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Abstract 

This brief communication analyzes the statistics and methods Lotka used to derive his inverse square 

law of scientific productivity from the standpoint of modern theory.  It finds that he violated the norms 

of this theory by extremely truncating his data on the right.  It also proves that Lotka himself played an 

important role in establishing the commonly used method of identifying power-law behavior by the R^2 

fit to a regression line on a log-log plot that modern theory considers unreliable by basing the derivation 

of his law on this very method.   
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Introduction 

 In recent years power-law distributions as scientific models have come under intensive scrutiny.  

Of primary importance in this have been the papers by Newman (2005) and Clauset, Shalizi, and 

Newman (2009).    In his paper Newman (2005, p. 323) states that when the probability of measuring a 

particular value of some quantity varies inversely as a power of that value, the quantity is said to follow a 

power law.  Lotka’s Inverse Square Law of Scientific Productivity—historically the first law of 

scientometrics—is precisely such a law.   Power-law distributions have the general shape of negative 

exponential J-curves with a long tail to the right, and a key characteristic of them is a surfeit of 

observations at the right tip of what is termed this “heavy tail.”  Clauset, Shalizi, and Newman (2009) 

focus on the problems of identifying power-law distributions, and they aver that “the detection and 

characterization of power laws is complicated by the large fluctuations that occur in the tail of the 

distribution—the part of the distribution representing large but rare events—and by the difficulty of 

identifying the range over which power-law behavior holds” (p. 661).  They also assert that the commonly 

used method of identifying power-law distributions by logging the variables on both axes of the graph 

and then using regression analysis to measure the R^2 linear fit to the resulting regression line or trendline 

is unreliable.  It will be seen in the subsequent analysis of Lotka’s methods and data that his inverse 

square law of scientific productivity suffers from all these problems and that Lotka himself used the 

method of the linear fit on the log-log plot to derive his law of scientific productivity. 

Lotka’s Law 

 Lotka’s Inverse Square Law of Scientific Productivity is eponymously named after Alfred J. 

Lotka, and it is the first scientometric or informetric law.  To obtain the data for deriving his law, Lotka 

(1926) made a count of the number of personal names in the 1907-1916 decennial index of Chemical 

Abstracts against which there appeared 1, 2, 3, etc. entries, covering only the letters A and B of the 

alphabet. He also applied a similar process to the name index in Felix Auerbach's Geschichtstafeln der 

Physik (Leipzig: J. A. Barth, 1910), which dealt with the entire range of the history of physics through 



 

4 
 

1900. By using the latter source, Lotka hoped to take into account not only the volume of production but 

also quality, since it listed only the outstanding contributions in physics.  In making these counts Lotka 

credited only the senior author in joint publications.  On the basis of this data, Lotka derived what he 

termed an “inverse square law“, according to which of any set of authors, ca. 60% produce one paper, 

whereas the percent producing 2 is 1 /2^2 or ca. 25%, the percent producing 3 equals 1/ 3^2 or ca. 11.1%, 

the percent producing 4 is 1/ 4^2 or ca. 6.3%, etc.  Thus, of 1000 authors, 600 produce 1 paper, 250 

produce 2 papers, 111 produce 3 papers, and 63 produce 4 papers.  Lotka (1926, p. 320) defined the 

general formula for the relation he found between the frequency of y of persons making x contributions 

as: xny = const.  Most interestingly, Lotka (1926, p. 320) referred to the exponent as the “slope,” and he 

stated that, as determined by “least squares,” the “slope of the curve” to his Chemical Abstracts data was 

found to be 1.888 and to his Auerbach data 2.021. The source of these statements can be located in Figure 

1 below, which replicates the two histograms found in his article.  Part A presents the percent chemists 

and physicists on the y-axis and the number of mentions up to 10 on the x-axis.  However, on the 

histogram in Part B both the axes are logged, and the histogram is designed to show closeness of the 

linear fit to resulting regression lines determined by least-squares analysis.  It will be seen below that the 

absolute values of the slopes of these regression lines are equal to the exponents.  Thus, Lotka played an 

important role in establishing the method of identifying power-law behavior by the linear fit to a 

regression line on a log-log plot found unreliable by Clauset, Shalizi, and Newman (2009) by basing his 

derivation of his law on this method.  It will also be shown that Lotka avoided one of the main problems 

identified by them for fitting data to power laws—the extreme outliers on the fat tail—by truncating his 

data on the right.    
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Figure 1.  Lotka’s graphs of his inverse square power law of scientific productivity   
   
 

A. Histogram showing % of authors                                     B. Logarithmic histogram showing number of 

mentioned once, twice, etc.                                                   authors mentioned once, twice, etc. 

 
Note: From “The frequency distribution of scientific productivity,” by A. J. Lotka, 1926.  Journal of the Washington Academy of 

Sciences, 16 (12), pp. 321-322. 
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Lotka’s Right Truncation 

 At the beginning of his paper Newman (2005, p. 325) took up the problem of extreme outliers on 

the right of the distribution in the linear fit to the regression line on the log-log plot.  He noted that often 

the fit is not a good one because the right-hand end of the distribution, where the outliers are located, is 

noisy due to sampling errors as a result of the wide spacing of the observations there.  He observed that 

one way to deal with this problem would be to throw out the data on the tail of the curve.  But he advised 

against this, because “…there is often useful information in those data and …many distributions follow a 

power law only in the tail, so we are in danger of throwing out the baby with the bathwater” (p. 325).  

However, as now will be shown, this is precisely what Lotka did. 

 The range of works for Lotka’s Chemical Abstracts data ran from 1 to 346 and for his Auerbach 

data from 1 to 48.  However, Lotka decided to truncate the range for the Chemical Abstracts distribution 

at 30 works and for the Auerbach data at 17.  The reason for this Lotka (1926) gave in a footnote, where 

he stated that beyond these points “fluctuations become excessive owing to the limited number of persons 

in the sample” (p. 320n).  In another footnote (p. 323n) Lotka stated that fortunately there were somewhat 

more persons of very great productivity than would be expected under his simple law, calling attention to 

the extreme outlier at 346 works in his Chemical Abstracts data—the Swiss biochemist, Emil 

Abderhalden.  Lotka noted that such outliers should perhaps be considered separately because they are not 

the product of one person due to his policy of counting only senior authors of joint works.  Although 

expressed in a footnote these considerations are extremely portentous for the following reasons: 1) Lotka 

appeared to be aware of the distortions that could result from right truncation that underlie Newman’s 

admonition against this procedure; 2) he seemed to have intuited that a key characteristic of the power-

law model he was pioneering was an excess of “large but rare events” over what could be generally 

expected; and 3) in measuring productivity a complexity is that a single “item” (e.g., an article) could 

have multiple “sources” (e.g., scientists), making the proper allocation of credit for a given article to a 

given scientist a hellish process.  
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Table 1. Full distributions of Lotka’s Chemical 

Abstracts and Auerbach data 

Number f 

Authors 

Range of 

Works 

Number of 

Works 

Chemical Abstracts Data 

6891 1-346 22934 

Auerbach Data 

1325 1-48 3398 

 

 

Table 2.  Scale of Lotka’s right truncation 

Number of 

Authors 

Percent of 

Authors 

Range of 

Works 

Percent 

Range of 

Works 

Number of 

Works 

Percent 

Number of 

Works 

Chemical Abstracts Data 

0 0.00% 316 91.33% 3818 16.65% 

Auerbach Data 

0 0.00% 31 64.58% 451 13.27% 

 
 Tables 1 and 2 above set forth the results of Lotka’s right truncation.  In both cases he did not cut 

the number of authors but did his calculations in terms of the total number of authors in the full 

distributions.  Through this method Lotka partially incorporated the probability structure of the full 

distributions into his calculations based on the truncated distributions.  As for range and number of works, 

Lotka reduced these respectively by 91.33% and 16.65% in his Chemical Abstracts data and respectively 

by 64.58% and 13.27% for his Auerbach data.  The histograms in Figures 2 and 3 below graph the 

amount of truncation both in term of numbers (Part A) and percentages (Part B).  Here the bins were set 

to equal or approximate one-half the amount of truncation—15 for Chemical Abstracts and 8 for 

Auerbach.  Therefore everything to the right of the second bin was truncated except the number of 

authors, which remained the same for both the full and truncated distributions. 

Lotka’s Method of Calculating the R^2 Fit to the Regression Line on the Log-Log Plot  

 While Lotka did not calculate R^2, he used ordinary least squares to fit his data.  Ordinary least 

squares calculates the trendline by minimizing the residual sum of squares, but, for fixed data, it is.   
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Figure 2.  Full frequency distributions of Lotka’s Chemical Abstracts data: each bin being 

defined by being one-half of Lotka’s right-truncation point of 30 
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Figure 3.  Full frequency distributions of Lotka’s Auerbach data: each bin approximating 

one-half of Lotka’s right-truncation point of 17 
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Figure 4.  Lotka’s truncated distribution of his Chemical Abstracts data and his R^2 fit to 

the regression line on the log-log plot 
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Figure 5.  Lotka’s truncated distribution of his Auerbach and his R^2 fit to the regression 

line on the log-log plot 
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equivalent to maximizing R^2.  Figures 4 and 5 above demonstrate with Excel Lotka’s method of 

obtaining the R^2 fit to the trendline or regression line on his truncated distributions of his Chemical 

Abstracts and Auerbach data.  The Chemical Abstracts distribution is exemplified in Figure 4, and the 

Auerbach distribution, in Figure 5.  In each figure Part A shows the distribution, and Part B replicates the 

method of obtaining the R^2 fit to the trendline on the log-log plot with the Excel’s LINEST function. To 

understand these figures, one has to understand two things. First, in this part of the paper Lotka measured 

number of authors only in percentages.  Second, Lokta plots the number of papers (n) on the x-axis and 

the percentage of authors with n papers on the y-axis.  Hence the y-axis shows the probability that a 

randomly selected author from the list will have exactly n papers.   For example, in his Chemical 

Abstracts data 1 paper is considered as producing 3,991 chemists or 57.9%. Therefore, in both Parts B the 

log of percentage of scientists is the dependent variable, and the log of the number of papers is the 

independent variable.  .  

With this information the figures should be self-explanatory, and it is necessary only to 

emphasize the main result.  In both cases the absolute value of the slope is equal to the exponent, and in 

both cases the slope/exponents are equal to the third decimal place the exponents Lotka utilized to 

calculate his law—1.888 for his Chemical Abstracts data and 2.021 for his Auerbach data.  Given the 

passage of time and the advance in technology, such an outcome seems almost miraculous, and it proves 

one thing—Lotka based the derivation of his inverse square law of scientific productivity on the very 

method of identifying power-law behavior by the R^2 fit to the regression line on the log-log plot that 

Clauset, Shalizi, and Newman (2009) now consider unreliable.  
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