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1. Abstract

Benford’s law is an empirical observation, first reported by Simon Newcomb in

1881 and then independently by Frank Benford in 1938: the first significant dig-

its of numbers in large data are often distributed according to a logarithmically

decreasing function. Being contrary to intuition, the law was forgotten as a mere

curious observation. However, in the last two decades, relevant literature has grown

exponentially, - an evolution typical of ”Sleeping Beauties” (SBs) publications that

go unnoticed (sleep) for a long time and then suddenly become center of attention

(are awakened). Thus, in the present study, we show that Newcomb (1881) and

Benford (1938) papers are clearly SBs. The former was in deep sleep for 110 years

whereas the latter was in deep sleep for a comparatively lesser period of 31 years

up to 1968, and in a state of less deep sleep for another 27 years up to 1995. Both

SBs were awakened in the year 1995 by Hill (1995a). In so doing, we show that the

waking prince (Hill, 1995a) is more often quoted than the SB whom he kissed, - in

this Benford’s law case, wondering whether this is a general effect, - to be usefully

studied.
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3. Introduction

Amongst the enormous scientific literature that is being published annually, the

reaction of the research community to the quality of a particular article, measured by

the number of times it is being referred to by others, i.e. is cited, varies dramatically.

Some articles may become instant hits, receive a large number of citations within

the first few years of their publication, whereas most of the scientific articles are

never cited at all (Seglen 1992), though the proportion of these has been decreasing

over time (Lariviére et al., 2008). Indeed, it has been shown that the number of

citations of most articles, as a general rule, peaks with in the first few years of their

publication (Glänzel & Schoepflin, 1995; Glänzel et al., 2003; Costas et al., 2010)

and thereafter, over the years, follow a decreasing trend till they receive none, and

are then finally buried in the archives. However, there are some exceptions to this

general evolution of citations. Articles that attract none or only few citations for a

long time (sleep) since their publication and then suddenly their citation numbers

burst (are awakened) are called Sleeping Beauties (SBs) (van Raan, 2004). Such

articles achieve prominence following them being cited by some another article (the

”prince”). In scientometrics, this phenomenon is also known under appellations

like: resisted discoveries (Barber 1961), premature discoveries (Wyatt, 1961; Stent,

1972), delayed recognition (Cole, 1970; Garfield, 1990; Glänzel et al., 2003) and

information awakening (Wang et al., 2012). On the other hand, articles which begin

with a considerable number of citations in the initial years after their publication

can go to sleep for many years till they are again awakened by some prince; those

are called ”all-elements-sleeping-beauties” (Li & Ye, 2012). Opposite to SBs are the

flash-in-the-pans, articles which begin with many citations in the initial years of

their publication but thereafter are forgotten completely (van Dalen & Henkens,

2005).

The content of the paper, reputation of the author and his/her institute (Merton,

1968; Cole, 1970), impact factor of the journal - the percentage of uncited articles

in high ranking journals is far less than those in the lower ranked journals (van

Dalen & Henkens, 2005), initial uncitedness - the longer an article takes to its first

citation, the lesser the chance that it will ever be cited (Glänzel & Garfield, 2004)

and number of references - the more of them in the bibliography the more are

the chances of article being cited (Stern, 1990) are considered to be factors which

determine whether a given article will be a future SB. On the other hand, Burrell

(2005) assumed the accumulation of citations to be purely random and showed that

theoretically SBs can occur by chance without any need for the awakening prince

or for any of special attributes discussed above.

Looking for a possible SB, in the sea of scientific literature, is a task no less

than looking for a needle in the haystack. Nevertheless, scanning of entire citation

data bases have thrown up contrasting results on the occurrence of SBs. van Raan

(2004) concluded that SBs are indeed rare whereas Glänzel et al. (2003) and Ke et

al. (2015) found the phenomenon not to be so exceptional. The contrasting results
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arise due to the different choice of threshold parameters like time of sleep and

the depth of the sleep i.e. number of citations received during sleeping time. Thus

longer the time of sleep and more the depth of sleep (lesser number of citations)

the lesser the number of SBs (van Raan, 2004, 2015)) and vice-versa (Glänzel et

al., 2003). When unearthed SBs turn out to be application-oriented publications

(van Raan, 2015) or having presented fundamental results (Glänzel et al., 2003),

often ahead of their time, or are related to important discoveries, many later on

winning Nobel Prize for the authors (Li and Shi, 2015). Three of the large scale

studies, van Raan (2004, 2015) and Glänzel et al. (2003), analyzed the literature

published after the year 1980 whereas Ke et al. (2015), more recent one, analyzed

publications of American Physical Society from 1893 and that of Web of Science

from 1900. Obviously any SBs older than the dates covered in these studies would

be left out. Further, the citation practices vary among the disciplines (journals)

and many potential SBs from a low citations discipline (journal) may slip through

when analysis is done in conjunction with a discipline (journal) of higher citations.

SBs from low citation journals (Kozak, 2013) and subjects of study (Ohba & Nakao

2012) have been reported. See also: Abreu (2015) or da Fonseca (2015).

Individual papers of authors that went on to become SBs have also been pointed

out. Van Calster (2012) reported a remarkable increase in the citations of Peirce

(1984), a short note in Science. Marx (2014) showed that Shockley and Queisser

(1961) is a notable example of a scientific SB. Gorry and Ragouet (2016) found

that Dotter (1964), paper that lead to the birth of interventional radiology, is a SB.

Below we introduce “Benford’s law (BL)”, an empirical observation that certainly

was ahead of its time despite neither being any fundamental result nor being related

to any prize winning discovery.

4. Benford’s law

That logarithmic tables begin with numbers having smaller initial digits is common

knowledge. In 1881, a Canadian-American astronomer, Simon Newcomb, noticed

that the first few pages of logarithmic table books are dirtier, more thumbed, than

the latter ones. From this, he inferred that numbers with smaller initial digits are

more often looked for and used than are the numbers with larger initial digits.

Newcomb reported his observation as a two page note in the American Journal of

Mathematics without providing any practical examples. It was forgotten for about

six decades until its 1938 rediscovery by American physicist Frank Benford, ap-

parently independenta of the Newcomb (1881), through similar observation on the

dirty pages of logarithmic tables. Benford went much ahead in detail and tested

the accuracy of his observation by analyzing a large collection of 20000 numbers

he gathered from twenty diverse fields, thereby establishing a law in form of the

aBenford (1938) does not cite Newcomb (1881). In fact both papers do not have any bibliography.
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following mathematical equation.

P (d) = log10(d+ 1)− log10(d) = log10(
d+ 1

d
) = log10(1 +

1

d
), d = 1, 2, 3..., 9 (1)

where P (d) is the probability of a number having the first non-zero digit d and log10

is logarithmic to the base 10. Thus, in a given data set, the theoretical proportions

for each of the digits from 1 to 9 to be first significant digit are those shown in

Table 1. The phenomenon is now popularly only known as BL, a name questionable

Table 1. The distribution of first significant digits as predicted by BL

Digit 1 2 3 4 5 6 7 8 9
Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

on account of its lack of acknowledgment of Newcomb’s contribution. Newcomb’s

law or Newcomb-Benford law would have been more appropriate. Nevertheless, the

naming of the phenomenon is in accordance with Stigler’s law of eponymy (Stigler,

1980).

The first significant digit of a number is its left-most nonzero digit. According

to BL, in large data, the proportion of a digit as the first significant digit decreases

logarithmically as the value of the digit increases. Thus, the smallest digit, 1, will

appear as the first digit with the highest proportion (30%), whereas the largest

digit, 9, will appear as first digit with the least proportion (4%). This goes com-

pletely against the common thinking that the first digits of decimal numbers in

large data ought to be distributed uniformly, with an equal proportion of about

11%, irrespective of the digit value.

Simply unconvincing for novices, the law is also challenging the wisdom of re-

searchers. Many attempts have been made to prove the law, but even after more

than a century of its discovery, there is no agreement on the mathematical foun-

dations of the law (Gauvrit & Delahaye, 2008, 2009; Berger & Hill, 2011; Ausloos

et al., 2015). The popular explanation, regularity and large spread of the data, for

the ubiquity of the phenomenon by Feller (1966) has been found to be inaccurate

too (Berger & Hill, 2010, 2011, 2015). BL has been shown to be the only scale-

invariant digit law (Pinkham, 1961); its base invariance has also been established

(Hill, 1995b). Further, BL has been verified on data from an enormous range of

processes (Mir, 2012, 2014; Mir et al., 2014). Yet its universal nature is shattered

by some data sets whose digit distributions do not follow the law. There is no set of

absolute rules one can use to predict, on inspection, which type of data will conform

to the law and which will not. Some rules of thumb, arrived at from the experience

of working with data over the years, are (a) the appearance of numbers in the data

should be free from any human restrictions, (b) data must span several orders of

magnitude, and (c) the number of records in the data must be large enough for the

manifestation of individual digits.
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Notwithstanding the skepticism in earlier years of its discovery, BL has emerged

as a subject matter of books, peer reviewed papers, popular magazine articles,

patents, newspaper reports and blogs. According to Nigrini (2012) up to 1975 only

50 papers on BL were published and by 2000 there were about 150 papers. In other

words only 100 papers were published in a period of 25 years, an average of four

papers per year. Compare this with the present rate (Mir, 2016), of more than 50

papers being published every year. The phenomenal growth of BL related research

is interestingly driven by two of its contrasting peculiarities. Indeed; papers will

keep pouring as long as there is no consensus on the mathematical foundations of

the law. The simple mathematical form of the law, on the other hand, makes its

application quite straightforward: for testing its validity of BL, one essentially needs

data plethora of which are readily available from Internet.

Here below, we quantify the delayed recognition of BL through the use of biblio-

metric indicators. Specifically, the yearly number of citations received by Newcomb

(1881) and Benford (1938) are analyzed. While doing so, we only discuss the con-

tributions: reviewing the vast literature is a formidable task, which from time to

time have repositioned BL as a subject of practical usage requiring much academic

rigor. Nevertheless, it is immediately found that Newcomb (1881) was in deep sleep

for 110 years, whereas the time of deep sleep for Benford (1938) is 31 years only, -

the immediate appreciation of latter being attributed to its preceding an important

physics paper by Bethe et al. (1938).

We argue that the lack of acknowledgement of Newcomb (1881) in (all) the

papers of prominent workers, - some of which are currently the most cited papers

on BL, may have further contributed to its long deep sleep. The number of citations

to both papers started to increase significantly following the publications of Hill

(1995a) and Nigrini (1996), two VERY important papers on BL: the former dealt

with the mathematical explanation of the law, whereas the latter provided the first

practical application of law. Hill (1995a) emerges as the prince for both Newcomb

(1881) and Benford (1938).

5. Data

Work done on BL has been reviewed earlier, see Raimi (1976) and Nigrini (1994).

Hurliman (2006) gathered 349 papers published on BL up to July 5, 2006. There

is also an exhaustive compilation by Beebe (2016). Further on, as a quick reference

for interesting researchers, the single online resource updated continuously and ex-

clusively dedicated to the publications on mathematical aspects of the law and on

its applications across multiple disciplines should be pointed out, and is “Benford

Online Bibliography” (BOB) (Hill et al., 2009). As on March 30, 2016 this database

had indexed 976 articles. Articles can be arranged by the year of their publication

and also according to the order of the alphabets of the respective first author names.

Furthermore, it provides a complete reference and online information about the se-

lected article, the articles citing a given articles and the articles a given article is
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citing within its own database.

6. Benford’s law applied to its own literature

Though present study is not about testing the validity of BL, a curious reader might

nevertheless ask how does the law fare against the numbers quantifying its own

literature. Two bibliometric indicators, number of publications and their citations,

immediately come to mind. Miller (2015) studied the yearly number of “Benford

relevant“ publications listed on BOB and found their first digit distribution to be

in good agreement to BL. Next, Mir (2016) used Google Scholar (GS) to collect the

data on the numbers of citations received by all the articles citing Newcomb (1881)

and Benford (1938). He found that the distribution of the first digits of citations

data are in very good agreement to BL; this has remained consistently true over

the years.

7. Citation Curves of Newcomb (1881) and Benford (1938)

To study the evolution of research on BL, we arranged all the publications indexed

on BOB in chronological order. The first publication on BL obviously is Newcomb

(1881). We noted down the yearly number of articles published on BL. Many of

the entries on BOB are found to be magazine articles, newspaper reports and blog

items which usually do not have any bibliography. In line with our aim of studying

the citation history of the BL, we visually inspected the reference list of each of the

articles indexed on BOB to find out which ones really cite, i.e. refer to, Newcomb

(1881) and Benford (1938). For example 10 articles were published on BL in the

year 1981, but none out of which cites Newcomb (1881), whereas Benford (1938) is

cited by two texts only; another example: 15 publications are listed for year 1998,

but the former paper is cited by only 5, whereas the latter is cited by 9 of them.

Table 2. Rate of increase or decrease of the number of citations and co-citations
as a function of time for various cases as discussed in the text

case Newcomb Benford Hill Hill-Newcomb Hill-Benford

increase 0.158 0.142 0.245 0.224 0.215
decrease 0.077 0.246 0.149 0.251 0.252

The (yearly) time dependence of the number of citations received by Newcomb

(1881) is plotted in Fig. 1. The increase in citation rate is found to be exponential

with a regression coefficient such that 0.96 ≥ R2 ≥ 0.91; after reaching a peak,

the number of citations goes down relatively faster. In the decay, the regression

coefficient is smaller due to the small number of data point. see Table 2. This

is similar to what is found in the literature either for scientific citations (Della

Briotta Parolo et al., 2015) or sales (Lambiotte & Ausloos, 2006). In some sense,

scientific reports through journals is akin to authors ”sale” of papers (first to editors,
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next to reviewers, and in fine to their community), - whence a possible ”attention

dependence interpretation” (van Dalen & Henkens, 2005; Huberman et al., 2009)

of the data citation history, in general and for BL in particular.

The yearly number of citations received by Benford (1938) is also plotted in

Fig. 1. The characteristic features of a SB, i.e., no or very few citations for an

initially long time, followed by a rather sudden jump in citations, are clearly visible.

Newcomb (1881) was cited for the first time in 1920 by Boring (1920), 38 years after

its publication. Then it went on without any citations for another 55 years up to the

year 1975. It received two citations each in years 1976, 1978 and only one citation

in 1979. Thus, in the 100 year period, from 1881 to 1980, Newcomb (1881) had

received only 6 citations. For the next ten years, from 1981 to 1990, it received in

all 9 citations: 4 of these citations coming in the year 1984 alone. With an average

of ≪ 1 citation per year Newcomb (1881) was in deep sleep for a massive 110 years.

It continued to receive 1-digit citations per year from 1991 to 2000 leading to a total

37 citations, in this decade, i.e. 3.7 citations per year. Thus it is in this decade that

Newcomb (1881) was awakened from its deep sleep. Next, we will show that this

awakening is due to Hill (1995a). In the year 1995, Newcomb (1881) received a total

of four citations out of which three citations alone came from the papers of Hill.

Benford (1938) received its first citation in 1944 after a silence gap of 6 years

since its publication. Next it received citations (one each) in 1948, 1961, 1966 and

1968. With a total of 5 citations up to 1968, Benford (1938) was in deep sleep for

a period of 31 years. Citations jumped to 4 in 1969. The paper was in a ”less deep

sleep” for another 7 years from 1969 to 1975, when it received an average of 1.85

(13/7) citations per year. The 1-digit citations to Benford (1938) continued up to

year 1995 in which year it received 8 citations, - out of which 3 came from Hill

(1995a, 1995b, 1995c). In 1996, Benford (1938) received 10 citations. Thus, Benford

(1938) was also awakened by Hill (1995a). The sudden drop in the respective curves

towards the end of the examined time interval, can be attributed to incomplete

data mining, for 2014, 2015 and 2016. Indeed, there is a certain delay between the

publication of an article and its indexing on BOB. Further, on the date of accession,

the online bibliography was shown to have been ”last update(d)” on May 1, 2015.

The different evolution of citations of the two papers is further illustrated in Fig.

2 where the yearly number of papers citing (i) Newcomb (1881) but not Benford

(1938) (N/B) (ii) Benford (1938) but not Newcomb (1881) (B/N) and (iii) of those

citing both the papers (B & N) are compared. As can be seen from the inset plot from

1938 to 1975 there are no citations to Newcomb (1881). Upto year 1995 the values of

B/N are greater than both N/B and B & N. In fact B/N exceeds N/B through out

the citation history of the two papers indicating that whenever Newcomb (1881)

is cited Benford (1938) is also cited but the reverse is not true. It is only after

1996 that B & N exceeds B/N i.e. researchers increasingly begin to cite the two

papers simultaneously thereby again reaffirming the fact that Hill (1995a) brought

Newcomb (1881) back in focus.
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Fig. 1. Yearly citations of Newcomb (1881) and Benford (1938).

Fig. 2. Comparison of yearly citations received by Benford (1938) only (B/N), Newcomb (1881)
only (N/B) and both (B & N). Inset plot is for years 1938-1974.
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7.1. Appreciation of Benford (1938)

Goudsmith and Furry (1944) (32 citations) cited Benford (1938) for the first time

attempting an explanation of the phenomenon with further expansion by Furry

and Hurwitz (1945). When after 33 years Goudsmith (1977) revisited the problem

40 papers on BL had already appeared much contrary to his anticipation. Thus

Goudsmith (1977) and Logan and Goudsmith (1978) attribute the quick pick up of

Benford (1938) to its good fortune of preceding, Bethe et. al (1938), an important

physics paper in the same volume and issue of the journal. None of these publications

but Logan and Goudsmith (1978) cited Newcomb (1881). It is fascinating to note

that in terms of citations Benford (1938) has marched much ahead of Bethe et. al

(1938). A GS search on May 3, 2016 showed that the former had 1114 citations

whereas the latter has 289 citations only.

The above insight behind the immediate pick up of Benford (1938) looks con-

vincing when the present citations to Mitchell (1881) and Sylvester (1881) articles

preceding and succeeding Newcomb (1881) are taken into account. A GS search

performed on May 3, 2016 showed only one citation to the former and twenty cita-

tions to the latter paper. Thus the position of Newcomb (1881) in the journal was

less fortunate. However, Newcomb (1881) did not receive the attention that would

be expected, strangely, even after the publication of papers that are currently the

most cited papers on BL.

7.2. Notable contributions

7.2.1. R. Pinkham

In 1961, Roger Pinkham worked out two most significant results on BL. The first is

the scale-invariance of the law which means that the law should apply irrespective

of the units in which measurements of a given process are expressed. This implies

that if the law holds for data on the area of rivers, i.e. the first sample mentioned

in Benford (1938), measured in square meters, it will also hold if the measurements

were to be expressed in square feet. In other words scale-invariance of BL implies

its invariance under multiplication. If all the numbers in a sample of data obeying

BL are multiplied by a non-zero constant, then the resulting sample will also obey

the law. The second rule Pinkham (1961) worked out is that BL is the only scale-

invariant distribution of first significant digits .

Pinkham (1961) did not cite Newcomb (1881) but cited only Benford (1938).

With 190 citations Pinkham (1961) is the second most cited paper on BL. Newcomb

(1881) did not receive a single citation for 15 years after Pinkham (1961) (Fig. 1 &

2) till it was cited in another prominent paper (Raimi, 1976). During this period

Benford (1938) received 16 citations out of which it is co-cited 9 times with Pinkham

(1961). From 1961 to 1995, Newcomb (1881) and Pinkham (1961) are co-cited only

9 times, whereas the latter and Benford (1938) are co-cited 31 times. Pinkham

(1961) is co-cited with Newcomb (1881) 132 times whereas with Benford (1938)
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it shares 173 citations. Thus, a timely citation by Pinkham (1961) kept Benford

(1938) in some limelight, whereas a lack of consideration pushed Newcomb (1881)

into oblivion.

7.2.2. R. A. Raimi

Raimi furthered the mathematical understanding of BL, using Banach and other

scale invariances (Raimi, 1969a), and also its popularity (Raimi, 1969b). Both pa-

pers cite only Benford (1938) which received 4 citations in 1969 whereas none cited

Newcomb (1881) which received no citation at all in this year (Fig. 2). Raimi cited

both Newcomb (1881) and Benford (1938) in his review of the relevant literature

(Raimi, 1976) where he pointed out deficiencies in various available explanations.

Raimi (1976) is currently the third most cited paper on BL with 174 citations. Up

to 1995 Raimi (1976) is cited 46 times whereas Newcomb (1881) is cited 25 times.

Overall Raimi (1976) is co-cited with Newcomb (1881) 128 times whereas it is co-

cited with Benford (1938) 149 times. Raimi (1985) again debated the genesis of the

first digit phenomenon.

7.2.3. T. P. Hill

Following its citation by Pinkham (1961) and Raimi (1976) Benford (1938) kept

receiving 1-digit citations up to 1995 (8 for this year). The first 2-digit citation to

Benford (1938), 10, appeared in 1996; afterwards the number of citations increased

sharply. Around the same time, the citations of Newcomb (1881), having received

only 28 citations up to 1995, also started to increase. This is due to the publication

of three papers by Hill (1995a, 1995b, 1995c), all citing both Newcomb (1881) and

Benford (1938) on the mathematical aspects of BL. Hill (1995a) proposed one of

the most convincing explanations of BL, demonstrating that if distributions are

selected at random (in an “unbiased” way) and if random samples are then taken

from each of these distributions, the significant digits of the combined sample will

converge to the logarithmic (Benford) distribution. With 305 citations Hill (1995a)

is the most cited paper on BL. Hill (1995b) proved that base-invariance implies BL,

i.e. another distinguishing and interesting property of the law.

Hill (1988) is the first publication by Hill on BL. However, it cites only Benford

(1938) despite having two references, Raimi (1976) and Cohen (1976), in its bibliog-

raphy which, besides Benford (1938) also cite Newcomb (1881). This paper is cited

39 times; it reported that the initial digits of 6-digit numbers written by students

in a class room experiment, though not in complete agreement to BL, were found

more likely to be the small digits.

7.2.4. M. J. Nigrini

Hill’s 1995 papers were purely mathematical. BL really caught the fancy of the

common people, auditors and academic researchers following wide spread media
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publicity of Nigrini’s work who advocated the first practical application of the law

as a statistical tool for the detection of tax (fraud or) evasion. In his 1992 Ph.

D thesis, (39 citations), Nigrini showed that BL can be used for the detection of

manipulations of income tax returns filed by individuals to the Internal Revenue

Services of USA. Nigrini cited both Newcomb (1881) and Benford (1938) in his Ph.

D thesis. Afterwards Nigrini published a popular article Nigrini (1993), cited only

6 times, thereafter reviewing developments on the understanding and applications

of BL (Nigrini, 1994), cited 29 times. However, Nigrini’s most acclaimed paper, i.e.

Nigrini (1996), also the third most cited paper on BL with 159 citations, again

surprisingly cited only Benford (1938) but not Newcomb (1881). In fact, Nigrini’s

second and third most cited papers (Nigrini & Mittermaier, 1997; Nigrini, 1999)

again do not cite Newcomb (1881).

7.3. Identifying the Prince

In order to identify the prince for both Newcomb (1881) and Benford (1938) we

adopt the procedure outlined in Braun et al. (2010): a candidate prince should

be among the first citing articles which are highly cited and have a number of

co-citations with the SB. The most cited papers on BL and the number of their co-

citations with Newcomb (1881) and Benford (1938) are listed in Table 3. Pinkham

(1961) and Nigrini (1996) are ruled out as possible prince candidates for Newcomb

(1881) as it is cited by neither of the two. Newcomb (1881) is cited by both Raimi

(1976) and Hill (1995a). However, the latter being the most cited paper on BL (305

citations), and co-cited with Newcomb (1881) 203 times, more frequently than is

Raimi (1976), clearly emerges as the prince (Fig. 3).

The citations to Benford (1938) started to increase after the publication of Hill

(1995a) and Nigrini (1996), papers published around the same time. The citations

of Hill (1995) and Benford (1938) are shown in Fig. 4. Hill (1995a) is co-cited with

Benford (1938) 244 times whereas Nigrini is cited as 159 times and co-cited with

Benford (1938) only 142 times. The citations to Hill (1995) peaked at 29 in 2008

whereas to Benford (1938) at 44 in 2009 and both were co-cited a maximum of 26

times in 2009. Hill (1995) emerges as the prince of the Benford (1938).

Table 3. Most cited papers on BL arranged in chronological order

Paper Citations Cites co-cited Cites co-cited
Newcomb with Newcomb Benford with Benford

Pinkham (1961) 190 No 132 Yes 173
Raimi (1976) 174 Yes 128 Yes 149
Hill (1995) 305 Yes 203 Yes 244

Nigrini (1996) 159 No 115 Yes 142

Citations to Newcomb (1881) 366 Citations to Benford (1938) 550
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Fig. 3. Yearly citations of Newcomb (1881) and Hill (1995a).

Fig. 4. Yearly citations of Benford (1938) and Hill (1995a).
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8. Conclusion

It had therefore been demonstrated that Newcomb (1881) and Benford (1938) are

SBs. The former had a long deep sleep of 110 years whereas the latter, fortuitously

preceding an important physics paper by Bethe et al. (1938), was in deep sleep for

a comparatively lesser period of 31 years. The long dormancy of Newcomb (1881)

and far lesser number of its citations, than Benford (1938), may have been fueled

by an incomprehensible lack of its acknowledgement by prominent workers in all of

their papers, - some of which are currently the most cited papers on BL. Both SBs

were woken up in 1995 by the prince, Hill (1995a), now the most cited paper on

BL, with maximum number of co-citations, amongst the most cited papers, with

Newcomb (1881) and Benford (1938). The mid 1990s resurgence of BL is coincident

with the growth of online databases. Indeed the validation of the law for data from

a variety of sources forms a considerable size of Benford literature thereby making

it a highly interdisciplinary field of research.

The variable influence of articles preceding and succeeding Newcomb (1881) and

Benford (1938) on the accumulation of their future citations, markedly different, is

in accordance with their contrasting importance. Hence a new direction of research

in unearthing the potential SBs is posited i.e. whether the position of a SB in the

journal has had any role in its awakening?b This is particularly pertinent to the

older articles which researchers, in the absence of digital libraries, had to read in

the paper bound volumes of journals. Presently scientific literature is accessed online

and one is seldom aware of the articles between which article of ones interest in the

journal is sandwiched.

The analysis of data which Benford gathered over several years must have taken

him considerable time, in the absence of computers; moreover, he did all the calcu-

lations by hand. Today, the analysis of the same information, invariably accessed

online, can be done in a very short time. Furthermore, people hardly go to tradi-

tional libraries to look at the logarithmic table books, and thus one would not find

any dirty pages. Benford was rightly placed in time when he stumbled upon the

dirty pages of logarithmic tables. Had it been the era of computers there would

have been no BL.

After their initial report, both Newcomb and Benford did not pursue the first

digit phenomenon any further. They had other works on hand: the former had the

honor of presiding over various American scientific associations, whereas the latter

besides being a recipient of 20 patents on optical devices has published 109 papers

in physics and mathematics. Perhaps both scientists anticipated that their papers,

like the majority of others, would soon fade into obscurity. However, going by the

current spurt in activity surrounding BL, it is safe to claim that there is no other

scientific discovery than BL, with such a humble beginning and yet raison d’être,

b For a recent discussion on how a paper’s position in the issue of the journal affects its citations
see Kosteas (2015).
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for the popularity of its proponents.
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