
References Made and Citations Received by Scientific
Articles

Pedro Albarrán
Departamento de Fundamentos del Análisis Económico, Universidad de Alicante, Alicante, Spain.
E-mail: albarran@ua.es

Javier Ruiz-Castillo
Departamento de Economía, Universidad Carlos III, Madrid, Spain. E-mail: jrc@eco.uc3m.es

This article studies massive evidence about references
made and citations received after a 5-year citation win-
dow by 3.7 million articles published in 1998 to 2002 in
22 scientific fields. We find that the distributions of ref-
erences made and citations received share a number of
basic features across sciences. Reference distributions
are rather skewed to the right while citation distribu-
tions are even more highly skewed:The mean is about 20
percentage points to the right of the median, and articles
with a remarkable or an outstanding number of citations
represent about 9% of the total. Moreover, the existence
of a power law representing the upper tail of citation dis-
tributions cannot be rejected in 17 fields whose articles
represent 74.7% of the total. Contrary to the evidence in
other contexts, the value of the scale parameter is above
3.5 in 13 of the 17 cases. Finally, power laws are typically
small, but capture a considerable proportion of the total
citations received.

Introduction

This article studies the following problem: Are the cita-
tion distributions of different sciences very different among
themselves or do they share a number of essential character-
istics despite differences in publication and citation practices
across scientific fields? The answer is important for any
attempt at explaining how these distributions get formed.
Whether citation distributions are very different or can be
described in terms of a few stylized features would determine
whether we must search for as many explanations as distribu-
tion types or for a single explanation capable of accounting for
the fundamental characteristics shared by all the distributions
in question.
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The article searches for regularities across sciences in two
dimensions. First, we investigate how the distribution of ref-
erences made by articles in a given field becomes a highly
skewed distribution of citations received in which a large
proportion of articles gets none or few citations while a small
percentage of them account for a disproportionate amount of
all citations.1 We are able to provide a much more complete
view of this process than the picture drawn in Price’s (1965)
pioneer contribution with the newly available (but limited)
data during the early 1960s, or in Seglen’s (1992) seminal
contribution where the skewness of citation distributions is
only illustrated for a random sample of articles drawn from
the 1985 to 1989 Science Citation Index, and for Magyar’s
(1973) data on the small subfield of dye laser research.2 The
case of Vinkler (2009) is paradigmatic. He stated that “As is
well known, the distribution of citations by paper . . . may be
rather skewed” (p. 602), but his only references are to Seglen
and to papers by Burke and Butler (1996) on the entire fields
of the natural sciences and the social sciences and humani-
ties inAustralian universities, and to Irvine and Martin (1984)
and Lehmann et al. (2003), both on high-energy physics. Two
clear exceptions are the important contributions by Schubert,
Glänzel, and Braun (1987), which described the skewness of
articles published and cited in 1981 to 1985 in 114 subfields,
and by Glänzel (2007), who studied 450,000 citable papers
published in 1980, cited in the 1980 to 2000 period, and classi-
fied into 60 subfields and 12 major fields (However, Glänzel,
2007, only reported results for 12 subfields while Glänzel, in
press, studied papers published in 2006 with a 3-year citation
window, but only reported results for three subfields.)

1In the eloquent summary by Lehmann, Lautrup, and Jackson (2003),
“The picture which emerges is thus a small number of interesting and
significant papers swimming in a sea of dead papers” (p. 7).

2Seglen (1992) also illustrated the skewness of citations to articles from
single journals and from single authors, a type of citation distribution beyond
this article’s scope.
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Second, it is generally believed that the citation process
in the periodical literature is one of the aspects of scientific
activity in which power laws (or other extreme distributions)
are prevalent (An extensive discussion of the properties of
power laws can be found in reviews by Mitzenmacher, 2004,
and Newman, 2005, and in the references therein.) However,
the available evidence is very scant indeed. To our knowl-
edge, there are only results for a few samples of articles
belonging to certain scientific fields such as physics or high-
energy physics, or all fields combined.3 We investigate the
existence of power laws for a broad array of scientific dis-
ciplines, including how they are inserted in the rest of the
citation distribution.

In other words, this article searches for a compact and
systematic description of the distribution of references made
and that of citations received by articles in different scien-
tific fields, with special attention to the existence of power
laws. A key feature of this empirical investigation is that it
provides massive evidence about these issues using a large
sample acquired from Thomson Scientific (TS), consisting
of about 3.9 million articles published in 1998 to 2002, the
almost 10-million references they made, and the more than
28-million citations they received using a 5-year citation win-
dow. After excluding the arts and humanities for its intrinsic
peculiarities, we are left with the 20 natural sciences and the
two social sciences distinguished by TS.

The skewness of the distribution of references made or
citations received in any field is described using the char-
acteristic scores and scales (CSS) technique, which permits
the partition of any distribution of articles into a number of
classes as a function of its members’ citation characteris-
tics. Schubert et al. (1987), Glänzel and Schubert (1988), and
Glänzel (2007, in press) applied this technique to classify arti-
cles into five categories according to whether they received
no citations, or were poorly cited, fairly cited, or remarkably
or outstandingly cited (discussed later). This classification
method has two important invariance properties: The results
do not change if the citations received by all articles are mul-
tiplied by a common scalar greater than zero (scale or unit
invariance), or if the original distribution of articles and the
citations they received is replicated any discrete number of
times (replication or size invariance).4 These properties per-
mit us to focus on skewness as a property of the shape of the
distributions involved.

The estimation of a power law presents more subtle techni-
cal problems. From a statistical point of view, the estimation

3Beyond the graphical illustrations included in Seglen (1992), the only
directly estimated results we have found are those of Redner (1998, 2005),
Lehmann et al. (2003; Lehmann, Lautrup, & Jackson, 2008), and Clauset,
Shalizi, and Newman (2009); Laherrère and Sornette (1998) studied the
citation record of the most cited physicists. Under the hypothesis that cita-
tion distributions follow a power law, Glänzel (2007) obtained an equation
relating the scale parameter of a power law and the parameters of the char-
acteristic scores and scales technique (discussed later); with direct estimates
of the latter, estimates of the former are computed.

4Of course, these properties also are satisfied for the partition of articles
into classes according to the references they make.

of a power law and the evaluation of the goodness-of-fit are
known to be much more complex than is the direct linear fit
of the log–log plot of the full raw histogram of the data, let
alone the mere inspection of the histogram plotted on loga-
rithmic scales to check whether it looks like a straight line.5

In this respect, there seems to be unanimity that a maximum
likelihood (ML) approach provides the best solution to the
estimation problem.

The rest of the article is organized in three sections. The
first section presents the 1998 to 2002 sample as well as
the classification of reference and citation distributions in
all fields into five characteristic classes following the CSS
approach. The next section presents the results of the power
law estimation in 22 fields (excluding arts and humanities)
and all sciences as a whole. Finally, the last section discusses
the main findings and a number of possible extensions.

The Data and a Characterization of the
Reference and Citation Distributions

The Data

TS-indexed journal articles include research articles,
reviews, proceedings papers, and research notes. In this arti-
cle, only research articles, or simply articles, are studied,
so 390,097 review articles and three notes are disregarded.
The 52,789 articles without information about some vari-
ables (number of authors, Web of Science category, or TS
field) also are eliminated from the analysis. Thus, the ini-
tial sample size consists of 8,470,666 articles published in
1998 to 2007, or 95% of the number of items in the origi-
nal database. For this article, we have restricted ourselves to
the sample of articles published in 1998 to 2002. How rep-
resentative is this sample, consisting of 3,912,097 articles?
And how large is the number of articles in the smallest sci-
ences? The information on these issues is in Table 1, where
the 1998 to 2007 and 1998 to 2002 samples are compared.
The 20 fields in the natural sciences are organized in three
large groups: Life Sciences, Physical Sciences, and Other
Natural Sciences. Physical Sciences and Other Natural Sci-
ences in the larger sample represent approximately 28 and
26%, respectively, of the total while Life Sciences represent
about 37%. The remaining 9% corresponds to the two Social
Sciences and Arts and Humanities. The distribution of the
1998 to 2002 sample by fields is very similar: It contains
more Life and Social Sciences articles (1.1 and 0.4%, respec-
tively), and somewhat less from the Physical and the Other
Natural Sciences. Therefore, the 1998 to 2002 sample can be
taken to be representative of the larger sample. On the other
hand, for most fields, the 1998 to 2002 sample size is rather
large: Twelve fields have more than 100,000 articles; 10 fields
have between this number and 49,000 articles; and only the
Multidisciplinary field has about 21,000 articles.

5See inter alia Nicholls (1987), Pickering, Bull, and Sanderson (1995),
Clark, Cox, and Laslett (1999), Goldstein, Morris, and Yen (2004), Bauke
(2007), Clauset et al. (2009), and White, Enquist, and Green (2008).
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TABLE 1. Articles by Thomson Scientific field in the entire 1998 to 2007 dataset and in the 1998 to 2002 sample.

1998–2007 1998–2002
Dataset % Sample %

Life Sciences 3,165,734 37.4 1,507,634 38.5
1. Clinical Medicine 1,667,362 19.7 791,723 20.2
2. Biology & Biochemistry 470,483 5.6 228,908 5.9
3. Neuroscience & Behavioral Science 244,508 2.9 116,100 3.0
4. Molecular Biology & Genetics 216,835 2.6 102,800 2.6
5. Psychiatry & Psychology 198,225 2.3 91,905 2.3
6. Pharmacology & Toxicology 135,116 1.6 64,271 1.6
7. Microbiology 130,458 1.5 60,754 1.6
8. Immunology 102,747 1.2 51,173 1.3

Physical Sciences 2,365,084 27.9 1,056,552 27.0
9. Chemistry 1,004,835 11.9 458,373 11.7
10. Physics 809,301 9.6 375,075 9.6
11. Computer Science 233,757 2.8 76,460 2.0
12. Mathematics 212,496 2.5 97,309 2.5
13. Space Science 104,695 1.2 49,335 1.3

Other Natural Sciences 2,186,875 25.8 987,794 25.2
14. Engineering 701,423 8.3 318,504 8.1
15. Plant & Animal Sciences 466,587 5.5 218,385 5.6
16. Materials Science 388,218 4.6 168,724 4.3
17. Geoscience 228,221 2.7 101,783 2.6
18. Environment & Ecology 207,795 2.5 90,520 2.3
19. Agricultural Sciences 155,466 1.8 69,051 1.8
20. Multidisciplinary 39,165 0.5 20,827 0.5

Social Sciences 469,799 5.5 220,014 5.6
21. Social Sciences, General 337,041 4.0 156,523 4.0
22. Economics & Business 132,758 1.6 63,491 1.6

Arts & Humanities 283,174 3.3 140,103 3.6
23. Arts & Humanities 283,174 3.3 140,103 3.6

All Fields 8,470,666 100.0 3,912,097 100.0
Reviews and Notes 390,100
Articles without information about some variables 52,789
No. of “Items” in the original database 8,913,555

The original dataset consists of articles published in a cer-
tain year and the citations they receive from that year until
2007; that is, articles published in 1998 and their citations
during the 10-year period 1998 to 2007, articles published in
1999 and their citations in the 9-year period 1999 to 2007,
and so on until articles published in 2007 and their citations
during that same year. The time pattern of citations varies a lot
among the different disciplines. In this situation, ideally, the
citation window in each field should be estimated along other
features of the stationary distribution in a dynamic model;
however, the estimation problem is beyond the scope of this
article. Therefore, it was decided to take all fields equally by
taking a fixed, common window for all of them. The standard
length of citation windows in the literature is 3 years, possibly
because it is large enough for the citation process to be settled
in the quickest disciplines that include most natural sciences
(see inter alia Moed, De Bruin, & van Leeuwen, 1995). How-
ever, we wanted to make sure that the slowest sciences were
relatively well covered. But the greater the citation window,
the smaller the sample size had to be.We settled on a common
5-year citation window for all articles published in 1998 to
2002.

Note that the simplification of taking a common citation
window implies that certain idiosyncratic features that differ-
entiate some fields from each other will be preserved in our
data: Five years is a long-enough period for the completion of
a sizable part of the citation process for some disciplines but
rather short for others, notably the Social Sciences and other
“slower” fields such as Psychiatry and Psychology, Geo-
sciences, and Environmental and Ecology. However, Glänzel
(2007) established that except for a short initial period of 4
years—under our 5-year choice—the particular length of a
citation window was not important for the class sizes deter-
mined in the CCS approach applied (discussed later). Having
selected a rather large citation window, together with a large
sample size, we conjecture that we also are on the “safe side”
for the estimation of a power law.

Differences Across Fields in the Citation Process

For each field, Table 2 presents descriptive statistics about
the two sides of the citation process: 99,767,108 references
made as well as 28,426,632 citations received in the 1998 to
2002 sample. Naturally, the citations received by articles in a
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TABLE 2. The distribution of references made and citations received.

References Citations

Ratio
References/

M CV Citations %zeros M CV h-index
(1) (2) (3) (4) (5) (6) (7)

Life Sciences
1. Clinical Medicine 25.5 0.67 2.7 16.4 9.4 2.27 323
2. Biology & Biochemistry 33.7 0.52 2.7 9.9 12.3 1.62 187
3. Neuroscience & Behavioral Science 37.1 0.56 2.7 7.5 13.5 1.35 161
4. Molecular Biology & Genetics 38.2 0.50 1.9 7.4 20.2 1.63 253
5. Psychiatry & Psychology 34.8 0.62 5.2 18.7 6.7 1.63 107
6. Pharmacology & Toxicology 28.6 0.60 3.7 13.1 7.7 1.41 94
7. Microbiology 32.4 0.52 2.9 8.1 11.3 1.23 108
8. Immunology 35.5 0.48 2.2 4.6 16.0 1.41 161

Physical Sciences
9. Chemistry 24.6 0.69 3.4 18.2 7.3 1.75 156
10. Physics 20.7 0.71 3.0 22.0 6.8 2.23 198
11. Computer Science 18.1 0.76 6.4 43.2 2.8 4.75 85
12. Mathematics 16.8 0.70 7.1 37.6 2.4 1.90 50
13. Space Science 31.1 0.66 2.9 18.1 10.8 1.76 138

Other Natural Sciences
14. Engineering 15.9 0.85 5.6 39.8 2.8 1.90 85
15. Plant & Animal Sciences 28.4 0.66 5.7 22.3 4.9 1.59 97
16. Materials Science 17.3 0.75 4.2 31.3 4.1 1.93 97
17. Geoscience 31.7 0.71 5.1 22.0 6.3 1.57 92
18. Environment & Ecology 31.2 0.65 4.6 15.6 6.7 1.42 88
19. Agricultural Sciences 23.6 0.69 5.2 26.0 3.5 1.54 69
20. Multidisciplinary 15.5 1.06 4.5 46.3 3.4 3.06 69

Social Sciences
21. Social Sciences, General 30.9 0.80 10.5 36.1 3.0 1.81 71
22. Economics & Business 24.0 0.90 7.6 40.7 3.2 2.00 63

Arts & Humanities
23. Arts & Humanities 19.4 1.12 38.2 21.8 0.5 6.63 67

All Sciences 25.7 0.72 3.4 82.9 7.5 2.13 170

certain field would depend on the reference distribution in that
field. In particular, the higher the mean (or the median, not
shown in Table 2 but available on request), the higher the total
citations received will be—and, presumably, the smaller the
percentage of articles with zero citations. But references are
made to many different items—articles in TS indexed jour-
nals as well as articles in conference volumes, books, and
other documents—none of them covered by TS. Moreover,
some references will be to articles published in TS journals
before 1998 and, hence, outside of our dataset. The larger the
number of references made to recently published articles,
the larger the number of citations received tend to be,
and the smaller the ratio references made/citations received
in Column 3 in Table 2.

Fields can be classified in three groups according to the
value of the references/citations ratio: (Group A) six of
the eight Life Sciences and Space Science, characterized by
a relatively low value (between 1.9–3) of the ratio; (Group B)
the two remaining Life Sciences and another seven natural
sciences with a ratio between 3 and 5.2; and (Group C) a
group of seven fields with a ratio greater than 5.2 (including

Engineering, Plant andAnimal Sciences, Computer Sciences,
Mathematics, the two Social Sciences, plus Arts and Human-
ities with a value equal to 38.2). With few exceptions, the
means of the reference distributions in Group C are rela-
tively small, ranging from 15.8 to 30.9, and relative high in
Group A, ranging from 25.5 to 38.2, with intermediate val-
ues in Group B. On the other hand, reference and citation
inequality are measured by the coefficient of variation (CV);
that is, the SD normalized by the mean.A negative association
across fields can be seen between the mean in the reference
distribution and the CV (The correlation coefficient between
Columns 1 and 2 in Table 1 is −0.73.) Correspondingly,
the dispersion of the former is greater than the dispersion
of the latter. Mean differences across fields are important:
They range from fewer than 17 references per article for
Engineering and Mathematics to more than 37 for Neuro-
science and Behavioral Science, and Molecular Biology and
Genetics. The CV ranges from 0.48 for Immunology to more
than 1 for Multidisciplinary and Arts and Humanities; how-
ever, it is between 0.5 and 0.7 for 13 disciplines and between
0.71 and 0.80 for the remaining seven.
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Thus, fields in Group C make fewer references on average
and receive fewer citations. Correspondingly, they are char-
acterized by a relatively high percentage of articles with no
citations at all, a relatively low mean, and a relatively low
h-index (Columns 4, 5, and 7 in Table 2). Indeed, for six of
these seven fields, the percentage of articles without citations
ranges from 22.3 to 43.2% while for the remaining field in
Group C, Arts and Humanities, the percentage is an astro-
nomical 82.9%. With few exceptions, the opposite is the case
for Life Science fields in Group A: The percentage of articles
with zero citations ranges from 4.6 to 16.4% while Group B is
characterized by intermediate values. Since greater mean ref-
erences are associated with smaller reference/citations ratios,
the dispersion of mean citations increases: Apart from an
uncommon low mean of 0.5 citations per article for Arts and
Humanities, mean citation ranges from a low 2.4 per arti-
cle in Computer Science to a value greater than 9 in most
fields in Group A, with Molecular Biology and Genetics
the highest with 20.2 citations per article. Similarly, the h-
index in Column 7 ranges from 50 in Mathematics (or 63
in Economics and Business, and 67 in Arts and Human-
ities) to 253 in Molecular Biology and Genetics, and 323
in Clinical Medicine. On the other hand, when we go from
the reference to the citation distribution, the CV dramati-
cally increases by a factor greater than 3 or 4 generally, and
greater than 6 in Arts and Humanities and Computer Sci-
ence (Column 6). Citation inequality now ranges from 1.2 in
Microbiology to 4.7 in Computer Science and 6.6 in Arts and
Humanities. But, as before, once the extreme values are taken
away, the range is very limited: There are 17 fields with a CV
between 1.35 and 1.99, and 3 more with this measure between
2 and 3.1.

The overall conclusion is that as expected, the reference
and citation processes present large differences across fields.
The reference distribution of fields in Group A are charac-
terized by low reference/citation ratios, a high mean, and a
relatively low CV; correspondingly, these fields tend to have
lower percentages of articles without citations, higher citation
means, and higher h-indices. Fields in Group C present the
opposite pattern while fields in Group B constitute an inter-
mediate case. Citation inequality is always much greater than
is reference inequality; however, as soon as we normalize by
the mean in the CV, both distributions become considerably
more similar across fields.

The 1998 to 2002 and the 1998 to 2007 reference dis-
tributions are very similar indeed (Results for the original
1998–2007 dataset are available on request.) Likewise, a 5-
year citation window for the articles published in 1998 to
2002 appears to be large enough for the sample’s citation dis-
tribution to closely resemble that of the entire dataset. Taking
into account that the sample’s distribution by field also is very
similar to that of the dataset (see Table 1), we are confident
that the 1998 to 2002 sample constitutes a good testing bank
to explore the empirical issues that motivate this article.

A special case should be singled out: It is clear thatArts and
Humanities constitutes an entirely different, or an extreme,
case of a scholarly field that makes relatively few references,

a very small part of which appear as citations received by
articles published only a few years later in TS-indexed jour-
nals. This leads us to eliminate this field from further analysis
and to define the all-sciences category as the sum of the
remaining 22 TS scientific fields; namely, 3,771,994 articles
that made 97,043,743 references and received 28,355,343
citations.

Similarities Across Fields: References Made

In this subsection, the CSS methodology is applied
to the ordered distribution of references made by the
articles published in 1998 to 2002, r = (r1, . . . , rn) with
r1 ≤ r2 ≤ . . . ≤ rn, where ri is the number of references made
by the ith article, i = 1, . . . , n. The following characteristic
scores are determined:

s0 = 0.
s1 = mean references per article.
s2 = mean references of articles with references above

average.
s3 = mean references of articles with references above s2.

These scores are used to partition the set of articles into
five categories:

Category 0 = articles that make no references;
r = s0

Category 1 = articles that make few references; namely,
r ∈ (s0, s1] references lower than average;

Category 2 = articles that make a fair number of references;
r ∈ [s1, s2) namely, at least average references but below s2;

Category 3 = articles that make a remarkable number of
r ∈ [s2, s3) references; namely, no lower than s2 but below s3;

Category 4 = articles that make an outstanding number of
r ≥ s3 references; namely, no lower than s3.

As indicated in the Introduction, the classification of any
distribution into these five categories satisfies two impor-
tant properties, also satisfied by the CV: The classification
is invariant when the references each article makes are
multiplied by any positive scalar, and when the initial dis-
tribution is replicated any discrete number of times. The
first property implies that the classification method is inde-
pendent of the units in which references are measured.
Consequently, it allows for a comparison of two distributions
with different means. The second property implies that the
classification method only responds to references per article.
Consequently, it allows for a comparison of distributions of
different sizes.6

6Suppose there are two distributions x and y with sizes n and m, respec-
tively. Distributions x and y can be replicated m and n times, respectively,
so that each will be of size n × m after the operation is performed. However,
the replication will leave unchanged the classification into five categories
of either x or y. Thus, the two distributions could be compared using their
corresponding n × m replicas.
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FIG. 1. References made by articles published in 1998 to 2002.

The classification of the reference distributions into five
categories for TS fields is in Figure 1. Two comments are
in order. First, taking as reference the distribution for ALL
SCIENCES combined, it is observed that it is a rather
skewed distribution: The mean is well to the right of the
median while the last two categories represent about 15%
of all articles. Second, after the normalization involved
in the classification method, most differences across fields
essentially vanish. On average, the first two categories rep-
resent 57.4% in the 22 fields, with a minimum value of
53% for Immunology and a maximum value of 67.1% for
Multidisciplinary.

Similarities Across Fields: Citations Received

The classification into five categories of articles without
citations or poorly cited, fairly cited, remarkably cited, and
outstandingly cited articles for the 22 TS fields is in Figure 2.
Again, two comments are in order. First, the essential change
from Figure 1 is that now all distributions are even more
skewed to the right than they were before. Taking ALL SCI-
ENCES as a representative example, a large percentage of
articles without citations is observed, the mean is shifted
about 10 percentage points to the right, and the last two cate-
gories constituting the upper tail of the distribution represent
only about 9% of all articles. Second, the only difference
across scientific fields is the percentage of articles without
citations; however, these differences essentially disappear
when the sum of the first two categories is compared. This
long lower tail represents on average 70.3% of all articles,

with a minimum of 66.3% for Plant and Animal Sciences,
and a maximum of 78.2% for Multidisciplinary.

Taking into account the considerable changes in scien-
tific communication during the lat 2 decades (see Persson,
Glänzel, & Danell, 2004, who documented the intensification
of research collaboration and coauthorship), this 70–21–9
rule for 3.7 million articles published in 1998 to 2002 with
a 5-year citation window and classified into 22 TS fields is
not that different from the 75–18–7 rule reported in Glänzel
(2007) for 450,000 papers published in 1980 with a 20-year
citation window and classified into 60 subfields and 12 major
fields.

To complete this discussion, one also could ask about the
percentage of references made and citations received by each
category (beyond the first that by definition, accounts for no
references or citations at all). First, on average, Categories 1
and 2 of the reference distributions account for 32 and 33.7%
of all references, respectively, while the upper tail formed by
15.9% of all articles in Categories 3 and 4 accounts for the
remaining 34.3% of all references. Second, as noted earlier,
citation distributions show an even greater skewness to the
right than do the reference distributions. Thus, on average,
Categories 1 and 2 account only for 22.7 and 33.3%, respec-
tively, of all citations while the upper tail formed by 9.2% of
all articles in Categories 3 and 4 accounts for the remaining
44% of all citations.7

7The skewness of the citation distribution is even more pronounced in the
high-energy physics subfield, where Lehmann et al. (2003) reported that 4%
of the papers account for half of the citations.
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FIG. 2. Citations received by articles published in 1998 to 2002 with a 5-year citation window.

Estimation of the Power Law

The ML Approach

Let x be the number of citations received by an article in
a given field. This quantity is said to obey a power law if it is
drawn from a probability density p(x) such that

p(x)dx = Pr(x ≤ X ≤ x + dx) = Cx−α,

where X is the observed value, C is a normalization constant,
and α is known as the exponent or scaling parameter. This
density diverges as x → 0, so that there must be some lower
bound to the power law behavior, denoted by ρ. Then, pro-
vided α > 1, it is easy to recover the normalization constant,
which in the continuous case is shown to be

C = (α − 1)ρα−1.

Assuming that in each field our data are drawn from a
distribution that follows a power law exactly for x ≥ ρ, and
assuming for the moment that ρ is given, the ML estimator
(MLE) of the scaling parameter can be derived. For instance,
the MLE in the continuous case can be shown to be (see
Appendix B in Clauset et al., 2009):

α̂MLE = 1 + T

[
T∑

i=1

ln
xi

ρ

]−1

(1)

where T is the sample size for values x ≥ ρ. These authors
tested the ability of the MLEs to extract the known scaling

parameters of synthetic power law data, finding that the MLEs
give the best results when compared with several competing
methods based on linear regression. Nevertheless, for very
small datasets, the MLEs can be significantly biased. Clauset
et al. (2009) suggested that T ≥ 50 is a reasonable rule of
thumb for extracting reliable parameter estimates.

The large percentage of articles with no citations at all as
well as the low value of the mean in most fields (see Column 5
in Table 2) indicate that we are in the typical case where
there is some non-power law behavior at the lower end of the
citation distributions. In such cases, it is essential to have a
reliable method for estimating the parameter ρ; that is, the
power law’s starting point. In this article, as in Clauset et al.
(2009), we choose the value of ρ that makes the probability
distributions of the measured data and the best-fit power law
as similar as possible above ρ. To quantify the distance to
be minimized between the two probability distributions, the
Kolmogorov–Smirnov (KS) statistic is used. Again, Clauset
et al. (2009) generated synthetic data and examined their
method’s ability to recover the known values ofρ.They obtain
good results, provided the power law is followed by at least
1,000 observations.

The method described allows us to fit a power law dis-
tribution to a given dataset and provides good estimates of
the parameters involved.8 An entirely different question is to

8As a matter of fact, to estimate the parameters α and ρ, we use the
program that Clauset et al. (2009) made available in http://www.santafe.
edu/∼aaronc/powerlaws/
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TABLE 3. Power law estimation results: Articles published in 1998 to 2002 with a 5-year citation window.

No. of power % of Total
α ρ p-value law articles articles % of Citations

Life Sciences
1. Clinical Medicine 3.28 136 0.879 2,408 0.30 7.78
2. Biology & Biochemistry 3.82 71 0.233 3,219 1.41 12.64
3. Neuroscience & Behavioral Science 5.05 137 0.304 305 0.26 3.51
4. Molecular Biology & Genetics 3.86 152 0.089 1,073 1.04 11.81
5. Psychiatry & Psychology 3.77 42 0.097 1,495 1.63 15.50
6. Pharmacology & Toxicology 3.73 33 0.000 2,037 3.17 20.61
7. Microbiology 4.56 66 0.457 626 1.03 8.27
8. Immunology 3.57 73 0.367 1,223 2.39 17.37

Physical Sciences
9. Chemistry 4.02 72 0.099 1,777 0.39 5.79
10. Physics 3.35 55 0.028 4,253 1.13 15.74
11. Computer Science 2.92 18 0.672 1,701 2.22 29.55
12. Mathematics 3.83 20 0.614 841 0.86 11.18
13. Space Science 3.37 62 0.552 909 1.84 17.72

Other Natural Sciences
14. Engineering 3.59 20 0.015 4,953 1.56 17.21
15. Plant & Animal Sciences 4.16 50 0.157 900 0.41 6.01
16. Material Science 3.62 37 0.245 1,460 0.87 12.20
17. Geosciences 4.02 39 0.254 1,253 1.23 11.38
18. Environment & Ecology 4.14 48 0.633 645 0.71 7.42
19. Agricultural Sciences 3.85 27 0.008 1,111 1.61 14.25
20. Multidisciplinary 3.23 48 0.918 166 0.80 19.51

Social Sciences
21. Social Sciences, General 3.63 19 0.001 2,928 1.87 18.53
22. Economics & Business 4.63 46 0.667 207 0.33 6.46

All Sciences 3.58 136 0.850 6,119 0.16 4.80

decide whether the power law distribution is even a reason-
able hypothesis to begin with; that is, whether the data we
observe could have been drawn from a power law distribu-
tion. The standard way to answer this question is to compute a
p-value, defined as the probability that a dataset of the same
size that is truly drawn from the hypothesized distribution
would have a KS statistic larger than or equal to the one that
has been observed. Thus, the p-value summarizes the sample
evidence that the data were drawn from the hypothesized dis-
tribution, based on the observed goodness of fit. Therefore,
if the p-value is very small, then it is unlikely that the data
are drawn from a power law.

To implement this procedure, we again follow Clauset
et al. (2009). First, take the value of the KS statistic minimized
in the estimation procedure as a measure of its goodness of
fit. Second, generate a large number of synthetic datasets that
follow a perfect power law with scaling parameter equal to
the estimated α above the estimated ρ, but which have the
same non-power law behavior as the observed data below it.
Third, fit each synthetic dataset according to the estimation
method already described, and calculate the KS statistic for
each fit. Fourth, calculate the p-value as the fraction of the
KS statistics for the synthetic datasets whose value exceeds
the KS statistic for the real data. If the p-value is sufficiently
small, say below 0.1, then the power law distribution can be
ruled out.

Estimation Results

For the 1998 to 2002 sample with a 5-year citation win-
dow, the results of the ML approach are presented in Table 3.
Judging by the p-value, the results are very satisfactory: In 17
fields—as well as ALL SCIENCES—with a p-value close to
0.1 or greater, the existence of a power law cannot be rejected.
These fields represent 74.7% of all articles in the natural and
the social sciences. In the remaining five fields (Pharmacol-
ogy and Toxicology, Physics, andAgricultural Sciences from
Group B, as well as Engineering, and Social Sciences, Gen-
eral from Group C), the p-value is clearly below the critical
value 0.1.9

With regard to the 17 fields for which the existence of a
power law cannot be ruled out, the following three comments
are in order:

• Only for Computer Science is the estimated scale parameter
between 2 and 3. For three fields, α̂ is below 3.5, for seven
fields is between 3.5 and 4, for five fields is between 4 and
5, and for the remaining field (Neuroscience and Behavioral
Sciences), α̂ is greater than 5. This is rather at variance with

9This is important when for seven of the 24 datasets rigorously investigated
in Clauset et al. (2009)—HTTP connections, earthquakes, Web links, fires,
wealth, Web hits, and the metabolic network—the p-value is sufficiently
small that the power law model can be firmly ruled out.
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previous research in bibliometrics: Redner (1998) reported
that α̂ is approximately 3 for papers published in a single
year in a variety of scientific fields while Lehmann et al.
(2003) found that for papers with 50 or more citations in high-
energy physics, α̂ is equal to 2.31. Through indirect methods,
Glänzel (2007) concluded that the most relevant range for α̂

is [1.5, 3.5].10

• As expected, the estimated value of ρ that determines the
beginning of the power law is rather low in Group C—ranging
from 18 citations in Computer Science to 50 in Plant andAni-
mal Sciences—and very high in GroupA—ranging from 66 in
Microbiology to 152 in Molecular Biology and Genetics. The
estimated value of ρ in Group B ranges from 37 in Materials
Science to 72 in Chemistry.

• Perhaps more interestingly, all power laws are of a relatively
small size, but account for a considerable percentage of all
citations in their field. The power laws in eight fields represent
between 0.2 and 0.9% of all articles and account for 3.5 to
12.2% of all citations. In six fields, the power laws represent
between 1 and 1.9% and capture between 8.3 and 17.7% of all
citations. Computer Science and Immunology represent 2.2
and 2.4%, respectively, of all articles, and account for 29.5
and 17.4%, respectively, of all citations. Finally, the power
law in the Multidisciplinary field accounts for 19.5% of all
citations.11

Discussion

Summary and Results

This article has been concerned with the question of
whether the distributions of references made and citations
received by scientific articles have many things in common.
Publication and citation practices are very different across
disciplines. As a result, certain key statistics—such as the
mean reference or the mean citation ratio, the percentage of
articles without citations, or indicators of scientific excel-
lence such as the h-index—exhibit a large degree of variation
across scientific fields. However, this article has demonstrated
that from another perspective, the shape of the reference and
citation distributions of different sciences share many basic
features.

The article has analyzed the largest dataset ever inves-
tigated in search of basic differences or similarities across
22 broad fields, consisting of about 3.7-million articles pub-
lished in 1998 to 2002 with a 5-year citation window.We have
used state-of-the-art techniques; namely, we have ranked ref-
erences made and citations received into five classes using
the CSS approach, and we have searched for the existence of

10For the very different 17 phenomena for which a power law cannot be
rejected in Clauset et al. (2009), in four cases the scale parameter is below 2,
in eight cases between 2 and 3, and in five cases above 3.

11There are seven phenomena in Clauset et al. (2009) where the sample
size is larger than 10,000 observations and a power law cannot be rejected.
Ordered by sample size, these are solar flair intensity, count of word use,
population of cities, Internet degree, papers authored, citations to papers
from all sciences, and telephone calls received. In the last three phenomena,
the size of the power law is less than 1% of the sample size; in two cases,
this percentage is between 1 and 3%, and in the remaining three cases, this
percentage is between 8 and 16%.

a power law in the upper tail of citation distributions using
ML methods. The main results can be summarized by the
following three observations:

• Reference distributions are rather skewed to the right: The
mean is almost 10 percentage points to the right of the median,
and articles with a remarkable or an outstanding number of
references represent less than 18% of the total.

• Part of the references made during a certain period (the
so-called citation window) becomes the citations received
by earlier published articles. These citation distributions are
highly skewed: About 70% of all articles receive citations
below the mean, and articles with a remarkable or outstand-
ing number of citations represent about 9% of the total. The
corresponding figures reported in Glänzel (2007) for papers
published 20 years ago are 75 and 7%, respectively—a very
small difference indeed, which speaks about the stability of
these features of the citation process in a large number of fields
and during a long period of time. At any rate, in our sam-
ple, this 9% of highly cited articles accounts for 44% of all
citations received.

• The existence of a power law cannot be rejected in ALL SCI-
ENCES taken together as well as in 17 of 22 fields whose
articles represent 74.7% of the total. Contrary to the evidence
in other contexts, the value of the scale parameter is above 3.5
in 13 of the 17 cases. Due to the prevalence of articles with
no or few citations, power laws are typically small (repre-
senting 0.2–2.4% of all articles), but receive between 3.5 and
19.5% of all citations, with a maximum of 29.5% in Computer
Science.

It can be concluded that what is needed is a single expla-
nation of the decentralized process whereby scientists made
references that a few years later translate into a highly skewed
citation distribution crowned in most cases by a power law.

Future Research

It is natural to work at the aggregate level of the 22 sci-
entific fields distinguished by TS. Quite apart from other
alternatives at this level (see inter alia Adams et al., 1998;
Glänzel & Schubert, 2003; Tijssen & van Leeuwen, 2003),
it would be interesting to investigate these issues at the
subfield level—a topic addressed in Schubert et al. (1987),
where 114 subfields were analyzed, Glänzel (2007, in press),
who studied 60 subfields, and Albarrán, Crespo, Ortuño, and
Ruiz-Castillo (2010), who studied the 219 Web of Science
categories within the 22 fields analyzed here.

The preliminary results obtained in this study constitute
the most complete evidence available in the scientometrics
literature about the prevalence of power laws among citation
distributions arising from the academic periodicals indexed
by TS (or other comparable journal collections). Three points
are left for further research. First, as noted by Clauset et al.
(2009), the fact that a power law cannot be rejected does
not guarantee that a power law is the best distribution that
fits the data. New tests must be applied confronting power
laws with alternative distributions, such as the log-normal or
the exponential distributions. Moreover, confidence intervals
around the parameter estimates must be obtained.
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Second, the ML approach might be quite vulnerable to the
existence of a few, but potentially influential extreme obser-
vations consisting of a small set of highly cited articles at the
very end of the citation distribution. A possibility currently
being investigated is that for a citation distribution following
a power law, an estimation method that uses the relationship
that has been shown to exist between the h-index for that sam-
ple, the sample size, and the scale parameter of the power law
(Egghe & Rousseau, 2006; Glänzel, 2006). The rationale for
this strategy lies in the fact that the h-index, of course, is
robust to the presence of extreme observations.

Third, in the case of high-energy physics, Lehmann et al.
(2003) estimated a second power law for the lower impact
articles not included in the first one—a possibility that needs
to be further explored.
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