
� Monitoring Infrastructure for Converged
Networks and Services
Shipra Agrawal, C. N. Kanthi, K. V. M. Naidu, 
Jeyashankher Ramamirtham, Rajeev Rastogi, 
Scott Satkin, and Anand Srinivasan

Network convergence is enabling service providers to deploy a wide 
range of services such as Voice over Internet Protocol (VoIP), Internet
Protocol television (IPTV), and push-to-talk on the same underlying 
IP networks. Each service has unique performance requirements from 
the network, and IP networks have not been designed to satisfy these
diverse requirements easily. These requirements drive the need for a 
robust, scalable, and easy-to-use network management platform that
enables service providers to monitor and manage their networks to 
provide the necessary quality, availability, and security. In this paper, 
we describe monitoring mechanisms that give service providers critical
information on the performance of their networks at a per-user, 
per-service granularity in real time. This allows the service providers to
ensure that their networks adequately satisfy the requirements of the
various services. We present various methods to acquire data, which 
can be analyzed to determine the performance of the network. This
platform enables service providers to offer carrier grade services over 
their converged networks, giving their customers a high-quality 
experience. © 2007 Alcatel-Lucent.

VoIP places stringent requirements on the delay, loss,

and jitter performance and requires high availability

from the network (five nines availability); however,

it has relatively low bandwidth requirements [20].

On the other hand, streaming applications are more

tolerant of delay but generally require higher band-

width from the network. These requirements drive

the need for a robust, scalable, and easy-to-use net-

work management platform, which enables service

providers to monitor and manage their networks

to provide the necessary quality, availability, and

security.

Introduction
Service providers all over the world have started

deploying services such as Voice over Internet

Protocol (VoIP) and Internet Protocol television (IPTV)

on their IP-based networks to increase their revenues.

Additionally, deploying new services over an IP net-

work offers a reduction in their capital and opera-

tional expenditure. Emerging paradigms such as the

IP Multimedia Subsystem (IMS) [5] allow service

providers easily to deploy new services on their IP-

based networks. A converged network demands

a wide range of requirements from the underlying

network depending on the services. For example,
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Traditionally, IP networks have been managed by

measuring aggregate parameters, such as link utiliza-

tion and packet losses, over interfaces of routers or

other network elements. While this is sufficient to

manage best-effort services, managing new services

based on voice and video that have diverse require-

ments requires measurements of finer granularity. In

this paper, we describe a next-generation monitoring

infrastructure that offers service providers critical infor-

mation on the performance of their networks at a per-

user, per-service granularity in real time. This allows

service providers to ensure that their networks ade-

quately satisfy the requirements of the various services.

We present various methods to acquire data that can

be analyzed to determine the performance of the net-

work. Data acquisition methods include active and

passive probes, software agents for mobile devices,

and flow information from IP routers. This infra-

structure enables service providers to offer carrier

grade services over their converged networks, giving

their customers a high-quality experience.

Monitoring Infrastructure for Converged
Networks

Our proposed monitoring infrastructure supports

three primary functions: service assurance, traffic pro-

filing, and fault detection and diagnosis. By monitor-

ing the performance of various services on the

underlying network, the platform must be able to

detect service quality degradations and identify the

cause of the problems. This information can then be

used by the service provider to take remedial actions,

minimizing the impact of degradations on the quality

of user experience.

The broad set of requirements of a monitoring

platform for a converged network can be summarized

as follows:

• Extensibility. As new services are deployed on the

network, it should be possible to easily and seam-

lessly deploy new monitoring mechanisms for

these services.

• Scalability. Growing link speeds and the corre-

sponding increase in the amount of information

that must be processed to deduce the perform-

ance of the network at these rates place enor-

mous stress on the management system. The

monitoring platform must be able to handle

increasing network speeds and a large number of

devices in the network. As we discuss later, scal-

ability can be achieved by reducing the informa-

tion collected using efficient filtering, sampling,

and aggregation algorithms.

• Real time operation. For many monitoring applica-

tions, real time reports on the performance of the

network are essential to allow timely remedial
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action by the service provider. This requires the

monitoring platform to support continuous and

real time mechanisms that detect problems in the

network as they happen.

• Granularity. Each service utilizes a number of net-

work protocols (e.g., Session Initiation Protocol

(SIP), Hypertext Transfer Protocol (HTTP), Domain

Name System (DNS)), and monitoring the performa-

nce of a service requires capturing the performance

of each component protocol. This lets the service

provider easily isolate the root cause of degrada-

tion. For instance, call setup times of a VoIP call

can be excessive for a variety of reasons such as

an overloaded SIP proxy, overloaded routers, or

high loss rates in the network. The monitoring

mechanisms must be fine-grained in order to make

this distinction.

• Diversity. A converged network has a large num-

ber of network elements from multiple vendors,

protocols, and applications pieced together to

provide the user with the “bundle” of services.

Consequently, any monitoring platform needs to

support this diversity.

• Low cost. Finally, the cost of deploying and oper-

ating the monitoring infrastructure must be

low to provide value for service providers. This

implies that the system must use the least

amount of computing, storage, and communica-

tion resources.

Figure 1 presents a proposed monitoring infra-

structure for converged networks. A converged net-

work typically consists of the core IP network

that carries the network traffic, a session layer that

handles the establishment of sessions between end hosts

(e.g., SIP [21]), and an application layer that hosts

application servers and handles application protocols.

Monitoring this network requires monitoring net-

work elements as well as protocols at each layer. 
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Figure 1.
Monitoring infrastructure for next generation converged networks.
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The proposed monitoring infrastructure has the fol-

lowing components:

1. Measurement sources. These elements provide

the monitoring applications with the necessary meas-

urements from the network. The monitoring applica-

tions use this information to deduce the performance

of the network and to identify faults. In addition to

traditional SNMP-based measurements, we present

four data acquisition methods that provide the mon-

itoring applications with fine-grained, real time infor-

mation: active probes, passive probes, software agents

on wireless devices, and flow information from IP

routers.

2. Topology inventory. The data collected using the

measurement sources can be used to identify prob-

lems in the network. In order to identify the location

and root cause of the problem, a key requirement is

the knowledge of the network topology. Technologies

like the NetInventory system [4] can provide the

topology information necessary for fault diagnosis.

3. Measurement layer. This layer provides an inter-

face that can be used by monitoring applications

to gain access to the data collected by the various

measurement sources.

4. Monitoring applications. Finally, the various

monitoring applications use the data from the meas-

urement layer to offer service providers insight into

the performance of their networks for each service.

Applications include monitoring the quality of voice

or video services, identifying denial of service attacks,

and providing traffic profiles of the service provider

network (e.g., total amount of HTTP traffic, peer-to-

peer traffic).

We now describe implementations of the various

data acquisition sources and a few illustrative appli-

cations that are implemented on this platform.

Active Probes
Active probes [3] are software agents that run on

designated end systems in the network and are used

to measure the end-to-end service quality provided

by the network for an application. Active probes

send emulated application traffic through the network

and measure the service quality of the network. This

measured service quality is indicative of the quality

that users would see when using the network. Service

providers can program the active probes to monitor

the network and report degradations in the network

performance continuously and automatically.

To measure the performance of an application on

the network, the Network Operations Center (NOC)

issues a request to the active probes. The active probes

establish connections among themselves, exchange

artificially generated traffic that mimics the traffic pat-

tern of the application, measure network perform-

ance parameters, and send the measurement report

for that application to the NOC. For instance, if the

NOC needs measurement reports for VoIP perform-

ance, it issues VoIP measurement requests to the active

probes and the active probes measure parameters 

like call setup time, delay, loss, and jitter for the arti-

ficially generated VoIP traffic and report them to the

NOC.

The active probing system uses two basic opera-

tions to perform monitoring, measurement task and

measurement report. A measurement task is used by

the NOC to get information about the network’s per-

formance for VoIP. The NOC identifies two active

probes in the network to be a “caller” and a “callee,”

respectively. It then assigns a task to be performed by

this pair of probes. The task consists of establishing a

sequence of VoIP calls from the caller to the callee for

a certain duration and measuring the network per-

formance. A measurement task is composed using

XML and sent to the probes. A task gives the addresses

of the caller and the callee and other details about

the task. For instance, if the measurement task is for

VoIP, the task specifies the type of VoIP codec to be

used, the number of VoIP calls that need to be estab-

lished, the duration of each call, and other parameters.

Our active probes are multithreaded systems

implemented in Java* and support SIP as the con-

nection establishment protocol. Service providers can

set up measurement tasks among a large set of probes

(organized as a mesh). This gives service providers a

networkwide view of performance on a service-by-

service basis. Once the NOC issues a measurement

task, the active probes handle all aspects of perform-

ing the measurements and send the reports to the

NOC. The NOC does not have to coordinate the tasks

in a fine-grained manner. The only responsibilities of

the NOC are to issue measurement tasks and process
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the returned reports, a great reduction of the load 

on the NOC.

Thus, active probes provide a “black box” meas-

urement mechanism of the network and can be used

to detect service degradations. It cannot, however,

help pinpoint the root cause of failure or congestion.

For example, while an active probe can detect an

excessive delay through the network, it cannot iden-

tify which link’s congestion is causing the delay.

Similarly, if there is a link or a server failure, the active

probes can detect the failure but cannot help identify

the cause of the failure.

Passive Probes
Passive probes [3] provide a different perspective

of the network as compared to active probes. Passive

probes are installed on links within the network, and

they snoop the traffic that flows through the links

being monitored. They can be used continuously to

monitor the performance of the network for the

actual application traffic, as opposed to active probes

that perform measurements for synthetic traffic. They

also can be used to segment the network to identify

sources of failures or congestion. However, if passive

probes are used in isolation, they do not give an end-

to-end perspective of network performance. They can

compute the performance of the network only

between the points of installation of the probes.

We now describe our implementation of a high-

performance passive probe architecture that supports

many monitoring applications.

Scalable High-Performance Implementation
Passive probes can be used to implement a large

number of monitoring applications such as distributed

denial of service (DDoS) attack detection, service qual-

ity monitoring, and traffic profiling. In order to support

a large number of applications, the choice of the plat-

form used to implement passive probes plays a crucial

role. Hardware implementations provide little flexi-

bility in adding new features. A platform that uses net-

work processors allows us to deploy new monitoring

applications easily; however, developing new applica-

tions is cumbersome and time consuming.

A commercial off-the-shelf PC or server provides

maximal flexibility in terms of developing and deploy-

ing new applications. However, transferring data into

the system memory from the network interface card

(NIC), for example, interrupt handling and data copy-

ing, consumes most of the CPU resources, leaving

very little for processing data. High-performance data

capture cards such as the data acquisition and gener-

ation (DAG) cards from Endace* [7] as well as

Xyratex* cards [27] significantly reduce the amount of

CPU resources used to transfer data from the card to

the system memory by reducing or eliminating inter-

rupts and data copies. Hence, most of the CPU capacity

can be used by the applications to process the data.

For links that have low traffic volumes (10 Mbps to 50

Mbps), we use commercial network interface cards

to perform the snooping. For higher rates, we use

high-performance capture cards.

A passive probe performs the following functions

for any application: capturing packets in system

memory, application processing, and exporting the

measurement information to the NOC. Our implemen-

tation uses multiple threads to implement these func-

tions in order to use the CPU resources efficiently

and to be able to scale to higher link speeds by using

multiple processors. We implement concurrency con-

trol using wait-free and lock-free mechanisms.

Data Reduction
It is impractical for a passive probe to report infor-

mation about every packet it sees to the NOC, and so,

probes need techniques to reduce the amount of

information transmitted to the NOC. A passive probe

uses three methods to perform this data reduction:

filtering, sampling, and aggregation.

Filtering. The NOC can install filters at passive

probes to avoid processing packets that are not used

by the application. For example, if a passive probe is

used to perform VoIP monitoring, packets belonging

to SIP sessions and Real Time Protocol (RTP) sessions

are the only ones that are useful, and the rest of the

packets can be discarded. Note that in addition to

reducing the amount of information sent to the NOC,

filtering reduces the information that needs to be

processed at the probes. Libpcap [14] based imple-

mentations use filtering capabilities provided by the

library. Specialized capture cards provide additional

filtering capabilities such as regular expression match-

ing in the payload.



68 Bell Labs Technical Journal DOI: 10.1002/bltj

Aggregation. A passive probe aggregates informa-

tion into records on the basis of certain properties of

the packets and sends a report for the collection of pack-

ets. For example, one option that is commonly used is

to send a single record to the NOC for all packets

belonging to a “flow,” defined by a flow identifier. A

flow identifier is defined differently for each protocol.

For example, TCP/IP packets use the five tuple (source

IP address, destination IP address, source port, destina-

tion port, and protocol) fields to define a flow identifier.

However, a SIP flow identifier is defined by the TO,

FROM, and CALL-ID fields of the SIP header. Records

can be further aggregated by using other properties such

as source IP address (e.g., if we are only interested in the

total amount of traffic from users) or the requested

URLs of HTTP requests (to measure the popularity of

various Web sites: Yahoo*, Google*, and others.)

Sampling. Another technique to reduce the amount

of traffic processed by the probe and sent to the NOC

is to sample traffic and use only a fraction of it. For

example, the probe can reduce the amount of traffic

by picking one in every five packets at random, thus

reducing the load on the probe by a fifth. Obviously,

by sampling packets, we lose information and the

reports received by the NOC are not accurate. Hence,

the NOC has to be able to tolerate limited inaccuracy

in the reports received from the probes. An alternate

method of sampling is to process one in every five

“flows” at random. While this method preserves 

the accuracy of the reports belonging to flows, it

causes inaccuracy in terms of discarding entire flows.

Software Agents on Wireless Devices
Software agents can be deployed on mobile wire-

less devices to monitor and measure application-level

performance on these devices. These agents use two

different methods to obtain performance measure-

ments: they can operate in the active mode or the

passive mode. In the active mode, they operate in a

manner similar to active probes and generate appli-

cation traffic (as requested by the NOC) in order

to measure end-to-end performance and diagnose

problems. However, it is impractical to do this

continuously because wireless bandwidth is at a

premium. Rather, such measurements should be trig-

gered only when some fault is suspected. This can be

achieved either by having passive probes in the wire-

less network or by passively monitoring the traffic

seen at that mobile handset. We have taken the

second approach here, because it allows us to obtain

a more accurate view of the end-user experience as

well as obtain measurements such as signal coverage,

which cannot be obtained by in-network probes.

These agents can be used to measure various kinds

of statistics ranging from radio frequency (RF) and

device level to application level. For instance, it can be

used to monitor the number of lost calls, and the per-

ceived bandwidth and latency. These RF-level meas-

urements, along with location information, can be

extremely useful to the service provider in identifying

bottleneck areas. Device-level measurements such as

usage statistics of device features give insight into the

user preferences and are potentially useful in the design

of new devices and applications. Finally, the protocol

and application level measurements help in improv-

ing application design and allow detection of service

bottlenecks. Thus, these agents provide various statis-

tics that allow the service provider to obtain critical

information for network monitoring and maintenance.

For handsets that run advanced operating systems

such as Windows* CE or Symbian*, we have imple-

mented these agents at the kernel level, thus making

them completely transparent to the user. In particular,

the IP traffic is passively monitored via hooks on the

network stack that allow us to peek into each packet.

Figure 2 shows the implementation of the agents on

the Symbian operating system, which consists of four

components:

• A coordinator that handles various control and

data messages,

• Inbound and outbound hooks that snoop, respec-

tively, on incoming packets and outgoing packets,

and

• A controller that acts as the intermediary between

the agent and the NOC and effectively provides a

local abstraction of the NOC.

Mobile handsets are severely constrained in terms

of battery, memory, and CPU. Hence, the agents must

have extremely low overhead to ensure that the user’s

activities are not impacted in any manner. Similar to
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passive probes, we use sampling to keep the CPU

overheads low and maintain data summaries to

reduce the memory usage. In addition, since wireless

bandwidth is at a premium, we need to keep the

number of message transmissions low as well as keep

the message sizes small. The former is achieved by

using alarm- or event-driven reporting, i.e., the agents

report statistics to the NOC only when anomalous

events occur. We have also designed the agents so

that the NOC can configure the period at which the

agent reports measurements; this period can be deter-

mined appropriately on the basis of the fraction of

bandwidth that the service provider is willing to

reserve for monitoring purposes. Message sizes can

be kept small by sending data summaries and sending

only deltas instead of complete information.

Flow Information From IP Routers
Often, network administrators rely on flow data

to determine their networks’ properties. Routers and

switches throughout their networks continuously

stream data summarizing each flow; however, these

data can be overwhelming, often exceeding hun-

dreds of gigabytes each day. Therefore, it is neces-

sary to have a flow collector to aggregate the data

in real time and provide the administrator with

the desired information in a useful format. With a

flow collector, an administrator can define queries

describing the information of interest to him or her.

For example, a network administrator may want

to know which users are connecting to each other,

and how much data they are transferring. In this

situation, he would create an aggregator with source

IP address and destination IP address as the key

elements, and packet count or byte count as the

value elements. The collector output can be sorted to

see easily which users are sending or receiving the

most data. Figure 3 shows the architecture of a flow

collector.

Flow information is the summarized traffic sta-

tistics, exported from routers in standard industry

formats like NetFlow [17], J-Flow [11], and sFlow*

[23]. A flow is typically defined as a unidirectional

sequence of packets that have the same destination
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and source address, transport level information, type

of service (TOS) bits, and protocol information.

Technologies like NetFlow, JFlow, and sFlow enable

routers and switches to collect information about all

the flows passing through them and export these

“flow records” to a central collector, where they are

used for various purposes like network monitoring

and planning, traffic analysis, accounting, and data

mining. A flow record typically contains the source

and destination IP addresses, source and destination

port numbers, protocol, ToS byte, next-hop router IP

address, input and output interface numbers on the

router, packet count, byte count, start time, and end

time of the flow.

In a typical Internet service provider (ISP) net-

work, there are hundreds of routers generating

flow records at very high rates. Thus, building a flow

collector that is scalable and can handle large

amounts of data is a key requirement for any real

world deployment. In addition, users may specify a

diverse set of aggregation queries to meet the

needs of their network management applications

such as traffic engineering, traffic demands estima-

tion, top-N reports identifying the top sources, des-

tinations and hosts, SLA verification, anomaly

detection, and fault monitoring and diagnosis. Hence

it is important to provide a flexible query format,

which can support large varieties of aggregation

queries that are of interest to network management

applications.

Query Format
An aggregation query has three main compo-

nents:

• Filters. Filters are conditions that specify whether

a record should be considered for further aggre-

gation. They are range specifications on various

fields in the flow records. Thus, each filter is like a

multidimensional box whose boundaries along 

a dimension coincide with the range specified for

the field corresponding to the dimension. Only

records that fall within this box are considered

for aggregation. Filters can be specified on any

field including IP addresses, port numbers, and

the protocol field. We support nested filters that

can be combined with Boolean operations (and,

or, not).

• Aggregators. An aggregator has two parts:

– Key fields, on which the aggregation is per-

formed. All records with the same combination

of values for the key fields are grouped together

in the aggregated output.

– Value fields, which are the fields that are accu-

mulated for each unique set of key fields. The

value specification also includes an operation

to define how to aggregate the information.

These operations include sum, max, min, aver-

age, and rate.

• Period. This is the time interval over which aggre-

gation is performed. After each time period, tuples

comprising key fields and the aggregated value

fields are output.

Performance of the Multithreaded NetFlow Collector
Our NetFlow collector is multithreaded with

basic load balancing of aggregators so that it can eas-

ily run on multicore machines using parallelism at

full capacity. For efficiency, concurrency control is

primarily done using nonlocking synchronization

primitives. Furthermore, our system uses heuristics

to coalesce filters and merge aggregation schemes to

reduce computational expense.

Input to the collector is a configuration file that

governs the specification of keys, values, filters

and aggregation queries. The collector has three main

modules—listener, aggregator, and output—each

Machine running IP
flow collector

Router R1 Router R2 Switch S1

Flow data in standard
export format

IP—Internet Protocol

Figure 3.
Architecture of the flow collector.
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optimized for performance. Each of these modules is

implemented as a separate thread. We associate one

listener for each exporting device. The listener threads

transfer the arriving NetFlow records into the system

memory; the aggregator threads process these records

one query at a time; and the output thread periodi-

cally writes out the results. Nonblocking operations

ensure that the system operates at maximal capacity

and utilizes the CPU efficiently to deliver maximal

throughput.

Monitoring Applications
We have described our monitoring infrastructure

consisting of various measurement methods. This

provides a powerful platform to develop and deploy

a wide variety of monitoring applications. In this

section, we describe a few monitoring applications

that can be implemented on this infrastructure.

VoIP Service Quality Monitoring
VoIP is a key revenue generating service on con-

verged networks because of its lower cost per call than

traditional telephone networks. Internet-based voice

applications like Skype* [24], Yahoo! Voice* [26], and

Net2Phone* [16] and VoIP services by Vonage* [25]

are very popular. Thus, assuring good quality of

service for VoIP services is very critical for service

providers to maximize their revenues. Network

parameters that affect the quality of a voice call are

call set-up time, tear-down time, delay, loss, and jitter.

These measured parameters are used to compute a

voice quality metric that subjectively represents user

perceived quality. In this section, we discuss the voice

quality metrics that we use and the implementation of

a VoIP monitoring system using our probes.

VoIP service quality metric. The quality of a voice

call is affected by three sets of impairments: signal

processing impairments, network impairments, and

environmental impairments. Signal processing impair-

ments are caused by the voice filters, quantizers, and

codecs employed in the system. Network impair-

ments like delay, loss, and jitter determine the quality

of a voice call. Environmental impairments include

factors like the ambient noise levels in the user’s 

location.

Measurements through monitoring mechanisms

are mapped by voice quality metrics to the actual

quality of the end-user experience, referred to as

mean opinion score (MOS). At present, there are no

standardized voice quality metrics for VoIP. The

International Telecommunication Union (ITU) has

defined two voice quality metric standards for the

circuit-switched public switched telephone network

(PSTN), the E model [8], and perceptual evaluation of

speech quality (PESQ) [19]. Both these models were

originally designed to do transmission planning and

attempt to address all the different impairments. The

PESQ algorithm predicts the subjective MOS values

by comparing the received signal distortion to a stan-

dard reference signal. It assumes that the distorted

signal should take into account the network impair-

ments, and therefore network performance does not

need to be specified explicitly. PESQ does not take

into account frequency responses and loudness,

which are two important factors affecting perceived

quality. The E model uses an additive impairment

model that factors in all impairments including envi-

ronmental factors that affect the voice quality. It,

however, is not as accurate as PESQ from a signal pro-

cessing perspective. The additive nature of the E

model makes it more amenable to explicitly account-

ing for network impairments on a per-call basis.

Therefore, we use a metric based on the E model that

has been adapted for VoIP as the voice quality metric

to determine the MOS. References [3, 6, 18] describe

the E model in more detail.

Active measurements. Active measurements of

VoIP service quality are initiated by the NOC by issu-

ing measurement tasks to the probes. The measure-

ment task issued by the NOC contains a call profile

that describes each of the task’s parameters, such as

the total number of calls that need to be made

between the caller and the callee as part of the meas-

urement task, the duration of each call, the time that

the probes wait after completing a call before initiat-

ing the next call, and the type of codec that is used for

the task. Both active probes as well as agents on wire-

less devices are capable of executing active measure-

ment tasks. We refer to both as probes from here on.

The probes establish VoIP calls based on requests from
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the NOC; send artificially generated traffic based on the

codec; measure parameters like call set-up time, call

tear-down time, delay, loss, and jitter, which affect

call quality; and compute the perceived call quality

using this information. This information is then

reported to the NOC, which tracks the service quality

degradation across the network.

Our implementation requires the NOC to identify a

caller/callee pair and send the measurement task to

the probes. The probes coordinate among themselves to

execute the task, requiring no coordination by the

NOC. This reduces the load on the NOC and enables

scaling the system to handle a large network from the

NOC. Reference [3] describes the system in more detail.

Passive measurements. Passive probes, flow infor-

mation from IP routers, and software agents can act

as sources for passive measurements. These meas-

urement methods observe the traffic flowing through

the interface(s) they are monitoring and report infor-

mation about the packets flowing through. The NOC

uses the aggregate information sent by the probes

to correlate them and compute service quality

parameters such as delay, loss, and jitter. For these

measurements, the probes synchronize their local

clocks using mechanisms such as Network Time

Protocol (NTP) [15] or Global Positioning System

(GPS)/code division multiple access (CDMA)–based

clock synchronizers.

NetFlow collection and analysis allow gathering

of statistics regarding delay, loss, and other attributes.

Packet loss can be computed by correlating packet

counts at routers. Delay can be estimated by main-

taining the start time and end time of flows at all

routers and calculating the time difference at the first

and last router of the flow. However, when the losses

are high in the network, this estimate of the delay

can be inaccurate. Note that the most straightforward

method of correlating NetFlow information to appli-

cations is through the destination port numbers. In

the case of VoIP, where RTP is used to transport voice

packets, the two sides negotiate a dynamic port to

exchange the RTP packets using a signaling protocol

like SIP. Thus, it is not straightforward to identify a

VoIP flow with an arbitrary port number.

Passive probes and software agents provide more

flexibility in terms of looking into the packet to find

requisite information as well as to provide better esti-

mates of delay in the network. SIP [21] is an ASCII-

based protocol and, hence, SIP packets can be easily

identified by looking for patterns such as “SIP/2.0” in

the packet. RTP packets, on the other hand, cannot be

identified as easily. The RTP request for comments

(RFC) [22] prescribes the following, which we use to

validate the packets as an RTP stream:

• The version number of the packet must be 2,

• The length of the RTP packet should be the same

as the length header, and

• Three consecutive sequence numbers should be

received at some point in the flow’s duration.

Passive probes (and software agents) compute loss

in the network by looking at the total number of pack-

ets received by the probes belonging to the same 

flow; the difference gives us the loss in the net-

work between the probes. In order to compute the

delay between two probes, we estimate the average

timestamp of the set of packets at a probe. When pack-

ets are lost, the timestamp information can become

inaccurate. Hence, we compensate for lost packets by

adding timestamps artificially for lost packets. This

gives us more accurate estimates of the delay in the

network. Reference [3] describes this procedure in

more detail.

Reports. We now present the reports generated

by the probes for a particular test scenario. We installed

the active probe software on two machines at two

enterprise locations, one in Bangalore, India, and the

other in Murray Hill, New Jersey, in the United States.

We denote the two machines as BA and MH, respec-

tively. We performed a measurement test between

the two sites and set up 50 VoIP calls using the G.711

codec and then measured the performance of the net-

work between the two sites. We also used passive

probes to snoop on the calls made by the active probes

at the same two locations. While the calls were in

progress, we set up User Datagram Protocol (UDP)

sources to send continuous traffic from MH to BA.

This fills the router buffers and results in packet drops.

We start one source around call number 10 and stop

it at call 18. We then start two sources around call 33

and stop the sources at call 42.

Figure 4 shows the results from the active

probes and Figure 5 shows the results from the
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passive probes. The delay measurements from the

active probes include the packetization delay intro-

duced at the source and are, hence, around 25 mil-

liseconds (ms) higher than the delays measured by

the passive probes. The passive probes measure the

losses and the mean opinion score as accurately as

the active probes.

Wireless Service Management
Agents on mobile handsets enable service providers

to deploy sophisticated wireless network management

applications. Service providers can compile highly

accurate signal coverage maps using these agents. 

In particular, if the mobile handset allows location

computation, then the agent can correlate the signal

strength measurements with the location information

to determine the locations with poor signal quality.

Examples include GPS-enabled handsets and handsets

with operating systems that provide application pro-

gramming interfaces (APIs) to calculate location via

triangulation. Since the agents can continuously mon-

itor the signal strength, the NOC can periodically col-

lect the information from multiple agents to generate

real time coverage maps. This can be used to quickly

identify a failing RF subsystem, as well as to expand

the network and ensure full coverage in all areas.

(a) One-way delay (b) Packet loss percentage (c) MOS score

MOS—Mean opinion score
ms—milliseconds
VoIP—Voice over Internet Protocol
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Figure 4. 
VoIP service quality reports using active probes.
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VoIP service quality reports using passive probes.
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In addition, the agents can help in remote trou-

bleshooting. For instance, if a user is experiencing

some issues with his phone, then the customer serv-

ice representative can send messages to the agent on

the phone to request statistics or to invoke specific

active tests that can be used to isolate the root cause.

Thus, issues can be potentially diagnosed and solved

remotely.

The agents can also be useful in identifying

certain kinds of attacks that are specific to wireless

networks; for instance, battery-draining attacks can

be detected by identifying the period for which a Point

to Point Protocol (PPP) connection is established and

the number of such occurrences. The agent can detect

any anomalous behavior in real time and report the

issue to the NOC, allowing quicker identification of

the attacker.

SLA Verification
Service level agreement (SLA) performance

monitoring involves measuring and reporting against

designated SLAs. Each SLA can have various param-

eters that must be measured, including delay, loss,

throughput, and availability. By cleverly utilizing

active probes, passive probes, and flow collectors, we

are able to determine each of these statistics. Flow

collectors are ideal for accurately reporting through-

put by aggregating the amount of data transmitted

from each source. Other information such as delay

and loss are more easily determined using active or

passive probes or wireless software agents.

Fault Detection and Diagnosis
Link congestion can cause significant delays in

the network that can lead to degradation of service

quality. Similarly, network element failures can result

in dramatic degradation of service quality. Using active

probes and passive probes, we can detect this degra-

dation. However, it is essential to identify the cause

(link or network element) of this failure, allowing

service providers to take immediate remedial action.

We implement fault diagnosis by carefully choosing

a set of overlapping paths in the network and moni-

toring the service quality received on these paths. If

a link becomes congested (or a network element fails),

all paths that use that link (or network element)

simultaneously notice degradation in the service

quality received. This allows us to focus on the link

(or network element) that causes the degradation.

Service providers can then take remedial action by

routing traffic on an alternate path. Reference [2]

describes our algorithms in more detail.

Application Profiling
Application profiling includes characterizing

the network load by classifying the flow records

into the applications generating them. Port number

based classification is often insufficient since many

applications do not use standard port numbers. Hence,

some application specific information and heuristics

must be used to classify traffic. With the flow data,

we can estimate the average packet interarrival time

and average packet size of the flow concerned.

Additional information about communication pattern

(e.g., most popular destination or cliques in the net-

work [12]) can also be determined from the correla-

tion of flow data across the network. This can be used

to classify traffic into corresponding applications.

Distributed Constraint Monitoring
Many monitoring applications do not need to

know the exact state of the network; rather, they

require knowing only whether the network exhibits

unexpected or anomalous behavior. For example, if a

service provider requires the delay experienced by

VoIP service to be less than 180 ms, it is not essential

to track the exact delay experienced by each VoIP

session. It is sufficient to notify the service provider if

the delay of some VoIP session has exceeded the

threshold of 180 ms.

Distributed constraint monitoring (also known as

distributed triggers) is a mechanism that decomposes net-

workwide constraints, such as the VoIP delay constraint,

into a set of “local” constraints at each measurement

device in the network. As long as the local constraints

are satisfied at the measurement devices, we know that

the network performance conforms to expectation. Local

constraints act as filters that reduce the amount of infor-

mation communicated on the network and, thus, reduce

the monitoring burden on the network.

Distributed constraint monitoring can be used to

implement many different monitoring applications,
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which are interested only in anomalous behavior of

the network. Examples include congestion detection,

SLA violation detection, and distributed denial of serv-

ice (DDoS) attack detection. References [1, 9, 10, 13]

discuss algorithms to implement distributed constraint

monitoring efficiently.

Conclusion
Service providers are moving toward providing

many different services such as VoIP and IPTV on their

IP networks. The performance requirements of these

services are very different from those of traditional

data services. Thus, traditional network management

systems are not suitable to managing converged net-

works. Specifically, these systems do not have moni-

toring mechanisms that provide fine-grained and real

time information about the traffic flowing through the

network. In this paper, we proposed a monitoring

infrastructure that enables service providers to easily

deploy monitoring applications for a wide variety of

services. The monitoring infrastructure is composed

of various methods that monitor the performance of a

diverse set of protocols and elements: active probes,

passive probes, software agents on wireless devices,

and flow collectors. Service providers can use this

information to deploy new monitoring applications

for new services and, thus, manage their converged

networks at a per-user, per-service granularity.
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