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We propose a new hybrid clustering framework to incor-
porate text mining with bibliometrics in journal set anal-
ysis.The framework integrates two different approaches:
clustering ensemble and kernel-fusion clustering. To
improve the flexibility and the efficiency of process-
ing large-scale data, we propose an information-based
weighting scheme to leverage the effect of multiple data
sources in hybrid clustering. Three different algorithms
are extended by the proposed weighting scheme and
they are employed on a large journal set retrieved from
the Web of Science (WoS) database. The clustering per-
formance of the proposed algorithms is systematically
evaluated using multiple evaluation methods, and they
were cross-compared with alternative methods. Experi-
mental results demonstrate that the proposed weighted
hybrid clustering strategy is superior to other meth-
ods in clustering performance and efficiency. The pro-
posed approach also provides a more refined structural
mapping of journal sets, which is useful for monitoring
and detecting new trends in different scientific fields.
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Introduction

In scientometrics, information from journals can be cat-
egorized lexically or with citations. An important area of
scientometric research is the clustering or mapping of sci-
entific publications. The widely used method of cocitation
clustering was introduced independently by Small (1973,
1978) and Marshakova (1973). Cross-citation-based cluster
analysis for science mapping is different; while the former is
usually based on links connecting individual documents, the
latter requires aggregation of documents to units like jour-
nals or subject fields among which cross-citation links are
established. Some advantages of this method (for instance,
the possibility to analyze directed information flows) are
undermined by possible biases. For example, bias could
be caused by the use of predefined units (journals, sub-
ject categories, etc.), implying already certain structural
classification. Journal cross-citation clustering has been used
by Leydesdorff (2006), Leydesdorff and Rafols (2009), and
Boyack, Börner, and Klavans (2009), while Moya-Anegón
et al. (2007) applied subject cocitation analysis to visualize
the structure of science and its dynamics.

The integration of lexical similarities and citation links has
also attracted interest in other fields such as search engine
design (i.e., Google combines text and links; Brin & Page,
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1998). The combination of link-based clustering with a tex-
tual approach was suggested as early as 1990 to improve
the efficiency and usability of cocitation and coword anal-
ysis. One of the aims was to improve the apparently low
recall of cocitation analysis concerning current work (Braam,
Moed, & Van Raan, 1991a, 1991b; Zitt & Bassecoulard,
1994). The combination of link-based and textual methods
also makes it possible to cluster objects whenever links
are weak or missing (e.g., in the case of poorly cited or
uncited papers). The present article is based on a new com-
bined citation/lexical-based clustering approach (Janssens,
Glänzel, & De Moor, 2008), which forms a hybrid solution
in two respects. First, it combines citations and text, and sec-
ond, it uses individual papers to cluster the journals in which
they appear. Furthermore, the lexical component is used to
label the journal clusters obtained for interpretation.

Hybrid clustering has also been applied in various docu-
ment analysis applications (Modha & Spangler, 2000; He,
Zha, Ding, & Simon, 2002; Wang & Kitsuregawa, 2002;
Bickel & Scheffer, 2004) as well as science mapping research
(Glenisson, Glänzel, Janssens, & De Moor, 2005; Janssens,
2007; Liu et al., 2009). Although all the approaches com-
bined lexical and citation information, the actual algorithms
that were applied are quite diverse. For Web document
analysis, Modha and Spangler (2000) integrated similarity
matrices from terms, out-links and in-links by a weighted
linear combination, and the data partition was obtained
from the combined similarity matrix using the toric k-
means algorithm. He et al. (2002) incorporated three types
of information (hyperlink, textual, and cocitation informa-
tion) to cluster Web documents using a graph-cut algorithm.
Bickel & Scheffer (2004) investigated Web documents and
combined intrinsic views (page content) with extrinsic views
(anchor texts of inbound hyperlinks). Three clustering algo-
rithms (generic expectation-maximization [EM], k-means,
and agglomerative) were applied to combine the different
views as hybrid clustering. With the exception of Web page
analysis, Glenisson et al. (2005) combined textual analy-
sis and bibliometrics to improve the performance of journal
publication clustering. Janssens (2007) proposed an unbi-
ased combination of textual content and citation links on
the basis of Fisher’s inverse chi-square for agglomerative
clustering. Liu et al. (2009) reviewed some popular hybrid
clustering techniques within a unified computational frame-
work and proposed an adaptive kernel k-means clustering
(AKKC) algorithm to learn the optimal combination of
kernels constructed from heterogeneous data sources.

The present article advances the hybrid clustering
approach in terms of using larger scale experimental data
and combining more refined data models. Large-scale jour-
nal data presents a challenge to hybrid clustering, because the
journal sets are usually expressed in a high-dimension vector
space and a massive amount of journals usually represents a
large number of scientific fields. Moreover, the present study
combines the lexical and citation data into 10 heterogeneous
representations for hybrid clustering. Therefore, when the
dimensionality, the number of samples, and the number of

categorizations are large, many existing algorithms become
inefficient. To tackle this problem, we present a new hybrid
clustering approach for large-scale journal data in terms of
scalability and efficiency. The data used in this article was
collected from the Web of Science (WoS) journal database
from the period 2002–2006, which comprises over 6,000,000
publications. In our approach, the above-mentioned 10 data
sources are combined in a weighted manner, where the
weights are determined by the average normalized mutual
information (ANMI) between the single source partitions
and the hybrid clustering partitions based on combined
data. To evaluate the reliability of the clustering obtained
on journal sets, we compared the clustering results with
the standard categorizations, Essential Science Indicators
(ESI; http://www.esi-topics.com/fields/index.html), provided
by Thomson Scientific (Philadelphia, PA). We systemat-
ically compare the automatic clustering results obtained
by all methods with the standard ESI categorizations. We
also apply some statistical evaluation methods to produce
label-independent evaluations. In total, 12 different hybrid-
clustering algorithms are investigated and benchmarked
using two external and two internal validation measures. The
experimental results show that the proposed algorithms have
both improved clustering result and high efficiency.

This article is organized as follows. The adopted data set
and the standard ESI categorizations are described next. We
then present the proposed hybrid clustering methodologies
and the ANMI weighting scheme. Next, the experimental
results are analyzed, followed by illustrating and investi-
gating the mapping of journal sets obtained from hybrid
clustering. Finally, we draw the conclusions.

Journal Database Analysis

In this section, we briefly describe the WoS journal
database, the related text mining analysis and citation
analysis.

Data Sources and Data Processing

The original journal data contains more than six million
published papers from 2002 to 2006 (i.e., articles, letters,
notes, reviews, etc.) indexed in the WoS database provided
by Thomson Scientific. Citations received by these papers
have been determined for a variable citation window begin-
ning with the publication year, up to 2006. An item-by-item
procedure was used with special identification keys made up
of bibliographic data elements, which were extracted from the
first author names, journal title, publication year, volume, and
the first page. To resolve ambiguities, journals were checked
for the name changes and the papers were checked for name
changes and merged accordingly. Journals not covered in
the entire period (from 2002 to 2006) have been omitted.
Two criteria were applied to select journals for clustering: at
first, only the journals with at least 50 publications from 2002
to 2006 were investigated, and others were removed from the
data set; then only those journals with more than 30 citations
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TABLE 1. The 22-field Essential Science Indicators (ESI) labels of the Web of Science journal database.

Field # ESI field Number of journals Field # ESI field Number of journals

1 Agricultural Sciences 183 12 Mathematics 312
2 Biology & Biochemistry 342 13 Microbiology 87
3 Chemistry 441 14 Molecular Biology& Genetics 195
4 Clinical Medicine 1410 15 Multidisciplinary 25
5 Computer Science 242 16 NeroScience & Behavior 194
6 Economics & Business 299 17 Pharmacology & Toxicology 135
7 Engineering 704 18 Physics 264
8 Environment/Ecology 217 19 Plant & Animal Science 608
9 Geoscience 277 20 Psychology/Psychiatry 448
10 Immunology 73 21 Social Science 968
11 Materials Sciences 258 22 Space Science 47

from 2002 to 2006 were kept. With this kind of selection cri-
teria, we obtained 8,305 journals as the data set adopted in
this article.

Text Mining Analysis

The titles, abstracts, and keywords of the journal publica-
tions were indexed with a Jakarta Lucene-based (Gospond-
netic & Hatcher, 2005) text mining program using no
controlled vocabulary. The index contains 9,473,061 terms
but we cut the Zipf curve of the indexed terms at the
head and the tail to remove rare terms, stopwords, and com-
mon words (Janssens, Zhang, De Moor, & Glänzel, 2009).
These words are known to be usually irrelevant and noisy
for clustering purposes. After the Zipf cut, 669,860 mean-
ingful terms were used to represent the journals in a vector
space model where the terms are attributes and the weights
are calculated using four weighting schemes: TF-IDF, IDF,
TF, and binary. The paper-by-term vectors are then aggre-
gated to journal-by-term vectors as the representations of the
lexical data. Therefore, we have obtained four submodels
as the textual data sources varied with the term-weighting
scheme. We applied Latent Semantic Indexing (LSI) on the
TF-IDF data to reduce the dimensionality to 200 LSI factors.
LSI is implemented on the basis of the singular value decom-
position (SVD) algorithm. The number of LSI factors was
selected empirically in a way similar to the preliminary work
of Janssens (2007). For the 8,305 journals, on a dual Opteron
250 with 16 GB RAM, time taken for LSI computation was
around 105 minutes.

Citation Analysis

We investigated the citations among the selected publica-
tions in five aspects.

• Cross-citation (CRC): Cross-citation between two papers is
defined as the frequency of citations between each other. We
ignored the direction of citations by symmetrizing the cross-
citation matrix.

• Binary cross-citation (BV-CRC): To neglect the side effect
of the large amount of citations appearing in the journals,
we used binary value 1 (0) to represent whether there is (no)
citation between two journals, termed binary cross-citation.

• Cocitation (COC): Cocitation refers to the number of times
two papers are cited together in subsequent literature. The
cocitation frequency of two papers is equal to the number of
papers that cite them simultaneously.

• Bibliographic coupling (BGC): Bibliographic coupling
occurs when two papers reference a common third paper in
their bibliographies. The coupling frequency is equal to the
number of papers they simultaneously cite.

• Latent Semantic Indexing of cross-citation (LSI-CRC): We
also applied LSI on the sparse matrix with cross-citations to
reduce the dimensionality. The selection of the number of the
LSI factors was also based on the previous work (Janssens,
2007) and was set to 150.

The citations among papers were all aggregated to the jour-
nal level.All the textual data sources and citation data sources
were converted into kernels using a linear kernel function. In
particular, for the textual data, the kernel matrices were nor-
malized and their elements correspond to the cosine value of
pairwise journal-by-term vectors.

Reference Labels of Journals

As is mentioned in last section, to evaluate the science
mapping results, we refer to the 22 categorizations of ESI,
which are curated by various professional experts. Our main
objective is, thus, to compare the automatic mapping obtained
by the proposed hybrid methods against the ESI catego-
rizations. As shown in Table 1, the number of journals
contained in the different ESI fields is quite imbalanced. For
instance, the largest field (Clinical Medicine) contains 1410
journals, whereas the smallest (Multidisciplinary) only has
25 journals.

Weighted Hybrid Clustering for Large-Scale Data

The hybrid-clustering algorithms considered in our exper-
iments can be divided into two approaches: clustering ensem-
ble and kernel-fusion clustering. Clustering ensemble is also
known as clustering aggregation or consensus clustering,
which integrates different partitions into a consolidated par-
tition with a consensus function. Kernel-fusion clustering
maps the data sets into a high-dimensional feature space
and combines them as kernel matrices. Then a kernel-based
clustering algorithm is applied to the combined kernel matrix.
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The details about these two approaches are mentioned in our
earlier work (Liu et al., 2009). The present article proposes a
novel weighting scheme on the basis ofANMI to leverage the
effect of multiple sources in hybrid clustering. For all sub-
models, the one with the largest ANMI value is expected to
have the most relevant information, and, therefore, it should
contribute dominantly to the hybrid clustering.

Definition of ANMI

ANMI has been employed in clustering ensemble algo-
rithms (Strehl & Ghosh, 2002), where the optimal cluster
ensemble is obtained by maximizing the ANMI value. Given
a set of cluster labels P = {P1, . . . Pi, . . . , PN}, where Pi rep-
resents the labels obtained from a single submodel and N

is the number of submodels. ANMI measures the average
normalized mutual information between Pi and P , given by

ANMI(Pi, P) = 1

N − 1

N∑
j=1,j �=i

NMI(Pi, Pj) (1)

where normalized mutual information (NMI) is the normal-
ized mutual information indicating the common information
shared by two partitions, given by

NMI(Pi, Pj) =
∑C

k=1
∑C

m=1 ckm log
(

nckm

akbm

)
√(∑C

k=1 ek log
(

ek

n

)) (∑C
m=1 fm log

(
fm

n

))
(2)

In the formulation above, C is the cluster number; ekis the
number of data points contained in the k-th cluster in the par-
tition Pi; fm is the number of samples contained in the m-th
cluster in the partition Pj; ckm is the number of intersec-
tion samples between the k-th cluster from Pi and the m-th
cluster from Pj . In particular, if Pj is the standard reference
labels, NMI(Pi, Pj) evaluates the performance of Pi with the
standard labels.

Comparison of ANMI With Other Evaluation Measures

In data fusion applications, the use of external validation
indicators is an appropriate way to provide data-independent
evaluations about the clustering quality; however, they rely
on the known reference labels. In contrast, the statistical
validation indicators (internal validation indicators) depend
on the scales, the structures and the dimensionalities of
data, and, thus, they are not suitable to be compared among
multiple data sources. In this case, the reliability of the inter-
nal and the external validation indicators can be judged by
cross-comparing with each other. The ANMI adopted in our
approach belongs to the internal validation case because it
does not require any reference labels. To prove its reliability,
we compare the ANMI with external validation indicators
(NMI and adjusted Rand index [ARI]), using the individ-
ual submodels of journal sets. Besides the ANMI, we also
compare the other two internal validation indicators (mean
silhouette value [MSV] and modularity). As illustrated in

Figure 1, the ANMI shows almost the same trend as the NMI
and the ARI when predicting the model performance. In con-
trast, the MSV and the modularity show some similar trends
but are not very consistent with the curve of the NMI and the
ARI. The merit of ANMI is that the performance is evaluated
on the basis of information criterion, which avoids the data
dependency on scales, structures, and dimensionalities. In our
problem, the ANMI shows similar evaluation on submodels
as the NMI and the ARI, which both need the extra reference
labels for evaluation. Therefore, ANMI is reliable to apply in
explorative data analysis. Furthermore, the validity of ANMI
as an evaluation measure has also been introduced by Strehl
and Ghosh (2002).

Weighting Scheme

As explained, our approach assumes that when different
submodels are applied for the hybrid clustering, the more
relevant submodels should contribute more to the hybrid clus-
tering. A straightforward way to leverage the submodels is to
weigh them according to the values of their indicators (i.e.,
the ANMI values, the MSV values, the modularity values,
etc.). Based on this assumption, we propose an ANMI-based
weighting scheme to combine the kernel matrices (similar-
ity matrices) of multiple submodels as a weighted convex
linear combination. The conceptual scheme of our proposed
weighting strategies is depicted in Figure 2.

As illustrated in Figure 2, the weighted hybrid clustering
comprises several steps that may be summarized as follows:

Step 1: The kernels of all submodels are constructed and
clustered individually by ward’s linkage based hierar-
chal clustering (Ward’s linkage based hierarchical clus-
tering ([WLHCl]; Jain, 1988). The obtained partition
of each submodel is denoted as Pi. For all the submod-
els, the set of partitions is denoted as P = {P1, P2, . . . ,

PN}. As introduced, 10 submodels are involved so N is
equal to 10.
Step 2: Based on P , the clustering result of each
submodel is evaluated using the ANMI as defined in
Equation 1. The ANMI index is denoted as ai, given by

ai = ANMI(Pi, P), i ∈ {1, 2, . . . , N} (3)

Step 3: We compute the weights wi of submodels as
proportional to their ANMI values, given by

wi = ai

a1 + . . . + ai + . . . + aN

, i ∈ {1, 2, . . . , N}
(4)

Step 4: Using the weights obtained in step 3, we com-
bine the kernels in a weighted manner, and alternatively,
we integrate the labels of submodels as weighted clus-
tering ensemble. The algorithms are briefly described
as follows:

• Weighted kernel-fusion clustering method (WKFCM).
In kernel-fusion clustering, given a set of kernels
Ki, i = 1, . . . , N, constructed from N submodels, to
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FIG. 1. Comparison of average normalized mutual information (ANMI) with the external-validation indicator (normalized mutual information [NMI] and
adjusted Rand index [ARI]) and the internal-validation indicators (mean silhouette value [MSV] and modularity). The partitions of submodels are obtained
by Ward’s linkage-based hierarchical clustering (Jain, 1988).

FIG. 2. Conceptual framework of the average normalized mutual information (ANMI)-based weighted hybrid clustering.
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leverage their effects in hybrid clustering, we integrate
their kernels as a weighted combination, given by

K =
N∑

i=1

wiKi (5)

The combined kernel K is further applied by sin-
gle kernel-based clustering algorithms (i.e., kernel K-
means, hierarchical clustering based on kernel space,
spectral clustering, etc.).

• Weighted clustering ensemble method of Strehl’s algo-
rithm (WSA) and weighted evidence accumulation clus-
tering with average linkage (WEAC-AL). In clustering
ensemble, the partitions of all submodels {P1, . . . , PN}
are usually considered as equally important. To incor-
porate the weights, we extend the algorithm of the
clustering ensemble method (SA) proposed by Strehl
and Ghosh (2002) as the WSA. Moreover, we also anal-
ogously extend the evidence accumulation clustering
with average linkage (EAC-AL) algorithm proposed by
Fred and Jain (2005) as the weighted EACA-AL algo-
rithm (WEAC-AL). Both extensions are straightfor-
ward: in the original versions, the partitions of multiple
submodels are considered as the input; in the weighted
versions, the input is formulated as {w1P1, . . . , wNPN}.

Collectively, we have proposed three weighted hybrid-
clustering methods on the basis of ANMI. The pseudo codes
of these algorithms are combined together and illustrated as
follows:

Weighted hybrid-clustering method based on ANMI.
Construct the kernels (similarity matrices) Ki for dif-

ferent submodels, i ∈ 1, . . . , N.
Obtain the partition of each submodel using the base

clustering algorithm (WLHC):

Pi(Pi ∈ P) ← Ki, i ∈ 1, . . . , N

Compute the weights using ANMI:

ai = ANMI(Pi, P), i = 1, 2, . . . N,

wi = ai

a1 + . . . + ai + . . . + aN

, i = 1, 2, . . . N,

Obtain the overall partition using weighted hybrid
clustering:

Method 1: weighted clustering ensemble, use
{w1P1, . . . , wNPN} as the input.

Method 2: weighted kernel-fusion clustering, use
K = ∑N

i=1 wiKi as the input.
Return the labels as the overall clustering partition.

Clustering Evaluation

MSV. The silhouette value of a clustered object (e.g., jour-
nal) measures its similarities with the objects within the

cluster versus the objects outside of the cluster (Rousseeuw,
1987), given by:

S(i) = min(B(i, Cj) − W(i))

max[min(B(i, Cj), W(i))] (6)

where W(i) is the average distance from object i to all other
objects within its cluster, and B(i, Cj) is the average distance
from object i to all objects in another cluster Cj . The MSV
for all objects is an intrinsic measure on the overall quality
of a clustering solution. MSV may vary with the number of
clusters, which is also useful to find the appropriate cluster
number statistically. In the journal database, the dimension-
ality of lexical data is extremely high so the distance-based
calculation of MSV is computationally expensive. As an
alternative solution, we precompute the paired distances of
all samples and store it as a kernel; in this way, the average
distance required in the MSV value is directly computable in
the kernel of paired distances.

Modularity. Newman (2006) introduced modularity as
a graph-based evaluation of the clustering quality. Up to a
multiplicative constant, modularity calculates the number of
intra-cluster links minus the expected number in an equiva-
lent network with the same clusters, but with links given at
random. It means good clustering may have more links within
(and fewer links between) the clusters than could be expected
from the random links. Modularity is defined as follows: a
k × k symmetric matrix e is defined as the element, eij is the
fraction of all the edges in the network that link vertices in
community or cluster i to vertices in cluster j. The trace of
this matrix trace(e) = ∑

i eii represents the fraction of edges
in the network that connect vertices in the same cluster. The
sum of rows (or columns) ai = ∑

j eij represents the fraction
of edges that connect to vertices in cluster i. The modularity
Q is then defined as:

Q =
∑

i
(eii − a2

i ) = trace(e) − ∥∥e2
∥∥ (7)

where ‖x‖ is the sum of the elements in matrix x and
∥∥e2

∥∥
refers to the expected fraction of edges that connect vertices
in the same cluster with edges given at random in the network.

ARI. ARI is the corrected-for-chance version of the Rand
index (Hubert & Arabie, 1985). The ARI measures the
similarity between two partitions. Let us assume that two
partitions X and Y are obtained from a given set of n
elements S = {O1, . . . , On}, given by X = {x1, . . . , xr} and
Y = {y1, . . . , ys}, we define the following:

a, as the number of pairs of elements in S that are in the same
set in X and in the same set in Y

b, as the number of pairs of elements in S that are in different
sets in X and in different sets in Y

c, as the number of pairs of elements in S that are in the same
set in X and in different sets in Y

d, as the number of pairs of elements in S that are in different
sets in X and in the same set in Y
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TABLE 2. Comparison of different clustering methods by normalized mutual information and adjusted rand index.

NMI ARI NMI ARI

Clustering Mean STD Mean STD Clustering Mean STD Mean STD

TFIDF 0.5080 0.0084 0.2676 0.0173 WLCDM 0.5161 0.0079 0.2885 0.0118
IDF 0.5478 0.0088 0.3071 0.0186 AKFCM 0.5175 0.0057 0.2841 0.0118
TF 0.5124 0.0086 0.2816 0.0218 WKFCM 0.5495 0.0062 0.3246 0.0237
LSI-TFIDF 0.5242 0.0062 0.2925 0.0199 QMI 0.5477 0.0119 0.3069 0.0246
BV-Text 0.5399 0.0092 0.3213 0.0231 AdacVote 0.4851 0.0265 0.2824 0.056
CRC 0.4532 0.016 0.1604 0.0324 SA 0.4722 0.0245 0.1696 0.0656
COC 0.4672 0.0158 0.1786 0.0315 WSA 0.5532 0.0161 0.3057 0.0263
BGC 0.4191 0.0121 0.1256 0.0252 EAC-AL 0.5562 0.0062 0.3387 0.0187
LSI-CRC 0.4378 0.0099 0.2221 0.0184 WEAC-AL 0.5757 0.0084 0.3710 0.0137
BV-CRC 0.5544 0.0078 0.3350 0.0199

Note. NMI = normalized mutual information; ARI = adjusted Rand index; STD = standard deviations; TFIDF = term frequency-inverse document fre-
quency; IDF = inverse document frequency; TF = term frequency; LSI-TFIDF = latent semantic indexing; BV-Text = binary score of TFIDF; CRC =
cross-citation; COC = cocitation; BGC = bibliographic coupling; LSI-CRC = latent semantic indexing of cross-citation; BV-CRC = binary cross-citation;
WLCDM = weighted linear combination of distance matrices method (Janssens el al., 2008); AKFCM = average kernel-fusion clustering method;
WKFCM = weighted kernel-fusion clustering method; QMI = the clustering ensemble method by Topchy, Jain, & Punch (2005); AdacVote = the cumulative
vote weighting method by Ayad & Kamel (2008); SA = the clustering ensemble method by Strehl & Ghosh (2002); WSA = the weighted clustering ensemble
method of Strehl’s Algorithm; EAC-AL = evidence accumulation clustering with avergae linkage; WEAC-AL = weighted evidence accumulation clustering
with average linkage.

The ARI R is defined as

R = 2(ab − cd)

((a + d)(b + d) + (a + c)(c + b))
(8)

NMI. NMI is another external clustering validation mea-
sure which relies on the reference labels. NMI is defined in
Equation 2.

All these four clustering validation measures will be
employed together to evaluate the concerned clustering
algorithms.

Other Hybrid-Clustering Algorithms

In addition to the three proposed hybrid-clustering algo-
rithms, we also apply the following six hybrid-clustering
algorithms for comparison.

SA: Strehl and Ghosh (2002) formulate the optimal con-
sensus as the partition that shares the most information with
the partitions to combine. The information is measured by
ANMI. Three heuristic consensus algorithms (cluster-based
similarity partition, hypergraph partition, metaclustering)
based on graph partitioning are employed to obtain the
combined partition.

EAC-AL: Fred and Jain (2005) introduce evidence accu-
mulation clustering (EAC) that maps the individual data
partitions as an clustering ensemble by constructing a coasso-
ciation matrix. The final data partition is obtained by applying
average linkage-based (AL) hierarchical clustering algorithm
on the co-association matrix.

Ayad and Kamel (2008) propose a cumulative vote weight-
ing method (AdacVote) to compute an empirical probability
distribution summarizing the ensemble.

Topchy, Jain, and Punch (2005) propose an clustering
ensemble method based on quadratic mutual information

(QMI). They phrase the combination of partitions as a cate-
gorical clustering problem. Their method adopts a category
utility function, proposed by Mirkin (2001), that evaluates the
quality of a “median partition” as a summary of the ensemble.

The above four algorithms belong to the category of
clustering ensemble, whereas the next two algorithms are
kernel-fusion clustering methods.

Average kernel-fusion clustering method (AKFCM): The
averagely combined kernel is treated as a new individual data
source and the partitions are obtained by standard clustering
algorithms in the kernel space.

The weighted linear combination of distance matrices
method (WLCDM) proposed by Janssens et al. (2008) is
actually a simplified version of AKFCM: it is achieved by
equally-weighted linear combination of a text based kernel
and a citation based kernel.

Experiment Result

In this part, at first, we analyze our clustering result on
WoS journal database. Then, we discuss the clustering under
various number of clusters and the computational complexity
of different clustering schemes.

Evaluation of Clustering Results

We applied all algorithms to combine the 10 submodels
to cluster the journal data into 22 partitions. The 10 submod-
els were also clustered individually as single sources and
the performance was compared with the hybrid clustering.
To determine statistical significance, we used the bootstrap
t-test (Efron & Tibshirani, 1993). The bootstrap sampling
was repeated 30 times and for each repetition, approximately
80% of the journals were sampled. After bootstrapping, the
duplicated samples were normalized as one sample for clus-
tering. To evaluate the performance, we applied both ARI
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TABLE 3. Comparison of different clustering performance by t-test.

Compared clustering methods P-value

WSA vs. SA 2.2205E-12
WKFCM vs. AKFCM 1.8458E-8
WEAC-AL vs. EAC-AL 5.8E- 03
WEAC-AL vs. BV-CRC 3.5E-03

Note. WSA = the weighted clustering ensemble method of Strehl’sAlgo-
rithm; SA = the clustering ensemble method by Strehl & Ghosh (2002);
WKFCM = weighted kernel-fusion clustering method; AKFCM = average
kernel-fusion clustering method; WEAC-AL = weighted evidence accumu-
lation clustering with average linkage; EAC-AL =evidence accumulation
clustering with average linkage; BV-CRC = binary cross-citation.

and NMI using the standard ESI categorizations. The mean
evaluation values and the standard deviations (STD) of the
30 bootstrapped samples are shown in Table 2.

Weighted hybrid clustering performs better than its
nonweighted counterpart. As shown in Table 2, all the
weighted methods outperformed their nonweighted coun-
terparts. For the EAC-AL algorithm, the weighted version
improved the ARI value by 9.54% and the NMI value by
3.51%. For the kernel-fusion clustering, the weighted algo-
rithm increased the ARI index by 14.23% and the NMI index
by 5.99%. The weighted combination in WSA also improved
the ARI value of the SA method by more than 50% and the
NMI index by 18.32%. The improvement of the weighted
methods was shown to be statistically significant and the p-
values obtained from the bootstrapped t-test are presented in
Table 3.

Weighted hybrid clustering performs better than the best indi-
vidual submodel. We also compared the performance of
individual submodels with the hybrid results. As shown in
Table 2, WEAC-AL gained improvement by heterogeneous
data fusion and led to better performance than the best indi-
vidual submodel (BV-CRC). Compared with other hybrid-
clustering algorithms listed in previouse section, WEAC-AL
outperformed them as well.

Comparison of the lexical data and the citation data. When
using the base algorithm on a single submodel, the lexical
data generally performed better than the citation data. This
was probably because the sparse structures in the citation
data could be more thoroughly analyzed using the graph cut
algorithms than using the kernel clustering methods. How-
ever, the main objective of this paper is to show the validity of
the weighted hybrid-clustering scheme. To keep the problem
simple and concise, we do not distinguish the heterogeneity
of data structure. Combining different structures with differ-
ent clustering algorithms is an interesting and novel problem,
and it will be presented in our forthcoming publication.

The investigation of individual submodels also substan-
tiated the validity of our proposed weighting scheme: the
submodels with higher clustering performance were assigned
larger weights. For example, the submodel IDF with the

TABLE 4. Comparison of different weighting scheme.

Weighted hybrid clustering method NMI ARI

MSV-based SA 0.5309 0.2866
ANMI-based SA (WSA) 0.5532 0.3057
MSV-based KFCM 0.5447 0.3067
ANMI-based KFCM (WKFCM) 0.5495 0.3246
MSV-based EAC-AL 0.5491 0.3414
ANMI-based EAC-AL (WEAC-AL) 0.5757 0.3710

Note. NMI = normalized mutual information; ARI = adjusted Rand
index; MSV = mean silhouette value; SA = the clustering ensemble method
by Strehl & Ghosh (2002);WSA = the weighted clustering ensemble method
of Strehl’s Algorithm; ANMI = average normalized mutual information;
KFCM = kernel-fusion clustering method; WKFCM = weighted kernel-
fusion clustering method; EAC-AL = evidence accumulation clustering with
average linkage.

largest weight performed the second best individually, and
the submodel (BV-CRC) with the second largest weight
performed the best individually.

Comparison of kernel-fusion clustering with clustering
ensemble. Our experiment compared six clustering ensem-
ble and four kernel-fusion clustering methods on the same
large-scale journal database. As shown in Table 2, the clus-
tering ensemble methods generally showed better cluster-
ing performance. This was probably because the clustering
ensemble relies more on the “agreement” among various
partitions to find the optimal consensus partition. In our
experiment, 10 submodels were combined and most of them
were highly relevant, and so the combination of sufficient
and correlated partitions was helpful in finding the optimal
consensus partition. In our related work (Liu et al., 2009), the
notion of “sufficient number” was also shown to be important
for clustering ensemble. In contrast, kernel-fusion clustering
algorithms were less affected by the number of submodels.

Comparison of ANMI-based and MSV-based weighting
schemes. Alternatively, we could also base our weighting
scheme on the MSV criterion to leverage different submod-
els in hybrid clustering. To compare the effects of MSV
and ANMI in weight calculation, we applied the MSV-based
weighting scheme to create three analogous hybrid-clustering
methods. The comparison of the two weighting schemes is
shown in Table 4. As illustrated, the weighting scheme by
ANMI works better than that based on MSV.

Clustering by Various Number of Clusters

So far, the presented results were obtained for the number
of clusters equal to the number of standard ESI categoriza-
tions. How to determine the appropriate cluster number from
multiple data sources still remains an open issue. As known,
in single data clustering, the optimal cluster number can be
explored by comparing indices for various cluster numbers. In
our approach, we compared the MSV and modularity indices
from 2 clusters to 30 clusters. As depicted in Figure 3, almost
all of the indices of the proposed algorithm are higher than
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FIG. 3. Internal validations of weighted hybrid clustering methods on different cluster numbers. SA = the clustering ensemble method of by Strehl & Ghosh
(2002); WSA = the weighted clustering ensemble method of Strehl’sAlgorithm; BV-CRC = binary cross-citation;AKFCM = average kernel-fusion clustering
method; WKFCM = weighted kernel-fusion clustering method; EAC-AL = evidence accumulation clustering with average linkage; WEAC-AL = weighted
evidence accumulation clustering with average linkage.

those of the nonweighted methods. Moreover, they are also
generally better than the best individual data (BV-CRC).

The two figures on the top compare the weighted clus-
tering ensemble methods. The figures in the middle evaluate
the weighted kernel fusion clustering method of WSA. The
figures on the bottom investigate the WEAC-AL clustering
method. The figures on the left represent the MSV indices.
The figures on the right side represent the modularity (MOD)
indices. The MSV is calculated on the TF-IDF submodel and
the MOD is verified on the CRC submodel.

Computational Complexity on Different Weighting
Schemes

We also compared the computational time of the ANMI-
based hybrid-clustering algorithms with the unweighted
and the MSV-based weighted algorithms. The experiment
was carried out on a CentOS 5.2 Linux system with a
2.4 GHz CPU and 16 GB memory. As illustrated in Figure 4,
the ANMI-based weighting scheme is more efficient than the
MSV-based weighting scheme. Moreover, the ANMI-based
weighting method performs as efficiently as the unweighted
version.

Mapping of the Journal Sets

To visualize the clustering result of journal sets, the struc-
tural mapping of the 22 categorizations obtained using the
WEAC-AL method is presented in Figure 5.

For each cluster, the three most important terms are
shown. The network is visualized by Pajek (Batagelj & Mrvar,
2003). The edges represent cross-citation links and darker
color represents more links between the paired clusters. The
circle size represents the number of journals in each cluster.

To better understand the structure of clustering, we applied
a modified Google PageRank algorithm (Janssens, Zhang, De
Moor, & Glänzel, 2009) to analyze the journals within each
cluster. The algorithm is also applied to rank a journal within
each cluster according to the number of papers it published
and the number of cross-citations it received. The algorithm
is defined as follows:

PRi = 1 − α

n
+ α

∑
j
PRj

aji/Pi∑
k

ajk

Pk

(9)

where PRi is the PageRank of the journal i, α is a scalar
between 0 and 1 (we set α = 0.9 in our implementation),
n is the number of journals in the cluster, aji is the number
of citations from journal j to journal i, and Pi is the number of
papers published by the journal i. The self-citations among all
the journals were removed before the algorithm was applied.
Using the algorithm, as Equation 9, we investigated the five
most highly ranked journals in each cluster and presented
them in Table 5. Moreover, for the journals presented in Table
5, we reinvestigated the titles, abstracts, and keywords that
have been indexed in the text mining process, the indexed
terms were sorted by their frequencies, and for each cluster,
the thirty most frequent terms were used to label the obtained

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2010 1113
DOI: 10.1002/asi



FIG. 4. Comparison of the running time of different hybrid clustering methods.
Note. The running time is measured when clustering all the journals to 22 partitions. SA = the clustering ensemble method of by Strehl & Ghosh
(2002); kFCM = kernel-fusion clustering method; EAC-AL = evidence accumulation clustering with average linkage; ANMI = average normalized mutual
information; MSV = mean silhouette value.

FIG. 5. Network structure of the 22 journal clusters.

clusters. The textual labels of each journal cluster are shown
in Table 6.

According to Tables 5 and 6, we interpret the journal
network structure (Figure 5) obtained by our clustering algo-
rithm from a scientometric view. In the natural and applied
sciences, we found nine clusters, particularly, clusters #3

through #11. On the basis of the most important journals
and terms, we labeled them as follows: engineering (ENGN),
computer science (COMP), mathematics (MATH), astron-
omy, astrophysics, physics of particles and fields (ASTR),
physics (PHYS), chemistry (CHEM), agriculture, environ-
mental science (AGRI), biology (BIOL), and geosciences
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TABLE 6. The textual labels of the journal clusters.

Cluster 30 best terms Subject

1 teacher dental student dentin teeth school patient educ cari orthodont implant resin dentur
enamel tooth mandibular classroom maxillari polit children social bond teach dentist discours
cement librari incisor endodont learner

SCO1

2 music archaeolog polit ethic moral religi literari christian essai god philosoph religion church
philosophi artist war centuri poetri historian hi roman text narr poem aesthet social theologi
fiction argu kant spiritu

HUMA

3 crack turbul finit flame heat shear concret combust vibrat beam reynold temperatur veloc
elast steel thermal vortex wilei fuel acoust convect coal load plate flow equat lamin
fatigu jet buckl

ENGN

4 algorithm fuzzi wireless robot queri semant ltd qo packet traffic xml user graph network multicast
fault wilei machin cdma web server bit servic cach bandwidth scheme architectur watermark
sensor simul circuit

CSCI

5 algebra theorem finit graph asymptot polynomi infin equat inc manifold let banach nonlinear
algorithm semigroup ltd singular cohomolog inequ conjectur convex omega lambda integ infinit
ellipt eigenvalu abelian automorph hilbert bound hyperbol epsilon sigma

MATH

6 galaxi star quantum optic neutrino quark stellar brane luminos magnet laser redshift galact
beam solar cosmolog photon superconduct qcd spin ngc atom meson neutron nucleon rai
boson temperatur ion hadron

ASTR

7 alloi film temperatur dope crystal magnet si anneal dielectr diffract microstructur gan quantum
silicon epitaxi steel metal ceram sinter atom nanotub fabric oxid nm layer spin thermal ion
electron coat

PHYS

8 catalyst polym ligand acid crystal bond ion atom nmr hydrogen solvent adsorpt wilei angstrom
copolym oxid ltd poli temperatur molecul polymer electrochem metal chiral film spectroscopi
aqueou electrod anion compound

CHEM

9 soil plant cultivar leaf crop seedl seed arabidopsi shoot wheat gene speci flower rice weed
biomass ha tillag germin fruit irrig maiz forest protein acid fertil manur water pollen root

AGRI

10 speci habitat forest predat fish larva prei nov egg lake genu femal taxa bird plant forag male
larval biomass season river breed parasitoid nest phylogenet abund mate fisheri soil beetl

BIOC

11 sediment basin soil ocean ltd seismic rock fault water sea magma tecton earthquak mantl
isotop river crustal aerosol volcan subduct groundwat lake magmat atmospher climat wind
cloud crust metamorph temperatur ozon

GEOS

12 firm price market tax wage busi polici capit organiz economi trade worker employe invest
monetari earn investor financi auction asset brand inc corpor compani stock welfar incom job
employ retail bank

ECON

13 polit polici social ltd court parti democraci democrat urban reform forest elector women vote
discours war sociolog land tourism geographi market welfar crime voter labour elect poverti
econom economi govern citi

SOC2

14 patient pain knee arthroplasti hip injuri fractur tendon athlet clinic muscl ligament femor women
ankl bone exercis cruciat arthroscop rehabilit surgeri flexion tibial hospit shoulder score dementia
radiograph cancer nurs

CLI1

15 speech phonolog semant lexic word task children sentenc auditori memori cognit perceptu verb
cue languag stimuli stimulu ltd speaker patient vowel neuropsycholog erp aphasia verbal noun
hear distractor syllabl stutter listen

COGN

16 patient schizophrenia adolesc children nurs women health disord depress symptom psychiatr clinic
anxieti mental student suicid social smoke abus ptsd emot hospit interview cognit psycholog
child physician ltd questionnair sexual school

PSYC

17 neuron rat patient receptor brain cortex mice seizur epilepsi hippocamp synapt cell axon gaba
hippocampu cortic protein ltd cerebr stroke dopamin nmda sleep astrocyt spinal inc motor nerv
diseas gene glutam eeg

NEUR

18 protein acid milk diet gene ferment cell cow chees intak enzym meat starch fat dietari coli
ltd strain broiler ph dna food carcass fed bacteria fatti rat antioxid dairi mutant yeast

BIOC

19 cell protein gene receptor mice rat tumor kinas patient bind transcript mrna cancer apoptosi dna
mutat il phosphoryl mutant inhibitor inhibit ca2 peptid insulin acid enzym mous tissu beta vitro

BIOS

20 infect viru hiv vaccin patient dog protein cell antibodi viral gene pcr clinic hors mice
strain antigen immun hcv parasit diseas rna malaria cd4 tuberculosi assai serotyp influenza
virus pneumonia

MBIO

21 patient tumor surgeri carcinoma cancer postop lesion surgic clinic resect liver cell laparoscop
diseas hepat endoscop arteri therapi ct gastric pancreat flap tissu preoper biopsi histolog mri
malign tumour bone corneal

CLI2

22 patient cancer clinic arteri coronari renal diseas therapi transplant tumor diabet blood cell
ventricular hypertens surgeri cardiac asthma hospit myocardi pulmonari lung children stent dose
women prostat serum aortic graft

CLI3
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FIG. 6. Subgroups of the Web of Science journal network by weighted hybrid clustering.

(GEOS). The interpretation of the most characteristic terms
of the nine life science and medical clusters is somewhat
more complicated. In particular, we have a biomedical group,
a clinical group, and a psychological group. The latter one
has some overlap with another group, the social sciences and
humanities clusters that we will discuss later. Although the
overlap of the most important terms within the life science and
medical clusters is considerable, the terms analysis in Table 6
provide an excellent description for at least some of the medi-
cal clusters. Thus, cluster #16 (PSYC) stands for psychology,
#17 (NEUR) for neuroscience, and #15 (COGN) for cog-
nitive science. Although NEUR represents the medical and
clinical of neuro and behavioural sciences, COGN comprises
cognitive psychology and neuroscience and PSYC contains
psychology and psychiatry, which is traditionally considered
part of the social sciences. Clusters #14, #21, and #22 repre-
sent different subfields of clinical and experimental medicine,
and are therefore labeled (CLI1 through CLI3). CLI1 rep-
resents issues like health care, physiotherapy, sport science,
and pain therapy, while CLI2 and CLI3 share many terms (cf.
Table 6) but have a somewhat different focus as can be seen on
the basis of the most important journals (cf. Table 5). Finally,
clusters #18 (BIOC), #19 (BIOS), and #20 (MBIO) stand
for biochemistry, biosciences, and microbiology, respectively
(see Glänzel and Schubert, 2003). It should be noted that links
and overlaps among the life science clusters are rather strong.
The last group is formed by the social sciences and humani-
ties (four clusters in total). Cluster #12 (ECON) is labeled as
economics and business, cluster #2 (HUMA) represents the
humanities, and clusters #1 (SOC1) and #13 (SOC2) two dif-
ferent subfields on the social sciences. Within the subject of
social science, SOC1 stands for educational sciences, cultural

sciences and linguistics while SOC2 represents sociology,
geography, urban studies, political science and law.

The 22 clusters are more or less strongly interlinked (cf.
Figure 5). The strong links between clusters #6 and #7, #7
and #8, or the “chain” leading from #18 to #21 via #19 and
#22 might just serve as an example. Therefore, we have com-
bined those clusters that are strongly interlinked to larger
structures. These “mega-clusters” are presented in Figure 6.
The first mega-cluster is formed by the social sciences clus-
ters (SOC1, SOC2, ECON, and HUMA). The second one
comprises MATH and COMP and the third one is formed by
the natural and engineering sciences (without mathematics
and computer science). Biology, agricultural, environmental,
and geosciences (BIOL,AGRI, GEOS) form the fourth mega-
structure. The fifth and sixth one are formed by the biomedical
clusters and the neuroscience clusters, respectively. The large
neuroscience cluster (#15–#17) acts as a bridge connecting
the life science mega-cluster with the social sciences and
humanities, whereas the agricultural/environmental mega-
cluster connects the life sciences with the natural and applied
sciences (cf. Figure 6).

Conclusion

We proposed an ANMI-based weighting scheme for
hybrid clustering and applied this scheme to a real applica-
tion to obtain the structural mapping of a large-scale journal
database. The main contributions are concluded as follows.

We presented an open framework of hybrid clustering to
combine heterogeneous lexical and citation data for jour-
nal sets analysis from the scientometric point of view.
We exploited two main approaches in this framework as
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clustering ensemble and kernel-fusion clustering. The per-
formance of all approaches has been cross-compared and
evaluated using multiple statistical and information based
indices.

The analysis of lexical and citation information in this arti-
cle was carried out at more refined granularities. The lexical
information was represented in five independent data sources
by the different weighting schemes of text mining. The cita-
tion information was also investigated with five different
views, resulting in five independent citation data sources.
These lexical and citation data sources were combined in
hybrid clustering as refined representations of journals.

On the basis of theANMI, we proposed an efficient weight-
ing scheme for hybrid clustering. Three clustering algorithms
were extended using the weighting scheme and they were sys-
tematically compared with the concerned algorithms using
multiple evaluations.

To thoroughly investigate the journal clustering result, we
visualized the structural network of journals on the basis of
citation information. We also ranked the journals of each par-
tition using a modified PageRank algorithm. Furthermore, we
provided multiple textual labels for each cluster on the basis
of text mining results. The obtained journal network inte-
grates lexical and citation information and can be employed
as a good reference for journal categorization. The proposed
method is also efficient to be applied in large-scale data to
detect new trends in different scientific fields. The proposed
weighted hybrid-clustering framework can also be applied to
retrieve multiaspect information, which is useful for a wide
range of applications pertaining to heterogeneous data fusion
(i.e., bioinformatics research and Web mining).
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