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This article shows how finite-state methods can be
employed in a new and different task: the conflation of
personal name variants in standard forms. In biblio-
graphic databases and citation index systems, variant
forms create problems of inaccuracy that affect informa-
tion retrieval, the quality of information from databases,
and the citation statistics used for the evaluation of sci-
entists’ work. A number of approximate string matching
techniques have been developed to validate variant
forms, based on similarity and equivalence relations. We
classify the personal name variants as nonvalid and valid
forms. In establishing an equivalence relation between
valid variants and the standard form of its equivalence
class, we defend the application of finite-state transducers.
The process of variant identification requires the elabora-
tion of: (a) binary matrices and (b) finite-state graphs. This
procedure was tested on samples of author names from
bibliographic records, selected from the Library and Infor-
mation Science Abstracts and Science Citation Index
Expanded databases. The evaluation involved calculating
the measures of precision and recall, based on complete-
ness and accuracy. The results demonstrate the usefulness
of this approach, although it should be complemented with
methods based on similarity relations for the recognition of
spelling variants and misspellings.

Introduction

A number of different interrelated areas are involved in the
identification of Personal Names (PNs), including Natural
Language Processing, Information Extraction, and Informa-
tion Retrieval (IR). Personal names are included in the cate-
gory of proper names, defined as expressions or phrases that
designate persons without providing conceptual information.
Their primary semantic function is to establish a relationship
of reference between the phrase and the object. The identity
certainty of this relationship is determined in many cases by
context. Some problems surrounding homonyms (i.e., different
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individuals may have the same name) are due precisely to
the ambiguity in that relationship of reference. The context
could be clarified by determining the intellectual connection
between the PNs, or by using subject indicators.

The referential ambiguity of PNs is a major problem in IR
and citation statistics. The disambiguation of authors whose
names coincide and overlap in the citation indexing systems
calls for methods that distinguish the contexts in which
authors or individuals appear, such as cross-document
co-reference resolution algorithms that use the vector space
model to resolve ambiguities (Bagga & Baldwin, 1998;
Gooi & Allan, 2004; Han, Giles, Zha, Li, & Tsioutsiouliklis,
2004; Wacholder, Ravin, & Choi, 1997), co-occurrence
analysis and clustering techniques (Han, Zha, & Giles, 2005;
Mann & Yarowsky, 2003; Pedersen, Purandare, & Kulkarni,
2005), probabilistic similarity metrics (Torvik, Weeber,
Swanson, & Smalheiser, 2005), or co-citation analysis
and visualization mapping algorithms through a Kohonen
network (X. Lin, White, & Buzydlowski, 2003; McCain,
1990). Underlying identity uncertainty problems, however,
are beyond the scope of the present article.

PNs can be considered object tags that may appear in
many different forms, known as variants. A PN variant can
be described as a text occurrence that is conceptually well
related with the correct form, or canonical form, of a name.
The recognition of the variant of these sequences would
revolve around one of three procedures specified by Thomp-
son and Dozier (1999): name-recognition, name-matching,
and name-searching.

Name-recognition is the process by which a string of
characters is identified as a name. This is done both in data-
base indexing processes and at the time of retrieval, after
parsing the user query. It is widely used to extract names
from texts, as described in the Message Understanding Con-
ferences (MUC-4, 1992; MUC-6, 1995), as part of informa-
tion extraction. In MUC-6, the recognition of the named
entity is considered a key element of extraction systems;
entities include names of persons, organizations, or places as
well as expressions of time or monetary expressions. In
MUC-7 (Chinchor, 1997), the named entity recognition
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implies identifying and categorizing three subareas which
are the recognition of time expressions, numerical expres-
sions, and entity names—persons, organizations, and places.
There are many studies dedicated to the specification of
the formation rules for names (Baluja, Mittal, & Sukthankar,
2000; Bikel, Miller, Schwartz, & Weischedel, 1997,
Coates-Stephens, 1993; Gaizauskas, Wakao, Humphreys,
Cunningham, & Wilks, 1995; Navarro, Baeza-Yates, &
Arcoverde, 2003; Paik, Liddy, Yu, & McKenna, 1993;
Patman & Thompson, 2003; Ravin & Wacholder, 1996;
Wacholder, Ravin, & Byrd, 1994).

Name-matching is the process through which it is deter-
mined whether two strings of characters previously recognized
as names actually designate the same person—name-match-
ing does not focus on the case of various individuals who
have identical name labels. Within this processing, two
situations can arise: (a) The matching is exact, in which case
there is no problem; or (b) the matching is not exact, making
it necessary to determine the origin of these variants and
apply approximate string matching.

Name-searching designates the process through which a
name is used as part of a query to retrieve information asso-
ciated with that sequence in a database. Here, likewise, two
problems can appear: (a) The names are not identified as
such in the database registers or in the syntax of the query, in
which case Name-recognition techniques are needed; and
(b) the names are recognized in the database records and in
the query, but it is not certain whether the recognized names
designate the same person, and so Name-matching tech-
niques must be used.

The setting of application of approximate matching tech-
niques is not substantially different from that of IR itself.
These techniques would be integrated in automatic spelling
correction systems and automatic text transformation sys-
tems to track down correspondences between the correct or
standard dictionary forms and the items included in the data-
base records. A further application would be when matching
query terms with their occurrences in prestored dictionaries
or indexes. Once again, information retrieval through names
entails two points of inaccuracies. First, the documents
might contain one or more terms of the query but with dif-
ferent spellings, impeding successful retrieval. Second, the
documents may not contain the specific terms used in
the query but have equivalent terms, which would again give
rise to a lack of retrieval of relevant documents. The reason
behind both types of inaccuracy is that both the classic
Boolean model and the vector space model only retrieve
relevant documents if they contain exact query terms
(Belkin & Croft, 1987).

Background

Name-matching is just one area of research in IR and
Web search engines (Hayes, 1994; Hermansen, 1985;
Navarro et al., 2003; Pfeiffer, Poersch, & Fuhr, 1996; Spink,
Jansen, & Pedersen, 2004). The identification of PN variants
is a recurring problem for the retrieval of information from
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online catalogs and bibliographic databases (Borgman &
Siegfried, 1992; Bouchard & Pouyez, 1980; Bourne, 1977;
Rogers & Willett, 1991; Ruiz-Perez, Delgado Lopez-Cozar, E.,
& Jiménez-Contreras, 2002; Siegfried & Bernstein, 1991;
Strunk, 1991; Tagliacozzo, Kochen, & Rosenberg, 1970;
Tao & Cole, 1991; Taylor, 1984; Weintraub, 1991). In gen-
eral, the techniques for identifying variants are included
under the common heading of authority work (Auld, 1982;
Taylor, 1989; Tillett, 1989). An authority file serves to estab-
lish the correspondences among all the permitted forms of a
sequence; that is, among any equivalent forms within a par-
ticular bibliographic file. This is particularly important when
different bibliographic databases use different authority con-
ventions, requiring the use of a joint authority file (French,
Powell, & Schulman, 2000).

In retrieving scientific literature and citation indexes, a
variety of formats may be used to cite the same author
(Cronin & Snyder, 1997; Garfield, 1979, 1983a, 1983b; Giles,
Bollacker, & Lawrence, 1998; Moed & Vriens, 1989; Rice,
Borgman, Bednarski, & Hart, 1989; Sher, Garfield, & Elias,
1966). This inconsistency is present in the databases of the
Science Citation Index Expanded (SCI-E), Social Science
Citation Index (SSCI) and Arts & Humanities Citation Index
(A&HCI), produced by the Institute for Scientific Information
(ISI) and now owned by the Thomson Corporation, the Cite-
Seer Project at the NEC Research Institute, or the product
from Elsevier called Scopus. Because citation statistics are
habitually used to assess the quality of scientists’ work, world-
wide, many researchers and policy makers depend on the cita-
tion statistics to help determine funding. Citation inaccuracies
cause serious problems in citation statistics. Therefore,
experts in bibliometric analysis should put extra effort into
validating the accuracy of data used in their studies.

Many studies focus on automatic spelling correction
(Accomazzi, Eichhorn, Kurtz, Grant, & Murray, 2000;
Angell, Freund, & Willett, 1983; Blair, 1960; Cucerzan &
Brill, 2004; Damerau & Mays, 1989; Davidson, 1962; Gadd,
1988; Kukich, 1992; Landau & Vishkin, 1986; Petersen,
1986; Pollock & Zamora, 1984; Rogers & Willett, 1991,
Takahashi, Itoh, Amano, & Yamashita, 1990; Ullmann, 1977,
Zobel & Dart, 1995). A number of studies have highlighted
the context for correcting such errors and eliminating ambi-
guity (Damerau, 1964; Hull, 1992; Mays, Damerau, & Mercer,
1991; Riseman & Ehrich, 1971; Schulz & Mihov, 2002).

Some of the aforementioned problems can be resolved
with the general methodology of spellcheckers, which verify
errors by cross-reference to dictionaries with the correct
forms of any given type of string. In this development,
Salton (1989) distinguished: (a) a process of exact matching
between variants and the word forms stored in dictionaries,
requiring the prestorage of a list of the correct forms along
with the variants. This method is not practical because it
would correct only a small fraction of the variants—those
previously included in the dictionary; and (b) a process of
approximate matching to find the dictionary entries that are as
close as possible to the variants, with no need to establish an
exact correspondence. What is important about this second
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strategy is the definition of the procedure for selecting the
correct form, generally based on the minimization of dis-
tances or on the maximization of the similarity between the
dictionary entries and the variants.

Correction techniques are known to work poorly, however,
when they attempt to verify the spelling of a PN precisely
because the storage process would be unbearably long and
involved in view of the huge diversity of name structures,
owing to historical conventions and cultural characteristics
(Borgman & Siegfried, 1992). All these factors make it very
difficult to justify the application of any single method for the
automatic processing of personal name strings. The interest in
name-finding IR systems has led researchers to develop a sort
of software generally called Name Recognition Technology.
Nevertheless, the decades of investigation have not produced
important advances in name-matching, and to date, no method
affords a definitive solution. Moreover, the spelling-correction
procedures just described neither detect nor correct different
citation formats, which constitute valid variants. To solve this
matter, we would need to develop methods that identify and
group all the valid variants. The approximate matching would
be based on the establishment of similarity and equivalence
relations, among the different variant forms as well as with the
standard form of its equivalence class.

Research Question—The Problem of Personal
Name Variants

The main purposes of this article are (a) to establish a cat-
egorization of the fundamental methods for the identifica-
tion of PN variants within the framework of approximate
string matching techniques, and (b) to develop a procedure
for the automatic recognition and standardization of valid
variants. With these aims in mind, we begin with a classifi-
cation of PN variants as:

® Nonvalid variants, defined here as the variation present
among nonlegitimate variant forms and correct forms. These
include any misspellings of a phonetic or typographic nature,
involving deletions, insertions, or substitutions of characters
in the strings, the incorrect use of capital letters, nicknames,
abbreviations, transliteration problems, and errors of accen-
tuation in the names from certain languages.

® Valid variants, defined here as the variation that is produced
among legitimate variant forms and canonical forms. Among
these variants would be different syntactic formats and struc-
tural errors, such as the lack of some components of a full
name, the absence or use of punctuation marks, the use of
initials, variation in the syntax of names and the order
of sequence of author citation, or permuted string order, due
to particular conventions of the database.

According to this classification, the problem of recogniz-
ing PN variants would be integrated within the techniques of
approximate string matching (Hall & Dowling, 1980), used
to solve two types of problems: (a) similarity problems, cal-
culating coefficients of similarity between nonvalid variants
and correct forms; and (b) equivalency problems, requiring
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the computation of equivalence relations between the valid
variants and standardized forms. This latter type of relation-
ship exists between names that appear different, yet are
interchangeable in specific contexts without leading to a
change in meaning.

Under the approach of equivalence problems, our objec-
tive is to identify equivalent names that refer to the same
person. This means recognizing ambiguous name labels, or
different syntactic formats, of the same name. We consider
these PN valid variants or syntactic formats as patterns
or regular expressions that will be generated in accordance
with a Local Grammar (LG), thus implying the application
of parsing techniques. They will be identified and conflated
by means of finite-state methods. With this objective, we
shall construct binary matrices according to the methodol-
ogy put forth by Gross (1975), and master graphs, or finite-
state graphs, in charge of interpreting the elements of the
matrices, after the procedure proposed by Roche (1993).
The binary matrices and the master graphs will be applied
for a new purpose: the automatic conflation of all valid
variants of these sequences into equivalence classes. The
computer tool used for finite-state graph analysis is a parser
developed by Silberztein (1993, 2000).

Approach to Personal Name Variants:
Similarity Versus Equivalence Relations

The inaccuracies produced by PN variants, in the frame-
work of approximate string matching, could be solved
through statistical similarity measures or with the establish-
ment of equivalence relations between variant forms and
standard forms. The main difference is in their underlying
mathematical concepts. According to Hall and Dowling
(1980), we would have: “Given s in s, find all 7 in 7 such that
s ~ t,” a similarity relation for r, s, and ¢ in s has the proper-
ties: reflexive (s ~ s), symmetric (s ~ t = ¢ ~ §), but not nec-
essarily transitive (r ~ s and s ~ t # r ~ t). For example, the
relationship of similarity between variants of a bibliographic
author name taken from the database Library and Informa-
tion Science Abstracts (LISA) could be as follows:

Reflexive: Melvon Ankeny ~ Melvon Ankeny
Symmetric: Melvon Ankeny ~ Melvon L Ankenny = Melvon
L Ankenny ~ Melvon Ankeny

® Nontransitive: Melvon Ankely ~ Melvon Ankeny & Melvon
Ankeny ~ Melvon L Ankenny # Melvon Ankely ~
Melvon L Ankenny

Nevertheless, departing from the same premises, that is,
“given s in S, find all ¢ in 7 such that s = £, an equivalence
relation for r, s, and # in S holds the properties: reflexive (s = ),
symmetric (s =t = t =), and transitive (r=sand s =t = r=1).
Accordingly, the relationship of equivalence between the
names would be established as follows.

® Reflexive: Melvon Ankeny = Melvon Ankeny
®  Symmetric: Melvon Ankeny = Ankeny, Melvon L = Ankeny,
Melvon L = Melvon Ankeny
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® Transitive: Ankeny, ML = Melvon Ankeny & Melvon
Ankeny = Ankeny, Melvon L = Ankeny, ML =~ Ankeny,
Melvon L

If we conceive name-matching as a problem of similarity
relations, we would have to calculate different similarity
coefficients that would either minimize or maximize the
distance between correct variants and nonvalid variants. On
the other hand, if we approach name-matching as a problem
of equivalence relations, we would have to establish differ-
ent classes of equivalency between standardized variants
and valid variants.

When the identification of variants is carried out through
exact matching, or the retrieval is done through the exact
match between the query terms and the terms stored in the
dictionary or in the database indexes, there would be no
problem. The difficulty arises when the identification of the
variants is done by means of approximate methods. A gen-
eral taxonomy of these techniques is shown in Figure 1. In
later sections, we describe how the different systems resolve
the equivalency of variants using the proposed approaches.

We put forth that string-matching problems will involve
both similarity and equivalence relations, and can be consid-
ered hybrid problems (Hall & Dowling, 1980). Similarity
may be perceived among valid forms, which would influ-
ence the choice of the standard form. Under this approach,
based on co-occurrence analysis (Xu & Croft, 1998), all
variants would be replaced by the standard form. To
bring variants together, clustering algorithms can be applied.
That is, we could establish a relation of similarity as well as
arelation of equivalence between the set of variant instances
that are grouped into equivalence classes.

Similarity Relations

Approximate name-matching methods based on similar-
ity relations are applied for the recognition of the nonvalid
variants. The Damerau—Levenshtein metric, also known as
edit distance, is a measure of string similarity defined as the
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the names s and 7 would be the number of edit operations
that convert s into . Assuming that most misspellings are
single-character errors, as has been shown by different stud-
ies (Damerau, 1989; Petersen, 1986; Pollok & Zamora,
1983), the edit operations would consist of the insertion,
deletion, or substitution of a single character, or the transpo-
sition of two characters, taking into account the cost of each
operation. The Damerau—Levenshtein similarity coefficient
between two names s and ¢ is calculated iteratively using the
function f(i, j), which represents the minimum number of
errors between two strings. If edit operations are produced,
each one would have a cost, giving rise to the so-called Lev-
enshtein distance (Levenshtein, 1965), expressed as follows:

f0,0)=0

S J) = min[f(i —1,j) + 1,
SCij—1+1,
fG—=1,7=1) +ds; 1]

where

d(si, 1) = 0,ifsi =1t
d(s;, lj) =1, lfS,' *1

Applying dynamic programming techniques to obtain the
solution with the optimal value, the recursive relations
of the Levenshtein algorithm count the minimum number of
edit operations needed to transform Namel into Name?2.
For example, if s were Ankeny and t were Ankenny, then
DL(s, j) = 1 because it would suffice to omit one single
character to transform s into 7. The equivalence of the two
names can be represented in a graph by means of the shortest
path, in which the distance between the two PNs would be
situated at the lower right corner of the matrix of Levenshtein
distances (see Figure 2). To calculate the global distance, with
which we would obtain the closest equivalence, we divide the
distance calculated by the length of the longest string using
this equation:

DL(s, j)
minimal number of operations needed to transform one Global distance = ﬁ
. . . max(tt;
string into another (Damerau, 1964). The distance between 7
A N K E N N Y
Name-Maiching Methods (0, 6) (0, 7)
6 7
i l A (1,86) (1,7
Exact Match Approzimate Match 5 6
| N 2,8 @7
| _ | 3 | 4| s
Simdlarity Retarions Equivalence Relations.
{Non Valid Variants - Correst Form) (Valid Variass - Canonical Form) K (3,0) (3, 1) (3,2) 3)| (3,4 (3,5) (3,6) (3,7)
| 3 2 1 o 1 2 3 4
| | E | (4,0 (4D (4,2 4,3 )| (4, 5)| (4,8)| (4,7)
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FIG. 1. Categorization of name-matching methods. FIG. 2. Levenshtein distance between two variant forms of names.
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Thus, we have:

Global distance = =0.14

max(6,7)

The distance between the two strings also could be calcu-
lated using the number of n-grams, as proposed by Ukkonen
(1992). An n-gram of a name s is a substring of s with the
length n. This unit is commonly used as a measure of simi-
larity between strings. The Ukkonen proposal consists of
calculating n-gram distance by means of the following
equation:

> lslgl — gl

8EGUG,

n- gram distance (s, t) =

where G and G; are the sets of n-grams in s and ¢, s[g]
is the number of occurrences of n-gram g in string s, and #[g] is
the number of occurrences of n-gram g in string 7.

If n = 2, the Ukkonen distance for the two PNs s = Ankeny
and t = Ankenny would be calculated as indicated next:

GAnkeny = {An, f’lk, ke, en, ny}
GAnkenny = {Al’l, nk, ke, en, nn, I’ly}
n-gram distance (Ankeny, Ankenny) = 1

Nonetheless, the simple recount of n-grams does not
allow us to take into account string length as a factor (i.e.,
“Gold” has exactly the same n-grams in common with itself
as with “Goldberg”), and moreover, it so happens that in the
PN, the n-grams are not usually repeated. To solve this prob-
lem, Ukkonen (1992) suggested another measure of dis-
tance, g-grams.

q-gram distance (Namel, Name?2)
= lGNamell + lGNameZ' - 2|GNamel N GNameZ'

If Namel = Gold and Name2 = Goldberg, using the method
g-grams with ¢ = 2, the Ukkonen distance would be the fol-
lowing:

q-gram distance (Gold, Goldberg) = 13| + |71 — 2 13|
q-gram distance (Gold, Goldberg) = 4

Within the array of phonetic codings, we have the systems
Soundex (Russell, 1918) and Phonix (Gadd, 1988, 1990).
These methods are based on the assignment of the same key to
those names that have a very similar pronunciation. They are
used to simplify database searches when one knows only the
sound of a name, but not its exact transcription. The Soundex
algorithm, developed and patented by Russell (1918) reduces,
particularly in the case of names in English, the surname to a
code of four characters: The first character is an upper case
letter, and the other three are digits. Knuth (1973) described
this procedure by means of a function that consists of: (a) the
conversion of characters to a phonetic code: 0 = (a, e, h, i,
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o,u,w,y), 1 =, f,p,v),2=1(c, g,k q,s x2),3 = (1),
4 =(I),5 = (m,n), 6 = (r), and (b) an algorithm that replaces
all the characters except for the first with its corresponding
phonetic code, eliminates all the appearances of the code 0
and any other adjacent repetition of codes, and returns only
the first four characters of the resulting string.

Each name in the database is classified in one of these three
ranks with respect to the query: identical, different but sharing
the same code, and not related. A modification of the Soundex
algorithm is the Extended Soundex Algorithm. In this
extended system, the first letters are dealt with in the same
manner as the rest of the letters; that is, the code is purely
numerical, and this speeds up the database examination of
names that sound alike. However, the flaw inherent in these
two codifications is that they do not establish a ranking of the
similar string; therefore, we have a variation of Soundex,
the Phonix system, whose algorithm is more complex than
that of its predecessor. Another code is Metaphone (Philips,
1990), which has an algorithm to phonetically codify words in
English. The difference is that Metaphone only retains the
consonants, and these are reduced to 16 (not digits, though
there are exceptions such as 0 to represent the sound 7H).

The Phonix code is based on the substitution of all the
characters except the first with numerical values, with a slight
variation—0 = (a, e, h, i, 0, u, w, y), 1 = (b, p),2 = (¢, & J,
kq),3=dn1n4=(10),5=mn),6=(r),7=(v),8=
(s, x, z—and in the elimination of all the appearances of the
value 0. The improvements introduced by Phonix are that it
previously carries out some 163 transformations of groups of
letters by standardizing the strings, and the final sounds are
computed. Consequently, it is able to establish three ranks of
similarity established by the words that coincide in their final
sounds, in the prefixes of the final sounds, or that have differ-
ent final sounds.

Taft (1970), in “Name sound techniques,” reports on
the code known as the New York State Identification and
Intelligence System (NYSIIS), developed by the New York
Division of Criminal Justice. The NYSIIS algorithm is
much more complicated than the ones described earlier. It
essentially consists of a code of up to six letters for each
PN. For instance, the algorithm translates the first charac-
ters of a name, such as MCA = MC and PH = F; or the last
characters of a PN, such as EE, YE, IE = Y and NT, ND = D,
while all the vowel sounds are mapped to the letter A.

Noteworthy among the error-correction systems based
on nonphonetic coding is SPEEDCOP (Spelling Error
Detection-Correction Project) (Pollock, 1982; Pollock &
Zamora, 1984), currently used in the databases of Chemical
Abstracts Services. The nucleus of this system is an algorithm
designed to correct misspellings that consist of a single error,
and a dictionary where the correct forms are stored. Its
method of nonphonetic coding captures the essence of the cor-
rect words as well as that of the misspellings, and a word is
corrected when the compared codes collate very closely.
The codes designated as keys can be of two types: “Skeleton
keys” and “Omission keys” (Pollock & Zamora, 1984). The
SPEEDCOP correction strategy is based on the creation of a
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key of similarity for each word of the dictionary and its classi-
fication in alphabetic order. The distance between the ordered
keys constitutes the measure of string similarity.

Beyond the phonetic and nonphonetic codifying systems
is the Jaro—Winkler metric (Jaro, 1989, 1995; Winkler, 1999),
developed by the U.S. Census Bureau. This system is based
on the number and order of characters common to two given
words. Briefly, given the strings Namel and Name2, let s’ be
the characters in Namel that are the same in Name2, and let
t' be the characters in Name?2 that are the same in Namel.
Then, a character a'in s'is “in common’ with ¢/, if the same
character a’ appears in the same order in Name?2, and a char-
acter b'in t'is “in common” with s'if the character b’ appears
in the same order in Namel. A transposition for s"and ¢’ is a
position i such that a’; # b'; (Hence, T, is one half the num-
ber of transpositions for s’ and #'.) The similarity measure
would be found between values 0 and 1, with 1.0 = perfect
match, 0.5 = partial match, and 0.0 = completely different.
The Jaro—Winkler metric for Namel and Name2 would be
contained in the following equation:

Jaro—Winkler(Namel, Name?2)

<1 Is'| ) (1 Il ) <1 Is'l — Tsr,ff>
=(- — |+ (= 4+ (= —
3 |INamell 3 |Name2l 3 Is'l

where s'and ' = Number of matching characters, Namel =
Length of Namel, Name2 = Length of Name2, and Ty, =
Number of transpositions.

If we consider that Namel = Ankeny and Name2 = Ankenny,
the Jaro—Winkler metric would be:

Jaro(Ankeny, Ankenny)

(-9 (5)

Jaro(Ankeny, Ankenny) = 0.8

Another measure of the similarity of names, but this time
based on approximate spellings, is the Longest Common
Subsequence Ratio (LCSR), proposed by Melamed (1999).
Two names would be related if they have a certain number of
characters in common. The LCSR of the two names, Namel =
Ankeny and Name2 = Ankeny, is defined by the ratio of
length (not necessarily continuous) of their Longest Com-
mon Subsequence (LCS) and the length of the longest name.

LCSR(Namel, Name?2)

B length [LCS (Namel, Name2))]
max [length (Namel), length (Name2)]

6
LCSR(Ankeny, Ankenny) = 7 = 0.85

Finally, the measure of similarity based on n-grams uses a
function of binary identity to compare orthographic characters

—p—

by means of the Dice coefficient (Angell et al., 1983; Salton,
1989; Zamora, Pollock, & Zamora, 1981), or trigrams
(Church, 1988). The similarity between two names, Namel =
Ankeny and Name2 = Ankenny, on the basis of the Dice
coefficient, would be calculated using the following equation:

Dice(Namel, Name?2)

_ 2|bigrams (Namel) N bigrams (Name2)|

B |bigrams (Namel)| + |bigrams (Name?2) |
. 14
Dice(Ankeny, Ankenny) = 15 =0.93

In lieu of this coefficient, some other measure of the degree
of association between two binary variables could be used,
such as the ® coefficient, ¢ score, odds ratio, or log likeli-
hood ratio.

Equivalence Relations

The approximate name-matching methods based on
equivalence relations are applied for the recognition of the
valid variants of a PN. An equivalence relation in a set S is a
binary relationship between pairs of elements of S that fea-
ture the properties of reflexivity, symmetry, and transitivity.
Thus, given an equivalence relation in S, the class of equiv-
alence of an element x of the set S, x € S, would consist of all
those elements s of the set S, s € S that are related with the
element x. To indicate the class of equivalence of x, the fol-
lowing annotation can be used:

clalx] = {s € S; s = x}

The relations of equivalence of strings are presented as
“Given s in S, find all t in T such that s = t.” Consequently,
the search for classes of equivalence between PNs could be
defined as: “Find all the elements 7 in 7 which are in the
same equivalence class as the search string s.” The equiva-
lence class would be characterized as a representative mem-
ber of the class defined as the canonical form. Hence, the
problem of the search for equivalent names could be refor-
mulated, along the reasoning of Hall and Dowling (1980),
as: “Find all the elements t in T which are in the same canon-
ical form as the search string s.”

We assume that the association of variant instances with
canonical forms would be included within the general
framework of the reduction of strings to standard forms.
Therefore, it would be necessary to use term conflation
methods; that is, methods for the standardization and
unification of terms belonging to the same equivalence class.
The techniques for term conflation most widely used involve
stemming algorithms. We focus on the grouping of multiple
variations of a PN that is to be mapped into a canonical form,
or single class, by means of: (a) equivalence class based on
co-occurrence analysis and (b) equivalence class based
on finite-state transducers (FST).
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Equivalence classes can be built using co-occurrence
analysis, according to Croft and Xu (1995; Xu & Croft,
1998), who designed a corpus-filter to select word variants
for stemming. Their hypothesis is that the word forms that
should be conflated for a given corpus will co-occur in doc-
uments from that corpus. This proposition attempted to map
multiple variations into a single class by means of the
Expected Mutual Information Measure (Church & Hanks,
1990; van Rijsbergen, 1979). Arriving at equivalence class
on the basis of statistical association involves checking word
co-occurrence and similarity measures. After binary rela-
tions are established, the words are grouped in clusters of
highly similar terms.

In a potential application of Mutual Information (MI) to
the standardization of PN, the joint probability of two PN
components would compare with the probability that they
appear independently. If two components ¢ and ¢, have the
probabilities P(c;) and P(c;) of occurrence, then the MI
similarity coefficient would be obtained by applying the fol-
lowing equation:

P(Cla CZ)

Ml(cy, c;) = log, PE)P@)
1 2

where P(cj, ¢y) is the joint probability of two components
(c1, ¢) in the corpus, P(c) is the probability of the indepen-
dent occurrence of the component ¢ in the corpus, and P(c;)
is the probability of the independent occurrence of the word
¢ in the corpus. Probabilities P(c;) and P(c;) are calculated
by counting the frequency of occurrence of f{c;) and f{c;) in
a corpus. The joint probability P(ci, ¢3) is the count of the
frequency with which c; is followed by ¢, within a parame-
ter or set of components f.(c;, ¢z), normalized in corpus N:

Nf(cy, ¢;)
flepf(cy)

Equivalence classes would comprise the PNs that share
n-grams, by refining these classes with clustering tech-
niques. Probabilistic modeling with n-grams would take into
account the context where these PN components appear. The
co-occurrence of n-grams for a PN component ¢; would be
the set of probabilities that the component is followed by an-
other component, for each possible combination of ¢; in the
vocabulary of that language. The linking coefficient between
n-grams also would be calculated by MI to obtain the asso-
ciation matrix of the conditioned probability of a component
¢; being followed by other components.

In a unigram, bigram, or trigram bigram model, the proba-
bility for ¢y, ¢ . . . ¢, would be the product of P(c;), P(cici-1),
and P(cjlc;—» ci—1). To calculate these probabilities, we would
need the associated expected frequencies from the estimation
parameters of P(c;) = f(c;)/ N, P(cilci—1) = f(ci—1, c)l f(ci-1),
and P(cilci—2, ci—1) = f(ci-2, ci-1, ¢i) | f (¢ci-2, ci—1). To con-
struct the association matrix in the case of a bigram model,
we would apply an adaptation of the MI similarity coeffi-
cient, with which the probability of the co-occurrence of
component c¢; along with word c;—; is obtained, as well as

MI(c,, c;) = log,

—p—

the independent probability of the occurrence of component
c; and of word ¢ —;:

P(cy|c-y)

MlI(c\,¢,_y) = logy —————
P(c))P(c,_y)

Overall, a high score of MI(cy, ¢;) > 0, would indicate that
there is a genuine association between two components,
and so they are very likely to occur together. The lowest
coefficient, MI(c;, ¢3) < 0, would show a complementary
distribution. A low score of MI(c1, ¢;) = 0 would point to an
irrelevant association. This result is represented as a coordi-
nate on a vector, and then, on the basis of vector similarity
measures, component clustering is effected.

The normalized similarity matrix would characterize the
associations of PN components, from which they could be
conflated into a single class, or the canonical form, by means
of a clustering technique such as the hierarchical method of
simple linking. There are a number of variants of clustering
which can give different groupings depending on the ag-
glomeration rule applied. There is therefore no single solu-
tion to this conflating process; rather, at any given stage in
the fusing process, the most satisfactory PN for the grouping
is obtained. Finally, the PN class is identified for each com-
ponent cluster.

Nevertheless, the hypothetical application of statistical
methods for PN conflation would have serious weaknesses.
First, there would be a tendency to group PNs representing
very different name structures because the number of fre-
quencies is different than the similarity coefficient (Church &
Hanks, 1990). Therefore, the joint probabilities are symmet-
ric, P(cy, ¢2) = P(ca, ¢1), and the similarity coefficient also is
symmetric, yet the ratio of frequencies is asymmetric,
f(c1, ¢2) # f(ca, cy). For instance, f(Melvon, Ankeny) #
f(Ankeny, Melvon). A second drawback would be manifest
with the use of initials, the use of punctuation marks, the per-
muted component order, abbreviated PNs, and, more impor-
tantly, the lack or nonappearance in many cases of some
components of a full name. Consequently, the process of
normalization using only the co-ccurrence of components
can generate inaccuracies and statistically significant names
that would be compositionally incorrect. All these factors
suggest ineffective conflation performance if applied to PNs.

We defend the application of FST for the recognition
and grouping of the different variants into an equivalence
class that would be configured as the standard form. One
application of FST is to establish a Regular Relation
between input strings and output strings. Briefly, an FST,
sometimes referred to as a Mealy Machine (Hopcroft &
Ullman, 1979), is a system comprising a finite set of states
and a function of transition, which defines the changes
of the state. The transition function is tagged with a pair of
symbols, which proceed respectively from an input alpha-
bet and an output alphabet. This mechanism can be repre-
sented in the form of finite-state graphs or transition
diagrams, or else as a matrix or transition table. The FST
accept input strings and associate them with output strings.
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Formally, an FST is referred to as a quintuple (Roche &
Schabes, 1995) expressed as shown next:

FST= (Z,0,i,F,E)
where

S, = input and output alphabet

Q = number of states

i = initial state, i € Q

F = final state, F c Q

E = number of transition relations, E c Q

X3 U{e} XT*XY

Finite-state mechanisms are used to accept and unify vari-
ant instances and transform them into standard forms. The
linguistic toolbox Intex 4.33 (Silberztein, 1993, 2000) will
allow us to create finite-state graphs to later convert them
into FSTs by means of a compiler. The finite-state graph
(Figure 3) would represent the possible structures making
up the variants of a name, and produce as output the struc-
ture selected as the standardized form of that PN. In this
case, we have proposed the format of author citation used
by the ISI, although we could have opted for any other par-
ticular format.

Once the finite-state graph is compiled in an FST, the ap-
plication itself allows its transformation into a table or tran-
sition matrix (Table 1) where the following components are
specified:

—p—

) ©

4
Ankeny ML

FIG. 3. Representation of a finite-state graph that conflates the name
variants into a standardized format.

Number of alphabet symbols, or vocabulary, 2 = 10, that
is,2 = (“L”,“M”, “ML”, “Melvon”, “Ankeny”, “.”, “-7,“,”,
“<E>/Ankeny ML”, “<E>"), where the symbol <E> rep-
resents the empty string.

Number of FST states, Q = 17

Initial state, i = 0.

Final state, F = 1.

Number of transitions between states, £ = 34, where
each transition is defined by a 3-tuple: current state, symbol,
outgoing state.

TABLE 1. Result of the transformation of the finite-state graph into a transition table.

/I Characteristics of the FST

#define NUMBER_OF_STATES 17 // states are numbered from 1 to NUMBER_OF_STATES
#define NUMBER_OF_SYMBOLS 10 // symbols are numbered from 0 to NUMBER_OF_SYMBOLS-1

#define NUMBER_OF_TRANSITIONS 34
/I FST Alphabet/Vocabulary

static const char *symbolsf NUMBER_OF_SYMBOLS]={

“L”,“M”,“ML”,“Melvon”,“Ankeny”,“.”,“—",“,”,“<E>/Ankeny ML”,“<E>”};

// EST terminal states: 0=non terminal; 1 =terminal

static const char terminal state[NUMBER_OF_STATES+1]={
N07,07,40°,07,07,07,07,\0°,07,0,\0°, 07,07, 07, \0,\1°,0°,0” };

/I ST transitions: each transition is a 3-tuple (current state, symbol, outgoing state)
static const int transitionsf NUMBER_OF_TRANSITIONS*3]={

1,1,2,1,2,3,1,3,4,1,4,5,
2,0,6,2,4,7,2,5,8,2,6.8,
3,4,7,3,5,8,3,6.8,

4.4/,
5,1,9,5,3,10,5,6,11,5,7,12,
6,4,7,6,5,8,6,6.8,
78,15,

8,47,
9,0,13,9,5,14,9,8,15,
10,0,16,10,6,17,10,8,15,
11,3,10,

12,1,9,12,3,10,

13,8,15,

14,8,15,

16,8,15,

17,0,16

15
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TABLE 2. Language generated by the finite-state graph.

Ankeny M => Ankeny ML
Ankeny Melvon => Ankeny ML
Melvon Ankeny => Ankeny ML
ML Ankeny => Ankeny ML

M Ankeny => Ankeny ML

M - Ankeny => Ankeny ML

M. Ankeny => Ankeny ML

M L Ankeny => Ankeny ML

ML - Ankeny => Ankeny ML
ML. Ankeny => Ankeny ML
Ankeny, M => Ankeny ML
Ankeny, Melvon => Ankeny ML
Ankeny - Melvon => Ankeny ML
Ankeny - Melvon - L => Ankeny ML

Ankeny Melvon L => Ankeny ML
Ankeny M L => Ankeny ML
Ankeny M. => Ankeny ML

Ankeny Melvon - L => Ankeny ML
Ankeny - Melvon L => Ankeny ML
Ankeny, Melvon L => Ankeny ML
Ankeny, M L => Ankeny ML
Ankeny, M. => Ankeny ML

M L - Ankeny => Ankeny ML

M L. Ankeny => Ankeny ML
Ankeny, Melvon - L => Ankeny ML
Melvon L Ankeny => Ankeny ML
Melvon L- Ankeny => Ankeny ML
Melvon L. Ankeny => Ankeny ML

FST, within the framework of the approximate string
matching techniques, is a technology applied to identify and
group all possible valid variants of a PN. These variants
would belong to the same equivalence class—characterized
as a representative member of the class. The finite-state
graph obtained generates and recognizes 28 variant formats
of the PN “Melvon L. Ankeny” and conflates then into the
canonical form “Ankeny ML” (Table 2).

The finite-state graphs could be used in IR systems to
index together all the variants, and to locate all these vari-
ants in the texts of databases. This procedure therefore
promises greater control of database index entries; how-
ever, its use within the IR systems environment would be
inefficient, as it would require the hand-drawn representa-
tion of each equivalence class and the thousands of variants
that these sorts of sequences might have. The next sections
will describe a semiautomatic procedure that would allow
us to recognize and unify the valid variants into standard
forms.

Methodology

The automatic method for the identification and the
conflation of the valid variants of a PN into equivalence
classes that we propose entails three phases. The first step
is the exhaustive and systematic analysis of the compo-
nents of this type of noun phrase. These sequences will be
generated by means of formation rules in a task-oriented
grammar, according to the classification of Pereira (1997),
defined as a set of units and rules designed for a specific
application; however, under the approach we adopt, the
formation rules are to be constructed in an indirect manner,
through the automatic conversion of the elements stored
previously in binary matrices (Gross, 1975, 1997). At the
same time, this calls for the construction of a master graph
(Roche, 1993, 1999), or finite-state graph, that will be in
charge of interpreting the elements and the properties
described in the matrices, giving rise to the indirect gener-
ation of a grammar.

In principle, the binary matrices, or lexicon-grammar
matrices, are conceived as a mode of linguistic representation
that does not separate grammar and lexicon to describe
simple, elementary linguistic sequences such as PNs. This
methodology was heavily influenced by the transformational
grammar of Harris (1951), articulated essentially around
systematic relationships between syntactic structures and
lexical units. The actual attempt to apply binary matrices to
the recognition of certain text expressions, however, began
with the construction of master graphs (Roche, 1993, 1999;
Senellart, 1998), giving rise to the first computational
formalism able to generate automata and transducers
from the data stored in a binary matrix. This notion, in
turn, was inspired by the Recursive Transitions Network
(Woods, 1970).

Formation Rules for PNs

An LG consists of rigorous and explicit specifications
of particular structures, and is formally defined as a tuple of
four elements (N, T, S, P) (Hopcroft & Ullman, 1979), where
N would be an alphabet of nonterminal symbols, 7 would be
an alphabet of terminal symbols, S would be an initial symbol
belonging to the nonterminal alphabet, and P would be
the set of formation rules built manually for the generation
of the possible structures. As we consider the PNs to be
phrases, the LGs would generate the structures of these
sequences.

Before developing the LG, we must define the linguistic
phenomena we wish to represent. The habitual procedure
consists of devising a list of constructions or specifications.
Another technique consists of departing from an assembly of
model constructions, which may be real examples that appear
in the sample, that serve to guide the development of the LG.
We used this second procedure, taking a sample of PNs from
the LISA and SCI-E databases. The collection need not be
very large, as there are only so many legitimate structural
forms of names. Thus, after a certain point, the larger the
sample, the lesser the variations. Thus, the LG for PNs would
be defined through the following components.
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An alphabet of nonterminal symbols, N, or variables,
made up of:

INA1, NA1, INA2, NA2, Part,
INA1_INA2_INPart, INA1_INA2_INSURI,
INSUR1, SURI, SUR2, SUR3

whose annotation would be:

INA1 Initial of Namel
NA2 Namel
INA2 Initial of Name2
NA2 Name?2
Part Particle

INA1_INA2_INPart Initial of Namel_Initial of
Name?2_Initial of Particle
Initial of Namel_Initial of

Name2_Initial Particle_Initial of

INA1_INA2_INPart_INSURI

Surnamel
INSURI1 Initial of Surnamel
SURI1 Surnamel
SUR2 Surname?2
SUR3 Surname3
PUNC Punctuation marks

An alphabet of terminal symbols, T, with a constant value,
that are grouped inside a dictionary or lexicon, made up of:

“-”) “! ”) “',’) A) B) C) D! E) F; G) H! I! ‘]) K) L’ M)
N, M, N, O, P.K R, S, T, V. W, Abate, Abbott
Abrahamsson, Adams, . . .

An initial symbol S, or initial variable of the LG, defined
as PN (Personal Name) Name Formation rules, P, for the
generation of the corresponding structures, some of which
might be the following:

PN — NA1 SUR1

PN — INA1 INA2 SUR1

PN — NA1 NA2 SUR1 SUR2

PN — INA1 SUR1 PUNC(-) SUR2

PN — NA1 NA2 Part SUR1

PN — INA1_INA2_INPart SUR1

PN — SUR1 PUNC (,) NA1

PN — NA1 SUR1 PUNC (-) SUR2
PN — NA1 SUR1 SUR2 PUNC (-) SUR3

There are different types of grammars, depending on the
formation rules. Chomsky (1957) classified the grammars
in four major groups—known as the hierarchy of Chomsky—
for which each group includes the next one (G3 C G2 C Gl
C GO0). The grammars of one type generate the strings corre-
sponding to one type of language type, L(G). The generative
power of each grammar is determined by the type of strings
of a language that it is capable of generating, Type 3 C Type
2 C Type 1 C Type 0. Thus, Regular Grammars, G3, gener-
ate Type 3 languages; that is, they are the ones with the most
limited generative power. Even so, this type of grammar is
expressive enough to generate the possible structures of
PNs. Table 3 shows an extract of a simple grammar con-
structed for a name.

—p—

TABLE 3. Extract of a Local Grammar for a Personal Name.

Nonterminal symbols Terminal symbols

Formation rules (variables) (constants)
NA1 SURI1 PN Melvon
NA1INA2 SURI NA1 M

SURI1 NAI NA2 L

SURI INA1 INAL1 Ankeny
SURI1 INAIT INA2 INA2

SURI1 NAI-INA2 SURI

Given that the grammars provide the rules used in the
generation of the language strings, a connection is estab-
lished between the classes of languages generated by certain
types of grammar and the classes of languages recogniz-
able by certain machines. Regular Languages can be charac-
terized by Regular Grammars and are recognized through
Finite-State Automata (FSA)—an equivalence existing
between the Regular Grammar and the FSA. Basically, an
automata or machine is an abstract mechanism that carries
out a series of operations on entry strings and determines
whether a given string belongs to one language or another. In
this way, the automata are classified according to the type of
language that they recognize. An FSA is made up of states
and tagged arcs. Each arc represents a transition between
two states, there being two main kinds of states: initial states
and final states. In the FSA, the states are represented by
means of circles or boxes, and the arcs by means of arrows
indicating the direction of the transition.

‘We assume that the possible structures of the PN belong to
Regular Languages, Type 3, generated by an LG or Regular
Grammar, G3, and accepted by finite-state machines. Under
this understanding, the grammars that characterize this type
of noun phrase will be built indirectly, by means of a semi-
automatic procedure that can convert binary matrices into
LGs, according to the methodology that we will proceed
to describe.

Binary Matrix for PNs

The nonterminal and the terminal components of the LG
are represented together in a binary matrix, using a spread-
sheet application, according to the methodology conceived
by Gross (1975, 1997), which establishes the behavior of
each one of the elements that integrate the PN structures.
The format of the matrix has the following specifications:

The columns contain variables; that is, the parts or PN
zone (e.g., INA1, NA1, INA2) and the names of the proper-
ties (e.g., Part).

The intersection of a PN zone (column) and a lexical
entry (row) contains a sequence of constants (i.e., “M,” “L,”
“Melvon,” “Ankeny”’) or the symbol < E>, which is used to
represent the empty string. The rows corresponding to the
lexical entries can never be empty, and the data must be
homogeneous.

The intersection of a property (column) and the property-
coding (row) contains the symbol (+) if the lexical entry
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admits the property or the symbol (—) if the lexical entry
is not admitted. Likewise, the rows corresponding to
the properties cannot be empty, and the data must be
homogeneous.

The binary matrices constitute a uniform organization
for the representation of the PN components, which proves
very efficient for the later computational processing.
For the description of the structures of names, we devel-
oped a 464 X 11 matrix for LISA and a 210 X 11 matrix
for SCI-E. Table 4 shows an extract of one of the special-
ized matrices. Nonetheless, these tables are simply a
representational resource, not an automatic mechanism to
be applied to the texts with the objective of recognizing
certain sequences.

TABLE 4. Excerpt of a binary matrix for Personal Names.

—p—

Master Graph for PNs

To use the binary matrix, a master graph must be built to
for interpreting the information codified therein. The auto-
matic procedure for transforming the matrices into finite-
state mechanisms, which can indeed be used for texts, was
first described by Roche (1993), though for a different pur-
pose than the one we suggest. The procedure consists mainly
of the construction of a master graph, or finite-state graph,
which contains references to the cells of the binary matrices.

The master graph is related with the contents of the
matrix through referential variables @A, @B, @C, @D, . . .
where the variable @A refers to the contents of the first col-
umn, and variable @B refers to the contents of the second
column. In turn, the master graph can be represented in

A B C D E F G H 1 J K
INA1_ INAI_INA2_
INA2_ INPart_
INAL NA1 INA2 NA2 Part INPart INSURI  INSURI SURI1 SUR2 SUR3
M Marie A <E> - MA MAA A Abate <E> <E>
J John P <E> - JP JPA A Abbott <E> <E>
B Bernadine E <E> - BE BEA A Abbott Hoduski <E>
S Sixten <E> <E> - <E> SA A Abrahamsson <E> <E>
A Audrey M <E> - AM AMA A Adams <E> <E>
D <E> M <E> - DM DMA A Adams <E> <E>
M Michael Q <E> — MQ MQA A Adams <E> <E>
P Peter M <E> - PM PMA A Adams <E> <E>
G George w <E> - GW GWA A Adamson <E> <E>
M <E> R <E> - MR MRA A Aderibigbe <E> <E>
M Mary L Lynn - ML MLA A Ainsworth <E> <E>
M Michael J <E> - MJ MIJA A Aldrich <E> <E>
B Bettie <E> <E> - <E> BA A Alexander Steiger <E>
F Frank H <E> - FH FHA A Allen <E> <E>
M Melvon L <E> - ML MLA A Ankeny <E> <E>
P Pauline <E> <E> - PM PMA A Atherton Cochrane <E>
S Steven D <E> - SD SDA A Atkinson <E> <E>
E Ethel <E> <E> - <E> EA A Auster <E> <E>
J Joyce EB <E> - JEB JEBB B Backus <E> <E>
S Shelley A <E> - SA SAP B Bader <E> <E>
E Edward W <E> - EW EWB B Badger <E> <E>
M Mitchell M <E> - MM MMB B Badler <E> <E>
R Ricardo <E> <E> - <E> RB B Baeza Yates <E>
S Sharon L <E> - SL SLB B Baker <E> <E>
C Carol M <E> - CM CMB B Bamford <E> <E>
A Andrea S <E> - AS ASB B Banchik <E> <E>
G Gordon S <E> - GS GSB B Banholzer <E> <E>
D Derek H <E> - DH DHB B Barlow <E> <E>
J John M <E> - M JMB B Barnard <E> <E>
J Joyce M <E> - M JMB B Barrie <E> <E>
J Jean P Pierre - JP JPB B Barthelemy <E> <E>
K Kenneth H <E> - KH KHB B Baser <E> <E>
R Rashid L <E> - RL RLB B Bashshur <E> <E>
M Marcia J <E> - MJ MIJB B Bates <E> <E>
D David <E> <E> - <E> DB B Bawden <E> <E>
M Mark P <E> - MP MPB B Bayer <E> <E>
P Pierre M Marie - PM PMB B Belbenoit Avich <E>
N Nicholas J <E> - NJ NJB B Belkin <E> <E>
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—November 2007 11

DOI: 10.1002/asi

o



ASI5813_0000_20671.gxd

9/12/07 11:41 PM Page 12

the form of an Enhanced Finite-State Transducer (EFST),
defined as an FST that contains internal variables used dur-
ing the parsing to order or classify the parts of the sequences
recognized. The internal variables of the EFST are intro-
duced as tagged parentheses around the corresponding
sequences and are identified by the symbol ($). The use of
EFST variables allows us to order and realize permutations
or insertions in the recognized sequences. Basically, the
components of a PN are distributed into the categories: first,
middle, and last name (Ravin & Wacholder, 1996). Thus, the
variables that we propose for the ordering of the PN sequences
would be the following: $F (First Name), $M (Middle Name),
and $L (Last Name).

The semiautomatic process that converts binary matrices
(with nonterminal and terminal symbols) into grammars is
based on the fact that for each row of the binary matrix,
the corresponding LG is generated by means of a path in the
master graph. First, if the variable refers to a lexical entry,
the variable is replaced by the lexical element. Second, if the
variable refers to the code (+), the path is maintained
whereas if it refers to the code (—), the path is abandoned or
rejected. The punctuation marks, as an additional LG ele-
ment, are introduced directly into the master graph.

In Figure 4, we show a finite-state graph in charge of rec-
ognizing certain sequences of a PN, and relate them with
those elements of the matrix that are to form part of the stan-
dardized string. The standard form that we have selected as
representative of the equivalence class is defined by the for-
mat for author citation used by the ISI; that is, SUR1 INA1
INA2.

With this procedure, not only do we achieve the semiau-
tomatic construction of the grammar that will generate com-
binations of the thousands of possible variant instances
stored in the matrices but we also automate the construction
of the FST in charge of recognizing them and conflating
them into canonical forms. The extensive finite-state graph
elaborated for the automatic construction of this LG is pre-
sented in Figure 5.

With this procedure, we manage to build a grammar capa-
ble of describing some 1,860 rules, corresponding to the
number of possible structures of PNs. Nevertheless, the ap-
plication of this approach has a limitation: The finite-state
graph cannot be used to generate name structures but only to
recognize them. For instance, the rule PN — SUR1 INA1
INA2 that would describe the PN “Ankeny ML” according to

3 )
+()()(H—@

$F $M SL@1 @ A@C

Recognized Variants (SF $M $L) Standard Form (@1 @A@C)

M. L. Ankeny Ankeny ML
Melvon Ankeny

ML Ankeny

ML- Ankeny

Melvon L. Ankeny

FIG. 4. Excerpt of a finite-state graph for Personal Names.

—p—

4
SLSFML,@I @A@C

SLSF $M, @I @A@C

FIG. 5.

Master graph for Personal Names.

the data of the matrix cannot be generated for this formalism,
and therefore the finite-state graph would be restricted to
identify the expression produced for this rule. On the other
hand, because our aim is to recognize and conflate the struc-
tures into canonical forms, the master graph is configured
as an FST graph, whose outputs associate the recognized
sequences with those elements of the matrix considered to be
the components of the standard form.

Evaluation Procedure

In this section, we evaluate the appropriateness of binary
matrices and of the master graph for the identification of the
PN variants. This procedure was tested on two samples of
author names from bibliographic records, selected from a
test list of 580 PNs, after removing the duplicates, from
1,382 records randomly selected from a search in LISA
1969-2004/2008; and a test list of 234 PNs, after removing
the duplicates, extracted from 420 records selected from a
search in SCI-E. All these records were retrieved through the
Web of Science, with at least one author affiliation belonging
to the research address “University of Granada, Department
of Comp Science & Artificial Intelligence” in the field
Addresses. The set of references obtained was imported to
a bibliographic management system, ProCite database
(Version 5.0), to automatically generate a list of variants that
could be quantified in the evaluation. Before attempting
analysis, the list was put through a series of transformations
so that it could be processed in the text-file format and
segmented it into sentences.

The next step was to apply the master graph to the occur-
rences of the selected variants. The fact that we have limited
our consideration to a general sample found in LISA and to
a specific sample inside SCI-E does not bias the results, as
these records show great variability of name structures. The
evaluation involved calculating the measures of precision
and recall, based on completeness and accuracy, of effects
on conflation performance but not actual retrieval. Precision
could be redefined as the ratio of valid variants conflated
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from among the total variants identified by the finite-state
graph. Recall would indicate the proportion of terms that are
conflated with respect to a set of sequences of evaluation.
We shall redefine it as correct variants conflated over total
possible variants susceptible of normalization. One measure
of performance that takes into account both recall and preci-
sion, the F' measure (van Rijsbergen, 1979), stands as the
harmonic mean of recall and precision (as compared to
the arithmetic mean), which exhibits the desirable property
of being highest when both recall and precision are high.
Calculation entails the following equations:

Number of Correct Variants Normalized
Total Number of Variants Identified

Precision (P) =

Number of Correct Variants Normalized

Recall (R) = ; .
Total Number of Possible Variants
_ (B> + PR
P~ BP+R

Additionally, to evaluate the compression factor of frac-
tional reductions in index size by means of conflation meth-
ods, we apply an adaptation of the Index Compression Factor
(ICF) (Frakes & Fox, 2003), calculated using the equation:

ICF
__ (Total Number of Possible Variants — Number of Variants Conflated)
B Total Number of Possible Variants

An extract of the data obtained is given in Table 5. The
items in bold contain some type of misspelling or abbrevia-
tion. These sequences are included within the nonvalid
variants, and therefore are not normalized by the method we
have described.

Results and Discussion

We shall now expound and analyze the results of apply-
ing the master graph to the lists of author indexes. As shown
in Table 6, the variants are identified with a precision of
99% in LISA and 98% in SCI-E. Results in both cases were
very good, with F scores exceeding 98 and 95%, respec-
tively. This very high precision index can be explained by
the fact that the application was geared to a specific task, and
all the possible PN structures were previously and exhaus-
tively specified. That is, the information to be identified by
the master graph was predetermined in the binary matrix.
A further explanation of computational efficacy could be
invoked: PN formation rules are straightforward, and for this
reason, the finite-state mechanisms recognize the corre-
sponding structures without any great difficulty.

The problems of overanalysis or structural ambiguity
(when the construction can be analyzed in a number of
ways, all of them correct), present in most systems that
recognize patterns in practical situations, do not occur here

—p—

because the master graph is closely guided by the data
stored in the binary matrices. Even so, erroneous analysis
occurred in 1% of the cases in LISA and in 2% in SCI-E
because the master graph processes certain nonvalid
variants as if they were valid (e.g., for a nonvalid variant
such as “Aldrich Mike,” only the component “Aldrich” is
recognized, giving rise to this margin of error in precision).

In the recall phase of the experiment, the model recog-
nized 98% of the variants in LISA, with F scores of 98% as
well. This very high percentage is due to the master graph’s
capacity for generating and analyzing a great number of PN
variants; however, if note that it was designed to identify
some 1,860 structural variants of a single PN, recall should
have been complete. The underanalysis, or lack of recall
produced when the grammatical formalisms can detect only
combinations specified in the matrices, stems from spelling
errors. In LISA, the system did not manage to recognize 2%
of the PN variants; the sequences with misspelling (e.g.,
“Marchioni Gary” for “Marchionini Gary”) could not be
analyzed by the master graph.

In SCI-E, the variants are identified with a recall of 92%,
meaning the master graph was not able to recognize 8% of
PNs. Results in this case are relatively good, with F' scores
under 95%. The inaccuracies are caused, aside from mis-
spelling, by some compound Spanish surnames that may
appear with a variety of errors, such as the first surname run
in with the second surname (e.g., “Gomezskarmeta AF” for
“Gomez-Skarmeta AF”), the particle or articles of the sur-
names mistakenly united to the first or second surname
(e.g., “Delablanca NP” for “De La Blanca NP”), and the
abridgment of some surnames (e.g., “Fdez-Valdivia J” for
“Fernandez-Valdivia J”). As all these sequences with errors
and inexactitudes have no correspondence to the terminal
symbols stored in the matrices, such problems cannot be
avoided under this procedure.

Moreover, the application of the master graph achieves an
ICF of 23% of the variants in LISA, meaning that if the total
possible variants of the sample were 580, with this proce-
dure we would achieve a reduction to 447. In SCI-E, the ICF
arrives at 12%, meaning that if the total possible variants
of the sample were 234, with this method they would be
reduced to 205. The fact that the procedure we present man-
ages to reduce the possible variants to this extent can be
considered a satisfactory result.

Aside from the problems originated by the errors, an
additional weakness of this approach is that we will not know
exactly what constructions might appear in a collection, and
yet we must mention a priori the type of PN structures to be
processed before beginning to develop the model. The options
are therefore either to devise a list of the constructions that
we propose us to process or to limit the task to real examples
taken from the domain of the application. The size of the
collection does not necessarily have to be very large because
the proportion of name formats diminishes as the sample in-
creases. In any case, the master graph should be capable of
processing at least those structures that appear in the specifi-
cations or in the sample.
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Excerpt of data obtained from the application of the master graph in a selection of author names found in LISA.

Possible Variants (LISA)

Variants Identified

Valid Variants Normalized

Valid Variants Conflated

1
2

W

e e Y

10
11
12
13
14
15
16
17
18
19

21

. Abate Marie A

. Abbott John P

. Abrahamsson S

. Abrahamsson Sixten
. Adams Audrey M
.Adams DM

. Adams Michael Q

. Adams Peter M

. Adamson George W
. Aderibigbe M R

. Ainsworth Mary Lynn
. Aldrich M

. Aldrich M J

. Aldrich Michael

. Aldrich Michael J

. Aldrich Mike

. Alexander Steiger Bettie

.Allen FH

. Allen Frank H

. Ankenny Melvon L
. Ankeny Melvon

. Atherton Cochrane Pauline

. Atkinson S

. Atkinson Steve

. Atkinson Steven D
. Auster E

. Auster Ethel

. Backus Joyce E B
. Bader Shelley A

. Badger Edward W
. Badler Mitchell M
. Baker S

. Baker Sharon L

. Bamford Carol M
. Banchik Andrea S
. Banholzer Gordon S
. Barlow D H

. Barlow Derek H

. Barnard J M

. Barnard John M

. Barrie Joyce M

. Barthelemy Jean Pierre
. Baser Kenneth H

. Bashshur Rashid L
.Bates M J

. Bates Marcia

. Bates Marcia J

. Bawden D

. Bawden David

. Bayer Mark P
.Belkin N J

. Belkin Nicholas

00N NN B W —

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

. Abate Marie A, Abate MA

. Abbott John P, Abbott JP

. Abrahamsson S, Abrahamsson S

. Abrahamsson Sixten, Abrahamsson S
. Adams Audrey M, Adams AM

. Adams D M, Adams DM

. Adams Michael Q, Adams MQ

. Adams Peter M, Adams PM

. Adamson George W, Adamson GW
. Aderibigbe M R, Aderibigbe MR

. Ainsworth Mary Lynn, Ainsworth ML
. Aldrich , Aldrich MJ

. Aldrich M , Aldrich MJ

. Aldrich M J, Aldrich MJ

. Aldrich Michael , Aldrich MJ

. Aldrich Michael J, Aldrich MJ

. Alexander Steiger Bettie , Alexander B
. Allen F H, Allen FH

. Allen Frank H, Allen FH

. Ankeny Melvon, Ankeny ML

. Atherton Cochrane Pauline, Atherton P
. Atkinson , Atkinson SD

. Atkinson S, Atkinson SD

. Atkinson Steven D, Atkinson SD
Auster E, Auster E

Auster Ethel, Auster E

Backus Joyce, Backus JEB

Bader Shelley A, Bader SA

Badger Edward W, Badger EW
Badler Mitchell M, Badler MM
Baker S, Baker SL

Baker Sharon L, Baker SL
Bamford Carol M, Bamford CM
Banchik Andrea S, Banchik AS
Banholzer Gordon S, Banholzer GS
Barlow D H, Barlow DH

Barlow Derek H, Barlow DH
Barnard J M, Barnard M

Barnard John M, Barnard JM
Barrie Joyce M, Barrie IM
Barthelemy Jean Pierre, Barthelemy JP
Baser Kenneth H, Baser KH
Bashshur Rashid L, Bashshur RL
Bates M J, Bates MJ

Bates Marcia, Bates MJ

Bates Marcia J, Bates MJ

Bawden D, Bawden D

Bawden David, Bawden D

Bayer Mark P, Bayer MP

Belkin N J, Belkin NJ

Belkin Nicholas, Belkin NJ

002NN R W —

Ne)

10

. Abate Marie A, Abate MA

. Abbott John P, Abbott JP

. Abrahamsson S, Abrahamsson S

. Abrahamsson Sixten, Abrahamsson S
. Adams Audrey M, Adams AM

. Adams D M, Adams DM

. Adams Michael Q, Adams MQ

. Adams Peter M, Adams PM

. Adamson George W, Adamson GW

. Aderibigbe M R, Aderibigbe MR

11. Ainsworth Mary Lynn, Ainsworth ML

12
13

. Aldrich M , Aldrich MJ
. Aldrich M J, Aldrich MJ

14. Aldrich Michael , Aldrich MJ

15
16

17.
18.
19.
20.

21

22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.

3

~

38.

39

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

. Aldrich Michael J, Aldrich MJ

. Alexander Steiger Bettie , Alexander B
Allen F H, Allen FH

Allen Frank H, Allen FH

Ankeny Melvon, Ankeny ML
Atherton Cochrane Pauline, Atherton P
. Atkinson S, Atkinson SD

Atkinson Steven D, Atkinson SD
Auster E, Auster E

Auster Ethel, Auster E

Backus Joyce, Backus JEB

Bader Shelley A, Bader SA

Badger Edward W, Badger EW
Badler Mitchell M, Badler MM
Baker S, Baker SL

Baker Sharon L, Baker SL
Bamford Carol M, Bamford CM
Banchik Andrea S, Banchik AS
Banholzer Gordon S, Banholzer GS
Barlow D H, Barlow DH

Barlow Derek H, Barlow DH
Barnard J] M, Barnard JM

. Barnard John M, Barnard IM
Barrie Joyce M, Barrie J]M

. Barthelemy Jean Pierre, Barthelemy JP
Baser Kenneth H, Baser KH
Bashshur Rashid L, Bashshur RL
Bates M J, Bates MJ

Bates Marcia, Bates MJ

Bates Marcia J, Bates MJ

Bawden D, Bawden D

Bawden David, Bawden D

Bayer Mark P, Bayer MP

Belkin N J, Belkin NJ

Belkin Nicholas, Belkin NJ

0 NN AW =

o

10

. Abate MA

. Abbott JP

. Abrahamsson S
. Adams AM

. Adams DM

. Adams MQ

. Adams PM

. Adamson GW

. Aderibigbe MR
. Ainsworth ML

11. Aldrich MJ

12
13
14
15
16

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.

. Alexander B

. Allen FH

. Ankeny ML

. Atherton P

. Atkinson SD
Auster E
Backus JEB
Bader SA
Badger EW
Badler MM
Baker SL
Bamford CM
Banchik AS
Banholzer GS
Barlow DH
Barnard JM
Barrie JM
Barthelemy JP
Baser KH
Bashshur RL
Bates MJ
Bawden D
Bayer MP
Belkin NJ

14

A further weakness to be acknowledged is that this proce-
dure can correctly identify only the constructions stored in
each table due to the fact that the FST parser recognizes all
the entries that are reflected in the matrix. A fault would
appear if this model were applied to constructions not stored
previously in the binary matrices, though some components

might coincide with the data associated to tables. Hence, the
reference automata would erroneously check some of these
features, producing failures in recognition. In a hypothetical
application of the parser to a dynamic collection, then,
we would have to build a new binary matrix, or update it

constantly.

o
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TABLE 6. Precision, recall, F measure, and ICF.

LISA SCI-E
Possible Variants 580 234
Non-valid Variants 10 17
Variants Identified 574 220
Valid Variants Normalized 570 217
Valid Variants Conflated 447 205
Precision 0.99 0.98
Recall 0.98 0.92
F, 0.98 0.95
ICF 0.23 0.12

Conclusions

The development of systems that identify and unify the
variants of bibliographic author names is clearly a require-
ment for IR effectiveness. Within the retrieval of scientific
literature in citation indexing systems, this recognition be-
comes a dire necessity for quality information proceeding
from databases. Because many researchers depend on cita-
tion statistics, the development of tools for normalizing the
data used in bibliometric analysis is a critical issue. In this
article, we have proposed a procedure that would solve some
of these inaccuracies. From the experiments performed and
put forth here, several conclusions can be drawn. First, the
precision of the master graph for the analysis and recogni-
tion of the variants is very high, though slightly hampered by
a problem of overanalysis owing to the fact that some strings
contain errors. Second, the recall result of this procedure
also is very high, yet there is a problem of underanalysis,
likewise resulting from strings with errors. Third, we need to
look for complementary solutions involving similarity mea-
sures in view of the fact that the margin of error would have
been greater if we had tested this technique on another type
of collection not as restricted as author indexes from data-
bases.

Finally, we suggest that this descriptive method provides
a theoretical model that describes PNs in a systematic form.
Name structures may present varied formats, identified here
as a combination of variables in which any constants could
be inserted. The main strength of this approach is that it
allows us to describe, represent, and identify this type of
construction in a uniform way, with scientific rigor. Further-
more, the parser based on FSTs conflates the PN variants
into equivalence classes, well adapted to many other specific
applications such as digital libraries, information extraction,
and bibliometrics.
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