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Abstract 

Diffusion channels are critical to determining the adoption scale which leads to the 
ultimate impact of an innovation. The aim of this study is to develop an integrative 
understanding of the impact of two diffusion channels (i.e., broadcasting vs virality) on 
innovation adoption. Using citations of a series of classic algorithms and the time series 
of co-authorship as the footprints of their diffusion trajectories, we propose a novel 
method to analyze the intertwining relationships between broadcasting and virality in 
the innovation diffusion process. Our findings show that broadcasting and virality have 
similar diffusion power, but play different roles across diffusion stages. Broadcasting is 
more powerful in the early stages but may be gradually caught up or even surpassed by 
virality in the later period. Meanwhile, diffusion speed in virality is significantly faster 
than broadcasting and members from virality channels tend to adopt the same 
innovation repetitively. 

  



Innovation adoption: Broadcasting vs. Virality 

1. Introduction 

Innovation is what drives human civilization forward (Rogers, 2010; Perry-Smith 
& Mannucci, 2017). In the late 1920s, Alexander Fleming accidentally discovered a 
naturally ring-shaped mold free of staphylococcus bacteria in one of his samples. 
Classifying the mold as being from the genus Penicillium, he dubbed the substance 
“penicillin.” However, the journey towards Penicillin’s mainstream adoption did not 
happen overnight. Fleming's findings did not receive much attention at first. This is 
often attributed to his incompetence as a communicator. Although he continued to 
publish papers to further describe the characteristics of penicillin, his peers were not 
interested (Martin, 2007). It was not until 1940, more than a decade after the discovery 
of this miracle substance, that mass production of penicillin was proposed and promoted 
to American pharmaceutical companies. Five years later, in 1945, Fleming shared the 
Nobel Prize in Medicine with Howard Florey and Ernst Chain for their contribution to 
the research and promotion of penicillin in the years following its initial discovery 
(Sykes, 2001). Obviously, the journey of innovation adoption is crucial to its ultimate 
success. Most innovations, oftentimes serendipitous accidents, experienced extremely 
hardness to reach massive adoptions. From bank cards to nuclear power, the average 
time for their widespread takes 39 years (Hanna et al., 2015). The mystery of the tension 
that delays the adoption of innovative discoveries has spurred researchers to investigate 
adoption patterns of successful innovations to try and understand the key steps in 
spreading scientific discoveries at an appropriate rate. 

Three key factors in understanding what hinders the widespread adoption of some 
innovations are access, evaluation, and promotion. When an innovation is first proposed, 
the number of people who can access related information, get interested, and gain trust 
in the innovation is limited. Also, every innovation is imperfect at the outset – it may 
be limited in scope, focusing only on solving a single problem, or its results might be 
unsatisfactory or inconvenient to use (Rogers, 2010). To overcome these obstacles, 
innovators must first explain their findings well. Second, early adopters must constantly 
evaluate the performance and quality of the innovation, expanding its influence and 
reputation while building trust (Larsen, 2011). Third, successful innovations rely on the 
efforts of innovators, supporters, and even opponents to constantly promote, modify, 
improve, and criticize their findings (Green et al., 2009). Therefore, in general, effective 
communication channels and follow-up behavior within the network of influencers is 
crucial to the diffusion of an innovation. 

In this paper, we use broadcasting and virality to define diffusion channels from a 
structural perspective. Broadcasting is dominated by a large burst of adoptions from the 
source of innovation. An example of this is the practice of publishing articles in open-



access journals, enabling anyone to read, download and cite the research. In contrast, 
virality can be seen as a time-varying adoption cascade that can be propagated from 
individual to individual through potentially multiple generations of adopters. Virality is 
driven by social contagion mechanisms and dominated by interpersonal communication, 
in which one’s adoption of an innovation is a function of their exposure to others' 
knowledge, attitude, or behavior (Yue et al., 2019). Specifically, we use scientific 
collaboration to represent virality in the diffusion of academic innovation. We are 
curious as to how we can restore the diffusion channels of innovation, how to quantify 
their diffusion powers, and how different channels promote the diffusion of innovation 
in different stages. These questions can provoke insights into the social and 
psychological dimensions of this dynamic process. 

This article is outlined as follows. First, we discussed the related works from the 
perspective of tracing innovation diffusion and studies on diffusion channels. We then 
describe the dataset and the methodology that we use in this article. Results are 
compared with existing related studies. Finally, conclusions and suggestions for future 
work are offered. Our results can therefore play a fundamental role in guiding and 
assisting policy-makers, funding bodies, and researchers. 

2. Related work 

2.1 Tracing innovation diffusion 

Tracking the diffusion path of innovation needs to record (1) the adopters; (2) the 
adoption time; and (3) all information sources from which the adopters could 
conceivably have learned about the innovation (Goel et al., 2012). It is difficult to gather 
all of this information in reality since diffusion can last for years or even decades. 
Scientists often receive only a small portion of sample data through questionnaires and 
interviews.  

Citations have long been considered the footprint of innovation diffusion.(Jaffe & 
Trajtenberg, 1996; Martens & Goodrum, 2006; Rong & Mei, 2013; Min et al., 2018; 
Zhai et al., 2018). Scientists have identified the knowledge contained in literature as an 
innovation entity, and the citation history of the literature is the path of diffusion. 
Regarding citations as the path of diffusion, Rong and Mei (2013) studied the 
competition and collaboration relationships among algorithms(innovations) in 
computer science. They found that the adoption rate of one innovation increases with 
the proportion of its competitors or collaborators adopted by the user. Zhai, Ding, and 
Wang (2018) built a paper-subject network from the citations of LDA. Using topic 
modeling to identify the role of LDA in its citations, they found that a scientific 
innovation can first diffuse to adjacent disciplines. 

We consider scientists as innovation adopters and explore how innovation spreads 
among them. Specifically, we use academic collaboration as a diffusion path for 



scientific innovation, because the process of scientific collaboration is accompanied by 
the dissemination, sharing and exchanging of explicit and tacit knowledge among 
scientists (Eslami, Ebadi, & Schiffauerova, 2013). In addition to being documented as 
co-authorship in literature, the collaboration between scientists also exists as a strong 
and intimate social relationship. These kinds of relationships represent important 
channels for social contagion. Within the context of the growing complexity of research, 
collaboration has been considered one of the most crucial and common phenomena in 
the scientific community (Wuchty et al., 2007; Mukherjee et al., 2017). Previous 
research also indicated, in the process of knowledge dissemination and creation, that 
self-organization and autonomy of scientific research give the scientific collaboration 
network the ability to fit the dynamic model of knowledge diffusion most appropriately 
(Yang et al., 2015).  

2.2 Broadcasting and virality 

According to Rogers (2010), communication channels can be divided into two 
categories: broadcasting via mass media and virality via interpersonal connections. 
Mass communication mainly relies on mass media, such as television, radio, 
newspapers, magazines or books, to deliver information to a large number of 
anonymous and heterogeneous users. Interpersonal connections include all types of 
face-to-face communication between two or more individuals. From the view of tree 
traversal, broadcasting refers to a large-scale transmission event, in which a single 
source spreads content to a large number of people, and virality refers to a cascade of 
shared events each between a sender and their associates(Zhang et al., 2020). 

Both of these diffusion channels have a direct and powerful influence on 
innovators who are actively seeking information on new technologies. As early as 1990, 
Brancheau and Wetherbe studied the dissemination of spreadsheet software in 
organizations and more than 500 employees from 18 large companies participated. 
Results showed that broadcasting is crucial to respondents first hearing about 
spreadsheet software and forming impressions. By studying the cascade of word-of-
mouth communication interactions, Susarla et al. (2016) found that whether a new 
product can be designed to be viral depends on whether it can attract a large number of 
early adopters. With respect to broadcasting, researchers are more inclined to pay 
attention to virality effects. Zhang et al. (2016) reviewed the important studies in 
information diffusion, especially the results of information cascading effects. They 
pointed out that most of the research on information diffusion focused on viral 
spreading, while ignoring the influence of the broadcast mechanism. However, it was 
found that broadcasting was the dominant mechanism of information diffusion of a 
major health event on Twitter (Liang et al., 2019).  

In the adoption decision process, virality is more important during the persuasion 
phase than during the knowledge stage (Rogers, 2010). At the same time, individuals 
who are more interpersonally connected within a social system are more likely to adopt 



an innovation than individuals who are less interconnected within the system. Therefore, 
virality can effectively eliminate “social-psychological barriers” and the reluctance or 
indifference of users when adopting new technologies (Nejad et al., 2014). As early as 
2002, Lee and his collaborators found that highly intimate interpersonal interactions are 
critical to fostering initial trust in new innovations. This, in turn, leads to a high 
probability of adopting technological innovation during the later stages of the diffusion 
process, especially for imitators or later adopters. In addition to enhancing the 
willingness to adopt innovations, compared with the broadcast model, viral diffusion 
also increases the possibility of cross-ideological sharing and thus increases political 
diversity on social media(Liang, 2018).  

Scientists have made great attempts to quantify virality to study the relationship 
between cascade and diffusion size. Most studies have relatively simple definitions of 
virality. When analyzing the dissemination of scientific literature, Guerini et al. (2012) 
defined virality as the volume of downloads, bookmarks, and citations an article 
receives. When studying the diffusion of meme in social media, Weng et al. (2013) used 
the popularity of the meme as an indicator of its virality, and predicted the meme virality 
based on the community concentration in the early stage of the diffusion. Similarly, 
Vougiouklis et al. (2020) measured the virality potential of tweets based on the count 
of retweets and favorites. 

Further research on virality begun to consider not only the size of a given cascade 
tree, but also its depth and branches. Goel et al. (2015) proposed an indicator termed 
structural virality to quantify the intuitive difference between broadcasting and viral 
diffusion of news, videos, pictures and petitions on Twitter. The structural virality of 
the diffusion tree is calculated by the sum of the average path length between all nodes, 
where the more viral of a cascade tree, the larger the structural virality would be. 
However, the diffusion cascades are actually non-isomorphic, but Goel’s indicator 
treats them as undirected graphs and fails to capture the root nodes, which hinders its 
ability to differentiate cascades. To eliminate this trap and more accurately quantify the 
virality of cascades, Zhang et al. (2020) proposed a root-based method called cascade 
virality, which calculates the average distance between a node and its descendants and 
sum the distances on all nodes. 

The most relevant study of our research is Garas et al.'s work (2017) on the 
innovation diffusion in robotic surgery. They used citation networks to study the 
different diffusion stages through which innovation in surgery typically progresses 
and proposed several indicators to measure broadcasting and virality, including paper 
citations, cascade size, structural depth and width. Following this trajectory, we 
transform the citation network into a cascade of authors and try to study the 
intermingling of broadcasting and virality during the innovation adoption process. In 
this paper, we define the diffusion channel as where the researcher obtains an 
academic work and decides to cite. For scientific research, an innovation can be 



expressed as an academic article. Adoption can be seen as a citation to this article, and 
each author of the citation is an adopter.  

3. Method 

3.1 Dataset 

In order to select some representative cases of innovation, we need to follow 
some criteria. First of all, an innovation should have been proposed for a period time 
and received enough citations to restore a typical diffusion trajectory. Second, these 
innovations should be adopted by virous disciplines and applied to answer different 
research questions. Finally, there should be both similarities and diversity between 
these cases, so we can obtain more general results. In this paper, we chose seven 
classic algorithms as innovation instances, as shown in table 1.  

Table 1. A list of algorithm examples and the original article metadata corresponding 
to each algorithm. Total number of authors is the number of authors extracted from 
citation of citation after author name disambiguation. 

Algorithm Original article 
Citation 

(-2018) 

Citation of 

citation (-

2018) 

Total 

number of 

author 

LSA (Latent 

Semantic Analysis) 

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, 

T. K., & Harshman, R. (1990). Indexing by Latent 

Semantic Analysis. Journal of the Association for 

Information Science and Technology, 41(6), 391–407. 

9071 214388 317442 

SVM (Support 

Vector Machines) 

Burges, C. J. C. (1998). A Tutorial on Support Vector 

Machines for Pattern Recognition. Data Mining and 

Knowledge Discovery, 2(2), 121–167. 

12846 488255 492488 

NMF (Non-negative 

Matrix factorization) 

Lee, D. D., & Seung, H. S. (1999). Learning the parts 

of objects by non-negative matrix factorization. Nature, 

401(6755), 788–791. 

6763 93846 192213 

PLSA (Probabilistic 

Latent Semantic 

Analysis) 

Hofmann, T. (1999, August). Probabilistic latent 

semantic indexing. In Proceedings of the 22nd annual 

international ACM SIGIR conference on Research and 

development in information retrieval (pp. 50-57). 

3389 73798 124314 

LDA (Latent 

Dirichlet Allocation) 

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent 

dirichlet allocation. Journal of machine Learning 

research, 3(Jan), 993-1022. 

17371 158638 244610 

LDA sample ~10% sample of LDA citation 1771 36787 64983 

Word2Vec 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). 

Efficient estimation of word representations in vector 

space. arXiv preprint arXiv:1301.3781. 

2065 35610 67037 

Glove (Global Pennington, J., Socher, R., & Manning, C. D. (2014, 3643 14526 29751 



Vectors for Word 

Representation) 

October). Glove: Global vectors for word 

representation. In Proceedings of the 2014 conference 

on empirical methods in natural language processing 

(EMNLP) (pp. 1532-1543). 

We chose the original literature that proposed these algorithms as the starting 
point of innovation and their citation as adoption. Since the original literature (Boser 
et al., 1992) of SVM has been published for a long time, follow-up researchers tend to 
cite a tutorial paper explaining the usage of SVM. Therefore, we chose the tutorial 
work (Burges, 1998) for SVM instead. 

There are currently three main databases that are viewed as authorities for 
providing high quality citation data, Web of Science, Scopus and Microsoft Academic 
Graph (MAG). Here, we use the collection experiment of citation data of LDA to 
determine which database is more suitable for our analysis. First, we searched 
citations of the LDA article on July 10, 2020 and the collected citations range from 
January 1, 2003 to December 31, 2019. As shown in Figure 1, each circle represents a 
data set, and each circle’s size represents the number of citations contained. The 
numbers on the edges are the duplicated citations between two datasets, which are 
calculated based on the combination of the title and the author’s initial and last name. 
The results show that MAG (19858) has the largest amount of the citation data, and 
contains 78% (8531/10938) of Web of Science and 72% (12038/16720) of Scopus 
data. Due to the different metadata formats, the fusion of the three data sets may cause 
errors, so we choose MAG as the data source.  

 

Figure 1. The distribution of LDA citations in three databases, the three circles 
represent the number of citations included in Microsoft Academic Graph (MAG), Web 
of Science, Scopus, and the edge between them represents the number of duplicated 
citations.  

In order to comprehensively cover the entire process of diffusion, we added the 
citations of the paper that has cited the algorithms directly to our dataset. we also 

Web of 
Science
10,938

Microsoft 
Academic

19,858

Scopus
16,720

8,167

8,749 12,038

8,531

Citations of LDA
LDA publications

Citations of  LDA citations
171,286

+



remove data with missing values (such as title, author, date, etc.). Furthermore, all the 
publications of the unique authors have been collected from the MAG database. 
Because there is missing data in the last two years in MAG, we only collected citation 
data up to December 31, 2018 for each algorithm. At the same time, in order to verify 
the impact of missing data on the results, we performed a bootstrapping estimation by 
randomly sampling from the empirical distributions of LDA citations. As such, this 
random sampling facilitates estimating the statistical significance of the difference 
between the whole LDA citation and 10% LDA sample. 

In the MAG database, each unique author is represented by one or more author 
IDs. The task of the author disambiguation is to enumerate all duplicate cases for each 
author ID in a given indexed author ID set. In this paper, we used the system 
RankMatch proposed in the second track of the 2013 KDD Cup Data Mining 
Competition, which is dedicated to the author disambiguation task of Microsoft 
Academic Graph (Liu et al., 2013). After pre-processing, the similarity of paired 
authors is calculated through a variety of heterogeneous connecting paths such as 
"author-paper-author" and "author-paper-venue-paper-author", etc. After the author 
name disambiguation, 100 pairs of merged authors and 100 pairs of authors who were 
not merged but had the same name were randomly selected and manually judged. The 
accuracy reached 91% and 94%, respectively. 

Defining the author's research domain can help us understand the cross-domain 
mechanism of the diffusion process. Since most of the authors' affiliations in MAG 
are missing or without specific departments, it is difficult to determine their research 
areas. Therefore, we use the fields-of-study (FoS) of all papers published by the 
authors to determine their major research topic. MAG classifies the research topics of 
papers into fields-of-study through semantic analysis (Sinha et al., 2015; Effendy & 
Yap, 2017). The highest level consists of the following 19 fields (in alphabetical 
order): Art, Biology, Business, Chemistry, Computer Science, Economics, 
Engineering, Environmental Science, Geography, Geology, History, Materials 
Science, Mathematics, Medicine, Philosophy, Physics, Political Science, Psychology 
and Sociology. We collect all papers for each author, count the frequency of each FoS, 
and select the one with the highest frequency as the author's research domain. 

3.2 Constructing the diffusion tree 

Academic collaboration is one of the most obvious clues and the strongest 
relationships to knowledge sharing. On the one hand, tracking the diffusion path of an 
innovation is difficult in reality. According to Rogers (2010), diffusion occurs through 
a five-step decision-making process: knowledge, persuasion, decision, 
implementation, and confirmation. There are too many information sources to nail 
down during the diffusion process and many of them are hard to trace. However, 
citations document every adoption and provide us the records of the diffusion path 
through the whole lifetime of an innovation. On the other hand, although an 



innovation can be communicated in a variety of ways, interpersonal contacts have 
been found to be critical for building trust and eliminating technological barriers to 
facilitate the exchange of information about new ideas (Corner & Tran, 2016). Most 
potential adopters base their judgments of an innovation on information from those 
who have sound knowledge of it and who can explain its advantages and 
disadvantages.  

Research also shows that scientists are more willing to find, validate, and filter 
information based on social interactions (Pontis et al., 2017). As early as 1977, Allen 
(1977) found that engineers and scientists were roughly five times more likely to turn 
to a person for information than to an impersonal source such as a database or file 
cabinet. Furthermore, scientists embedded in collaboration networks share ideas, use 
similar techniques, and otherwise influence each other’s work (Owen-Smith, 2001; 
Yang et al., 2015). As Rogers elaborates, the heart of the diffusion process consists of 
the modeling and imitation by potential adopters of their network partners who have 
adopted the innovation previously.  

Based on the above analysis, we divide the diffusion channel into two types, 
broadcasting and virality as shown in Figure 2. The broadcasting diffusion is that an 
innovation is transmitted directly from the original source to the adopter creating the 
first layer of the diffusion tree. For example, adopters who cite LDA through the 
broadcasting channel by reading the original LDA paper or the citations of LDA, 
listening to lectures, or getting information on the Internet, etc. In this process, LDA is 
diffused from one to many. While virality is the way in which the adopter learns the 
innovation from other adopters or collaborators and decides to adopt it. Here, the 
LDA in the viral diffusion channel is passed from one person to another through 
scientific collaboration. For example, experienced scientists introduce or teach their 
collaborators the methods they used before. These collaborators will continue to use 
the methods later in their own research and pass to others through their further 
collaborations. 

  

Figure 2. A schematic depiction of broadcasting vs. viral diffusion, where nodes 
represent individual adopters and directed edges indicate who diffused the innovation 



to whom. 

Therefore, we use the coauthorship as a proxy to the diffusion channel and build a 
diffusion tree for each algorithm. Below we use LDA as an example to illustrate our 
process of constructing a diffusion tree: 

l First, for each author, we construct a coauthor vector as {A| B, C, D, …} from 
the whole LDA citation corpus. For each author, we define the adoption time 
as the publish time of his/her first paper citing LDA or LDA’s citations if 
he/her never cite LDA directly. For example, Time(A) = [20040201], Time(B) 
= [20101101], Time(C) = [20120405]. 

l Second, we randomly choose an author B and the coauthorship vector for its 
neighbors is {A, C, D, ……}. If the adoption time of B is earlier than all of 
his/her coauthors, then we add a directed link (LDA, B) to the diffusion tree 
which means B adopt LDA directly. If not, we choose B’s coauthor A with the 
earliest adoption time among all the coauthors and define that LDA is diffused 
from A to B and we add a directed link to the diffusion tree.  

 

Figure 3. An example demonstrating the procedure to construct the diffusion tree. The 
first dotted square represents the work of LDA and each of the rest dotted squares is 
one citation of LDA or one citation of the LDA citations. A circle represents an author, 
and two circles in one square means coauthorship. 

3.3 Measuring the innovation diffusion 

 

Figure 4. Three dimensions of the diffusion tree. 



We analyze the functions of diffusion channels in the diffusion tree through three 
different dimensions, as shown in Figure 4: 

l Scale is the number of children of one node which can represent its diffusion power. 
Here, scale measures the number of adopters of each algorithm. 

l Depth is the number of layers from one node to the leaf of its brunch.  

l Speed is the interval length of the adoption time between a child node and its parent.  

For an adopter x, the interval time 𝑖𝑡(𝑥) can be calculated by following equations, 
measured by days using LDA as example:  

𝑖𝑡(𝑥) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑇(𝑥)!"#$%&'( − 𝑇(𝑥)!"#$%)*+,# , .

𝑥 ∈ 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖𝑛𝑔	
𝑇(𝑥)!"#$%)*+,# ≥ 𝑇(𝑥)&'(

;

𝑇(𝑥)!"#$%&'( − 𝑇(𝑥)&'( ,																			.
𝑥 ∈ 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖𝑛𝑔	

𝑇(𝑥)!"#$%)*+,# < 𝑇(𝑥)&'(
;

𝑇(𝑥)!"#$%&'( − 𝑇(𝑥)!"#$%)*+,# , .
𝑥 ∈ 𝑉𝑖𝑟𝑎𝑙𝑖𝑡𝑦

𝑇(𝑥)!"#$%)*+,# ≥ 𝑇(𝑝𝑥)!"#$%&'(
;

𝑇(𝑥)!"#$%&'( − 𝑇(𝑝𝑥)!"#$%&'(, .
𝑥 ∈ 𝑉𝑖𝑟𝑎𝑙𝑖𝑡𝑦

𝑇(𝑥)!"#$%)*+,# < 𝑇(𝑝𝑥)!"#$%&'(
;

 

where, 𝑇(𝑥)!"#$%)*+,# is the publication time of 	𝑥’s first paper among all his/her 
publications. 𝑇(𝑥)!"#$%&'( is the publication time of 	𝑥’s first paper citing LDA or 
LDA’s citations if x never cite LDA directly. 𝑇(𝑥)&'( is the publication time of LDA 
or the one of LDA’s citations that 𝑥 cited earliest if he/her never cite LDA directly. 

For broadcasting members, if they start their research career after the publication 
of LDA or the LDA citation they cited earliest, the interval time 𝑖𝑡(𝑥) is the time 
between 𝑇(𝑥)!"#$%&'(  and 𝑇(𝑥)!"#$%)*+,# . Else if they start their research career 
earlier, the interval time 𝑖𝑡(𝑥) is the time between 𝑇(𝑥)!"#$%&'( and 𝑇(𝑥)&'(. 

For virality members, if they start their research career after the adoption time of 
their parents, the interval time 𝑖𝑡(𝑥)  is the time between 𝑇(𝑥)!"#$%&'(  and 
𝑇(𝑥)!"#$%)*+,#. Else if they start their research career earlier than the adoption time of 
their parents, the interval time 𝑖𝑡(𝑥)  is the time between 𝑇(𝑥)!"#$%&'( and 
𝑇(𝑝𝑥)!"#$%&'(. 

The shorter the interval time, the faster the diffusion speed. Therefore, we define 
diffusion speed 𝐷𝑆(𝑥) as follows: 

𝐷𝑆(𝑥) =
1

𝑖𝑡(𝑥)/365 + 1									
(0 < 𝐷𝑆(𝑥) ≤ 1) 

4. Results 



4.1 Diffusion scale 

To quantify the diffusion power of each channel, we need to construct the 
spreading trajectory for each innovation. Based on the method of tracking innovation 
diffusion as defined above, we constructed the diffusion tree for each algorithm. Here, 
we only visualize the diffusion tree constructed with LDA citations. As shown in 
Figure 5, we use Gephi (Bastian et al., 2009) to construct the diffusion tree and apply 
ForceAtlas2 layout algorithm (Jacomy et al., 2014, p. 2) to map the structure. It 
presents a top view of a canopy, where the root node LDA located in the center, and 
the other adopters grow outwardly layer by layer.  

 

Figure 5. The diffusion tree of LDA (only with LDA citations). The nodes in the center 
surrounding LDA (root node) are the broadcasting members, which are all directly 
connected to the tree root and build up the first layer. The vitality members constitute 
the branches and leaves of the tree and extend outward. The nodes gradually change 
from red to green from the inside to the outside. 

Here, we refer to the nodes directly connected to the LDA as broadcasting 
members, and the other ones as virality members. As can be seen from Figure 5, LDA 
is densely surrounded by a large inner ring grouped by broadcasting members and the 
virality members are constantly stretching outwards to form a lot of branches.  



Over the past 18 years, the citation of each algorithm has experienced rapid 
growth. Figure 6 shows the annual number of new citations in the diffusion process of 
every algorithm. There are three type of diffusion patterns. LSA, SVM, NMF, and 
PLSA in the elderly group have gradually declined after long-term growth. The 
growth rate of the middle-aged algorithm LDA has slowed down and gradually 
reached its peak. Due to the development of natural language processing and deep 
learning technology, new language models based on word embedding (Pouriyeh et al., 
2018) or hierarchical network (Hwang & Sung, 2017) are proposed recently to replace 
LDA for topic modeling. The youth Word2Vec and Glove are in an explosion stage. It 
shows that in recent years, the take-off stage of the innovation diffusion has become 
shorter and faster, which corresponds to the fading speed of traditional algorithms. 

 

Figure 6. The yearly distribution of new citations in the diffusion process of each 
algorithm.  



 

Figure 7. The yearly distribution of new broadcasting and virality members and 
proportion distribution of different types of adopters. 

Both virality and broadcasting play a highly important role and increased 
simultaneously in the diffusion process. Broadcasting is more powerful in the initial 
stage, as shown in Figure 7, but may be gradually caught up or even surpassed by 
virality in the later period. When a study is completed, a paper will be published to 
report the innovation. At this moment, downloading and reading the article is the most 
representative way of broadcasting. As the publication gets older, due to the fast 
growth of published articles and diverse ranking mechanisms of search engines, the 
probability of encountering the original paper in the database or on the Web is 
reduced.  

The diffusion process of the algorithms all conform to the S curve of the 
technology adoption life cycle. Most of the innovations have gradually become the 
state-of-the-art algorithms, for example, LDA is sometimes even regarded as 
synonymous with topic modeling due to its excellent scalability and easily 
interpretable results (C. Wang & Blei, 2011). Furthermore, the technical threshold for 
adopting computer algorithms is constantly dropping and interdisciplinary teamwork 
is increasing. With the development of open source computer communities such as 



GitHub, popular algorithms can basically find support tools that can be adopted 
quickly. Some may be the original code written by the authors, and some may be 
developed specifically for scholars from other fields (Cohen Priva & Austerweil, 
2015). 

4.2 Diffusion depth 

The diffusion depth mainly explains the role of viral diffusion. In this section, we 
first analyze the depth and structural virality of the diffusion tree and then explore 
how cross-domain diffusion related to the diffusion depth. 

 

Figure 8. The depth of the diffusion trees. 

Figure 8 shows the diffusion depth of the tree. We can see that the depth of most 
trees is 10 or 11, LDA reaches 12 layers at most, Word2Vec and Glove are relatively 
young, so there are only 7 or 8 layers. The trees will get new growth space when leaf 
nodes continue to transfer the innovations to others and become branch nodes. 
However, in recent years, the trees are no longer growing deeper. This phenomenon 
may be driven by multiple reasons. First, an innovation can gradually lose its heat 
over time, and the number of adopters will gradually decrease. Second, scholars 
working in one particular field is limited, so the number of adopters will not grow 
indefinitely. Third, new and better innovations will replace the current innovation. 
When a certain depth is reached, scholars in the field would have already known the 
innovation and no longer need to learn from others.  



In addition, the academic community is relatively small. An early study found 
that the average distance of the scientific co-authorship network has been stabilized to 
about 6 for years (Elmacioglu & Lee, 2005). Since we are using the algorithms’ 
citations and the citations of the paper that has cited the algorithm directly, the longest 
path in the tree graph can be regarded as twice that of a six-degree 
separation(Newman, 2001). 

Next, we define two indicators, activation rate and growth rate, to measure the 
depth growth pattern of the diffusion tree. Here, active members refer to the members 
who can continue to pass the innovation to others after adoption, and the activation 
rate is the proportion of active members in the total adopters of the #n layer. The 
growth rate indicates that the number of adopters in #n layer divided by the number of 
active members in the previous(#n-1) layer.  

 

Figure 9. Activation rate and growth rate in each layer. The X axis indicates the 
number of layers. We calculate the activation rate and growth rate of each algorithm 
(including LDA sample) in each layer, and then use box plots to show their 
distribution. The lines in the figure connect the medians of each layer. 

As the layers increases, the number of adopters is decreasing. The activation rate 
of each layer starts from 10% and gradually decreased. Except for the last three layers 
(the number of members is too small to be considered), the growth rate for each layer 
remains approximately 5. In other words, for every layer in the diffusion tree, less 
than 10% of nodes will continue to grow and get 5 times more nodes for the next 
layer. 



To gain a further understanding of the meaning of diffusion depth, we analyze the 
research domain distribution of adopters at different diffusion layers (see Figure 10).  

 

Figure 10. Proportion distribution of scientists from different domains at different 
diffusion layers (Notes: Since the number of scholars in computer science differs 
greatly from those in other domains, we take a log on the number of adopters). 1-12 
represents different layers and is distinguished by different colors. 

The more relevant the domain is associated with the innovation, the more likely it 
is to spread deeply, and vice versa, the more distant domains are spread shallowly. 
Our algorithm cases are all proposed in computer science. Dias et al. (2018) studied 
the similarity between scientific disciplines based on expert classification, citation and 
language use. From the results of dissimilarity and clusters of disciplines, they found 
that computer science is closely related to mathematics and engineering, and far from 
art and philosophy. The distance between the various disciplines in Figure 10 is 
similar to the results of their study. As can be seen from Figure 10, only the diffusion 
of LDA in computer science and engineering have penetrated the 11th layer, while 
most of the others stay between the first and fifth layers. History and art, whose 
subjects are distant from the computer science, only reach layer seven at most. From 
this point, we can see that cross-domain diffusion often occurs in the broadcasting 
channel (the first layer), and the initial stage of the viral diffusion (i.e., the first four 
layers).  

Correspondingly, researchers in other disciplines may read the original article or 
the citations of the algorithm, and computer scientists may collaborate with 
researchers from other disciplines and pass different algorithms to them. For example, 
in a recent study (Yoshida et al., 2018) about the evolution of whole-rock composition 
during metamorphism, LDA was introduced into geology and used to find 
endmembers based on the frequencies of elements that make up the rock of interest. 
Most of the authors, Yoshida, Kuwatani, Hirajima and Iwamori, are scientists from 
geology or earth science, while one of them, Shotaro Akaho, is from computer 
science. Also, the growth of innovation requires soil that matches itself, which is 



happening in the field of computer science, then can be carried further by other 
scholars through layer-by-layer collaboration. Computer scientists are continuously 
upgrading LDA and proposing other modified models, such as Labeled LDA 
(Ramage et al., 2009) and TM-LDA (Wang, Agichtein, & Benzi, 2012, p.123). Some 
of these new models have also been cited thousands of times and diffused to other 
domains. 

4.3 Diffusion speed 

 

Figure 11. The diffusion speed in different layers. The first layer represents the 
diffusion speed of broadcasting members, and the other layers represent virality 
members. 

For the diffusion speed at the individual level, the virality is significantly faster 
than the broadcasting, as shown in Figure 11. With the increase of the number of layers, 
the diffusion speed is generally getting faster. On the one hand, virality is achieved 
through collaborating with experienced scientists who have already adopted the 
innovation. Working with experienced adaptors can get to know the innovation faster 
than learning alone, especially for scientists from a distant field. Meanwhile, when a 
potential adopter observes innovation benefits, expected risk decreases and the 
likelihood of adoption increases (Wejnert, 2002). That means when a viral member 
learned the innovation via his/her collaborators who have already tried the innovation, 
the probability for a viral member to adopt the innovation is much higher. On the other 
hand, combined with the results in the previous section, the deep diffusion mainly 
occurs in computer science and its similar domains. Therefore, the speed of diffusion 
will be accelerated if both the distributors and receivers are from related domains and 
understand/ absorb each other's idea quickly.  

Since virality plays an important role in the diffusion process, will it affect the 
future behavior of the adopter? For different types of adopters, we calculate the 



proportion of one author’s articles citing the algorithm to one’s total publications. 
This can help us answer the question which types of authors are more willing to adopt 
the innovation repeatedly.  

 

Figure 12. The proportion of one’s algorithm citations in his/her total number of 
publications (>n) for different types of adopters (%). The X-axis represents the total 
number of papers published by a scholar citing the corresponding algorithm, the upper 
half of the Y-axis (blue) represents the median line of the proportion of algorithm 
papers, and the lower half (red) is the average line of the proportions. Box diagrams 
are used to illustrate the differences between the two groups. 

Compared with broadcasting members, virality members tend to cite the 
innovation more times and this acquired innovation will become an important part of 
their research practice. For authors who cited the corresponding algorithm twice or 
more, virality members are more willing to recite it than broadcasting members. This 
difference can be interpreted by the difference of viral and broadcasting members. 
Rogers (2010) classified adopters into five different segments as innovators, 
early adopters, early majority, late majority, and laggards. Early adopters like to try 
new innovations, take risks, but late majority and laggards like to get innovation 
tested by others through interpersonal communication. This keeps them stay longer on 
a certain innovation.  

5. Conclusion 

This article proposes a method of building an innovation diffusion tree based on 
scientific collaboration and explore broadcasting channel and virality channel of 
innovation diffusion from three aspects: scale, depth and speed.  

Results show that: (1) Broadcasting and virality have the same power but play 
different roles in promoting the diffusion of innovation. The growth of new adopters 



in two different channels is basically the same indicating the same power in 
promoting the diffusion scale. Broadcasting plays a major role in the early stage, 
while the influence of virality is increases gradually over time.  

(2) Virality is the driving force of increasing layers of diffusion, which means that 
researchers continue to adopt innovation through cooperation, and their identities can 
transform from recipient to promoter. We find that 10% of the researchers at the first 
layer will continue to disseminate innovation to others and the ratio will gradually 
decrease as the diffusion goes deeper. Meanwhile, each active node in each layer will 
pass the innovation on to about 5 people. This simple incremental relationship 
captures the growth characteristics of the diffusion tree well, which indicating the 
diffusion process follows a random but repeatable process.  

(3) Virality is faster for the first adoption of adopters. Rogers (2010) indicated 
that while mass communication is an effective communicative mode, interpersonal 
communication is a direct, double-sided, selective, and reciprocal mode. In terms of 
the growth rate of new adopters, broadcasting is more powerful in promoting the 
diffusion than virality. While focusing on the first adoption, the speed between 
adopters in virality is significantly faster than that in broadcasting, and researchers 
from virality channels tend to adopt the innovation multiple times.  

We took a random sample from the largest LDA data and analyzed it 
simultaneously with other algorithm data. The results showed that missing data did 
not affect the consistency and continuity of the findings. This research also faces 
some limitations. The data of the diffusion tree comes from MAG which does not 
cover all scientific publications and our innovation cases are all computer algorithms, 
so the generalization of the conclusions needs further verification. In addition, there 
are other informal and formal channels of innovation diffusion in the scientific 
community, most of which cannot be recorded in citing and coauthoring behaviors. 
Interpreting coauthorship as the virality channel can be inadequate, as scholars can 
still communicate with each other without co-authoring a paper together. 

In the future, we will continue to explore innovation adoption through the diffusion 
process of scientific innovation. Using content-based citation analysis, we can restore 
the comprehensive diffusion process and identify the function of the innovation for the 
adopters. Furthermore, an important question waiting for an answer is how an 
innovation diffuses in different fields and breaks the potential barriers between various 
domains.  
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