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I.       ABSTRACT 

In this letter, a generation procedure of two correlated Nakagami-m random variables for 

arbitrary fading parameters values (not necessary identical) is described. For the generation 

of two correlated Nakagami-m samples, the proposed method uses the generalized Rice 

distribution which appears in the conditional distribution of two correlated Nakagami-m 

variables. This procedure can be applied to simulate diversity systems such as selection 

combiners, equal-gain combiners and maximal-ratio combiners as well as multiple-input 

multiple-output (MIMO) receiver systems, in Nakagami-m channels.  
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II. INTRODUCTION 

The effect of correlated Nakagami-m fading has been extensively studied on evaluating 

performances of diversity receivers in handheld phones or compact base stations. 

The Nakagami-m distribution is characterized by two parameters, m and Ω; m is the 

fading parameter related to the depth of fading and Ω is the average power. In previous 

works, procedures for correlated Nakagami-m random variables generation have been 

described restricted to m identical [1]-[3] or m integer values [2], [3]. 

A method of generation of multivariate Nakagami-m variables with arbitrary covariance 

matrix was addressed by Q.T. Zhang in [1]. C. Tellambura and A.D.S. Jayalath in [2] have 

also investigated the generation of two correlated Nakagami-m variables using a modified 

inverse transform method for m integers. In [3], a multivariate Nakagami-m generation 

procedure is described restricted to identical integer m. However, note that in urban wireless 

environments, fading parameters reported in literature [4] oscillate between 1 and 2.5, thus 

there should not be any restriction to m values. Furthermore, fading parameters of each 

finger signal in Rake receivers could be different. Recently, in [5] K. Zhang et al. described a 

method of generating multivariate gamma variables using Cholesky decomposition of the 

covariance matrix, where fading parameters and correlation coefficients between variables are 

arbitrary. However, the marginal gamma distributions obtained in [5] are only 
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mathematically exact if the ratio between the average power and fading parameter of each 

gamma distribution is identical. 

In this letter, the generation of dual correlated Nakagami-m variables is addressed 

assuming arbitrary (not necessary identical) parameters: both fading and average power. 

Nevertheless, no Doppler effect is included in the procedure of generation, that is, a number 

of independent samples following a Nakagami-m distribution is generated correlated with 

another set of independent samples described by a Nakagami-m distribution. The distribution 

of the maximum of two correlated Nakagami-m variates at the output of a selection combiner 

(SC) is calculated. The cumulative distribution function (CDF) at the output of the SC 

calculated from the proposed method is compared to that obtained using [5] and the 

analytical CDF expression of [6].  

 

III. PROCEDURE 

Let r1 and r2 be Nakagami-m distributed where m1, m2, W1 and W2 are the fading 

parameters and the average powers of r1 and r2, respectively.  

If r1 and r2 are dependent with correlation coefficient  in power terms defined as 

 
   

2 2
1 2

2 2
1 2

cov ,

var var

r r

r r
 


 (1) 
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where cov(⋅,⋅) and var(⋅) denote covariance and variance, respectively, the joint distribution 

can be symbolized as 

(r1, r2 ) ~ (m1, W1; m2, W2| ) (2) 

Note that the correlation coefficient between amplitudes r1 and r2 can be numerically 

approximated by  [7, eq. (119)]. 

For identical fading parameters m1 = m2 = m, the procedure of generation r1 and r2 is 

summarized as follows: r1 is generated as a square root of a gamma distribution applying a 

transformation. Once r1 is generated, r2 is obtained using the conditional distribution function 

 2 1/p r r  derived from [7]. 

The Nakagami-m bivariate conditional probability can be expressed as 

   
 
1 2

2 1
1

,
/

p r r
p r r

p r
   (3) 

where  1p r is the univariate Nakagami-m probability density function (PDF) given by 

 
2 1

21
1 1 1

1 1

2
exp , 0

( )

m m

m

m r m
p r r r

m

  
      

 (4) 

and     is the gamma function.  The conditional probability density function is obtained as 

1 2 2
2 1 1 2 2 1

2 1 1 1
2 1 2 1 1 2

1 2
1

1 2

2
( / ) exp

(1 )( ) (1 )

2

(1 )

m m

m m

m

mr r r
p r r m

r

m r r
I


  






 



    
         

 
  

   

 (5) 

where  
nI   is the modified Bessel function of order n. 
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Substituting 2(1 )

2m

  
  and 2

0 1
1

r r 



 into (5), it yields 

2 2
2 2 0 2 0

2 1 12 1 2 2
0

( / ) exp
2

m

mm

r r r r r
p r r I

r  

          
 (6) 

which is the probability density function of n-generalized distribution or generalized Rice 

distribution m (r0, s) given by [7, eq.(66)]. 

Firstly, the method of generating two correlated Nakagami-m random variables for m1 = 

m2 = m will be shown later on and then it will be extended for different values of m1 and m2. 

 

   A. Identical fading parameters 

Step 1: Generate s1 ~  (m, 1) 

where  (a, b) represents the gamma distribution, whose PDF is given by 

 
 

11
exp , 0

s
p s s s

  
  

     
 (7) 

This gamma random variable is generated as a sum of 2m squared Gaussian variates for 

integer 2m values. For m < 1 values, it is generated as a product of beta and exponential 

random variables following Jonhk’s algorithm [8]. For any other m values, a recursive method 

is used: a gamma distribution for the integer part is generated s11 ~  (ëmû, 1) and a gamma 

distribution for the decimal part is also generated s12 ~  (m - ëmû, 1). The sum of both 

random variables follows the desired gamma distribution s1 = s11 + s12  ~  (m, 1) [8]. 
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Step 2: Obtain 1
1 1r s

m


 . 

From elemental transformation variable theory, one can derive that the PDF of the 

Nakagami-m distribution of r1 is given by (4). 

Step 3: Generate r2 ~ m (r0, s), (8) 

where r2 is a conditional variable generated as a generalized Rice distribution whose r0 

parameter is related to r1 as  

2
0 1

1

r r 



 (9) 

and s is given by 

(1 )

2m

 
 . (10) 

Using the three properties of the n-distribution or generalized Rice distribution compiled 

in the appendix, the generation of r2 ~ m (r0 , s) in (8) is as follows: 

3.a.- m integer 

Using property 1 (16), m Rician variables ix  should be generated as 

0 ,i

r
x

m
 

 
 

~ , (11) 

where  (C, s) denotes the Rice distribution whose PDF is given by 

2 2

02 2 2
( ) exp , 0

2
i i i

i i

x x C Cx
p x I x

  
          

 (12) 
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If 2
22

1

m

i
i

r x


  , then  22 0,mr r ~ . 

 3.b.- m non-integer 

2r  is generated using property 3 (19) as the sum of two generalized Rice distributions 

2 2
2 21 22r r r  , (13) 

where  ~21 0,
amr   ,  ~22 0,bmr r  , ma = m - ëmû   is the decimal part and mb = ëmû  

the integer part of m. For 21r  generation, property 2 of appendix (17) is used 

 ~21 ,a ar m m . (14) 

For 22r  generation, we can use step 3.a for m integer (11).  In spite of the fact that the 

Nakagami-m distribution is not defined for fading parameters lower than 0.5, as Nakagami-m 

distribution is generated as the root square of the gamma function, and the gamma function 

is defined for ma > 0 in [8], the distribution obtained for  ma < 0.5 is consistent. Figure 1 

shows the flowchart corresponding to the generation of two Nakagami-m variables with the 

same fading parameter m, average powers W1 and W2, respectively, and correlated r. 

Therefore, the distribution obtained of r1 and r2 follows the bivariate Nakagami–m 

distribution given by (2). 

 

   B. Non-identical fading parameters 

 If m1 is not equal to m2 the procedure is similar, but with some differences 
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 Step 1: Generate   2
1 21 1 1 1 1 1 2

1

', , ; , |
m

r r m m m m
m


 

  
 

�~  following A method, 

where m1 < m2. 

 Step 2: Generate   22 2 1 2 1 2,r m m m m  �~  . 

 Step 3: Calculate 2 2
2 21 22'r r r  . 

 Step 4: Obtain 1
1

1

'r
r

m
  and 2

2
2

'r
r

m
 . 

 This procedure of obtaining r2’ is based on the property of the sum of independent 

gamma variates, i.e. if s1,…, sn are gamma distributed si ~  (ai, b), i = 1,.., n, then the sum 

1

n

i
i

s s


   is gamma distributed 
1

,
n

i
i

s  


 
 
 
~  [7, eq.(78)], [8]. Since i ir s  is 

Nakagami-m distributed  , , 1,..,i i ir i n  �~ , r defined as r s  follows a 

Nakagami-m distribution 
1 1

,
n n

i i
i i

r   
 

 
 
 
 �~ . Therefore, r2’ obtained in step 3 of sub-

section B is Nakagami-m distributed with fading parameter m2 and average power m22. 

Applying the definition of the correlation coefficient given by (1), we can demonstrate that 

the correlation coefficient obtained between 2
1r  and 2

2r  is r [9].  

Some restrictions for this method are to be exposed. Firstly, m2 - m1 should be 

theoretically higher than 0.5 for r22 generation. Since r22 is generated from a gamma 

distribution, it can be verified that the distribution obtained is Nakagami-m for m2 - m1 > 0 

as commented in case A. On the other hand, m2 should be the higher fading parameter of 
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both distributions. Finally, the correlation coefficient 2

1

m

m
  in the generation of 1 'r  and 21r  

could be higher than 1 as m2 > m1.  Therefore, this method is limited to  1

2

0
m

m
   [9]. 

IV.  VERIFICATION 

Figure 2 shows a comparison between the analytical Nakagami-m PDF and the 

Nakagami-m PDF generated with the method exposed in this letter for  = 0.3. For this aim, 

m1 = 1.2, m2 = 1.5 and Ω1 = Ω2 = 1 are used. The difference between both theoretical and 

experimental distributions is minimal. 

The outage probability for dual correlated Nakagami-m SC with arbitrary fading 

parameters has been evaluated using the described procedure and compared with the 

analytical result. 

Assuming identical channels, the probability of outage for dual selection combiners can be 

written as [6]  

 

 

2

1
1

2 1

0 01 2 1 2

2
2

,
(1 )1 ( )

( )
( ) ! ( ) ( ) !

, , 0 1
1

m
l

out
k l

m q
m k

SNR m m l
P q

m k m m m k l l

m q
m k l

SNR


 

 


 

 

 
     

     

 
     

  , (15) 

where SNR  is the average signal-to-noise ratio at both inputs of the combiner,    is the 

incomplete gamma function, 2

1

m

m
   and q is the protection ratio of the instantaneous 
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SNR at the output of the combiner related to the required threshold probability of error for 

an specified modulation [10].  

Outage probabilities for non-coherent frequency shift keying, NCFSK, with dual SC are 

drawn in figure 3 by using analytical expression (15) and Monte Carlo method proposed in 

this letter for  = 0, 0.3 and 0.7. One million of samples were generated for each Nakagami-m 

marginal distribution following both the method proposed in this letter and the Cholesky 

decomposition procedure described by K. Zhang et al. in [5]. The differences between the 

results obtained by the simulation proposed and the analytical expression are minimal. 

Nevertheless, a substantial deviation between the analytical result and the Cholesky method 

is found for r = 0.3 and 0.7 due to the approximation for the sum of independent gamma 

variates with arbitrary parameters as a gamma distribution in [5, eq.(7)]. For instance, the 

deviation for r = 0.3 and outage probability of 10-3 is around 2.3 dB in the curves of figure 3. 

  

V.  CONCLUSIONS 

A method for the generation of two Nakagami-m correlated variates with arbitrary fading 

parameters and average powers is proposed in this letter. The simulated distributions based 

on the generation of a generalized Rice distribution as a conditional variable are equivalent to 

the analytical distributions. This generation procedure can be used for simulating diversity 
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systems to obtain the performance with the accuracy due to the Monte Carlo techniques 

(number of samples and accurateness of basis distributions: Gaussian and uniform generation) 

 

APPENDIX 

The generation of the generalized form of the n-distribution or generalized Rice 

distribution m (r0, s) can be achieved by using the properties derived in [7, eqs. (66), (70) 

and (72)]. 

Properties of generalized Rice distribution 

1) Let be xi ~  (r0i, s) Rician variables for i=1,2,...n,. If 2

1

n

i
i

x x


  , then x is 

distributed as 

 2
0

1

,
n

n i
i

x r 


 
 
 
~   . (16) 

For the generation of a Rician variable xi ~  (r0i, s), let xi1 and xi2 be Gaussian variables 

with zero mean and standard deviation . If  2 2
1 2i i oi ix x r x   ,then xi is Rician-

distributed. 

2) If r0 tends to zero in (8), then the generalized Rice distribution follows a Nakagami 

distribution  

0

0
0

( , ) ( , )i m
r

x r m m 


 ~  , (17) 
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where m and m are the fading parameter and the average power of the Nakagami-m 

distribution, respectively. 

3)  Let be 0( , )
i ii mx r ~ generalized Rice distributed. If  2

1

n

i
i

x x


   then 

x  ~ m (r0, s), (18) 

where  

2
0 0

1 1

,
n n

i i
i i

m m r r
 

   . (19) 
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LIST OF CAPTIONS 

 
 
Figure 1. Flowchart of generation of two Nakagami-m variates, r1 and r2 with the same fading 

parameter m, average powers W1 and W2, respectively and correlated r. 

 

 

Figure 2. Univariate probability density functions generated by Monte Carlo simulation from 

the bivariate Nakagami-m distribution for m1 = 1.2, m2 = 1.5, W1 = W2 = 1 and  = 0.3. 

 

 

Figure 3. Outage probability in a dual selection combiner for NCFSK for m1 = 1.2, m2 = 1.5 

and threshold probability of error of 10-3. 
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Figure 1 
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Figure 2 
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Figure 3 
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