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Definition

Given several databases containing person-specific data held by different organizations, Privacy-
Preserving Record Linkage (PPRL) aims to identify and link records that correspond to the same
entity/individual across different databases based on the matching of personal identifying at-
tributes, such as name and address, without revealing the actual values in these attributes due to
privacy concerns.

1. Synonyms

Private Data Matching, Private Record Linkage, Blind Data Linkage, Private Data Integration

2. Overview

In the current era of Big Data personal data about people, such as customers, patients, tax pay-
ers, and clients, are dispersed in multiple different sources collected by different organizations.
Several applications have begun to leverage tremendous opportunities and insights provided by
linked and integrated data. Examples range from healthcare, businesses, social sciences, to gov-
ernment services and national security. Linking data is also used as a pre-processing step in
many data mining and analytics projects in order to clean, enrich, and understand data for quality
results [6].

However, the growing concerns of privacy and confidentiality issues about personal data pose
serious constraints to share and exchange such data across organizations for linking. Since a
unique entity identifier is not available in different data sources, linking of records from different
databases needs to rely on available personal identifying attributes, such as names, dates of birth,
and addresses. Known as quasi identifiers (QIDs), these values in combination not only allow
uniquely identifying individuals but also reveal private and sensitive information about them [44].

Privacy-preserving record linkage (PPRL) aims to identify the same entities from different
databases by linking records based on encoded and/or encrypted QIDs, such that no sensitive in-
formation of the entities is revealed to any internal (parties involved in the process) and external
(external adversaries and eavesdroppers) parties. While a variety of techniques and method-
ologies have been developed for PPRL over the past two decades, as surveyed in [44] 43]], this
research field is still open to several challenges, especially with the Big Data revolution.
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Figure 1: A taxonomy of methodologies and technologies used in PPRL.

A typical PPRL process involves several steps, starting from pre-processing databases, en-
coding or encrypting records using the privacy masking functions [44]], applying blocking or
other forms of complexity reduction methods [6], then matching records based on their QIDs
using similarity functions [6]], and finally clustering or classifying matching records that corre-
spond to the same entity. Additional steps of evaluation of the linkage as well as manual review
of certain records are followed in non-PPRL applications. However, these two steps require
more research for PPRL as they generally require access to raw data and ground truth which is
not possible in a privacy-preserving context.

Despite several challenges, the output of PPRL could certainly bring in enormous potential
in the Big Data era for businesses, government agencies, and research organizations. PPRL has
been an active area of research in the recent times and it is now being applied in real-world
applications [3,30]. In this chapter, we will describe some of the key research findings of PPRL
and example PPRL applications. We will also discuss directions for future research in PPRL.

3. Key research findings

In this section, we present the key research findings in PPRL with regard to the methodologies
and technologies used, as characterized in Figure [T}

3.1. Linkage model

Type of parties: Considering the number and type of parties involved, the linkage model can
be categorized as two-party or multi-party protocols with or without one or several linkage units
(LUs). Two database owners (DOs)/parties involve in two-party protocols in order to identify
the matching records in their databases. This linkage model requires more sophisticated tech-
niques to ensure that the parties do not learn any sensitive information about each other’s data.
A LU is therefore commonly used in linkage models to conduct/facilitate the linkage. A major
drawback of LU-based protocols is that they require a trusted LU in order to avoid possible col-
lusion attacks, where one of the DOs collude with the LU to learn about other DO’s data [44].
In some models several (more than one) LUs are used, for example, one is responsible for secret
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keys management, another one for facilitating the complexity reduction step, while matching
of records is conducted by a different LU. Separating the tasks across several LUs reduces the
amount of information learned by a single party, however collusion could compromise the pri-
vacy. In multi-party linkage the aim is to identify cluster of records from multiple (more than
two) databases that refer to the same entity. The linkage process becomes complicated with the
increase of number of databases. Processing can be distributed among multiple parties to im-
prove efficiency as well as to improve privacy guarantees by reducing the amount of information
learned by a single party.

Linkage schema: The linkage schema dimension consists of feature selection, schema match-
ing, and schema optimization. Different types of QIDs have been used for PPRL, with the most
commonly used QIDs include name (string), address (string or text), age (numeric), gender (cat-
egorical), and date of birth (date). Schema matching identifies the common schema across dif-
ferent databases [32]]. The success of linkage depends on the parameter setting used which needs
to be tuned appropriately in order to optimize the linkage results. Grid search and random search
are two optimization methods, however they tune parameters in an isolated way disregarding past
evaluations of parameter combinations [3]. Bayesian optimization can efficiently bring down the
time spent to get the optimal set of parameters [36] by taking into account the information on
the parameter combinations it has previously seen thus far when choosing the parameter set to
evaluate next.

3.2. Threat model

Adversary model: Different adversary models are assumed in PPRL methodologies [44], which
are categorized as honest-but-curious/semi-honest, malicious, and advanced models. The semi-
honest model is the most commonly used adversary model in existing PPRL techniques [44],
where the parties are assumed to honestly follow the steps of the protocol while being curious
to learn from the information they received throughout the protocol. This model is not realistic
in real applications due to the weak assumption of privacy against adversarial attacks. Malicious
model, on the other hand, provides a strong assumption of privacy such that the parties involved
in the protocol may not follow the steps of the protocol by deviating from the protocol, sending
false input, or behaving arbitrarily. However, more complex and advanced privacy techniques are
required to make the protocols resistant against such malicious adversaries. Hybrid models, such
as accountable computing and covert models, lie in between the semi-honest model, which is not
realistic, and the malicious model, which requires computationally expensive techniques [44].
Attacks: Several attacks have been developed for PPRL techniques to investigate the resistance
of such techniques to those attacks. Frequency attacks are most commonly used, where the
frequency of encoded values are mapped to the frequency of known unencoded values [41]. Col-
lusion attacks are possible in LU-based and multi-party models where subsets of parties collude
to learn another party’s data [41} 29]. More sophisticated attacks have been developed against
certain privacy techniques. For example, Bloom filters (as described below) are susceptible to
cryptanalysis attacks, which allow the iterative mapping of bit patterns back to their original un-
encoded QID values based on their frequency alignments depending upon the parameter setting
used [7, 23]].

3.3. Evaluation model

Evaluation of the performance of PPRL consists of five main criteria: Computation and com-
munication costs determine the efficiency aspect that are often measured either theoretically
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using the big-O notation [10] or empirically using runtime, memory size, number of commu-
nication steps, number and size of messages to be communicated, and number of comparisons
required [44]. Privacy guarantees are either formally proven or empirically measured using
metrics such as Information gain and disclosure risk metrics [41] against privacy attacks. Cor-
rectness and fairness correspond to the linkage quality aspect, where correctness is the accuracy
of linkage results measured using precision, recall, area under curve (AUC), and F1-measure [6],
and fairness is the accuracy of linkage results with regard to different subgroups of individu-
als [46].

3.4. Technologies

Privacy technologies: We categorize the key privacy technologies as:

1.

Cryptography refers to secure multi-party computation techniques, such as homomor-
phic encryptions, secret sharing, and secure vector operations [25]]. These techniques are
provably secure and highly accurate, however, they are computationally expensive. An
example PPRL technique based on cryptographic techniques is the secure edit distance
algorithm for matching two strings or genome sequences [1l], which is quadratic in the
length of the strings.

Embedding techniques allow data to be mapped into a multi-dimensional metric space
while preserving the distances between original data [32]]. It is difficult to determine the
appropriate dimensionality for the metric space. A recent work proposed a framework for
embedding string and numerical data with theoretical guarantees for rigorous specification
of space dimensionality [17].

. Differential privacy is a rigorous definition that provides guarantees of indistinguishabil-

ity of an individual regardless of the presence or absence of the individual’s record in the
data with high probability. It has been used in PPRL to perturb data by adding noise such
that every individual in the dataset is indistinguishable [41}/44]]. However, adding noise in-
curs utility loss and volume increase. Output constrained differential privacy is a recently
introduced privacy model for PPRL that allows disclosing matching records while being
insensitive to the presence or absence of a single non-matching record [[14].
Statistical linkage key (SLK) contains derived values from QIDs which is generated using
a combination of components of a set of QIDs. An example is the SLK-581 consisting of
the second and third letters of first name, the second, third and fifth letters of surname,
full date of birth, and sex, which was developed by the Australian Institute of Health and
Welfare to link records from the Home and Community Care datasets [31]]. A recent study
has shown that SLK-based techniques fall short in providing sufficient privacy protection
and sensitivity [31].
Probabilistic methods are the most widely used techniques for practical PPRL appli-
cations due to their efficiency and controllable privacy-utility trade-off. These methods
use probabilistic data structures for mapping/encoding data such that the actual distances
between original data are preserved depending on the false positive probability of the
mapping. A recent study has shown that, if effectively used, probabilistic techniques can
achieve high linkage quality comparable to using unencoded records [30].
For example, Bloom filter encoding is one probabilistic method that has been used in
several PPRL solutions [12, 30} 33} 34} [38][39]. A Bloom filter b; is a bit array of length
[ bits where all bits are initially set to 0. k independent hash functions, A;, with 1 <
J < k, are used to map each of the elements s in a set S into the Bloom filter by setting
4
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Figure 2: Bloom filter-based matching for string [33] (left) and numerical [40] (right) data.

the bit positions h;(s),1 < j < k to 1. As shown in Figure E], the set S of g-grams
(sub-strings of length g) for string QIDs (left) or neighbouring values for numerical QIDs
(right) can be hash-mapped into Bloom filters [33]40]]. The resulting Bloom filters can be
matched using a similarity function, such as the Dice-coefficient [6] which is calculated
as: Dice_sim(by,---,b),) = Z’j,x"x[ , where p is the number of Bloom filters compared, ¢ is
the number of common bit pgslitions that are set to 1 in all p Bloom filters, and x; is the
number of bit positions set to 1 in b;, 1 < i < p. The matching can either be done by a

LU [12}133]] or collaboratively by the DOs [38, 39].

Complexity reduction technologies: The bottleneck of the PPRL process is the comparison of
records across different databases using similarity functions, which is equal to the product of the
sizes of the databases. Computational technologies have been used to improve the scalability of
PPRL:

1.

Blocking is defined on selected attributes (blocking keys) and it partitions the records
in a database into several blocks or clusters based on the blocking key values such that
comparison can be restricted to the records of the same block. A variety of blocking
techniques has been developed [44]. Recent examples are randomized blocking methods
based on Locality-Sensitive Hashing, which provide theoretical guarantees for identifying
similar record pairs in the embedding space with high probability [12, [18]].
Meta-blocking is the process of restructuring a collection of generated blocks to be com-
pared in the next step such that unnecessary comparisons are pruned. Block processing
for PPRL only received much attention in the recent years with the aim to improve the
scalability in Big Data applications by employing such techniques along with blocking
techniques [[16} [28]].
Filtering is an optimization technique for a particular similarity function to eliminate
pairs/sets of records that cannot meet the similarity threshold for the selected similarity
measure [34, [38]].
Parallel/distributed processing for PPRL has only seen limited attention so far. Paral-
lel linkage aims at improving the execution time proportionally to the number of proces-
sors [9L[18]. This can be achieved by partitioning the set of all record pairs to be compared,
for example using blocking, and conducting the comparison of the different partitions in
parallel on different processors.
Advanced communication patterns can be used to reduce the exponential growth of com-
plexity for multi-party linkage. Such communication patterns include sequential, ring by
ring, tree-based, and hierarchical patterns. Some of these patterns have been investigated
for PPRL on multiple databases [42].
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Linkage technologies: A variety of linkage methods and technologies has been used.

1.

Similarity functions are required for fuzzy/approximate matching of QIDs in order to
account for data errors and variations in the QIDs used for linkage. Different similar-
ity functions have been used for different QID data types and different encoding/masking
functions. For example, Bloom filter encoding-based PPRL requires token-based simi-
larity functions, such as Jaccard, Hamming, or Dice coefficient functions (as described
above) [33[12]. Similarly, embedding techniques have used Euclidean or edit distance as
similarity functions [32}[17].

. Matching techniques determine how the linkage of records needs to be performed. It is

a common practice to first de-duplicate records (internally link) within a single database
before linking with records from other databases. This is known as one-to-one linking.
If the databases are not de-duplicated (i.e. they contain multiple records corresponding
to the same real-world entity), then many-to-many linking is required. Further, in multi-
database linking, subset matching is required in certain applications to identify records
that match across any subset of databases (for example, patients visited at least three out
of five hospitals) [43].

Classification techniques, ranging from simple threshold-based, rule-based, to probabilis-
tic linkage and machine learning, have been used in the PPRL literature [44]]. The aim of
these classifiers is to classify the record pairs into ‘matches’ or ‘non-matches’ based on
the similarity between their QIDs. While machine learning-based classifiers can provide
higher linkage quality, they require training data with ground-truth labels (of ‘matches’
and ‘non-matches’) for supervised techniques.

Clustering is an unsupervised technique that aims to group matching records correspond-
ing to the same real-world entity into one cluster. A recent work studies incremental clus-
tering techniques for multi-party PPRL [43]].

Fairness-aware linkage is important to ensure fairness in linkage with respect to vulner-
able sub-groups of the population. Errors in the linkage will propagate through to the
subsequent data analysis. Fairness in the linkage process enables fair upstream data anal-
ysis. Fairness-aware classification and clustering algorithms have been developed in the
literature [26], however, mitigating fairness-bias specifically in PPRL has not yet been
studied.

4. Examples of application

Linking data is increasingly being required in a number of application areas [6]. When
databases are linked within a single organization, then generally privacy and confidentiality are
not of great concern. However, linking data from several organizations imposes legal and ethical
constraints on using personal data for the linkage, as described by the Australian Data-Matching
Program Ac{] the EU General Data Protection Regulation} and the HIPAA Act in the USAP|
PPRL is therefore required in several real applications, as the following examples illustrate:

Thttps://www.legislation.gov.au/Details/C2016C00755
Zhttps://gdpr.eu/
3http://www.hhs. gov/ocr/privacy/



1. Healthcare applications: Several healthcare applications ranging from health surveil-
lance, epidemiological studies, and clinical trials, to public health research require PPRL
as an efficient building block. For example, a study on surgical treatment received by abo-
riginal and non-aboriginal people with lung cancer linked data from hospitals and clinical
registries with data from central cancer registries and from the Australian Bureau of Statis-
tics using PPRL techniques [8]. Bloom filter-based PPRL was used to link data from sev-
eral cantonal and national registries in Switzerland to investigate long-term consequences
of childhood cancer [20]]. In 2016, the Interdisciplinary Committee of the International
Rare Diseases Research Consortium launched a task team to explore approaches to PPRL
for linking several genomic and clinical data sets [2].

2. Government services and research: The traditionally used small-scale survey studies
have been replaced by linking databases to develop policies in a more efficient and effective
way [19]. The research program ‘Beyond 2011’ established by the Office for National
Statistics in the UK, for example aimed to study the options for production of population
statistics for England and Wales, by linking anonymous data [35]. Social scientists use
PPRL in the field of population informatics to study insights into our society [21]].

3. Business collaboration: Many businesses take advantage of linking data across differ-
ent organizations, such as suppliers, retailers, wholesalers, and advertisers, for improving
efficiency, targeted marketing, and reducing costs of their supply chains. PPRL can be
used for cross-organizational collaborative decision making which involves a great deal of
private information that businesses are often reluctant to disclose [47]].

4. National security applications: PPRL techniques are being used by national security
agencies and crime investigators to identify individuals who have committed fraud or
crimes [27]]. These applications integrate data from various sources, such as law enforce-
ment agencies, Internet service providers, the police, tax agencies, government services,
as well as financial institutions to enable the accurate identification of crime and fraud, or
of terrorism suspects.

5. Future directions for research

In this section we describe the various open challenges and research directions of PPRL for
Big Data applications, as categorized in Figure 3]

5.1. Scalability

The volume of data increases both due to the large size of databases and the number of differ-
ent databases. Challenges of linking large databases have been addressed by using computational
techniques to reduce the number of required comparisons between records. However, these tech-
niques do not solve the scalability problem for Big Data completely. For example, even small
blocks of records resulting from a blocking technique can still lead to a large number of compar-
isons between records with the increasing volume of data. Moreover, only limited work has been
done to address the challenges of linking multiple databases.

Scalable blocking techniques are required that can generate blocks of suitable sizes across
multiple databases, as are advanced filtering techniques that effectively prune potential non-
matches even further. With multiple databases, identifying subsets of records that match across
only a subset of databases (for example, patients in three out of five hospital databases) is even
more challenging due to the large number of combinations of subsets. Advanced communication
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Figure 3: Challenges of PPRL for Big Data.

patterns, distributed computing, and adaptive comparison techniques are required towards this
direction for scalable PPRL applications. These techniques are largely orthogonal so that they
can be combined to achieve maximal efficiency.

Another major aspect of Big Data is the velocity, i.e. the dynamic nature of data. Current
techniques are only applicable in batch-mode on static and well defined relational data. Required
are approaches for dynamic data, real-time integration, and data streams, for adaptive systems to
link data as they arrive at an organization, ideally in (near) real-time.

5.2. Linkage Quality

Big Data are often complex, noisy, and erroneous, which refer to the veracity and variety
aspects. The linkage can be affected by the quality of data, especially in a privacy-preserving
context where linkage is done on the masked or encoded version of the data. Masking data
reduces the quality of data to account for privacy and hence the quality of data would have an
adverse effect on the whole PPRL process leading to low linkage quality. The trade-off between
quality and privacy needs to be handled carefully for different privacy masking functions. The
affect of poor data quality on the linkage quality becomes worse with increasing number of
databases. More advanced classification techniques, such as collective [4] and graph-based [15]]
techniques, need to be investigated to address the linkage quality problem of PPRL.

Developing classifiers that are fair with respect to a protected/sensitive feature [46], such as
gender or race, is an important problem for classification in general and specifically for record
linkage. Fairness of a classifier with regard to a certain protected feature determines how much
the classifier distorts from producing correct predictions with equal probabilities for individuals
across different protected groups/values. There has been increased interest in this field due to the
concerns that classifiers may introduce significant bias towards certain minority or vulnerable
group with regard to the protected feature, such as race or gender, for example against black
people in fraud and crime detection systems [[13} [24] or against women in job recommendation
systems [11]]. However, fairness has not been studied specifically for PPRL so far.

Assessing the linkage quality in a PPRL project is very challenging because it is generally
not possible to inspect linked records due to privacy concerns. Knowing the quality of linkage is
crucial in many Big Data applications such as in the health or security domains. An initial work
has been done on interactive PPRL [22]] where parts of sensitive values are iteratively revealed for
manual assessment in such a way that the privacy compromise is limited. Implementing such ap-
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proaches in real applications is an open challenge that must be solved. Using heuristic measures
to approximately evaluate the linkage quality is another option that requires more research.

5.3. Privacy

Another open challenge in PPRL is how resistant the techniques are against different adver-
sarial attacks. Most work in PPRL assume the semi-honest adversary model [25] and the trusted
LU-based model. Furthermore, these works assume that the parties do not collude with each
other [44]. Only few PPRL techniques consider the malicious adversary model as it imposes a
high complexity [44]. More research is therefore required to develop novel security models that
lie between these two models and prevent against collusion risks for PPRL.

Sophisticated attack methods [7, 23] have been recently developed that exploit the informa-
tion revealed during the PPRL protocols to iteratively gather information about sensitive values.
Therefore, existing PPRL techniques need to be hardened to ensure they are not vulnerable to
such attacks [33]. Evaluation of PPRL techniques is challenged due to the absence of bench-
marks, datasets, and frameworks. Different measurements have been used [12} 41} [44]], making
the comparison of different PPRL techniques difficult. Synthetic datasets generated with real data
characteristics using data generators [37] have been used as an alternative to benchmark datasets.
This limits the evaluation of PPRL techniques to assess their application in the real setting.

Further, there has not been much interaction between practitioners and researchers of PPRL
to allow better understanding of the whole data life cycle and to evaluate the applicability of
PPRL in real applications. A comprehensive privacy strategy is essential including a closely
aligned PPRL and privacy-preserving data technologies for strategic Big Data applications.
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