. Commun. Mob. Comput. (2014) © 2014 John Wiley & Sons, Ltd.
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as the minimum distance from the PU’s receiver at which
the interference can be ignored [33]. We set a threshold §
to determine whether an SVU interferes a PU or not. If the
signal-to-noise ratio (SNR) at the primary receiver is below
8, the SVU is said to cause interference to the PU. Let Ppy
and Pgyy denote the transmitted power of the primary and
secondary users, respectively. The interference range of the
SVU, Ly, is then given by

2

SP, o
Linin = (iﬂ) @)
PpyR™2

where « is the power path loss exponent.

Moreover, we can obtain the minimum distance that
SVUs should stay away from the PU’s transmitter. The dis-
tance is denoted as Dy,;, and given by D,y = R + Lyin.
The maximum SNR at an SVU without interfering a PU is
expressed as

Ymax = D;[ZV = Ominy 5

where y refers to the SNR of a PU at an SVU when
Dpjn = 1 m.

We define the sensing range D,y as the maximum dis-
tance from the PU’s transmitter at which an SVU is able
to detect the PU’s signal. Considering different practical
systems (e.g., the wireless regional area network (WRAN)
system [34] and the 802.11 system [35]), Dyqx can have
different values. In this paper, we fix the value of D,y
as 100 m. Then, we can obtain the SVU’s distributed
range with D,,;, and D4, as the lower and upper bounds,
respectively. Within this range, the SVUs for cooperative
sensing could detect the PU’s signal and report the sensing
results without causing interference to the PU’s receiver.
We assume that the cooperative SVUs are uniformly dis-
tributed with PDF

2r

2 2
Dmax - Dmin

fr) = > Dimin <1 < Dpax (6)

where r denotes the distance between the PU’s transmit-
ter and the receiver of a cooperative SVU. When an SVU
is chosen for cooperative sensing, a proper weight should
be assigned to the sensing result to demonstrate the spatial
diversity of the cooperative SV Us.

3.3. Weight determination

Considering the case where K number of SVUs are in
the CR network, our goal is to find the optimal weights

y = Do, Ykl (Zf:o yi = 1) for each SVU to maxi-
mize the detection probability or minimize the false alarm
probability. The receive signal of the ith SVU at the nth
sample is expressed as

ri(n) = L;0;si(n) + wi(n) (7)
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where I; = Oorl. I; = O represents the hypothesis
Hp, and I; = 1 represents the hypothesis Hj. 6; =

[ [ [ 7 2fO)f(nf (ti)dvdrd; is the path loss coefficient,
in which r; denotes the distance between the PU’s transmit-
ter and the receiver of SVU;. We also assume that the signal
and noise power are constant over all SVUs’ receivers, that
is, 0‘3‘2‘_ =02, U‘%i =o?.

In our scheme, the tagged SVU collects EI from the
cooperative SVUs after the tagged SVU’s own sensing.
After weighting the cooperative SVU’s El in terms of the
temporal and spatial diversities, the tagged SVU can obtain
e(r) as

K
e(r) =Y yiei(r) ®)

i=0
where eg(r) is the EI from the tagged SVU,
ei(r) = Zﬁ;l |ri(n)|> denotes the collected EI from

ith SVU with the spatial diversity (6;),andy; is the
weight of the ith SVU’s EI. By using CLT, e(r) can be
approximated as Gaussian distribution under hypothesis
H;(i = 0,1) with mean p; and variance 01-2 as shown in (9)

Mo

o

Then, we can obtain the detection and false alarm
probabilities without considering temporal diversity as
follows:

= N (5002 + XK, vi (ho? + 02)) %

=N (y (0 + 0 )+Z,—1)’1(116 +o0 )) 012
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Therefore, the detection and false alarm probabilities
with temporal and spatial diversities in the multiple-user
case are given by

1
Q(K) Z e Z P[]("'l[l[Pd]lK"'lll
Ixk=0 ;=0
1 1
Q(K) Z A Z P[K"'llo[l)f][[("'llo
k=0 ;=0

where Pj.;1 = l_[lel fooo P[il(ti))ktlei'lfitidti and

Pre-nio = [Ticy Jo° Pro()Age™ " ds.
Similarly, to protect the PU, we need to design the

optimal y = [yg,--- ,yk] by maximizing Q, for a given
threshold of the false alarm probability Py ry,, which gives
max Q(K)
Y05+ YK
K 10)
Z)’i =1, Pr=<Prm
i=0
2
= 2N (yOU +Zl—1yl ([1034—0‘,%) ) HO
©)

2V (33 (0 +02)" + LI 02 (ho? + 02)°) Hi

In order to find spectrum opportunities as many as pos-
sible, we need to minimize Qf. Hence, the optimal y =
[v0,- - ,¥k] should be found for a given threshold of the
detection probability Py 7y.

A —N(yo(o +02) + Y yi(lio? + o ))

V032 + o) + T o + o))

s

A—=N (yom% + 2 vi (o] + 0@))

[Pal-n1 = Q
[Prlie-1,0 = Q
Let¢p = =% denote the SNR at the SVU receiver. By

removing )L we have [Palig--n1 and [Prlye...;1 as follows:

K 2
\/ZN (Y(Z)Gfi + i1 ); (lio? + 02) )

(Pdlrg-1,1 = Q ([ﬂd T (,BfQ (Pr) — \@ (yo + Y )’ili) ¢))

= R@+ D2+ XK 2 (g + 17,

where [Bglre-11

Br=1.

[Prlig-1,0 = Q (m (ﬁdQ_'(Pd) + \/g(yo + Y _Ii)) ¢))

DRI 2 g+ 1% Ba =

where [Brli-n0 =
¢+ 1.
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min Q;K)

K (11
st. Y yi=1, Pa=Pan
i=0

The detection probability and the false alarm probability
are two major performance metrics that characterize the
sensing accuracy of the ACSS.

3.4. Discussion

The advantage of our proposed asynchronous cooperative
sensing can also be demonstrated from sampling process
perspective. Figure 3 shows the channel recovery by differ-
ent sensing schemes. From Figure 3(a) and (b), we observe
that the recovered channels differ greatly from the real
channel in both noncooperative sensing and synchronous
cooperative sensing. In our proposed ACSS as shown in
Figure 3(c), the channel recovered by sensing almost fit the
real channel situation. This is because the sensing is essen-
tially a sampling procedure of the given channel [21]. The
asynchronous cooperative sensing can provide more fre-
quent sampling of the channel than the noncooperative and
synchronous sensing schemes. In the proposed scheme, the
sensing samples provided by different SVUs at different
moments are distributed in a wide time range that may trace
the real situation of the channel accurately. More impor-
tantly, the sensing overhead that exists in the synchronous
sensing scheme can be largely reduced.

4. ASYNCHRONOUS
SENSING-BASED OPPORTUNISTIC
ACCESS MECHANISM

In this section, we present the specification of the ACSS-
based opportunistic access mechanism. The access imple-
mentation is presented in two network architectures:
centralized networks and decentralized networks.

Spectrum access in cognitive vehicular networks

4.1. Access mechanism

We consider an opportunistic access scheme for SVU to
exploit the discovered spectrum opportunities by using
the transmission time control. The opportunistic access
schemes can be described as follows:

If an SVU has data to transmit, the SVU starts a local
sensing of the appointed channel and sends the ACSS
requirement to the CR BS in the centralized CVN or to
the neighbor SVU in the decentralized CVN. If the sens-
ing results from the ACSS declare the presence of PU, the
SVU will cease the sensing-transmission cycle and wait
for a random backoff time. After this waiting time, the
SVU will resume the sensing operation. If the channel is
declared as vacancy of PU, the SVU accesses the chan-
nel for transmission. The ACSS can be implemented by
BS in the centralized network or by exchanging notifica-
tion message with other SUs in the decentralized network
as described in the following sections.

4.2. Access mechanism specifications:
centralized cognitive vehicular network

We consider the infrastructure-based CVN that has a cen-
tralized CR BS. The BSs are scatteringly deployed along
the roadside and allocate the available spectrum in a cen-
tral manner. Under BS’s dispatching, several SVUs that are
running along the road may enter the transmission range of
a BS. Then, these SVUs have the opportunities to access
the temporarily unoccupied licensed channels. Each SVU
is equipped with a single radio, which implies that the SVU
cannot transmit or sense simultaneously. Considering the
hardware limitation, we allow each SVU to sense a single
channel at a time and send its sensing information to BS
after its sensing period.

Figure 4 shows the ACSS-based opportunistic access
mechanism in a centralized network architecture. More
description on the major procedure is provided in the

Sensing behavior
of tagged SVU,

D Sensing behavior
of cooperavie SVU,

Sensing behavior
of cooperative SVU,

Real channel: I ! I I I
T.\U TVU'————| l____l
Recovered channel:  — — — — _| N — D
(a)
Real channel: ITI I:I:I I_H [I] lTL
== 1
Recovered channel: — — — — — — [ — [E—

Real channel: Mr
T T T2 T2

Recovered channel: — — — L —

1 L — — time

Figure 3. Channel recovery by different sensing schemes: (a) noncooperative sensing scheme, (b) synchronous cooperative sensing
scheme, and (c) asynchronous cooperative sensing scheme. SVU, secondary vehicular user.

Wirel. Commun. Mob. Comput. (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wem



Spectrum access in cognitive vehicular networks

Y. Liu et al.

Centralized CVN: code for each SVU and CR BS
Initially: e; % EI from ith SVU

Sensing and Reporting Phase:
For SVU;:
Detect on the licensed channel and calculate the EI ¢;
Send ACSS requirement to CR BS

For BS:
Upon receiving local ¢; from SVU;
Update the EI database

PU Determination Phase:
For BS:
Upon receiving ACSS request from SVU;
Calculate optimal weight of EI from SVU;’s neighboring SVUs
Make the decision of channel’s availability
Send sensing result to SVU;

Channel Allocation Phase:

or SVU; :

Upon receiving sensing results from CR BS
Detect on the appointed channel

If appointed channel is available
Access this channel for transmission
else retransmit ACSS requirement to CR BS

end

For BS :
When transmission is completed
Stop ACSS.

Figure 4. Asynchronous cooperative sensing scheme (ACSS)-

based opportunistic access mechanism in centralized cognitive

vehicular network (CVN). SVU, secondary vehicular user. CR,
cognitive radio; BS, base station; El, energy information.

following paragraphs. Each SVU periodically senses its
channels and calculates EI. Then, the SVU sends the ACSS
requirement and measured EI to the BS, together with the
current time-stamp and location information. For the BS,
upon receiving the ACSS requirement from any SVU for
any appointed channel, it selects a subset of SVUs’ EI
of the channel and calculates optimal weights of each EI
based on the spatial and temporal information. The BS will
then make a decision on PU’s appearance or absence and
sends the decision to the SVU. If the channel is available,
the SVU accesses the channel for its transmission. Other-
wise, if the channel is unavailable, the SVU starts to sense
a new channel and trigger a new round sensing process.
Here, the expression of EI and the determination of optimal
weights were developed in Section 3.3.

4.3. Access mechanism specifications:
decentralized cognitive vehicular network

Figure 5 shows the ACSS-based opportunistic access
mechanism in the decentralized networks. In a decen-
tralized CVN, SVUs sense channels and make decisions
independently. We allow each SVU to sense a single chan-
nel at a time and store the EI in its buffer. When an SVU
has data to transmit, it sends the ACSS requirement to the
neighboring SVUs. Upon receiving the ACSS requirement,
the neighboring SV Us send the stored EI with the time and
location information to the SVU in need. After calculating
optimal weights of every EI, the SVU with transmission
requirement will then make decision on PU’s appearance
or absence. If the channel is available, the SVU accesses
the channel for its transmission. Otherwise, the SVU waits
for a random backoff time and starts a new round sensing

Decentralized CVN: code for each SVU
Initially: ¢=0 % EI from ith SVU

Sensing and Reporting Phase:
For SVU;:
Detect on the licensed channel and calculate the EI ¢;
and store the ¢; in buffer
Send ACSS requirement to the neighboring SVUs

PU Determination Phase:
For SVU;:
Calculate optimal weight of e obtained by neighboring SVUs
Make the decision of channel’s availability
Send the decision to destination SVU

Channel Allocation Phase:
For SVU;:

If appointed channel is available
Access this channel for transmission
Stop collecting the neighboring SVUs” EI
else wait for a random backoff time

return to Sensing and Reporting Phase
end

Figure 5. Asynchronous cooperative sensing scheme (ACSS)-

based opportunistic access mechanism in decentralized cogni-

tive vehicular network (CVN). SVU, secondary vehicular user. El,
energy information.

process. Also, the expression of EI and the determination
of optimal weights were developed in Section 3.3.

5. PERFORMANCE ANALYSIS

In this section, our purpose is to develop the network layer
performance metrics with respect to throughput and delay.
We first analyze throughput for the CVN by considering
the sensing and exchanging overhead. Then, we model
each licensed channel as an M/G/1 queueing system with
server breakdown for the packet delay derivation.

5.1. Throughput analysis

Consider a typical scenario in which a single SVU moni-
tors a single licensed channel. The SVU alternately senses
the spectrum and transmits data with sensing time 7 and
transmission time 7, respectively. Let 7, be a random vari-
able, and we denote L, as the average transmission time of
an SVU. For a given licensed channel, the SVU can use it to
achieve the throughput of the CVN when the PU is absent.
However, due to the PUs’ dynamic activities, the channel
state sensed by the SVUs may not remain at the same stage
during the SVUs’ transmission period. We let p,, denote the
probability that no PU occurs during 7, when the licensed
channel is detected as available and let p,, denote the prob-
ability that the PU will not be absent during 7, when the
licensed channel is detected as unavailable, respectively.
Then, we have p, = fTCio pe Mdr = =Tl and p, =
fTCio re Mdr = 7Tk,

Let Cp and C| denote the throughput of the SVU when
the channel is idle and occupied by PU, respectively. The
achievable throughput of an SVU can be obtained under
two scenarios:

(1) When the licensed channel state is available and no
false alarm is generated by the SVU, the SVU can
access the available channel for transmission in the

Wirel. Commun. Mob. Comput. (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wecm
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adjacent time slot 7. Because ( 1-— Q;K)) indicates
the probability that there is no false alarm, we can
derive the throughput of the tagged SVU in this
scenario as

_I (K)
Co=zron(1-0f7)B0 (12
where By = log,(1 + ¢), and ¢ is the SNR of the
SVU.

(2) When the licensed channel state is unavailable but
the presence of a PU is not detected by the ACSS,
the SVU will access in the channel for transmission.
Let Pp be the interference power of a PU measured
at the SVU’s receiver. Then, the SNR of the PU is
¢py = Pp/a’. The throughput of the SVU in this
scenario is

=T (1-0P) B a3

where B; = log, (1 + %)

Let C, denote the total throughput obtained by the SVU.
Then, we have

Ci=C1+(C

2o (pn (1-0) B+ pu (1 - 05) 1)
(14)
Furthermore, there are three types of sensing overhead
in the cooperative sensing: reserving overhead, throughput
overhead, and exchange overhead. When the tagged SVU
reserves the dedicated channel, it ceases the communica-
tion during the entire reserving period, thereby limiting its
achievable throughput. We define the throughput loss as
reserving overhead, denoted by o,, which is given by o, =
L 7 Cs. In the traditional cooperative sensing scheme, the
cooperatlve SVUs cannot perform data transmission dur-
ing the cooperative sensing time. If there are k£ number of
the cooperative SV Us in the cooperative sensing, we define
the throughput loss of these SVUs as throughput overhead

that is given by o(k) = k% Cs. Meantime, when the tagged
SVU requires cooperative sensing, it needs to exchange
information with the other SVUs. The throughput loss dur-
ing this exchange process, called exchange overhead o(k)
is incurred while every cooperative sensing is performed.

og ) is given by o(k) = kT Cs, where T, is the time for
sensing information exchange

To demonstrate the achieved throughput, the sensing
overhead should be removed from the total throughput. We
define 7K as achievable throughput, which is the differ-
ence between throughput and sensing overhead. T&) is
given by

(K—-1)
'

TE = ¢, — 0, — 0KV — oKD (15)
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DC s, (K — 1) represents the number of coop-
K = (k- DIcyand oV =

(K — I)TCS represent the throughput overhead and the
exchange overhead caused by (K — 1) number of the
cooperative SVUs, respectively. In particular, throughput

overhead 0(1) = 0 in our scheme because the cooperative
SVUs do not need to stop their own transmissions.

The SVU can decide its transmission time 7, to maxi-
mize its throughput. We observe that the negative item in
(15) is fixed when K is determined by (10) or (11). Hence,
the achievable throughput T&) increases with the increas-
ing of Cy, which is determined by the transmission time of
SVU T,. In this paper, we consider two models of transmis-
sion time: exponentially distributed 7 and fixed 7. The
investigation of different models can show the performance
of the transmission time control in different scenarios.

where o0, =

erative SVUs, and o,

(1) Exponentially distributed T,: In this case, let f(T})
denote the PDF of T, with parameter 1,. Then, we
have

T 1 _n

= —e¢ Lr

1) = 1

Following (14), we can obtain the throughput in

the first scenario as

Co

I Tre ”“'fe It dT,
m(1-g)
ST, ke i T, + 1y

() @+

_ (K)
PBo ( -0 ) (L, B %)2
(16)
Similar to (16), we have
2
=i (1) ) T

(Lr + Mi)

Therefore, we can obtain the total throughput as
follows:

pL, (L, +Ty) (i)2 ®
o (- gy
r I

(1-0)5]
(18)
(2) Fixed T,: When the transmission time of the SVU is
fixed, that is, 7, = L,, we have

G 2 0.~ )i )
(19)

where p, = e L and p,, = e L.
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5.2. Delay analysis

After finishing the ACSS, SVUs access the selected
channels to start their data transmissions. We denote that
the average packet arrival rate of the ith SVU is ;.
Because the rate of every licensed channel is R, we have
G = LE’_, where L; denotes the average packet length
of the ith SVU. We model the packet arrival process of
the SVUs as a Poisson process. Recall that the licensed
channel breaks down at rate 1, because of the appearance
of PU. In other words, the probability that a channel will
be able to use for an additional time ¢ without breaking
down is e #!. When the channel is occupied by a PU,
an SVU has to stop the transmission and search another
available channel to resume transmission immediately.
By letting a packet’s “service time” include the time
that the SVU is finding a new available channel by
asynchronous sensing, the procedure is an M/G/1
queue. Let 7; denote the amount of time from when
a packet first enters the transmission queue of SVU;
until it is successfully transmitted to the receiver. Then,
the service time 7; is a random variable of this M/G/1
queue. The average amount of time that a packet waits
in a queue, that is, the packet transmission delay of the
SVU is is

i GE [le]
Yo = a0 Em) 20

Subsequently, we need to calculate E[7;] and E [le]
Let X; be the service requirement of the secondary user
SVU;. Because the false alarm probability Qr of a channel
is nonzero in the cooperative sensing, the packets will be
retransmitted if they are not successfully received. Hence,
the service time can be modeled as a geometric distribution
[36]. Then, we have

1 = L _
EX] = R(1-0)° an

L (1+0y)

E[Xlz] = Rz(l—fo)2

Let M; denote the number of times that SVU; switches
to other available channels. Let S; (i = 1,2,--- , M;) be the
amount of time that SVU; spends for waiting for the resum-
ing transmission. Notice that the waiting time only depends
on the time slot 75 + T, in our cooperative model. Hence,
we have

Ty + Ty + T,
(Ty + Ty + Te)?

E[S]

22
E[S] (22)

Finally, we can obtain the service time as T;
ZJZ.VIZ"I S; + X;. Conditioning on X; yields

Y. Liu et al.

M;
E[TiXi=x]= E| Y _Sj|Xj=x|+x,
j=1

M;
Var(T;|X; = x] = Var Zsj Xi=x
Jj=1

Given that an SVU requires x units of service time, it
follows that the number of channel breakdowns while that
SVU is being served is a Poisson random variable with
mean u,x. Consequently, conditioning on X; = x, the

. M; . .
random variable =1 S; is a compound Poisson random
variable with Poisson mean p,x. Hence, we have

M;
E|: Sj |X,‘ = xi| = erxE[S],
i=1
M,
Var | Y SiXi =x | = ok [sz]
=1

Therefore, we have

E[TiXi = x] = w:XiE[S] + Xi = X;i (1 + prE[S])
Var[TiX; = x] = prXiE [SZ]

Thus, E[T}] = E[E[T:|X]] = EX](1+ wE[S).
Similarly,

Var[T;] = E [Var[T;|X;]] + Var [E [T;|Xi]]
wE XTE[S2] + (1 + pELS))? Var(X)

Therefore,

E [T}]

Var [T}] + (E[T}])*

E X E [sz] + (1 + p EIS)* E (XF)

Assuming that ;E[T;] = GE[Xi] (1 + w-E[S]) < 1, we
obtain the packet transmission delay of SVU; as

i _ GHE[X]E[S?] + & (1 + pEIS) E[X7]

i d i 23

b 2(1—GE[X:] (1 + pES)) @3
1. L 2a1 _ 2(1+¢)

where E [X;] A=) E[X7] YA (1_Q;K))2. E[S]

and £ [Sz] are given by (22).

6. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed
spectrum sensing and access schemes. The channel band-
width is 1 MHz and the channel availability p = 0.5.

Wirel. Commun. Mob. Comput. (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wecm
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We concentrate on the low SNR situation, and the SNR
threshold for a PU at the tagged SVU is ¢ = —10 dB
[27]. The licensed channels are assumed to have expo-
nentially distributed ON/OFF periods, and the OFF period
is with the parameter u, = 10. Without loss of gener-
ality, the storing time #; = isec,(i = 1,2,---,K). The
other parameters for simulation are summarized in Table I.
The proposed ACSS will be compared with the NCSS
[21] and SCSS [25]. In the NCSS, each SVU has to mon-
itor a channel by itself for obtaining the knowledge of
PUs’ activity. When there is no PU, the SVU will use
the channel to transmit data. On the contrary, the SCSS
assigns the cooperative SVUs to sense the licensed chan-
nels simultaneously by ceasing their own transmissions.
The comparison results clearly demonstrate that our ACSS
substantially outperforms both the NCSS and SCSS.

6.1. Sensing accuracy performance:
probabilities of detection and false alarm

We first investigate the probability of detection in the CVN.
Figure 6 shows the comparison of the detection probability
among the ACSS, NCSS, and SCSS in the two-user case
and the multiple-user case, respectively. It can be seen that
the ACSS can achieve a much higher detection probability
than that of the NCSS. This is because the ACSS makes
accurate decision of PU’s activity by using other SVUs’
EI In addition, it is observed that the detection probability

Table I. The parameters of simulations.

A 100 bytes The length of the data packet

T, 1ms The time of reservation
Ts 2ms The time of spectrum sensing
Te Tms The time of information exchanging

e 50/100/200  Arrival rate of the data packet

1 & £ s # 4 & &
091
0.8
0.7
06
§os5f
04
03} —e— NCSS —
—%— ACSS(K=2)
021 —&— SCSS(K=2) |
* - ACSS(K=4)
0.1 ¢ SCSS(K=4)| T
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Pf

Figure 6. The detection probability Qy in terms of the false

alarm probability Pr. NCSS, noncooperative sensing scheme;

ACSS, asynchronous cooperative sensing scheme; SCSS, syn-
chronous cooperative sensing scheme.
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of the ACSS is smaller but close to that of the SCSS. That
is, the ACSS uses the nonreal-time EI from other SVUs.
These EI are affected by temporal and spatial diversities
of the SVUs, which make the collected EI different from
the realtime EI achieved by the SCSS. However, this influ-
ence is insignificant by selecting the optimal weight of EI
from different SVUs as explained in our scheme, which
makes the detection ability of the proposed ACSS close to
that of the SCSS. We also observe that the detection prob-
ability becomes higher if the number of the cooperative
SVUs becomes larger. This indicates that the number of
the cooperative SVUs can influence the performance of the
proposed scheme.

‘We obtain the numerical result of the false alarm prob-
ability in both of the two-user case and the multiple-user
case as shown in Figure 7. For a fixed Py, the false alarm
probability achieved by the ACSS is lower than that by the
NCSS. From Figure 7, we also observe that the false alarm
probability in the ACSS is higher but very close to that in
the SCSS.

6.2. Sensing efficiency performance in a
two-user cognitive vehicular network

Figure 8 shows the achievable throughput in different
schemes. It is shown that the throughput achieved by the
ACSS outperforms that by the NCSS and SCSS, because
the NCSS uses a single SVU to detect the PU’s activity for
seeking available channels. On the contrary, the ACSS uses
another SVU’s EI for cooperative sensing, which increases
the sensing accuracy and leads to higher throughput.
The SCSS also employs another SVU to help sense the
activity of PUs. However, the cooperative SVU cannot
transmit data during cooperative sensing time in the SCSS,
which may cause significant sensing overhead. In the
ACSS, the tagged SVU only needs the EI of another

1
—o—NCss
0.9 | s Acss(k=2)
0.8l | —o—scssik=2)
: % ACSS(K=4)
0.7L [0 scssk=4)
0.6
G 0.5¢
0.4
0.3
02}
0.1
0 ¢ g 4 ¢ & g ¥
0 0.2 0.4 0.6 0.8 1

Pd

Figure 7. The false alarm probability Qf in terms of the detection

probability Py. NCSS, noncooperative sensing scheme; ACSS,

asynchronous cooperative sensing scheme; SCSS, synchronous
cooperative sensing scheme.
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Figure 8. The achievable throughput in terms of the detection

probability Py in the two-user case. NCSS, noncooperative

sensing scheme; ACSS, asynchronous cooperative sensing
scheme; SCSS, synchronous cooperative sensing scheme.
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Figure 9. The packet transmission delay in terms of the packet

arrival rate ¢ in the two-user case. ACSS, asynchronous cooper

ative sensing scheme; NCSS, noncooperative sensing scheme;
SCSS, synchronous cooperative sensing scheme.

SVU to make a final decision. Compared with the SCSS,
the ACSS not only improves the sensing accuracy by
joint decision but also reduces the sensing overhead.
Both advantages make the proposed ACSS achieve higher
throughput than that of the NCSS and SCSS.

Figure 9 shows the packet transmission delay in terms
of the packet arrival rate . It is clear that the delay in the
ACSS is the lowest one, because the ACSS can make a final
decision of the PU’s activity without waiting for the coop-
erative SVUs’ feedback of the sensing results. However,
the waiting time for the individual sensing result is inherent
in the SCSS, which results in unavoidable delay. With the
help of multiple SVUs’ EI, the proposed ACSS is able to
save this waiting time in searching a spectrum opportunity.
Compared with the NCSS, the ACSS still has shorter delay

Y. Liu et al.

for packet transmission. That is, the NCSS has to detect
the appearance of a PU by itself, which leads to the higher
false alarm probability, and thus, higher delay is expected.
In addition, it is observed that the packet delay increases
when ¢ increases. This is because more time should be
used for the packet waiting for the transmission in a longer
queue.

6.3. Sensing efficiency performance in a
multiple-user cognitive vehicular network

Figure 10 shows the achievable throughput in multiple-
user networks. Similar to the two-user case, the throughput
achieved by the ACSS outperforms that by the NCSS and
SCSS. That is, the NCSS has a higher false alarm probabil-
ity than that of the ACSS, which is capable of finding more
spectrum opportunities. The SCSS employs more than one
SVUs to help sense the activity of a PU. When the number
of the cooperative SVUs increases, the sensing overhead
caused by the SCSS increases. Compared with the SCSS,
the ACSS does not need the cooperative SVUs to stop
their own transmissions. Therefore, the proposed ACSS
achieves higher throughput than the NCSS and SCSS.
Figure 11 shows the packet transmission delay in terms
of the packet arrival rate ¢ in a multiple-user CVN. Sim-
ilarly, we compare the delay among the NCSS, SCSS,
and ACSS. Figure 11 shows that the packet delay in the
ACSS is lower than that in the SCSS and NCSS, because
the ACSS does not need to wait for the individual sens-
ing result that is inherent in the SCSS. Compared with the
NCSS, the ACSS can obtain a lower false alarm probabil-
ity, which leads to lower delay. In addition, the reduction
of packet delay in the ACSS is especially higher than that
in the SCSS, because the service time of the packet in the
SCSS includes the cooperative sensing time that increases
dramatically with the increasing number of the cooperative
SVUs. Comparatively, the service time in the multiple-user

Achievable Throughput

0 0.2 0.4 0.6 0.8 1
Pd

Figure 10. The achievable throughput in terms of the detection

probability Py in the multiple-user case. NCSS, noncoopera-

tive sensing scheme; ACSS, asynchronous cooperative sensing
scheme; SCSS, synchronous cooperative sensing scheme.
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Figure 11. The packet transmission delay in terms of the packet

arrival rate ¢ in the multiple-user case. ACSS, asynchronous

cooperative sensing scheme; NCSS, noncooperative sensing
scheme; SCSS, synchronous cooperative sensing scheme.
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Figure 12. The throughput versus average transmission time.

case is insignificantly different from that in the two-user
case because the delay in the ACSS only includes the time
of local sensing and information exchanging.

Figure 12 shows the achievable throughput of the two-
user case in terms of the average transmission time 7, when
p = 05 and p = 0.4. In this case, the detection and
false alarm probabilities for an SVU are set as Py = 0.9
and Py = 0.1, which are the important parameters used
by the 802.22 standard [34]. The results are obtained for
the proposed access scheme when the SVU adopts expo-
nentially distributed and fixed length transmission time,
respectively. With the increasing of 7, the throughput
becomes higher, which is intuitively expected. Again, the
SVU with fixed length transmission time achieves higher
throughput compared with the exponentially distributed
length. In addition, we notice that it will obtain higher
throughput if the channel availability p becomes larger.
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7. CONCLUSION

We proposed an ACSS for opportunistic spectrum access
in CVNs. In the ACSS, the final sensing decision is made
by collecting the local EI of the cooperative SVUs. The
temporal and spatial diversities of each SVU are consid-
ered by assigning optimal weight to different EI. Compared
with the SCSS, the ACSS is able to reduce the cooper-
ative sensing overhead. Moreover, the sensing accuracy
of the ACSS is higher than that of the NCSS. Based on
the ACSS, the medium access mechanism is presented in
both centralized and decentralized networks. The achiev-
able throughput and the packet transmission delay of our
scheme have been also derived and discussed.
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