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Abstract 

The aim of this paper is to extend our knowledge about the power-law relationship between citation-
based performance and collaboration patterns for papers in the natural sciences. We analyzed 
829,924 articles that received 16,490,346 citations. The number of articles published through 
collaboration account for 89%. The citation-based performance and collaboration patterns exhibit a 
power-law correlation with a scaling exponent of 1.20 ± 0.07. Citations to a subfield’s research 
articles tended to increase 2.1.20 or 2.30 times each time it doubles the number of collaborative papers. 
The scaling exponent for the power-law relationship for single-authored papers was 0.85 ± 0.11. The 
citations to a subfield’s single-authored research articles increased 2.0.85 or 1.89 times each time the 
research area doubles the number of non-collaborative papers. The Matthew effect is stronger for 
collaborated papers than for single-authored. In fact, with a scaling exponent < 1.0 the impact of 
single-author papers exhibits a cumulative disadvantage or inverse Matthew effect. 
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Introduction 

Collaboration has been a constitutive aspect of science from its very beginning, as it was 

one way to transmit and improve knowledge (Archambault, Beauchesne, Côté, & Roberge, 

2014). Scientists from several academic disciplines have studied scientific collaboration in the 

past 25 years. For example, in the Web of Science category Information Science & Library 

Science appear 7,911 pages in 591 articles published in 71 journals to disseminate findings 

about scientific collaboration. The journal Scientometrics accounts for 34% of the overall 

scientific output about this subject matter. 57% of the papers come from the last seven years 

suggesting exponential growth. 

Among the most influential papers on the scientific collaboration topic are Katz and Martin 

(1997), Katz (1994), Persson, Glanzel, and Danell (2004), Beaver (2001), Luukkonen, 

Tijssen, Persson, and Sivertsen (1993), and Hara, Solomon, Kim, and Sonnenwald (2003). 

These five papers account for the 42% of the overall impact of this line of research in the last 

25 years and they contributed fostering academic interest towards the study of collaboration. 

In the past few years, the academic debate of research on scientific collaboration has 

turned into a discussion about the effect that collaboration has on the impact of research 

papers. The trend of studying the influence of collaboration on the impact of articles has been 

widely supported (Katz & Hicks, 1997; Katz & Martin, 1997; Kliegl & Bates, 2010; Tang & 

Shapira, 2010; Zhai, Yan, Shibchurn, & Song, 2014). Recently, Avkiran (1997); Elena Luna-

Morales (2012); Glänzel (2002); González-Teruel, González-Alcaide, Barrios, and Abad-

García (2015); Rousseau (2000); Rousseau and Ding (2015); Van Raan (1998) ). These 

authors have published findings about the existence or absence of a relationship between 

collaboration and the impact of articles in several scientific fields. 

Katz (2000, p. 35) suggested that studying the power-law or scale-independent relationship 

between the impact of co-authored papers and group sizes would facilitate a better 

understanding of the impact of a research field’s collaborative research activity within and 

across science systems. A system with a scale-independent property statistically exhibits that 

property at many levels of observation and it is mathematically described by  power-law 

distributions and correlations (Katz, 2006a). Co-authorship networks that emerge out of the 

process of creating and disseminating knowledge represent the collaboration structure. These 

networks tend to have  in-link vertex connectivity that follows a power-law distribution 

(Barabasi & Reka, 1999). 
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A few studies have analyzed the power-law relationship between collaboration and impact.  

Archambault et al. (2014) found that collaboration intensity follows a power-law, and that the 

larger an entity, the less it tends to collaborate intensely with outside partners. Katz (2000) 

suggested that one could derive performance indicators by dividing observed values by 

expected values calculated using a power law regression on the data addressing the non-linear 

properties of collaboration (Archambault et al., 2014). 

Recently, Ronda-Pupo and Katz (2015) found a power-law relationship between citation-

based performance and collaboration for articles in journals in the field of management. The 

relationship between citation-based performance and collaboration patterns in fields of natural 

sciences has not been done. The aim of this paper is to explore the power-law relationship 

between citation-based performance and scientific collaboration for these fields. 

Theory and hypothesis 

de Solla-Price (1963) first suggested the existence of a power-law citation distribution for 

the publishing activity of scientists. Clauset, Shalizi, and Newman (2009, Table 6.1) found 

that citations to papers had a good likelihood of being a power-law distribution. Recently, 

Brzezinski (2015) found power-law distribution for highly cited papers of the disciplines 

Physics and Astronomy on the Scopus database. This author concluded that the power-law 

hypothesis is a plausible one for around half of the Scopus fields of science. We pose as the 

first hypothesis: 

H1: the distribution of the citations to overall/ collaborative/ single-authored peer-
reviewed articles in the natural sciences will follow a power law distribution. 

A positive and significant power-law correlation between international collaboration and 

size of countries was found to have an exponent of 1.14± 0.03 (R2 = 0.95) by Katz (2000). 

Recently, Ronda-Pupo and Katz (2015) reported the existence of a power-law correlation 

between citations and collaboration with scaling parameter of 1.89 ± 0.08 in the articles in 

management journals. Based on these results, we expect a power-law correlation between 

citations and collaboration may exist across the subfields of natural sciences. We pose as 

second hypothesis: 

H2: The citations to collaborated papers will show a power-law correlation with a scaling 
factor α > 1. 
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Lotka (1926) first studied the distribution of scientific productivity. He found that a few 

authors accounts for approximately the 80% of the overall scientific output. de Solla-Price 

(1963) defined it as the Lotka’s Law. A scientist  already rewarded for their achievements get 

a higher chance of being rewarded once again, so that they become a part of an elite group 

enjoying preferential access to scientific resources and facilities (de Bellis, 2009). Merton 

(1968, 1988) called it success-breeds-success phenomenon by which the rich get richer while 

the poor get comparatively poorer the “Mathew Effect,” after a well-known verse in the 

Gospel according Mathew (Mathew 25:29, King James version). 

The exponent of a power-law correlation is a measure of the Mathew Effect of the citation-

based impact. Ronda-Pupo and Katz (2015) found that the Mathew Effect of the citation-

based performance of articles in the journals of the field of management is bigger for 

collaborative papers. The exponent for collaborative articles is 1.89 ±0.08 while for single-

authored articles the exponent of 1.35 ±0.08. We expect the Mathew Effect will be bigger for 

the citation-based performance of collaborative articles across the fields of science given 

earlier. We pose as third hypothesis: 

 H3: The Mathew Effect for citations to collaborated papers will be bigger than to single-
authored papers. 

Methods 

The methodology used in the study comprises two main steps. First, we test the hypothesis 

for the power-law distribution on the citations to overall/ collaborated/ single-authored papers. 

Second, we run a power-law regression on numbers of citations and numbers of 

collaborative/non-collaborative papers. 

Verification the power-law distribution 

In this step we used the Clauset et al. (2009, Box 1) three-step procedure. 

Estimate the xmin and scaling parameter α of the power-law 

The objective of this step is to determine the xmin and the scaling parameter α. The xmin is 

the value when the power-law begins or the lower bound on the scaling region. That is, the 

xmin value is the highest probability point in the distribution where the power-law begins. To 

calculate the xmin value we used the Formula 3.7 by Clauset et al. (2009) because the data is 

discrete. We used the computational program by Gillespie (2015). The scaling parameter α is 

calculated through the method of maximum likelihood.  
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Calculate the goodness of fit between the data and the power-law 

The objective of this step is to find out if the hypothesis of the power-law distribution 

according to the data is a plausible one. For this step, we ran 2,500 Monte Carlo simulations. 

To determine the required number of samples to run for an accuracy of two decimal digits (for 

a two decimal digits ε = 0.01) we used the formula proposed by Clauset et al. (2009) 1/4ε-2. 

The (Clauset et al., 2009) formula suggests to run 2,500 samples to test if the distribution 

really follows a power-law. 

We fit each sample individually to its own power-law model and calculated the 

Kolgomorov-Smirnov (KS) statistic for each one relative to its own model. The p value is the 

fraction when the resulting statistic is larger than the value for the empirical data (Clauset et 

al., 2009). We ran a goodness of fit test, which generates a p value that quantifies the 

plausibility of the hypothesis. According to Clauset et al. (2009) if the value of p is large 

(close to 1) then, the hypothesis that the data follows a power-law distribution is correct. We 

made the choice that the power-law is ruled out if p ≤ 0.10, following Clauset et al. (2009). 

Compare the power-law with alternative hypothesis 

It is important to note as Clauset et al. (2009) suggest that a large p-value does not 

necessarily mean that the data obey to a power-law distribution. Thus, the objective of this 

step is to verify if the power-law distribution is the better fit to the data under analysis. For 

this step, we compare the power-law distribution to log normal, exponential and power-law 

with exponential cut-off as competing distributions using the KS test to measure the distance 

between distributions. 

We calculated the p-value for a fit of each of the competing distributions and we compare 

it with the p-value of the power-law distribution. Finally, we used the likelihood ratio test for 

each alternative under comparison to make a decision if the data follows a power-law 

distribution or not. If the likelihood ratio is significantly different from zero the sign indicates, 

whether the alternative is favored over the power law model or not (Clauset et al., 2009). If 

the sign is positive, the power-law is favored over the alternative. And the distribution with 

most negative likelihood ratio and significant p-value is a better fit than the power law 

distribution. 

Power-law correlation between citation-based performance and collaborative activity  

The model 
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The model for the study follows the power-law approach, 

CBP = kcn (equation 1) 

Where CBP stands for citation-based performance, c for number of collaborative papers, k 

is a constant (intercept) and n is the scaling factor (slope of the log-log regression line). 

Definition of variables in the model 

Table 1 shows the variables and their conceptual definitions. 

Table 1. Variables and their conceptual definitions. 

Variable Conceptual definition 
Citation-based performance is the number of citations to receive by each paper within a 

field/subfield. 
Collaboration is the number of articles published with the participation of 

more than one author. 
No collaboration is the number of articles published with the participation of 

one author. If the author signs by more than one institution, 
was considered no-collaboration. 

Data source 

The data for the study consists of publications in natural sciences published in the WOS 

database between 2005 and 2007, inclusive. We used the following publication types: articles 

including proceeding papers published in journals, letters, notes and reviews. We used these 

publication types for two reasons: 1) they are peer-reviewed and 2) they are  a primary route 

for disseminating new knowledge in most scientific disciplines (Adams & Gurney, 2013). 

To retrieve the data we used the tag Advance search SO= ‘Journal Name’ Refined by: 

Document Types: (Article OR Review OR Letter OR Note OR Proceedings Paper). We filter 

the document types Review and Proceedings paper by the ISI field PJ to ensure that the 

review is not a book review and the proceeding is a journal paper. Timespan: 2005-2007. 

Indexes: SCI-EXPANDED, SSCI, A&HCI. We retrieved the data by journals to avoid 

duplicates because the WOS categories allow assigning documents to more than one category. 

To download the records we added the results to marked list, next we saved the records by 

500 (Because of WOS constrains) to Tab-delimited. Then we created an Excel database for 

the quantitative analysis. To assign each journal/paper to a unique field/subfield we used the 

Science Metrix journal classification1. The Science Metrix classification is similar to the NSF 

journal classification and it was updated recently. 

                                                           
1 Available from Science Metrix web site http://science-metrix.com/en/news/science-metrix-launches-the-
second-public-release-of-its-multilingual-journal-classification. 

http://science-metrix.com/en/news/science-metrix-launches-the-second-public-release-of-its-multilingual-journal-classification
http://science-metrix.com/en/news/science-metrix-launches-the-second-public-release-of-its-multilingual-journal-classification
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The Science Metrix classification scheme assigns journals to one of 176 subfields that can 

then be uniquely aggregated into 22 fields. A problem with this classification is that 

prestigious multidisciplinary journals like Science, Nature, Plos One, etc. are assigned to 

single subfields of General Science and Technology because of the difficulty of assigning 

individuals papers to unique subfields. The articles in multidisciplinary journals tend to 

receive more citations than articles in subfield focused journals. For this analysis, we 

examined 33 natural science subfields in the fields of (1) biology, (2) chemistry, (3) earth & 

environmental sciences, (4) mathematics & statistics and (5) physics & astronomy. 

Results 

Table 2 shows the results of the Citation-Based Performance according to collaboration 

patters. The scientific community of the fields in the natural sciences published 825,922 

articles in 1,898 journals between 2005 and 2007, inclusive. 

Table 2. Summary of citation based performance according to collaboration patterns. 

Collaboration patterns Nº Papers % Total Citations % Total 
Collaboration 726,306 88% 15,257,054 93% 
No Collaboration 99,616 12% 1,233,292 7% 
Total 825,922 100% 16,490,346 100% 

The main patterns found could be summarized in the following items: 

• All 5 fields and 33 sub-fields published more co-authored papers than single-authored. 

• The co-authored papers received more citations than single-authored papers. 

• The co-authored papers account for the 93% of the citations. It suggests that 

collaborated papers receives 16 times the number of citations to single-authored 

papers. 

• The median citations of collaborated papers is 10 while for single-authored it is 4. 

Verification of the power-law distribution 

Estimating the xmin and scaling parameter α of the power-law 

We tested the fit of three data sets to power-law distributions: the citations to all papers, 

the citations to collaborative papers and the citations to single-authored papers. Table 3 shows 

the results of fitting the data to a power-law distribution to 2,500 iterations through Monte 

Carlo bootstrapping analysis. 
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Table 3. Results of fitting the power-law to the datasets. 

Dataset Xmin α p KS 
Overall 22,260 ±8 2.35 ±0.20 0.77 0.03 
Collaborative 18,660 ±7 2.27 ±0.19 0.44 0.04 
Single-authored 2,311±892 2.87 ±0.43 0.32 0.05 

The results suggest that the power-law distribution is a plausible one for the three 

distributions of citations under analysis. 
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Fig. 1 – Complementary cumulative probability distribution for the power law model of (a) overall 
papers, (b) collaborative papers and (c) single-author papers 

Comparing the power-law with alternative distributions 

To test the hypothesis for the power-law distribution we compared the power-law model to 

log normal, exponential and power-law with exponential cut-off as competing distributions by 

comparing loglikelihood ratios (LR). Positive values of LR indicate that the power-law model 

is favored over the alternative (Clauset et al., 2009). Table 4 shows the results of comparing 

the power-law hypothesis to other competing distributions. A power-law with exponential 

cut-off better fits these distributions than a pure power-law. This result supports hypothesis 1.  

A power-law with an exponential cut-off is a degenerate form of a power-law (Katz, 2015). 

While a pure power-law is scale-invariant from xmin to the end of the distribution a power-

law with exponential cut-off is only scale-invariant from xmin to the point at the far right 

hand side of the distribution where the exponential decay begins dominates the power-law. 

The scale-invariant region can be many orders of magnitude in size. Some people think that 

the exponential cut-off of a power-law is due to the finite size of the data set, but recently it 

has been shown that it might also be an effect of finite observation time (Yamasaki et al., 

2006). Moreover, models show that the probability distribution tends to evolve from 

exponential to a power-law with exponential cut-off to a pure power-law given enough time.  

Table 4. Test of power-law behavior in the three datasets 

 
Dataset 

Power
-law 

Log-normal exponential Power-law + 
cut-off 

Support for 
power-law 

p LR p LR p LR p 
Overall 0.77 -0.32 0.30 39.51 0.00 -1818 0.05 With cut-off 
Collaboration 0.44 -0.77 0.22 2.83 0.00 -1955 0.03 With cut-off 
Single-authored 0.32 -0.46 0.26 -1032 0.08 -1096 0.04 With cut-off 
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Power-law regression of collaboration predicting citation-based performance 

Table 5 shows the results of the analysis of the power-law correlations. The power-law 

correlation between the overall number of articles and the citation-based performance is 

highly significant t(1, 31)= 9.824, p < 0.001. The power-law correlation between 

collaborative papers and citation-based performance is statistical significant t(1, 31)= 12.22, p 

< 0.001. The power-law correlation between single-authored papers and citation-based 

performance is statistical significant t(1, 31)= 5.02, p < 0.001. We aggregated the years 2005 

to 2006, 2006 to 2007 and the three years together and ran the power-law regression and we 

found out that the exponent of the correlation remain the same.   

Table 5. Values of the exponents for the power-law correlations. 

 
Year 

Overall Collaboration Single 
Alpha SD R2 Alpha SD R2 Alpha SD R2 

2005 1.19 0.08 0.88 1.20 0.07 0.91 0.91 0.12 0.66 
2006 1.18 0.08 0.87 1.19 0.07 0.90 0.84 0.11 0.66 
2007 1.19 0.08 0.87 1.20 0.07 0.90 0.84 0.11 0.66 
2005-2006 1.19 0.08 0.88 1.20 0.07 0.91 0.87 0.11 0.67 
2006-2007 1.18 0.08 0.87 1.20 0.07 0.90 0.84 0.11 0.67 
2005-2007 1.19 0.08 0.87 1.20 0.07 0.91 0.86 0.11 0.67 

Median 1.19 0.08 0.87 1.20 0.07 0.91 0.85 0.11 0.67 

The results of aggregating two and three years in the analysis suggest that the exponent for 

the relationship between size and CBP to overall scientific output of natural sciences is about 

1.19, the exponent for collaborative papers is 1.20 and 0.85 for single-authored papers. This 

means that no differences appear in the Mathew Effect by aggregating more years to the 

analysis. 

Figure 2-A shows the results of the power-law correlation between citation-based 

performance and overall 2005-2007 papers. Figures 2B and 2C show the results of the power-

law correlation between citation-based performance and collaboration and single-authored 

articles. 

Table 5 shows the values for the scaling relationship of the three datasets studied. The 

result shows that the Mathew Effect (Merton, 1968, 1988) is bigger for collaborative articles. 

The median exponent is 1.20 ± 0.7. The exponent > 1 shows that citations grow faster than 

collaboration. This result supports the hypothesis 2. 
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Fig. 2 – Power law relationship between CBP and field sizes for (a) overall papers, (b) collaborative papers and 
(c) single-authored papers 

The exponent for the relationship between citations and non-collaborative papers is 0.85 ± 

0.11. An exponent < 1 suggests that single-authored papers exhibit an inverse Matthew effect. 

In other words, for a doubling of size the number of citations increases less than twice and in 

this case 1.80 times. A possible reason that the exponent for the single-authored papers is < 
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1.0 is that maybe a more interdisciplinary approach is required in large diverse fields to have 

greater impact. 

The number of citations expected by collaborative papers increases 21.20 or 2.30 times 

when the number of collaborative papers published in a subfield of the natural sciences 

doubles.. The Matthew effect is stronger for collaborative than for non-collaborative papers. 

In fact non-collaborative papers exhibit an inverse Mathew effect indicative of a cumulative 

disadvantage as Katz (2006b) suggested. The impact of single author articles decreases with 

larger subfields. According to these result, hypothesis 3 is sustained. 

Discussion and conclusions 

In the present study we found three scaling correlations. Scaling relationships cannot be 

captured by traditional scientometrics indicators based on population averages e.g. citations 

per paper cannot capture the scaling correlation between impacts of collaborative and non-

collaborative articles. 

The exponent of the scaling correlation between citations and the number of 

collaborative/non-collaborative papers published by the scientific community of a research 

field is independent of the size of the system. It provides decision makers with a measure of 

the average expected impact for a research field given a known number of collaborative or 

non-collaborative papers. The measured citation-based impact for each natural science 

subfield can be compared against an expected impact providing a unique scale independent 

measure of performance that can be compared across subfields. For example, the scaling 

exponent for the correlation between citations and collaboration for the subfields studied was 

of 21.20±0.07. This means that citation are expected to increase 2.30 times when a subfield 

doubles the number of papers it publishes through collaboration. 

This result suggests that the citation-based performance of collaborative articles of a 

science system is greater than sole authorship. A science system can increase the impact of its 

knowledge by encouraging collaboration over no collaboration. Collaboration is a positive 

strategy for policy makers to foster greater impact of science systems. 

Possible new research questions 

The present study suggests new research questions with policy implicatoins such as: Does 

international collaboration show a greater or lower  Matthew effect than domestic 

collaboration? Such questions could be examined at the macro (regions, countries), meso 
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(institutions, faculties, departaments, journals), and  mico (researchers) levels. What is the 

impact of self-citations? Is the scaling exponent always < 1.0  for non-collaborative papers or 

does it does start out > 1.0 and become < 1.0 as time progresses? How is the magnitude of the 

scaling exponent for collaborative papers effected by the type of collaboration (international, 

domestic, inter-institutional, intra-institutional)?  
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