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Abstract 

 

In recent years there has been an increasingly pressing need for the evaluation of results 

from public sector research activity, particularly to permit the efficient allocation of 

ever scarcer resources. Many of the studies and evaluation exercises that have been 

conducted at the national and international level emphasize the quality dimension of 

research output, while neglecting that of productivity. This work is intended to test for 

the possible existence of correlation between quantity and quality of scientific 

production and determine whether the most productive researchers are also those that 

achieve results that are qualitatively better than those of their colleagues. The analysis 

proposed refers to the entire Italian university system and is based on the observation of 

production in the hard sciences by above 26,000 researchers in the period 2001 to 2005. 

The results show that the output of more productive researchers is superior in quality 

than that of less productive researchers. The relation between productivity and quality 

results as largely insensitive to the types of indicators or the test methods applied and 

also seems to differ little among the various disciplines examined. 
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1. Introduction 

 

In recent years, the debate over the evaluation of publicly funded research has 

attracted interest from a wide and varied public. More evaluation exercises and analyses 

are being implemented, both for the examination of public institutions and individual 

researchers. Comparative evaluation would allow stimulation of greater productive 

efficiency, permit allocation of resources in function of merit and reduce information 

asymmetry between demand and supply of knowledge. 

However, comparative evaluation of research activity results as quite complex, 

especially along the dimension for labor productivity. The national research assessments 

implemented in various nations have so far taken a peer review approach, avoiding the 

evaluation of research productivity and all of its associated difficulties. These 

assessments emphasize quality in research output, which is more readily measurable, 

and limit observations to a sample of total output provided by each institution under 

observation (for example 50% in the case of the United Kingdom (RAE, 2008) and 10% 

in the case of the VTR, Italy (CIVR, 2006). However, national level measures of 

productivity are not possible with a peer-review approach unless the evaluation is 

extended to the entire scientific production of the institutions being evaluated. This 

would result in exercises with costs and times of execution so high as to discourage 

their actual implementation. Meanwhile, basing measures of productivity on data 

provided by the actual research institutions also engenders serious risks, as 

demonstrated by the only experience of this kind, in Australia (Composite Index)2. 

                                                 
2 Audits conducted by KPMG on publication lists submitted by universities found a high error rate (34% 

in 1997). 97% of errors affected final scores, and consequently funding allocations (Harman, 2000). 
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The question remains open as to whether labor productivity and the quality of 

product proceed in step, or whether there is instead a trade-off between the two. Is it the 

case that the most productive scientists also achieve the highest quality of results, or is it 

the case that higher levels of production detract from quality? Answers could prove 

useful both in the phases of formulating evaluation exercises and in the development of 

associated reward systems. 

The literature that might provide answers to this intriguing question seems 

exceptionally scarce, and the reason is quickly evident. While comparative measures of 

quality are quite readily achieved (Hicks, 2009; RAE, 2008; CIVR, 2006; Van Raan, 

2005; VSNU, 2002; NAS-NAE, 1999), either with peer review methods (as in the 

national evaluation exercises) or through a bibliometric approach, it is as much more 

complex to measure and compare research productivity. Here the literature reports few 

analyses, and all are limited to a few scientific disciplines or a restricted number of 

institutions (Macri and Dipendra, 2006; Kalaitzidakis et al., 2003; Pomfret and Wang, 

2003). None of the authors of these analyses went so far as the step of actually 

investigating for correlation of productivity and quality of research. 

The production of new knowledge is a function of multi-input/output type, which 

means that the problem of measuring productivity is also multi-faceted. For output, 

there are multiple modes of codifying the production of new knowledge, adopted to 

varying extent by different disciplines. Fertility of scientific publication is different 

from discipline to discipline, as is the degree of coverage by international bibliometric 

databases, such as the Thomson Reuters Web of Science (WoS), or Elsevier Scopus. 

These databases provide a reliable reference for the hard sciences, where publication is 

by far the most widely used form for codification of research output. However the 
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coverage and representativity of these databases is less for disciplines in which 

scientists favor publication in national journals, such as in certain branches of social 

sciences and jurisprudence, or where other forms of codification dominate, such as in 

the arts and humanities3. 

Though the representativity of the databases is accepted concerning the hard 

sciences, two very substantial obstacles have deterred bibliometrists from proceeding to 

comparative measures at the national level. The first concerns the identification and 

reconciliation of the different ways in which the same organization’s name is reported 

in the “author address” field of the databases, while another concerns the correct 

attribution of authorship. This second type of problem originates from the fact that the 

bibliometric records lack detailed links between the individual authors listed and the list 

of their home institutions, and, at the outset, from the way in which the author names 

are reported in the databases (only the initial of the first name, for the WoS). Because of 

these shortcomings, in cases of co-authorship, it had not always been possible to 

unequivocally associate the author’s name with his or her institution. However, these 

technical limitations have been addressed and overcome by (Abramo et al., 2008a), who 

develop an effective disambiguation procedure to attribute listed publications to 

unequivocally identified university authors. 

Difficulties for equitable comparison of research productivity also arise on the input 

side of the production function: factors of production, with the possible exception of 

labor, are not always easily measurable, nor can they be attributed with certainty to 

individual productive units. Indeed, even labor is difficult to express in hours, since the 

                                                 
3 The Italian research assessment exercise provides an example of the phenomenon. Here, the products 

that the universities submitted for evaluation were included in the WoS in over 90% of the cases, for hard 

sciences, but only 72% of cases for economics and statistics and only 15% of cases for the other social 

sciences, the arts and humanities.  
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portion of time dedicated to research is different between scientists in universities and 

research institutes. Capital and other factors that have a direct or indirect impact on 

productivity are equally difficult to measure and attribute to individual productive units. 

This includes factors such as geographic location4, the accumulated knowledge of the 

home institution, etc. Therefore a subsequent normalization with respect to these 

variables is not possible. Even the quality of research output, as measured through 

national peer review exercises, could be influenced by these variables5. However, none 

of these assessments have included normalization in their methodologies. 

Given this discussion, it is not surprising that a literature search by the authors found 

only one study concerning the research question at issue. Costas et al. (2009) analyze 

the relationship between productivity and quality of output for 1,038 researchers 

working at the Spanish Council for Scientific Research, in three areas: biology and 

biomedicine, material science and natural resources. The results show that the total 

number of citations received by the researchers, for the period 1994-2004, increases in a 

cumulatively advantageous way6 in function of the number of publications. The 

cumulative advantage is greater for researchers who publish in low citation-density 

fields compared to those who publish in high citation-density fields. 

Preceding studies concerning size-dependent cumulative advantage referred to 

aggregate research units, either research groups (Van Raan, 2006a), institutes or 

                                                 
4 Due to the geographic proximity effect, locations of universities in areas with high intensity of public 

and private research can favor scientific collaboration and greater research productivity (Abramo et al., 

2009a). 
5 Abramo et al. (2009a)demonstrate that publications in co-authorship with other organizations have an 

average quality that is greater than for those produced “in house”. Since location can have an impact on 

opportunities for collaboration, it can thus also have an effect on quality of output. 
6 “By cumulative advantage we mean that the dependent variable (for instance, number of citations of a 

group) increases in a disproportional, nonlinear (in this case: power law) way as a function of the 

independent variable” (Van Raan, 2006a). 
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countries (Katz, 2000; Katz, 2005), which prevents examination of correlation between 

researcher productivity and output quality. 

The present work aims to provide a robust response to the initial research question, 

through an approach in which investigation is not limited to a single institution or a few 

scientific disciplines. The study observations concern all Italian universities (82) and all 

the hard sciences, for a total of more than 26,000 research staff in 165 disciplinary 

sectors. The analysis will evaluate the scientific production indexed by the WoS for the 

period from 2001 to 2005, consisting of a total of over 124,000 publications. The 

investigation will be conducted at the level of individual disciplinary sectors in order to 

reduce distortions related to aggregate measurement. This will also permit recognition 

of variations in the degree of correlation between quality and productivity in function of 

discipline or disciplinary sector. 

 

 

2. Methodology 

 

The approach adopted in this work is completely bibliometric. This implies the 

selection of i) indicators for measurement of the quality of scientific output and the 

productivity of research activity; ii) data sources; iii) the methods to determine if more 

productive scientists also produce results of higher quality. This section addresses the 

selection of indicators and data sources, while the first part of Section 4 deals with the 

third issue. 
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2.1 Indicators of measure 

 

A first question concerning methodology is the definition of the research output that 

will be measured. As noted, there are multiple forms of codification for new knowledge 

produced by research activity. Having limited the field of analysis to the hard sciences, 

the choice of scientific publications as a proxy for research output certainly finds 

support in the literature (Moed et al., 2004). While it may now be standard practice to 

use citations as a proxy of the quality of a research product, it should be noted that the 

number of citations actually measures the quantity of response to a research work, but 

does not necessarily constitute a judgment of “goodness” or validity (Moed and 

Hesselink, 1996). Still, the literature includes various studies that show existence of a 

positive relationship between citations to a work and the experts’ opinions concerning 

the quality and importance of the same work (Abramo et al., 2009b; Van Raan, 2006b; 

Aksnes and Taxt, 2004; Rinia et al., 1998; Moed and Hesselink 1996). This leads us to 

use citations as the proxy for the quality of a publication. Since the rate of citations is 

particularly sensible to the discipline to which a publication belongs, we have conducted 

the analysis by ISI subject category7 and defined the normalized quality index for 

publications (QIc): 

QIc
ave = Number of citations of an article divided by the average number of citations of 

all articles of the same year and the same ISI category. For instance, a value of 

1.40 indicates that the article was cited 40% more often than the average. 

                                                 
7 The ISI subject categories are the scientific disciplines that the WoS uses for the classification of 

publications. 
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Since the distribution of citations generally results as typically very skewed in all 

disciplines, it was seen as opportune to also consider another method of normalization 

for the citations, the percentile. Here, the quality index, QIc
perc will be: 

QIc
perc = ranking of a publication, measured on a 0 – 100 scale, according to the citation 

distribution of publications of the same year and the same ISI category. A value of 

90 indicates that 90% of the articles of the same year in the same ISI category 

have a lower number of citations than the one under observation. 

Like the rates of citations, the life cycles of citations also differ among disciplines. 

There are noticeable fluctuations in the “cited half-life indicator” across disciplines 

(Van Raan, 2004; Redner, 2005). In some disciplines, such as mathematics, the intensity 

of citations increases very slowly over time. In this work, since the time-point for 

observing citations (January 2008) is quite close to the end of the range of observations 

(2001-2005), the adoption of citations as proxy of quality might not be completely 

trustworthy for some disciplines. To give further robustness to the results of the 

examination we decided to also use the impact factor of the journal as a proxy for 

quality of individual publications. The literature does raise cautions about such an 

operation (Moed and Van Leeuwen, 1996; Weingart, 2005). However, the impact factor 

is certainly an indicator of the prestige of a journal and thus, though it may be difficult 

to accept it as proxy of the quality of a publication, it permits dealing with the question: 

do more productive scientists publish in journals that are more prestigious than those in 

which their less productive colleagues publish? We will thus have the quality index of a 

specific research publication, measured through the impact factor of the relative journal 

(QIif): 
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QIif = impact factor ranking of the journal, measured on a 0 – 100 percentile scale 

according to the impact factor distribution of the journals that publish papers in 

the same ISI category. A value of 90 indicates that 90% of publications falling in 

the same category are in journals with lower impact factor than the one under 

observation. 

For measurement of labor productivity, we have formulated two indicators: 

 Productivity (P): total of publications authored by a scientist in the period under 

observation; 

 Fractional Productivity (FP): total of the contributions to publications authored 

by a scientist, with “contribution” defined as the reciprocal of the number of co-

authors of each publication. 

The research productivity of individual scientists will not be normalized for actual 

hours worked on research, other productive factors or intangible resources, due to the 

complete lack of data that can be attributed to individuals. These factors should impact 

on both quality and quantity of output in a similar and consistent manner and their 

omission should not jeopardize the results of the analysis. 

 

2.2 Data, data sources and field of observation 

 

The data used in the study are taken from the Observatory on Public Research in 

Italy (ORP), a bibliometric database derived by the authors from the WoS. The ORP 

provides a census of scientific production from all research institutions situated in Italy. 

Beginning from this database, the next step was to extract the publications authored by 

Italian universities in the period 2001-2005, which amounted to a total of roughly 
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147,000. Through the development of a complex algorithm for recognition of addresses 

and disambiguation of the real identity of the authors, it was possible to attribute each 

publication to the responsible university scientists. In large populations of scientists the 

rate of homonyms among names is very high: 12% of the 60,000 scientists in the Italian 

university system have names that are homonyms of those for other scientists. 

Eliminating ambiguities as to the precise identity of the author within acceptable 

margins of error is a daunting task, explaining why bibliometric studies are generally 

carried out at aggregated level of analysis, such as at the university level. In the past, 

analyses conducted at the level of single scientists or research groups were generally 

limited to a maximum of a few organizations or scientific disciplines, in which case it is 

possible to disambiguate manually. However, for the 147,000 Italian academic 

publications indexed in the ORP between 2001 and 2005, the harmonic mean of 

precision and recall (F-measure) of authorships disambiguated by our algorithm is 

around 95% (2% margin of error, 98% confidence interval). 

Italian regulations require that each university scientist must belong to a specific 

“Scientific Disciplinary Sector”, or SDS. Each sector is in turn part of a “University 

Disciplinary Area”, or UDA. The hard sciences consist of nine UDA8and 205 SDS. The 

correlation analysis for productivity and output quality was conducted for each hard 

science SDS (165 in total) where at least 50% of the scientists belonging to the SDS had 

published at least one scientific article in the period under examination. 

In the period under consideration, there were 26,273 scientists on staff in the 165 

SDS9 considered. These scientists were identified from the CINECA database of the 

                                                 
8 Mathematics and computer sciences; physics; chemistry; earth sciences; biology; medicine; agricultural 

and veterinary sciences; civil engineering and architecture; industrial and information engineering. 
9 For more reliable indication of the phenomenon under examination, the analysis excludes all scientists 

who changed university or SDS or who entered or left the university system during the period of 
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Italian Ministry of Universities and Research10. 

To give an idea of the barriers overcome and the scope of our field of observation, 

we report the comments by (Van Raan, 2008), a leading scholar in the field of 

bibliometrics, concerning his examination of a dataset of 18,000 WoS publication 

listings by all chemistry researchers in 10 Dutch universities: “This material is quite 

unique. To our knowledge, no such compilations of very accurately verified publication 

sets on a large scale are used for statistical analysis of the characteristics of the 

indicators at the research group level”. 

 

 

3. Results 

 

Three distinct analyses were conducted to identify the relation between quantity and 

quality of scientific production in each SDS. 

First, assuming the case that the relation between citations and publications follows 

a power function law, a regression model was used to test for and quantify the potential 

existence of increasing returns to scale, or the situation that the citations received by a 

researcher increase more than proportionally with respect to the publications achieved. 

Since this test is based on an inferential approach, a further analysis was conducted for 

the comparison of two distinct subpopulations of scientists selected on the basis of 

productivity. The objective was to test if the publications of the top 10% of scientists for 

productivity present, on average, superior quality than the rest of the population, and to 

what extent. However, this second analysis could also lead to a doubt about whether the 

                                                                                                                                               
observation. 
10 http://cercauniversita.cineca.it/php5/docenti/cerca.php 
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comparison between the output quality of the two subpopulations should be conducted 

for the entire publication production of individual researchers or for a selection of the 

best products of each researcher. One could suppose that some scientists would prefer to 

produce less output, but of a higher quality. Therefore a third analysis was conducted to 

consider the best publication of each researcher, and using both the methodologies 

described, examine the question of whether its quality is correlated (or not) to the 

productivity of the researcher. 

The convergence of results from the three analyses gives significant evidence of the 

presence and nature of the link between productivity and quality of output. For purposes 

of policy development, these results can be useful both in the phase of elaborating 

guidelines for evaluation processes and in the successive phases of formulating 

incentives to favor improvement in individual performance and the aggregate 

performance of departments, institutions, etc. In order to detect different characteristics 

with potential policy implications, all the analyses were conducted not only at the 

general level, but also the individual disciplinary and sectorial levels. 

 

3.1 Regression analysis 

 

All researchers that had not received any citations were excluded from the initial 

dataset. A regression analysis was conducted for the remaining 20,450 scientists, 

correlating the normalized total of citations11 with the total number of publications 

achieved by each researcher. For the citations, the QIc
ave was considered. The dependent 

variable of the analysis is thus represented as the sum of the values of this indicator, 

                                                 
11 The use of QIc

ave rather than a simple count of citations permits limitation of distorting effects related to 

the different intensity of citation among the subject categories in which individual researchers may have 

published.  
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called Co, for all the publications by a single scientist, while the independent variable is 

represented by the scientist’s productivity, P. The objective is to quantify the  

coefficient of a power-law function of type Co = aPγ. The results for each UDA are 

shown in [Table 1]. 

 

[Table 1] 

 

The power-law function exhibits increasing returns, since the coefficient γ, in 

addition to being statistically significant, also results as greater than 1 for all UDA. 

Since γ represents the percentage increase in total citations when total output increases 

by 1%, the average quality of scientific production by a researcher increases with his or 

her productivity. The phenomenon seems most prominent for the chemistry and physics 

disciplines (γ respectively equal to 1.275 and 1.266) and slightly less evident in the 

mathematics and computer sciences discipline (1.169). 

 

3.2 Top scientists versus the rest of the population 

 

We now ask whether the cumulative advantage seen from the preceding analysis 

also appears in comparisons between populations that are different for their 

productivity. Researchers without publications were excluded from the original dataset. 

The remaining 21,505 scientists were subdivided into two groups on the basis of 

productivity. Specifically, the top 10% of scientists were isolated from the rest of the 

population: the top scientists are those who, for bibliometric performance under all 

indicators of productivity, placed in the top 10% of national ranking for their SDS. The 
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objective was to test if the publications of “top scientists” give indexes of quality that 

are superior to the rest of the population. The mean difference of % rank between top 

scientists and the rest of the population, for each indicator of quality, is presented in 

Table 2. The use of % rank is necessary in order to conduct comparisons at an aggregate 

level: scientific “fertility” varies among the different hard science subject categories 

and, as a result, so does the distribution of the bibliometric indicators. The % rank 

permits application of the same scale (0-100, with 100 as best value) to the bibliometric 

performance of researchers employed in different SDS12 and thus permits a robust form 

of comparison of performance between scientists in different disciplines (Abramo et al., 

2008b). The results of the analysis are unequivocal: whatever the criteria for selection of 

top scientists or indicator of quality, there is a considerable mean difference in quality in 

favor of the top scientists. For example, the top scientists (identified on the basis of P) 

have a % rank that is higher by 15.4 for QIc
ave, by almost 21 for QIc

perc and by 7.5 for 

QIif, compared to the rest of the population. 

 

[Table 2] 

 

To test for possible variation at the level of disciplines, the difference between top 

scientists and the rest of the population was measured for single UDA. Table 3 presents 

the comparison between top scientists (identified in terms of P) and the rest of the 

population: the mean difference between the two sets is measured for each UDA and for 

each of the three indicators of quality in terms of difference in % rank. 

 

                                                 
12 For example, a researcher will have a % rank for productivity of 80 if 20% of colleagues in the same 

SDS register a greater productivity. The same holds for the other bibliometric indicators. 
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[Table 3] 

 

The data do not seem to indicate a significant variance among disciplines, especially 

for the indicators of quality based on citations. In terms of QIc
ave, the difference ranges 

from a minimum of 13.4 for earth sciences to a maximum of 19.3 for agricultural and 

veterinary sciences. For QIc
perc, the minimum and maximum differences respectively 

concern chemistry (18.4) and civil engineering and architecture (26.2). In terms of QIif, 

the maximum difference in performance between top scientists and the rest of the 

population is seen in agricultural and veterinary sciences (13.3), while the minimum is 

in physics (2.5). 

Proceeding to analysis at more detailed levels, the mean difference between % rank 

of top scientists and the rest of the population for the different indicators was calculated 

for the individual SDS of each discipline. The results are presented in Table 4: each cell 

indicates the number of SDS in which top scientists (by productivity) show an average 

quality that is higher than that of their colleagues in the same SDS. The top scientists 

show a scientific production with average quality greater than the rest of the population 

in 155 of the 165 SDS for QIc
ave, in 160 SDS for QIc

perc and in 133 SDS for QIif. 

 

[Table 4] 

 

3.3 Analysis for best publications 

 

In the preceding sections we have shown that there is a significant correlation 

between productivity and average quality of output. In this section we will test for 
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possible correlation between productivity and the quality of the best publication 

achieved by each researcher. For this, the regression analysis seen in previous section 

was repeated, with the objective of estimating the  parameter for a power-law function 

of type Co = aPγ , in which in this case Co represents the maximum value of QIc
ave 

observed for the publications of a given researcher and P is his or her productivity. We 

can expect that, with an increasing number of publications achieved by an author, the 

normalized number of citations for the best one will increase less than proportionally. 

The results for each UDA, presented in Table 5, confirm the expectations. 

 

[Table 5] 

 

The table shows that be value for γ is positive and statistically significant, and also 

varies little among UDA. Thus the quality of the best publication by a scientist increases 

less than proportionally with respect to productivity. For example, in the physics 

discipline, the relative quality of the best publication of a given scientist is double that 

of a colleague who has a productivity of one third as much. 

We now ask if it is the case that in comparing top scientists and the rest of the 

population, limiting the analysis to the best publications of each scientist, the correlation 

between productivity and quality which we see in the previous sections emerges as 

confirmed and further reinforced. The answer is definitely yes: the best publications of 

top scientists identified on the basis of P show a % rank that is higher by a mean of 34.5 

for QIc
ave, 34.8 for QIc

perc and 30.9 for QIif, compared to the rest of the population 

(Table 6). At the level of the single SDS, the average quality of the best publications by 

top scientists is superior to that of the rest of the population in 159 of the total of 165 
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SDS: 6 SDS offer the exception, but only when the top scientists are identified on the 

basis of FP and quality is evaluated in terms of QIc
ave. 

 

[Table 6] 

 

Still referring to the best publication of each researcher, a last type of comparison 

between the two subpopulations was conducted using the casual variables sequence 

criterion. Beginning with the impact ranking of the best publication of each top scientist 

in his/her SDS, the distance between the ideal and real cases was measured: 

max  diff eff

TS j TS j TS jR R R     

where: 

max

TS jR  = sum of the ranks of top scientists in sector j under the hypothesis of 

maximum differentiation (i.e. the situation in which the highest ranking non-top 

scientist is still ranked below the lowest top scientist). 

 eff

TS jR  = sum of the rank of all top scientists in the sector j 

The value
diff

TS jR   therefore represents the “distance” for the ideal situation of 

maximum quality difference between scientists in favor of top scientists. The same 

calculation is completed for non-top scientists (“others”) and comparison of 
diff

TS jR  and 

diff

others jR   then identifies which of the two populations, top scientist or others, obtains a 

higher overall ranking. Conducting the comparison for each SDS of each UDA permits 

observation of how many SDS present the situation in which the average quality of 

publication by top scientists is less than that of the rest of the population. The results of 

this type of analysis for combinations of indicator of quality (of the publications) and of 
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productivity (in the identification of top scientists) are presented in Table 7: columns 3 

to 8 indicate the number of SDS in which top scientists presented an average quality 

rank that was less than that of their “non-top” colleagues, according to the criteria just 

given. 

It can be observed that the presence of SDSs in which this event occurs is 

concentrated under two pairings of indicators: P- QIif (18) and FP- QIif (23). In addition, 

the industrial and information engineering discipline has the highest number of SDS (8 

and 7, for these two pairings of indicators) in which the observations are different from 

the general rule of superior quality of publications by most productive researchers. 

Examining the others indicators of quality (QIc
ave and QIc

perc), such exceptions occur in 

a truly limited number of SDS. 

 

[Table 7] 

 

 

4. Discussion and conclusions 

 

The research question that stimulated this work concerned the possible existence of 

a trade-off between productivity of research work and quality of scientific results. The 

question has delicate implications for decision-makers’ choices in identifying suitable 

systems of performance assessment and reward. The risk of “publication inflation” is 

seen as a key concern in performance assessment systems that have publication counts 

as a key criterion (Geuna and Martin, 2003), with the Australian experience noted as an 

illustrative lesson. Here, universities were awarded significant funds on the basis of 
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aggregate publication counts, and distributed the funds internally, all with little attention 

to quality of output. Thus, Australian universities saw an increase in publication 

productivity between 1990 and 1998 but also a corresponding drop in relative quality 

(Butler, 2003). 

In fact, the great majority of studies and evaluation exercises at the national and 

international level have emphasized the quality dimension of research output, while 

neglecting the productivity side of the activity. This is the case of the Italian VTR, 

which is primarily based on the evaluation of quality for a very limited sample of 

research products (less than 10% of the total per university). Abramo et al. (2009b) 

identify several criticisms for this type of system, showing that universities indicated as 

“top quality” are not necessarily those that are most productive. There is also a further 

hidden risk, just as important as inflating quantity at the expense of quality: in the long 

term, favoring quality over productivity could lead scientists to concentrate only on 

research that attempts to leap ahead, with the hope of achieving notable quality, but 

exposed to greater risks of failure. Other scientists, perhaps less outstanding, or with 

less resources, could be induced to reduce research activity and turn to other aspects of 

their role. 

The analysis reported here actually demonstrates the existence of a strong 

correlation between quantity and quality of research production: scientists that are more 

productive in terms of quantity also achieve higher levels for quality in their research 

products. The difference between the quality of publications by “top” scientists, 

identified on the basis of their productivity, and the quality of publications by their 

colleagues in the same disciplines is very substantial and essentially constant under 

different measures and among various disciplines. The extremely large dataset and the 
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highly detailed levels of analysis (single researchers and single sectors of disciplines) 

leave little doubt in interpreting and generalizing from the results. 

The study, with reflection on the specific Italian context, may permit useful 

considerations concerning indications for policy. In Italy, comparative research 

evaluation is only beginning, and is still not linked to resource allocation. Universities 

and other public research institutes achieve access to economic and human resources 

through mechanisms that involve very little direct competition. Only recently have 

pressure from public opinion and the necessity to reduce and optimize expenses pushed 

policy makers to begin reworking mechanisms towards “reward” systems for research 

funding and advancement of university professionals. Such mechanisms should 

obviously be correlated to the strategic objectives for the system and its single 

components. In fact, reaching and maintaining excellence in science is seen as a 

necessity for long-term objectives of national socio-economic returns. However, aside 

from excellence, attention must also be given to the dimension of efficiency in the 

system, as it drives towards new knowledge. In the Italian case, the limited pressure on 

the actors in the system, given the current lack of adequate incentive programs, leaves 

researchers free to decide between “producing more” or “producing better”. The current 

study shows that, under these conditions, the situation is one where the most brilliant 

scientists have succeeded in the dimensions of both productivity and quality. It could 

actually be that the very lack of incentive systems for either dimension has favored this 

correlation between productivity and quality, encouraging development of scientists that 

are both “efficient” and “excellent”. 

But this still leaves the problem of choosing which dimension to favor in incentive 

programs and broad strategies for scientific production, both for policy-makers, aiming 
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for major socio-economic returns, and for research managers, aiming for the increased 

institutional prestige and access to better and substantial resources. The hypothesized 

trade-off between productivity and quality emerges reshaped by the results of the 

current analysis: it is very likely that the dilemma under discussion can best be resolved 

by adopting incentive systems that do not go to extremes in favoring one dimension 

over the other, but rather consider both. It is certainly clear that incentive systems are 

necessary, in suitable forms, to stimulate both higher average productivity and quality in 

national research systems. 
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UDA Obs Correlation  correct R2 

Mathematics and computer sciences 1,612 0.751 1.169*** (0.026) 0.564 

Physics 1,736 0.876 1.266*** (0.020) 0.768 

Chemistry 2,514 0.895 1.275*** (0.017) 0.801 

Earth sciences 765 0.832 1.248*** (0.030) 0.692 

Biology 3,474 0.861 1.260*** (0.015) 0.741 

Medicine 6,027 0.880 1.242*** (0.010) 0.774 

Agricultural and veterinary sciences 1,446 0.800 1.212*** (0.024) 0.640 

Civil engineering and architecture 451 0.814 1.222*** (0.039) 0.661 

Industrial and information engineering 2,425 0.820 1.214*** (0.017) 0.673 

Total 20,450 0.865 1.248*** (0.005) 0.748 

Table 1: Statistics regarding correlation of normalized citations (lgC0) with productivity (lgP) 

Dependent variable: lgC0; OLS estimation method; robust standard errors shown in brackets. Statistical 

significance: *p-value <0.10, **p-value <0.05, ***p-value <0.01. “Obs” equals the number of 

researchers with at least one citation in the period examined. 

 

 
  

Quality index 

QIc
ave QIc

perc QIif 

Productivity index for top 

scientists selection 

P 15.4 20.6 7.5 

FP 12.9 17.8 6.0 

Table 2: Mean difference in % rank between top scientists and the rest of the population, for each 

indicator of quality 

 
UDA QIc

ave QIc
perc QIif 

Mathematics and computer sciences 14.4 21.8 4.4 

Physics 17.0 21.8 2.5 

Chemistry 15.9 18.4 9.1 

Earth sciences 13.4 20.1 3.1 

Biology 15.0 19.2 6.7 

Medicine 15.3 20.8 9.8 

Agricultural and veterinary sciences 19.3 23.4 13.3 

Civil engineering and architecture 17.1 26.2 7.5 

Industrial and information engineering 14.6 21.1 5.2 

Total 15.4 20.6 7.5 

Table 3: Mean difference in % rank for quality between top scientist (identified on the basis of P) and 

the rest of the population, by UDA 

 

UDA 

Number of 

SDS 
QIc

ave QIc
perc QIif 

Mathematics and computer sciences 9 9 9 5 

Physics 7 7 7 5 

Chemistry 11 11 11 11 

Earth sciences 12 12 12 8 

Biology 19 19 19 17 

Medicine 41 37 38 38 

Agricultural and veterinary sciences 25 20 24 20 

Civil engineering and architecture 5 5 5 5 

Industrial and information engineering 36 35 35 24 

Total 165 155 160 133 

Table 4: Number of SDS in which average % rank of top scientists for indicators of quality is greater 

than the rest of the population (top scientists being identified on the basis of productivity) 
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UDA Obs Correlation  correct R2 

Mathematics and computer sciences 1,612 0.546 0.618*** (0.024) 0.297 

Physics 1,736 0.660 0.661*** (0.021) 0.435 

Chemistry 2,514 0.651 0.600*** (0.018) 0.424 

Earth sciences 765 0.622 0.649*** (0.030) 0.386 

Biology 3,474 0.629 0.642*** (0.015) 0.396 

Medicine 6,027 0.686 0.664*** (0.010) 0.470 

Agricultural and veterinary sciences 1,446 0.589 0.625*** (0.023) 0.346 

Civil engineering and Architecture 451 0.622 0.645*** (0.039) 0.385 

Industrial and information engineering 2,425 0.622 0.648*** (0.016) 0.387 

Total 20,450 0.657 0.640*** (0.006) 0.431 

Table 5: Statistics regarding correlation of citations (lgCc) of best publication of each single scientist 

with his/her productivity (lgP) 

Dependent variable: lgCc; OLS estimation method; robust standard errors in brackets. Statistical 

significance: *p-value <0.10, **p-value <0.05, ***p-value <0.01. “Observed” equals the number of 

researchers with at least one citation in the period examined. 

 

 
  

Quality index 

QIc
ave QIc

perc QIif 

Productivity index for top 

scientists selection 

P 34.5 34.8 30.9 

FP 31.2 31.7 28.3 

Table 6: Mean difference in % rank, for each indicator of quality, between the best publications of top 

scientists compared to those of the rest of the population 

 

UDA 

Total 

SDS 

P-

QIc
perc 

P-QIc
ave P-QIif 

FP-

QIc
perc 

FP-

QIc
ave 

FP-QIif 

Mathematics and computer sciences 9 0 0 0 0 0 0 

Physics 7 0 0 1 0 0 1 

Chemistry 11 0 0 3 0 0 3 

Earth sciences 12 0 0 1 0 0 3 

Biology 19 0 0 1 0 0 3 

Medicine 41 0 0 1 0 0 0 

Agricultural and veterinary sciences 25 0 0 3 0 0 5 

Civil engineering and architecture 5 0 0 0 0 0 1 

Industrial and information engineering 36 0 1 8 3 3 7 

Total 165 0 1 18 3 3 23 

Table 7: Number of SDS in which, according to the casual variables sequence criterion, the average 

quality of publication by top scientists is less than that for the rest of the population, for different 

combinations of indicators of quality and productivity. 

 


