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Abstract 
 
In this paper we distinguish between top-performance and lower performance groups in the 
analysis of statistical properties of bibliometric characteristics of two large sets of research 
groups. We find intriguing differences between top-performance and lower performance 
groups, but also between the two sets of research groups. Particularly these latter differences 
are interesting, as they may indicate the influence of research management strategies. Lower 
performance groups have a larger scale-dependent cumulative advantage than top-
performance groups. We also find that regardless of performance, larger groups have less not-
cited publications. We introduce a simple model in which processes at the micro level lead to 
the observed phenomena at the macro level. Top-performance groups are, on average, more 
successful in the entire range of journal impact. We fit our findings into a concept of 
hierarchically layered networks. In this concept, the network of research groups constitutes a 
layer of one hierarchical step higher than the basic network of publications connected by 
citations. The cumulative size-advantage of citations received by a group looks like 
preferential attachment in the basic network in which highly connected nodes (publications) 
increase their connectivity faster than less connected nodes. But in our study it is size that 
causes an advantage. In general, the larger a group (node in the research group network), the 
more incoming links this group acquires in a non-linear, cumulative way. Moreover, top-
performance groups are about an order of magnitude more efficient in creating linkages (i.e., 
receiving citations) than the lower performance groups.  
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1. Introduction  
 
In a recent paper (van Raan 2005a) we presented an empirical approach to the study of the 
statistical properties of bibliometric indicators on a very relevant but not simply ‘available’ 
aggregation level: the research group. Research groups are defined by the internal structure of 
universities, research institutions, R&D laboratories of companies, and thus they are not an 
entity directly available in databases such as authors or journals.  The focus of our earlier 
study was on the distribution functions of a coherent set of indicators frequently used as a 
measuring instrument in the analysis of research performance, in order to provide a better 
insight into the statistical properties of the instrument.  
 
Starting with the most basic statistical element in bibliometric analysis, the very skew 
distribution of citations over publications, we clearly observed in our earlier study the 
working of the central limit theorem. We found that at the level of research groups the 
distribution functions of the main indicators, particularly the journal-normalized and the field-
normalized indicators, are approaching normal distributions. The results underlined the 
importance of the idea of ‘group oeuvre’, i.e., the role of sets of organizationally related 
publications as a unit of analysis. We notice that organizationally related publications differ 
from co-author related or citation related publications. These latter types of relations are the 
basis of almost all publication-data based networks in current network studies. The difference 
with organizationally related publications is precisely the reason why we elaborate the idea of 
hierarchically layered networks. We come back to this concept in Section 3.3, 
 
In this follow-up study we take a more differentiated approach. Our aim is to relate statistical 
properties of bibliometric indicators with different aspects of the scientific communication 
system. Central questions are to what extent the empirically found distribution and correlation 
functions are reflections of science-internal properties of the reward system, for instance, how 
scientific work is valued by colleagues; and of how scientists disseminate their findings as 
optimal as possible, more specifically, how these flows ‘must’ go because of general network 
properties. But these distribution and correlation functions may also reflect science-external 
properties, such as the consequences of specific research management strategies. 
 
An even more fundamental question is ‘which functions do bibliometric entities have?’ For 
instance, the role of references, and with that, the meaning of citations, is probably a more-
dimensional characteristic, ranging from direct recognition to symbols for specific research 
themes, and from utility to persuasion. Scientists refer less to ‘authoritative’ papers in the case 
of smaller total numbers of references (Moed and Garfield 2004). From this empirical finding 
follows that citing such authoritative papers is not a major motivation of an author. As these 
authoritative papers are often highly cited, the above phenomenon may cause a mitigation of 
the accumulation of citations to already highly cited papers.  
 
Katz (1999, 2000, 2005) discusses scaling relationships between number of citations and 
number of publications across research fields, institutes and countries. He concludes that the 
scientific community is characterized by the ‘Matthew effect’ (cumulative advantage, Merton 
1968, 1988) implying a non-linear increase of impact with increasing size, demonstrated by 
the finding that the number of citations as a function of number of publications (measured for 
152 fields of science) exhibits a power law dependence with an exponent larger than 1. In our 
earlier paper (van Raan 2005a) we showed that also at the level of research groups a size-
dependent cumulative advantage of the correlation between number of citations and number 
of publications exists. 
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The next step, presented in this paper, is to investigate these size-dependent effects as a 
function of crucial parameters such as research performance. From a general viewpoint it is 
important to study size-dependent characteristics of a system that is basically described by 
fractal (power-law distribution) properties. More specifically, often the scientific 
communication system is described as a network of publications with a fractal topology (in 
terms of the in-degree distributions of the links between the publications as nodes in the 
network), and thus the system is considered to be ‘scale-free’ (Zitt et al 2003, 2004; Zitt 
2005). Nevertheless, our observations indicate that size (and thus scale-) dependent 
characteristics do exist in such a system, be it in the case specific clusters of publications, 
namely research groups.  
 
An interesting question in this context is whether indicators that are more complex than 
simple citation counts  -such as our field-specific normalized performance indicator 
CPP/FCSm (more details in Section 2.2)- still exhibit a cumulative advantage scaling 
behaviour. We will show in this paper that this is not the case.   
 
Another important indicator is the mean impact level of the journals used by a research group 
for their publications. The second part of this paper will particularly focus on the problem of 
possible journal-dependent cumulative advantage. In the context of research performance 
studies, the discussion on the use of the journal impact factor for evaluation studies regularly 
flares up. A recent example is the discussion in Nature (initiated by the paper of Lawrence 
2003) in which researchers, referring to the work of Seglen (1992, 1994), fulminate against 
the supposed dominant role of journal status and journal impact factors in the present-day life 
of a scientist. In his study, Seglen concluded that the citedness of publications is not affected 
by journal status, and that, therefore, ‘certain journals have a high impact simply because they 
publish high-impact articles’. Thus, the use of journal impact as an indicator for research 
performance evaluation is inappropriate as the skewed distributions result in poor correlations 
between article citedness and journal impact. In his work, journal impact was restricted to the 
ISI journal impact factor only, and did not consider the more sophisticated types of journal 
impact indicators used in this study (Moed and Van Leeuwen 1995, 1996). 
 
An important finding of Seglen was the poor correlation between the impact of publications 
and journal impact, both for the whole publication set as well as for individual authors, at the 
level of individual publications. However, grouping publications in classes of journal impact 
yielded a high correlation between publication and journal impact. But this higher aggregation 
is determined by journal impact classes, and not by a ‘natural’ higher aggregation level such 
as a research group. We will show in this paper a quite significant correlation between the 
average number of citations per publication (publication citedness) of research groups, and the 
average journal impact of these groups.   
 
A first step in a more differentiated approach to the analysis of statistical properties of 
bibliometric characteristics of research groups is the distinction between levels of impact of 
research. Within a set of all 157 university chemistry groups in the Netherlands and a set of 
65 medical research groups within a university, we distinguish in our analysis between top-
performance and lower performance groups. The structure of this paper is as follows. In 
Section 2 we discuss the data material of both sets of research groups, the application of the 
method, and calculation of indicators. Section 3 addresses the statistical analysis and 
discusses the results of the analysis. Finally, in Section 4 we summarize the main outcomes of 
this study.  
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2. Data Material and Bibliometric Indicators 
 
2.1 The two datasets 
 
We studied the statistics of bibliometric indicators on the basis of two large sets of 
publications (as far as published in journals covered by the Citation Index, ‘CI publications’1), 
one covering all academic chemistry research in a country (Netherlands) for a 10-years period 
(1991-2000), and the second covering all research groups in a large medical institution 
(Leiden) for a period of 12 years. This material is quite unique, as to our knowledge no such 
compilations of very accurately verified publication sets on a large scale are used for 
statistical analysis of the characteristics of the indicators at the research group level.  
 
We stress again that the research level is the most important ‘work floor entity’ in science. 
However, data at the research group level are by far a trivial matter because ‘externally 
stored’ information (such as CI-data on author names, addresses, journals, fields, citations, 
etc.) has to be combined carefully with ‘internally stored’ data, i.e., data only available from 
the institutions that are the ‘target’ of the analysis. In other words, there are no data on actual 
research groups available externally like the availability of data on the level of the individual 
scientist. The only possibility to study the bibliometric characteristics of research groups with 
‘external data’ would be to use the address information within the main organization, for 
instance ‘Department of Biochemistry’ of a specific university. However, the delineation of 
departments or university groups through externally available data such as the address 
information in the CI databases, is very problematic. We refer for a thorough discussion of 
this problem to Van Raan (2005b). As indicated above, the data used in this study are the 
results of evaluation studies and are therefore based on strict verification procedures in close 
collaboration with the evaluated groups.  
 
The first set concerns all journal articles of all university research groups in chemistry and 
chemical engineering in the Netherlands (NL). Thus, publications such as reports and books 
or book chapters are not taken into account. However, for chemistry research groups the focus 
on papers published in CI-covered journals generally provides a very good representation of 
the scientific output (VSNU 2002).  These (‘CI-’) publications were collected as part of a 
large evaluation study conducted by the Association of Universities in the Netherlands. For a 
detailed discussion of the evaluation procedure and the results we refer to the evaluation 
report (VSNU 2002). In the framework of this evaluation study, we performed an extensive 
bibliometric analysis as a support to the international peer committee (van Leeuwen et al 
2002). The time period covered is 1991-2000 for both publications and citations received by 
these publications. In total, the analysis involves 700 senior researchers and covers about 
18,000 publications and 175,000 citations (excluding self-citations) of 157 chemistry groups.  
 
The indicators are calculated on the basis of the ‘total block analysis’, which means that 
publications are counted for the entire 10-year period from 1991-2000 and citations are 
counted up to and including 2000 (e.g., for publications from 1991, citations are counted in 
the period 1991-2000, and for publications from 2000, citations are counted only in 2000). 

                                                 
1 Thomson Scientific, the former Institute for Scientific Information (ISI) in Philadelphia, is the producer and 
publisher of the Science Citation Index, the Social Science Citation Index, the Arts & Humanities Citation Index, 
and the ‘specialty’ citation indexes (CompuMath, Biochemistry and Biophysics, Biotechnology, Chemistry, 
Material Science, Neurosciences). Throughout this paper we use the term ‘CI’ (Citation Index) for the above set 
of databases. 
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The universities covered by this evaluation study are Leiden, Utrecht, Groningen, Amsterdam 
UvA, Amsterdam VU, Nijmegen, Delft, Eindhoven, Enschede (Twente), and Wageningen. 
All fields within the chemistry were covered by this set of university groups, the main fields 
being analytical chemistry, spectroscopy and microscopy; computational and theoretical 
chemistry, physical chemistry; catalysis; inorganic chemistry; organic and bio-organic 
chemistry; biochemistry, microbiology and biochemical engineering; polymer science and 
technology; materials science; chemical engineering.  
 
The second set concerns all publications (again as far as published in journals covered by the 
Citation Index, ‘CI publications’) of all research groups in the Leiden University Medical 
Center (LUMC).  Also in this case, the focus on papers published in CI-covered journals 
generally provides a very good representation of the scientific output. These publications were 
collected as part of an internal Leiden evaluation study. In the framework of this evaluation 
study, we performed a detailed bibliometric analysis as a support to the LUMC research 
evaluation board. Details of the results are available from the author of this paper. The time 
period covered is 1990-2001 for both publications and the citation received by these 
publications. The citation counting procedure is the same as for the chemistry groups. In total, 
the analysis involves 400 senior researchers and covers about 10,000 publications and 
185,000 citations (excluding self-citations) of 65 medical groups. The LUMC is a large 
clinical and basic research organization of high international reputation. Practically all fields 
of medical research are present, ranging from molecular cell biology to oncological surgery, 
and from organ transplantation to T-cell immune response research.  
 
2.2. The bibliometric analysis and applied indicators 
 
We apply the CWTS standard bibliometric indicators. Here only ‘external’ citations, i.e., 
citations corrected for self-citations, are taken into account. An overview of these indicators in 
given in the textbox in this section. In particular, we draw the attention to the definition of our 
journal impact indicator, JCSm.  For a detailed discussion we refer to Van Raan (1996, 2004, 
2005d).  
 
 
CWTS Standard Bibliometric Indicators: 
 
• Number of publications (P) in CI-covered journals of the research group in the entire period; 
• Number of citations received by P during the entire period, with and without self-citations (Ci and C); 
• Average number of citations per publication, with and without self-citations (CPPi and CPP); 
• Percentage of publications not cited (in the given time period), Pnc; 
• Journal-based worldwide average impact as an international reference level for the research group (JCS, 

journal citation score), without self-citations (on this world-wide scale!), in the case of more than one 
journal (as almost always) we use the weighted average JCSm; for the calculation of JCSm the same 
publication and citation counting procedure, time windows, and article types are used as in the case of CPP; 

• Field-based worldwide average impact as an international reference level for the research group (FCS, field 
citation score), without self-citations (on this world-wide scale!) in the case of more than one field (as 
almost always) we use the weighted average FCSm; for the calculation of FCSm the same publication and 
citation counting procedure, time windows, and article types are used as in the case of CPP; 

• Comparison of the actually received international impact of the research group with the world-wide average 
based on JCSm as a standard, without self-citations, indicator CPP/JCSm; 

• Comparison of the actually received international impact of the research group with the world-wide average 
based on FCSm as a standard, without self-citations, indicator CPP/FCSm;  

• Ratio JCSm/FCSm as journal-level indicator, e.g., to answer the question: is the research group publishing 
in top or in sub-top (in terms of ‘citedness’) journals? 

• Percentage of self-citations of the research group, SelfCit. 
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In Table 1 we show as an example the results of our bibliometric analysis for the most 
important indicators for all 12 chemistry research groups of one of the ten universities (‘Univ 
A’). Also the quality judgement Q of the international peer committee is indicated. The peers 
used a three-point scale to judge the research quality of a group: Grade 5 is ‘excellent’, Grade 
4 is ‘good’, and Grade 3 is ‘satisfactory’ (VSNU 2002).  
 
 
Table 1: Example of the results of the bibliometric analysis for the chemistry groups 
 
Research 
group P C CPP JCSm FCSm CPP/JCSm CPP/FCSm JCSm/FCSm Quality 
          
Univ A, 01    92    554   6.02   5.76   4.33 1.05 1.39 1.33 5 
Univ A, 02    69    536   7.77   5.12   2.98 1.52 2.61 1.72 4 
Univ A, 03 129 3,780 29.30 17.20 11.86 1.70 2.47 1.45 5 
Univ A, 04   80    725   9.06   8.06   6.25 1.12 1.45 1.29 4 
Univ A, 05 188 1,488   7.91   8.76   5.31 0.90 1.49 1.65 5 
Univ A, 06   52    424   8.15   6.27   3.56 1.30 2.29 1.76 4 
Univ A, 07   52    362   6.96   4.51   5.01 1.54 1.39 0.90 3 
Univ A, 08 171 1,646   9.63   6.45   4.36 1.49 2.21 1.48 5 
Univ A, 09 132 2,581 19.55 15.22 11.71 1.28 1.67 1.30 4 
Univ A, 10  119 2,815 23.66 22.23 14.25 1.06 1.66 1.56 4 
Univ A, 11 141 1,630 11.56 17.83 12.30 0.65 0.94 1.45 4 
Univ A, 12  102 1,025 10.05 10.48   7.18 0.96 1.40 1.46 5 
 
 
We applied the same bibliometric indicators to the medical research groups. An example of 
the results (first 10 groups) is presented in Table 2. Thus, the results of both cases are based 
on a strictly consistent methodology and thus they are directly comparable. Only in the 
LUMC (medical) case we used a somewhat longer period (12 years) as compared to the 
chemistry case (10 years). The LUMC research evaluation board did not call in an 
international peer committee, so no quality judgement data as in the case of the chemical 
research groups are available. We added two further standard indicators, the percentage of 
not-cited publications (Pnc) and the percentage of self-citations (Scit).    
 
 
Table 2: Example of the results of the bibliometric analysis for the medical groups 
 
Research
group 

P C CPP JCSm FCSm CPP/JCSm CPP/FCSm JCSm/FCSm Pnc Scit 

           
LU 01 117   1,836 15.69 12.20 11.08 1.29 1.42 1.10 11% 20%
LU 02 197   3,587 18.21 14.28 14.75 1.28 1.23 0.97 11% 21%
LU 03   46      449   9.76 14.55   8.78 0.67 1.11 1.66 20% 23%
LU 04 560 16,906 30.19 25.22 15.29 1.20 1.97 1.65 10% 19%
LU 05 423 17,144 40.53 29.60 16.85 1.37 2.41 1.76   6% 21%
LU 06 369 13,454 36.46 30.34 17.54 1.20 2.08 1.73   6% 19%
LU 07   91   1,036 11.38 11.91   7.72 0.96 1.47 1.54 15% 22%
LU 08   95      554   5.83   6.52   5.80 0.89 1.01 1.13 22% 33%
LU 09   52    334   6.42   6.98   8.00 0.92 0.80 0.87 23% 33%
LU 10 512 5,729 11.19   8.70   6.44 1.29 1.74 1.35 22% 17%
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Tables 1 and 2 make clear that our indicator calculations allow a statistical analysis of these 
indicators for both sets of research groups. Of the above indicators, we regard the 
internationally standardized (field-normalized) impact indicator CPP/FCSm as our ‘crown’ 
indicator. This indicator enables us to observe immediately whether the performance of a 
research group is significantly far below (indicator value < 0.5), below (indicator value 0.5 - 
0.8), around (0.8 - 1.2), above (1.2 – 1.5), or far above (>1.5) the international (western world 
dominated) impact standard of the field. Particularly with a CPP/FCSm value above 1.5, 
groups can be considered as scientifically strong, a value above 2 indicates a very strong 
group, and above 3 the groups can be, generally, considered as really excellent and 
comparable to top-groups at the best US universities (van Raan 1996, 2000, 2004). 
 
The CPP/FCSm indicator generally correlates well with the quality judgement of the peers.  
Studies of larger-scale evaluation procedures in which empirical material is available with 
data on both peer judgment as well as bibliometric indicators are quite rare. We refer to Rinia 
et al (1998) for a comparison of bibliometric assessment based on various indicators with peer 
review judgment in condensed matter physics, and to Rinia et al (2001) for a study of the 
influence of interdisciplinarity on peer review in comparison with bibliometric indicators. Our 
analysis deals with primarily the indicators P, C, CPP, JCSm, CPP/FCSm, and Pnc.  
 
The set of chemistry groups and the set of medical groups differ in, particularly for this study, 
relevant aspects. The chemistry groups are from ten different universities, they have grown 
more or less ‘naturally’, and they are not subject to one specific research policy strategy as all 
these ten universities have their own priorities. The medical groups, however, are all within 
one large institution. Although they also can be considered as having a ‘natural’ basis as a 
research group around one or two full professors, these groups are at the same time influenced 
by the policy of the LUMC as a whole. For instance, close mutual collaboration and the 
availability of the best people and facilities of a wide range of groups in the same location 
may enhance performance.  
 
 
3. Results and Discussion 
 
3.1 Scale-dependent cumulative advantage of impact  
 
In our earlier study (van Raan 2005a) on the statistical behaviour of bibliometric indicators 
we showed how a specific collection of publications (namely, a research group) is 
characterized in terms of the correlation between ‘size’ (the total number of publications P of 
a specific research group2) and the total number of citations received by this group in a given 
period of time, C. This relation for all 157 chemistry research groups is presented in Fig. 1a, 
and for the 65 medical research groups in Fig. 1b. These figures show us that this relation on 
the aggregation level of research groups is described with reasonable significance (coefficient 
of determination of the fitted regression is R2 = 0.69 and 0.86, respectively) by a power law: 

C(P) = 2.04 P 1.25 , for the chemistry research groups     

C(P) = 0.56 P 1.60 , for the medical research groups      
                                                 
2 The number of publications is a valid measure of size in the statistical context described in this paper. It is, 
however, a proxy for the ‘real size’ of a research group in terms number of, for instance, staff full time 
equivalents (fte) available for research.  
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Correlation of C (total per group) with P (total per group)
NL Chemistry
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Fig. 1a: Correlation of the number of citations (C) received per research group with the 
number of publications (P) of these groups, for all chemistry groups.  
 
 
 

Correlation of C (total per group) with P (total per group)
LUMC
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Fig. 1b: Correlation of the number of citations (C) received per research group with the 
number of publications (P) of these groups, for all medical research (LUMC) groups.  
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We observe that the size of groups leads to a ‘cumulative advantage’ (with exponents +1.25 
and +1.60, respectively) for the number of citations received by these groups. Thus the earlier 
discussed assumption of Katz (1999, 2000) that the ‘Matthew effect’ also works in a 
sufficiently large set of research groups, is confirmed. But a remarkable further finding is that 
this scale-dependent cumulative advantage is considerably larger for the LUMC groups. As 
discussed in Section 2.2, the medical groups are different from the chemistry groups in 
organisational aspects that may enhance performance. However, further study is necessary to 
find out whether these differences are also or even to a major extent due to disciplinary 
characteristics.  
 
In our earlier study, we stressed that in the context of research performance analysis studies, 
scale-dependent ‘corrections’ (on the basis of number of publications) of measured impact (on 
the basis of citations) will lead to an unreasonable levelling off of the impact indicators at the 
level of research groups. This is because size can be regarded in many cases as an intrinsic 
characteristic of performance: top-research groups attract promising people, and thus these 
groups will have an advantage to grow. Therefore, it is of crucial importance to investigate the 
above correlation for those subsets of the entire set that represent clearly differences in 
research performance. For the chemistry groups we have, next to the bibliometric indicators, 
also the peer review results, as discussed in Section 2.2.  
 
We first created within the entire set of chemistry groups two subsets on the basis op the 
quality judgement by peers. One subset with 39 ‘top-performance’ groups, these groups 
received the highest judgment ‘excellent’ (Q = 5), and another subset with 30 lower 
performance groups, these groups that received the lowest judgment ‘satisfactory’ (Q = 3). 
The results are given in Fig. 2. 
 

Correlation of C (total per group) with P (total per group) 
NL Chemistry, Q=5 and Q=3 groups

y = 0.7683x1.4224

R2 = 0.7143

y = 7.5615x1.0524
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Fig. 2: Correlation of the number of citations (C) received per chemistry research group with 
the number of publications (P), for the top-performance groups (Q=5, indicated with 
diamonds), and for the lower performance groups (Q=3, indicated with squares). 
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We observe a striking difference between the two subsets. The top-performance groups 
generally have more total citations for a given size in terms of P, but the ‘cumulative 
advantage’ is considerably less (in fact almost not existing, exponent 1.05) than for the lower 
performance groups (exponent 1.42). A next step is to create subsets within the entire set of 
chemistry research groups and medical research groups on the basis of our research 
performance (field-normalized impact) indicator CPP/FCSm.  
 
We created the following subsets: groups belonging to the top-10%, top-20%, and top-50%, 
as well as to the bottom-10%, bottom-20%, and bottom-50% of the CPP/FCSm distribution. 
We present the results of the correlation measurement in Figs. 3a and 3b  (top-10% compared 
to bottom-10%, chemistry and medical groups, respectively), 3c and 3d (top-20% compared 
to bottom-20%, chemistry and medical groups, respectively), and 3e and 3f (top-50% 
compared to bottom-50%, chemistry and medical groups, respectively).  
 
We again clearly observe the differences between the two ‘opposite’ subsets. And similar to 
the observations in Fig. 2 based on peer-review quality ratings, we notice that the top-
performance groups generally have more total citations for a given size in terms of P (which 
is, of course, to be expected), but that the cumulative advantage is considerably less for the 
top-performers than for the lower performance groups. As we have differentiated between top 
and lower performance in a gradual way (top/bottom 10%, 20%, and 50%), we are able to 
study the correlation of C with P and possible scale effects (size-dependent cumulative 
advantage) in more detail. The results (based on the observations in Figs. 3a-f) are presented 
in Table 3.  
 
 
 
Table 3: Power law exponent α of the correlation of C with P for the two sets of groups, in 
the indicated modalities. The differences in α between the set of chemistry research groups 
and the set of medical research groups is given by ∆α(M,C); the difference between the top 
and bottom modalities (see text) by ∆α(b,t).  
 

 Chemistry 
Groups  

Medical 
Groups 

  ∆α(M,C)
top 10% 0.72 1.13 0.41 
bottom 10% 1.44 1.75 0.31 

∆α(b,t) 0.72 0.62  
    

top 20% 0.90 1.39 0.49 
bottom 20% 1.46 1.64 0.18 

∆α(b,t) 0.56 0.25  
    

top 50% 1.06 1.54 0.48 
bottom 50%  1.44 1.55 0.11 

∆α(b,t) 0.38 0.01  
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Correlation of C (total per group) with P (total per group)
NL Chemistry, top-10% and bottom-10% of CPP/FCSm
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Fig. 3a: Correlation of the number of citations (C) received per chemistry research group 
with the number of publications (P), for the top-10% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-10% groups (indicated with squares). 
 
 

Correlation of C (total per group) with P (total per group) 
 LUMC, top-10% and bottom-10% of CPP/FCSm 
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Fig. 3b: Correlation of the number of citations (C) received per medical (LUMC) research 
group with the number of publications (P), for the top-10% (of CPP/FCSm) groups 
(indicated with diamonds), and for the bottom-10% groups (indicated with squares). 
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Correlation of C (total per group) with P (total per group)
NL Chemistry, top-20% and bottom-20% of CPP/FCSm
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Fig. 3c: Correlation of the number of citations (C) received per chemistry research group 
with the number of publications (P), for the top-20% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-20% groups (indicated with squares). 
 
 

Correlation of C (total per group) with P (total per group) 
LUMC, top-20% and bottom-20% of CPP/FCSm
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Fig. 3d: Correlation of the number of citations (C) received per medical (LUMC) research 
group with the number of publications (P), for the top-20% (of CPP/FCSm) groups 
(indicated with diamonds), and for the bottom-20% groups (indicated with squares). 
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Correlation of C (total per group) with P (total per group)
NL Chemistry, top-50% and bottom-50% of CPP/FCSm 
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Fig. 3e: Correlation of the number of citations (C) received per chemistry research group 
with the number of publications (P), for the top-50% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-50% groups (indicated with squares). 
 

Correlation of C (total of groups) with P (total of groups) top top-
LUMC, top-50% and bottom-50% of CPP/FCSm
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Fig. 3f: Correlation of the number of citations (C) received per medical (LUMC) research 
group with the number of publications (P), for the top-50% (of CPP/FCSm) groups 
(indicated with diamonds), and for the bottom-50% groups (indicated with squares). 
 

 13



Table 3 shows us the following findings. First, the medical research groups have a stronger 
‘advantage’ with size (P) than the chemistry research groups, particularly for top-groups. For 
the ‘bottom’ the difference in advantage ∆α(M,C) between medical and chemistry groups is 
smaller.  
 
Second, for the medical research groups the difference in advantage between top- and bottom-
groups ∆α(b,t) is smaller than for the chemistry groups. Third, the top-10% and top-20% of 
the chemistry groups do not have a cumulative advantage (i.e., an exponent > 1), and for the 
top-50% there is just a very small cumulative advantage. For the medical research groups, the 
cumulative advantage is clearly visible in all modalities. Fourth, and the most intriguing 
observation, we observe, as noticed earlier, that for both the chemistry as well as the medical 
research groups, the ‘bottom’ groups profit more than the top-groups (with an exception for 
the bottom-50% of the medical research groups). 
 
This latter phenomenon has the consequence that for a specific size (P), top-10% and bottom-
10% have almost the same ‘strength’ (C), see for instance Fig 3e, from about P = 400. 
Research groups are active within a specific theme or subfield of a discipline; hence the total 
number of ‘available’ citations will get ‘exhausted’. Thus, a saturation of cumulative 
advantage is unavoidable simply by finite-size considerations.  
 
 
3.2 Modelling advantages  
 
In the foregoing section we discussed that the most interesting finding so far is that lower 
performance groups have a larger scale-dependent cumulative advantage than the top-
performance groups. So the crucial question now is: what does size actually do? 
 
In an attempt to understand more precisely what is going on, we have to build a bridge 
between the ‘macro’ picture given by the correlation between C and P at the level of groups, 
and the ‘micro’ picture, particularly the distribution of citations over publications p(C) within 
a group. We use the symbol ‘P’ for the total number of publications per group, ‘p’ for the 
distribution functions based on the number of ‘individual’ publications, and ‘pr’ for the 
distribution function with relative numbers of publications. We stress that self-citations are 
excluded in this analysis. 
 
Figure 4 shows the pr(C) distribution for the largest-20% and the smallest-20% of the entire 
set of chemistry research groups. We stress that the subsets are not, like in Figs. 3a-f, related 
to differences in performance, but to size difference. Figure 4 reveals a crucial feature of the 
distribution. The subset of the smallest-20% has a significantly higher fraction of not-cited 
publications pr(0) as compared to the subset of the largest-20%. The ratio for both subsets is 
1.40. So, larger groups have less not cited publications as compared to smaller groups. As a 
direct consequence we also see that the largest-20% groups have relatively more publications 
with 2 to 20 citations, which represents a major part of the entire citation distribution.  Thus, 
we suppose that a possible mechanism for cumulative advantage by group size works through 
decrease of the not-cited publications in a group and ‘promoting’ the already cited 
publications. In other words, size reinforces an ‘internal promotion mechanism’. We elaborate 
this idea further on in this section.  
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Relative number of publications as function of number of citations
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Fig. 4: Distribution function pr(C): relative number of publications as a function of number 
of citations for two subsets within the total set of 157 chemistry publications: the subset of the 
groups that belong to the largest 20% (diamonds), and the subset of the groups that belong to 
the smallest 20% (squares); in order to include C = 0 values in the logarithmic scale, we take 
on the abscissa value 1 for 0 citations, value 2 for 1 citation, etc.  
 
 
As a further additional empirical investigation of this observation we analysed for the medical 
research groups the correlation of the fraction of not-cited-publications Pnc of a group (given 
in Table 2) with the size (in terms of P) of a group. The results are shown in Fig. 5a.  
 
We observe, be it with low significance, that the fraction of not cited publications decreases as 
function of size in terms of number of publications in a group, which confirms the findings for 
the chemistry groups on the basis of the distribution functions. But the significance of the 
correlation is too low for clear results. Thus, as a further step we investigate the correlation of 
the fraction of not-cited-publications Pnc of a group with size (in terms of P) with a 
distinction between top-performance groups and lower-performance groups, similar to our 
analysis of the C(P) correlation. So we split up the entire set of groups presented in Fig 5a, in 
the top and lower performance groups. The results are presented in Figs. 5b-d.  
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Correlation of Pnc (per group) with P (total per group) 
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Fig. 5a: Correlation of the relative number of not cited publications (Pnc) of the medical 
research groups with the number of publications (P).  
 

Correlation of Pnc (group) with P (total per group) 
LUMC, top-10% and bottom-10% of CPP/FCSm
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Fig. 5b: Correlation of the relative number of not cited publications (Pnc) of the medical 
research groups with the number of publications (P), for the top-10% (of CPP/FCSm) groups 
(indicated with diamonds), and for the bottom-10% groups (indicated with squares). 
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Correlation of Pnc (group) with P (total per group) 
LUMC, top-20% and bottom-20% of CPP/FCSm

y = 1.0843x-0.313

R2 = 0.6715

y = 0.7591x-0.3125

R2 = 0.1086

0.01

0.1

1

1 10 100 1000
P

Pnc

 
Fig. 5c: Correlation of the relative number of not cited publications (Pnc) of the medical 
research groups with the number of publications (P), for the top-20% (of CPP/FCSm) groups 
(indicated with diamonds), and for the bottom-20% groups (indicated with squares). 
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Fig. 5d: Correlation of the relative number of not cited publications (Pnc) of the medical 
research groups with the number of publications (P), for the top-50% (of CPP/FCSm) groups 
(indicated with diamonds), and for the bottom-50% groups (indicated with squares). 
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The figures reveal several remarkable features. First, the LUMC top-performance groups are 
generally the larger ones, i.e., in the right hand side of the correlation function.  The 
correlation with Pnc is not significant. Second, the lower-performance groups benefit from 
size, with reasonable significance for the bottom-10% and  -20% (Figs. 5b and 5c). In other 
words, an important observation in this study is that particularly for the lower performance 
groups, with reasonable significance, the fraction of non-cited publications decreases with 
size. 
 
Our explanation is that advantage by size works by a mechanism in which the number of not-
cited publications is diminished, and that this mechanism is particularly effective for the 
lower performance groups. We stress again that in our analysis self-citations are excluded!  
Thus, the larger the number of publications in a group, the more those publications in the 
group that otherwise would have remain uncited, are ‘promoted’. Most probably this works 
by, initially, citation of these ‘staying behind’ publications in other, more cited publications of 
the group (so the mechanism starts with (within-group) self-citation), and then authors in 
other groups are stimulated to take notice of these ‘staying behind’ publications and they 
decide to cite them. It is obvious that particularly the lower performance groups will benefit 
from this mechanism.  
 
 
3.3 The concept of hierarchically layered networks of publications and groups  
 
Scale-dependent (cumulative) advantages of research groups are interesting from a viewpoint 
of network analysis. The basic elements in our study of research groups are publications. 
Publications act as nodes in a citation network, the links being the citations from other papers, 
so that the distribution of the number of citations represents the ‘in-degree’ distribution of the 
network. These links are (almost) always unidirectional (see Fig. 6): if publication p1 is cited 
by publication p2, this publication p2 cannot (generally) be cited by p1 (an exceptional case is 
for instance two publications published together in the same journal issue and citing each 
other mutually). In our study, this in-degree distribution is given by p(C), see Fig. 7a (we refer 
also to van Raan 2005a for a more detailed discussion of this distribution function). 
  
In the last few years we see a considerable increase of attention from the physics community 
for publication- and citation-based networks (Redner 1998; Barabási and Albert 1999; 
Vazquez 2001; Albert & Barabási 2002; Dorogovtsev and Mendes 2002; Mossa et al 2002). 
More recently, the focus of the network community is moving toward clustering phenomena 
in networks (Klemm and Eguíluz 2002; Ravasz and Barabási 2003) and inter-network 
relations.  
 
Usually, clustering in a network is defined as a grouping of nodes on the basis of the linkages 
with which the network is structured. Examples are publication-clusters based on citation or 
reference linkages (van Raan 2005c), and clusters of collaborating researchers (Newman 
2003). This type of clustering is within the network itself. The basic elements (nodes) of a 
network can, however, also be clustered in another structure, outside their ‘own’ network, for 
instance in another network. Research groups can be seen as clusters of publications 
representing a ‘higher order network’, based on organizational relations, a ‘hierarchical layer’ 
above the network structured on the basis of individual publications. The group as a whole act 
as a node in the network of research groups. These groups are also connected to each other 
through citation linkages, but now it is not important which individual publication is 
‘responsible’ for the incoming citations. In the context of this study, C is the number of 
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incoming links to a group (in-degree of the group), and P is its size, in terms of total number 
of publications of the group. In the example of Fig. 6 we find P = 6 and C = 8 for group G1.  
The distribution function of the number of groups over the number of incoming links, G(C), is 
given in Fig. 7b. So, in this model of hierarchically layered networks, we have the in-degree 
distribution of the basic network (network of the individual publications) represented by p(C) 
(Fig.7a), and the in-degree distribution of the hierarchically next layer (network of the groups) 
represented by G(C) (Fig.7b).  
 
There are striking differences between the higher-order network of groups and the basic 
publication network. First, in the basic network the nodes (i.e., the publications) do not have a 
size (there is a node, or not), whereas in the group-based network the nodes (i.e., the groups) 
do have a size, namely, the number of individual publications within a group. Second, the 
citation-based linkages at the group level are not unidirectional anymore (see Fig. 6): if 
research group G1 is cited by group G2, this group G2 can very well be cited by group G1, 
within a specific period of time. Third, in the basic network the nodes (i.e., the publications) 
can only have one link, i.e., publication p1 is cited by publication p2, and this happens only 
once, whereas research group G1 can be cited many times by group G2. 
 
This third point introduces an interesting analogy with co-author networks. Generally, 
networks of scientific collaboration based on co-author relations, are structured by linking 
authors who have at least one common publication. But authors can be linked to other authors 
by more than just one publication, so authors will in fact have different ‘linkage strengths’ 
with other authors, similar to the different citation linkage strengths group G1 has with group 
G2 (3 citation links) and G4 (1 citation link) in Fig. 6. The analogy goes further: authors also 
may differ substantially in the size of their own oeuvre, i.e., the number of papers they have, 
regardless of co-authors. For instance, the link between author a1 (a senior scientist) who has 
many papers and three links with author a2 who has only these three papers (a PhD student), 
and just one link with another prolific author a3 (another senior scientist). In the usual 
scientific collaboration network a1 is simply connected with one link to a2 and with one link to 
a3, without any indication of the size of a1, a2, and a3. In reality we have a situation 
comparable with the example in Fig. 6, the relation of the large group G1 (like a1) with the 
small group G2 (like a2), and G1 with the other large group G3 (like a3).  
 
We stress that this phenomenon is not the same as preferential attachment. Preferential 
attachment means that highly connected nodes increase their connectivity more than less 
connected nodes. But in our study of research groups it is not the number of already existing 
links (C, ‘external wiring’), but the size (‘content’), in terms of number of papers (P), that 
causes a preference, an advantage. We find that, in general, the larger a group (node in the 
research group network), the larger, in a preferential, i.e., non-linear way (advantage) the 
‘strength’ of the incoming links.  
 
We also observe that the top-10% groups are about an order of magnitude more efficient in 
‘creating linkages’ (C) than the bottom-10% groups (see Fig. 3a). Very remarkably, this 
advantage is not cumulative (exponent 0.72), whereas the bottom-10% groups do have a quite 
strong cumulative advantage (exponent 1.44), so that for a specific size (P), top-10% and 
bottom-10% have almost the same strength (C) at the same size.  
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Fig. 6, left side: network structure (example) of individual publications with incoming links 
(citations to a publication, unidirectional), the in-degree distribution is given by p(C), see 
Fig. 7a; right side: same network structure now at the level of research groups (bi-directional 
links allowed), the in-degree distribution is given by G(C), see Fig. 7b. 
 
 
 
As our criterion concerning top-performance or lower performance is based on the field-
normalized performance indicator CPP/FCSm, we hypothesize that in networks terms this 
indicator represents the fitness of a group as a node in the group-network. It brings a group in 
a better position to acquire additional links on the basis of mere size (an ‘internal’ parameter), 
and not on the basis of already existing linkages to a node (an ‘external’ parameter). This 
latter mechanism, preferential attachment, is based on the idea that other nodes, for instance 
newcomers, feel ‘directly’ the attractiveness of a node and therefore also want to have a link 
with the already attractive node.  In our explanation, size of the node is crucial, with a simple 
‘advantage-making’ mechanism as explained at the end of Section 3.2. 
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Fig. 7a: Distribution function p(C): number of publications as a function of number of 
citations for the total set of around 14,000 chemistry publications. 
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Fig. 7b: Distribution function G(C): number of groups as a function of number of citations 
per group, for the total set of the 157 chemistry research groups; groups are binned in classes 
of ∆ C = 200. 
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3.4 Scale-dependence of ‘fitness’ 
 
We find no or hardly any significant dependence of our ‘fitness’ indicator CPP/FCSm with 
size in terms of P, as shown in Figs. 8a and b for the top-50% and the bottom-50% (of 
CPP/FCSm scores) of the chemistry and the medical research groups, respectively. Further 
analysis with the top- and bottom 10% and the top- and bottom 20% reveals that only for the 
bottom-10% and bottom-20% of the medical research groups there is a reasonably significant 
(R2 = 0.55 and 0.51, respectively) correlation with P.  This indicates that for the lower 
performance medical research groups there is some positive correlation with size, but this is 
certainly not a cumulative advantage as the exponents of the correlation are 0.14 and 0.15, 
respectively, more or less similar to the situation as in the case of the bottom-50% of the 
medical research groups, as shown in Fig.8b.   
 
We notice that for very large size P the value of CPP/FCSm must go asymptotically to 1, 
because the largest possible P would be all publications worldwide in a specific field (or 
combination of fields), which means that by definition the field-normalized indicator values 
has to be 1. Remarkably, in our observations an onset to this asymptotic behaviour is only 
slightly visible for the top groups in chemistry.  
 
 
 

Correlation of CPP/FCSm (group) with P (total per group)
NL Chemistry, top-50% and bottom-50% of CPP/FCSm
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Fig. 8a: Correlation of CPP/FCSm with the number of publications (P), for the top-50% (of 
CPP/FCSm) chemistry groups (indicated with diamonds), and for the bottom-50% chemistry 
groups (indicated with squares).  
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Correlation of CPP/FCSm (group) with P (total per group) 
LUMC,  top-50% and bottom-50% of CPP/FCSm
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Fig. 8b: Correlation of CPP/FCSm with the number of publications (P), for the top-50% (of 
CPP/FCSm) medical research groups (indicated with diamonds), and for the bottom-50% 
medical research groups (indicated with squares).  
 
 
 
 3.5 Publication citedness and journal impact level 
 
Seglen (1994) reported on the poor correlation between the impact of publications and journal 
impact at the level of individual publications. However, grouping publications in classes of 
journal impact yielded a high correlation between publication citedness and journal impact. 
But this higher aggregation is determined by journal impact classes, and not by a ‘natural’ 
higher aggregation level such as a research group.  
 
We find a quite significant correlation between the average number of citations per 
publication (‘publication citedness’, given by the indicator CPP) of research groups, and the 
average journal impact of these groups (given by the journal impact indicator JCSm). The 
results are shown in Figs. 9a and b for the entire sets of all chemistry and medical research 
groups, respectively.  
 
By dividing the authors into a highly cited group and a less cited group, Seglen concluded that 
the highly cited authors tend to publish somewhat more in journals with a higher impact than 
the less cited authors, but this difference is insufficient to explain the difference in impact 
between the two groups. Highly cited authors are, according to Seglen, in all journal impact 
classes, on average, more successful. Thus, we applied again the distinction between top-
performers and lower-performance groups as used throughout this paper in order to find 
performance-dominated aspects in the relation between publication citedness and journal 
impact level. 
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Fig. 9a: Correlation of CPP with the JCSm values for all chemistry groups. 
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Fig. 9b: Correlation of CPP with the JCSm values for all medical research groups.  
 
 
 
Following the same procedure as in Section 3.1, we first created within the entire set of 
chemistry groups two subsets on the basis of the quality judgement by peers. One subset with 
39 ‘top-performance’ groups, these groups received the highest judgment ‘excellent’ (Q = 5), 
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and another subset with 30 lower performance groups, these groups that received the lowest 
judgment ‘satisfactory’ (Q = 3). The results are given in Fig. 10. 
 
We clearly observe the differences and similarities between the two subsets. Both the 
‘excellent’ as well as the ‘satisfactory’ groups generally have more total citations per 
publication (CPP) as a function of journal impact (JCSm). Clearly, the excellent groups 
generally have higher CPP values.  Remarkably, the excellent as well as the satisfactory 
groups are more or less in the same range of journal impact values. Thus, these observations 
nicely confirm Seglen’s findings as discussed above. Indeed, top-performance groups are, on 
average, more successful in the entire range of journal impact. In other words, they perform 
better in the lower-impact journals as well as in the higher impact journals. Next, we also 
notice that there is no ‘cumulative advantage’, i.e., the power law exponent of the correlation 
function is about (excellent groups) or below (satisfactory groups) value 1.  
 

Correlation of CPP (per group) with JCSm (per group)
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Fig. 10: Correlation of CPP with the JCSm values for the top-performance chemistry groups 
(Q=5, indicated with diamonds), and for the lower performance groups (Q=3, indicated with 
squares).  
 
 
We now carry out the same analysis on the basis of our own research performance (field-
normalized impact) indicator CPP/FCSm. We created within the entire set of chemistry 
research groups and medical research groups the following subsets: groups belonging to the 
top-10%, top-20%, and top-50%, as well as to the bottom-10%, bottom-20%, and bottom-
50% of the CPP/FCSm distribution. We present the results of the correlation measurement in 
Figs. 11a and 11b  (top-10% compared to bottom-10%, chemistry and medical groups, 
respectively), 11c and 11d (top-20% compared to bottom-20%, chemistry and medical 
groups, respectively), and 11e and 11f (top-50% compared to bottom-50%, chemistry and 
medical groups, respectively).  
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We observe the same phenomena for the chemistry research groups as found in Fig. 10. 
However, the top-10% of the CPP/FCSm distribution is clearly somewhat more ‘exclusive’ 
compared to the groups with the peer judgement ‘excellent’: these top-groups do have a 
(slight) preference for the higher-impact journals (Fig.11a). For the medical groups this 
phenomenon is even more pronounced (Fig. 11b): the top-10% (and also top-20%, Fig. 11d) 
medical groups appear to focus heavily on the high-impact journals!  
 
In the case of the chemistry groups, the ratio of the correlation coefficients between CPP and 
JCSm provides a quantitative measure of the extent to which top groups have a higher 
‘citedness’ as compared to lower performance groups. For top-10% and bottom-10% the ratio 
of the correlation coefficients is 3.45, for top-20% and bottom-20% it is 3.07, and for top-50% 
and bottom-50% we find 1.87. This means that the chemistry top-groups perform (in terms of 
CPP, citations per publication) with a factor of about 2 to 3.5 better than the bottom-groups in 
the same journals. Also this finding is in agreement with Seglen’s work, he finds a factor 
between 1.5 and 3.5.  
 
Finally, we analyse the exponents of the correlation functions presented in Figs. 11a-f and 
present the results in Table 4. 
 
 
 
Table 4: Power law exponent γ of the correlation of CPP with JCSm for the two sets of 
groups, in the indicated modalities. The differences in γ between the set of chemistry research 
groups and the set of medical research groups is given by ∆γ(M,C); the difference between 
the top and bottom modalities (see text) by ∆γ(b,t). The value between parentheses has a low 
significance, hence no differences as indicated above are calculated.      
 

 Chemistry 
Groups  

Medical 
Groups 

  ∆γ(M,C)
top 10% 0.91 (0.59)  
bottom 10% 0.94 1.06 0.12 

∆γ(b,t) 0.03   
    

top 20% 0.90 0.97 0.07 
bottom 20% 1.03 1.05 0.02 

∆γ(b,t) 0.13 0.08  
    

top 50% 0.90 1.17 0.27 
bottom 50%  0.96 1.05 0.09 

∆γ(b,t) 0.06 -0.12  
 
 
 
In general, we see correlation function exponents close to 1, which means that the number of 
citations per publication is about a linear function of journal impact. By randomly removing 
10 groups in the set of chemistry research groups and recalculating the correlation functions, 
we estimate that the uncertainty in the power law exponents is about  ±0.04. Therefore we 
conclude that only in the case of the medical research groups there might be a slight 
‘cumulative’ advantage of CPP with JCSm, particularly for the top-50%.  
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Correlation of CPP (per group) with JCSm (per group) 
NL Chemistry, top-10% and bottom-10% of CPP/FCSm
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Fig. 11a: Correlation of the number of citations (C) received per chemistry research group 
with the number of publications (P), for the top-10% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-10% groups (indicated with squares). 
 

Correlation of CPP (per group) with JCSm (per group) 
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Fig. 11b: Correlation of the number of citations (C) received per medical research group 
with the number of publications (P), for the top-10% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-10% groups (indicated with squares). 
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Correlation of CPP (per group) with JCSm (per group) 
NL Chemistry, top-20% and bottom-20% of CPP/FCSm 
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Fig. 11c: Correlation of the number of citations (C) received per chemistry research group 
with the number of publications (P), for the top-20% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-20% groups (indicated with squares). 
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Fig. 11d: Correlation of the number of citations (C) received per medical research group 
with the number of publications (P), for the top-20% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-20% groups (indicated with squares). 
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Correlation of CPP (per group) with JCSm (per group) 
NL Chemistry, top-50% and bottom-50% of CPP/FCSm 
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Fig. 11e: Correlation of the number of citations (C) received per chemistry research group 
with the number of publications (P), for the top-50% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-50% groups (indicated with squares). 

Correlation of CPP (per group) with JCSm (per group) 
LUMC, top-50% and bottom-50% of CPP/FCSm
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Fig. 11f: Correlation of the number of citations (C) received per medical research group with 
the number of publications (P), for the top-50% (of CPP/FCSm) groups (indicated with 
diamonds), and for the bottom-50% groups (indicated with squares). 
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Finally, we analysed the correlation between the number of not-cited publications (Pnc) of a 
group and its average journal impact level (JCSm). The results for the medical research 
groups are shown in Fig. 12a. We see a quite significant correlation between these two 
parameters. Given the strong correlation between CPP and JCSm (see Fig. 9b), we can expect 
also a significant correlation between Pnc and CPP, as confirmed by Fig. 12b. We observe 
that the higher the mean number of citations in a group, the lower the number of not-cited 
publications in a group. In other words: groups that are cited more per paper also have more 
cited papers. These findings underline the generally good correlation (at the group level, not 
at the individual publication level!) between the mean ‘citedness’ of publications in a group, 
and its mean journal impact.  
 

Correlation of Pnc (per group) with JCSm (per group)
LUMC 
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Fig. 12a: Correlation of the number of not cited publications (Pnc) of medical research 
groups with the mean journal impact (JCSm) of a group.  
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Correlation of Pnc (per group) with CPP (per group)
LUMC  
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Fig. 12b: Correlation of the number of not cited publications (Pnc) of medical research 
groups with the mean number of citations per publications (CPP) of a group.  
 
 
 
 
 
4. Summary of the main findings and concluding remarks 
 
We studied performance-related statistical properties of bibliometric characteristics of two 
sets of research groups: 157 chemistry groups and 65 medical research groups, covering a 
period of at least ten years. Our main observations are as follows.  
 
First, we find a size-dependent cumulative advantage for the total impact of research groups 
in terms of total number of citations. Quite remarkably, the lower-performance groups show a 
stronger cumulative advantage.  
 
Second, we find that, regardless of performance, larger groups have less not-cited 
publications. We introduce a simple model in which size is advantageous in an ‘internal 
promotion mechanism’ to get more publications cited. Thus, in this model size is a distinctive 
parameter and it acts as a bridge between the macro picture (characteristics of the entire set of 
groups) and the micro picture (characteristics within a group).    
 
Third, by distinguishing again between top- and lower-performance groups, we discovered 
that particularly for the lower-performance groups the size-effect mentioned in our second 
observation is effective, and that the fraction of not-cited publications is decreasing with size. 
This is in line with a further observation that particularly the lower performance groups tend 
to have a higher field-normalized impact indicator value the larger these groups are.  
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Fourth, we find a quite significant correlation between the average number of citations per 
publication (‘publication citedness’, given by the indicator CPP) of research groups, and the 
average journal impact of these groups (given by the journal impact indicator JCSm). Top-
performance groups are, on average, more successful in the entire range of journal impact, 
with a factor of about 2 to 3.5. In other words, top-groups perform better in the lower-impact 
journals as well as in the higher impact journals. There is no clear evidence of cumulative 
advantage for the citedness of publications with journal impact. Only in the case of the 
medical research groups there might be a slight cumulative advantage, particularly for the top-
groups. 
 
An important element of this study is that we make a first attempt to fit our findings into a 
concept of ‘hierarchically layered’ networks. In this concept, the network of research groups 
constitutes a layer of one hierarchical step higher than the basic network of publications 
connected by citations. The cumulative size-advantage of citations received by a group looks 
like preferential attachment in which highly connected nodes increase their connectivity faster 
than less connected nodes. But in our study of research groups it is not the number of already 
existing links (C, ‘external wiring’), but the size (‘content’), in terms of number of papers (P), 
that causes a preference, an advantage. We find that, in general, the larger a group (node in 
the research group network), the larger, in a preferential, i.e., non-linear way (advantage) the 
‘strength’ of the incoming links. Moreover, we find that top-performance groups are about an 
order of magnitude more efficient in ‘creating linkages’ (C) than the lower performance 
groups.  
 
As our criterion concerning top-performance or lower performance is based on the field-
normalized performance indicator CPP/FCSm, we hypothesize that in network terms this 
indicator represents the fitness of a group as a node in the group-network. It brings a group in 
a better position to acquire additional links on the basis of mere size (an ‘internal’ parameter), 
and not on the basis of already existing linkages to a node (an ‘external’ parameter). Thus, 
size of the node is crucial, with a simple ‘advantage-making’ mechanism as mentioned in our 
second observation.  
    
We ‘translate’ in this study typical bibliometric properties into network-related properties: C, 
the number of citations to a group, or total impact, is the ‘external wiring’ of the group as 
node in the network; P, the number of publications is the size of the group as network node; 
CPP, the size-normalized impact; CPP/FCSm, the field-normalized impact, is the fitness of a 
group as a node in a network structure. The field-based impact FCSm can be seen as a general 
local property for a family of groups in the network. How does the journal impact indicator 
JCSm fit into this picture? We think JCSm can be conceived of as a group- (as thus node-) 
internal characteristic such as a basic facility that is available to ‘make the most of it’. As an 
analogy in a social context one could think of education level (van Raan 2005a): a higher 
level offers the possibility to reach a higher income, but this is not an automatism, and with a 
relatively low education level one has still has a chance for a high income (in network terms: 
external wiring, or incoming links).   
 
Next to the intriguing differences between top-performance and lower performance groups, 
we also find differences between the two sets of research groups. The chemistry groups are 
from ten different universities, they have grown more or less ‘naturally’, and they are not 
subject to one specific research policy strategy as all these ten universities have their own 
priorities. The medical groups, however, are all within one large institution. Although they 
also can be considered as having a ‘natural’ basis as a research group around one or two full 
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professors, these groups are at the same time influenced by the policy of the LUMC as a 
whole. Close mutual collaboration and the availability of the best people and facilities of a 
wide range of groups in the same location may enhance performance. Currently we are 
extending this study to more large sets of research groups in different scientific fields in order 
to investigate whether the differences found in this study between the chemical and the 
medical research groups are indeed due to research management related aspects, or that 
discipline-related aspect play a dominant role.  
 
 
 
 
Acknowledgements 
 
The author would like to thank his CWTS colleague Thed van Leeuwen for the data 
collection, data analysis and calculation of the bibliometric indicators for the two sets of 
research groups.  
 
 
 
References 
 
Barabási, A.-L. and R. Albert (1999). Emergence of scaling in random networks. Science 286, 
509-512. 
 
Albert, R. and A.-L. Barabási (2002). Statistical mechanics of complex networks. Rev. Mod. 
Phys., 74, 47-97. 
 
Dorogovtsev, S.N. and J.F.F. Mendes (2002). Advances in Physics 51, 1079-1187. 
 
Katz, J.S. (1999). The Self-Similar Science System. Research Policy 28, 501-517 
 
Katz, J.S. (2000). Scale Independent Indicators and Research Assessment. Science and Public 
Policy, 27, 1, 23-36 
 
Katz, J.S. (2005). Scale-Independent Bibliometric Indicators. Measurement 3(1), 24-28. 
 
Klemm, K. and V.M. Eguíluz (2002). Highly clustered scale-free networks. Physical Review 
E, 65, 036123. 
 
Lawrence, P.A. (2003). The politics of publication. Nature 422, 259-261 
 
van Leeuwen, T.N., M.S. Visser, H.F. Moed, and A.J. Nederhof (2002). The third 
bibliometric study on chemistry research associated with the council for chemical sciences of 
the Netherlands Organisation for Scientific Research (NWO-CW) 1991-2000. Report CWTS 
2002-01. Leiden: CWTS.  
 
Merton, R.K. (1968). The Matthew effect in science. Science 159, 56-63.  
 
Merton, R.K. (1988). The Matthew Effect in Science, II: Cumulative advantage and the 
symbolism of intellectual property. Isis 79, 606-623. 

 33



 
Moed, H.F. and Th.N. van Leeuwen (1995). Improving the accuracy of the Institute for 
Scientific Information’s Journal Impact Factors. J. of the American Society for Information 
Science (JASIS) 46, 461-467. 
 
Moed, H.F. and Th.N. van Leeuwen (1996). Impact Factors Can Mislead. Nature 381, 186. 
 
Moed, H.F. & E. Garfield (2004). In basic science the percentage of ‘authoritative’ references 
decreases as bibliographies become shorter. Scientometrics 60, 3, 295-303. 
 
Mossa, S., M. Barthélémy, H.E. Stanley and L.A.N. Amaral (2002). Truncation of power law 
behavior in ‘scale-free’ network models due to information filtering. Phys. Rev. Lett. 88, 
138701. 
 
Newman, M.E.J. (2003). Properties of highly clustered networks. E-print arXiv: cond-
mat/0303183. 
 
van Raan, A.F.J. (1996). Advanced Bibliometric Methods as Quantitative Core of Peer 
Review Based Evaluation and Foresight Exercises. Scientometrics 36, 397-420. 
 
van Raan, A.F.J. (2000). The Pandora’s Box of Citation Analysis: Measuring Scientific 
Excellence, the Last Evil? In: B. Cronin and H. Barskt Atkins (eds.). The Web of Knowledge. 
A Festschrift in Honor of Eugene Garfield. Ch. 15, p. 301-319. Medford (New Jersey): ASIS 
Monograph Series, 2000. ISBN 1-57387-099-4 
 
van Raan, A.F.J. (2004). Measuring Science. Capita Selecta of Current Main Issues. In: H.F. 
Moed, W. Glänzel, and U. Schmoch (eds.). Handbook of Quantitative Science and 
Technology Research. Dordrecht: Kluwer Academic Publishers, p. 19-50. 
 
van Raan, A.F.J. (2005a). Statistical Properties of Bibliometric Indicators Research Group 
Indicator Distributions and Correlations. Journal of the American Society for Information 
Science and Technology, to be published. 
 
van Raan, A.F.J. (2005b). Fatal Attraction: Conceptual and methodological problems in the 
ranking of universities by bibliometric methods. Scientometrics 62(1), 133-143.  
 
van Raan, A.F.J. (2005c). Reference-based publication networks with episodic memories. 
Scientometrics 63(3), 549-566. 
 
Van Raan, A.F.J. (2005d). Measurement of central aspects of scientific research: 
performance, interdisicplinarity, structure. Measurement 3(1), 1-19 
 
Ravasz, E. and A.-L. Barabási (2003). Hierarchical organization in complex networks. 
Physical Review E, 67, 026112. 
 
Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. 
Eur. Phys. J. B4, 131-134. 
 

 34



Rinia, E.J. Th.N. van Leeuwen, H.G. van Vuren, and A.F.J. van Raan (1998). Comparative 
analysis of a set of bibliometric indicators and central peer review criteria. Evaluation of 
condensed matter physics in the Netherlands. Research Policy 27, 95-107. 
 
Rinia, E.J., Th.N. van Leeuwen, H.G. van Vuren, and A.F.J. van Raan (2001). Influence of 
interdisciplinarity on peer-review and bibliometric evaluations. Research Policy 30, 357-361. 
 
Seglen, P.O. (1992). The skewness of science. Journal of the American Society for 
Information Science, 43, 628-638 
 
Seglen, P.O. (1994). Causal relationship between article citedness and journal impact. Journal 
of the American Society for Information Science, 45, 1-11 
 
Vazquez, A. (2001). Statistics of citation networks. E-print arXiv: cond-mat/0105031.  
 
VSNU (2002). Chemistry and Chemical Engineering. VSNU Series ‘Assessment of Research 
Quality’. Utrecht: VSNU (ISBN 90 5588 4979). 
 
Zitt, M., S. Ramanana-Rahary, and E. Bassecoulard (2003). Correcting glasses may help fair 
comparisons in international science landscape: country indicators as a function of ISI 
database delineation. Scientometrics 56(2), 259-282. 
 
Zitt, M., S. Ramanana-Rahary, and E. Bassecoulard (2004). Measuring excellence by top-
citation: how performances depend on zoom setting. Paper presented at the 8th International 
Science and Technology Indicators Conference, Leiden, to be published.  
 
Zitt, M. (2005). Facing diversity of science: a challenge for bibliometric indicators. 
Measurement 3(1), 38-49. 
 
 
version 070405  

 35


	Performance-related differences of bibliometric statistical 
	Anthony F. J. van Raan

	Leiden University
	Wassenaarseweg 52
	Abstract
	1. Introduction
	Table 1: Example of the results of the bibliometric analysis
	Table 2: Example of the results of the bibliometric analysis
	Tables 1 and 2 make clear that our indicator calculations al
	3. Results and Discussion






