
◆ Secure Base Stations
Peter Bosch, Alec Brusilovsky, Rae McLellan, Sape Mullender, and
Paul Polakos

With the introduction of the third generation (3G) Universal Mobile
Telecommunications System (UMTS) base station router (BSR) and fourth
generation (4G) base stations, such as the 3rd Generation Partnership Project
(3GPP) Long Term Evolution (LTE) Evolved Node B (eNB), it has become
important to secure base stations from break-in attempts by adversaries.
While previous generation base stations could be considered simple voice and
Internet Protocol (IP) packet transceivers, newer generation cellular base
stations need to perform more of the user- and signaling functions for the
cellular radio access network. If adversaries can physically break into newer
base stations, they can perform a range of undesirable operations such as
snooping on conversations, carrying out denial-of-service attacks on the
serving area, changing the software base of the base stations, stealing
authentication and encryption keys, and disrupting legitimate cellular
operations. The cell-site vault is a secure processing environment designed to
resist such tampering and to protect the sensitive functions associated with
cellular processing. It provides an execution environment where ciphering
functions, key management, and associated functions can execute without
leaking sensitive information. In this paper, we present the basic principles of
the cell-site vault and present an overview of the types of functions that need
to be protected in future base stations for cellular networks. We address the
importance of providing a trust hierarchy within the cell-site vault, we
present why the vault needs to be used to establish secure and authenticated
communication channels—in fact, why the vault needs to be used for most
external communications—and we present why it is important to execute
functions such as data re-encryption inside the vault. A femtocell or home
base station is particularly vulnerable to attacks since these base stations are
physically accessible by adversaries. In this paper, we focus in particular on a
cell-site vault design for a femto-class base station, including its
standardization efforts, as it is challenging to include both secure and non-
secure processing inside a single “system-on-a-chip.” © 2009 Alcatel-Lucent.

Bell Labs Technical Journal 13(4), 227–244 (2009) © 2009 Alcatel-Lucent. Published by Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com) • DOI: 10.1002/bltj.20346



Panel 1. Abbreviations, Acronyms, and Terms

3G—Third generation
3GPP—3rd Generation Partnership Project
4G—Fourth generation
AES—Advanced Encryption Standard
AKA—Authentication and key agreement
ASIC—Application-specific integrated circuit
BSR—Base station router
CK—Ciphering key
DDR2—Double data rate, version 2
DRAM—Dynamic random access memory
ECC—Error checking and correction
eNB—Evolved Node B
EPS—Evolved packet system
ESP—Encapsulating Security Protocol
GPRS—General packet radio service
H(e)NB—Home evolved Node B
HSPA—High speed packet access
IK—Integrity key
I/O—Input/output
IP—Internet Protocol
IPsec—Internet Protocol security
LTE—Long Term Evolution
MAC—Message authentication code

MME—Mobility management entity
MSC—Mobile switching center
NAS—Non-access stratum
ns—Nanosecond
PCB—Printed circuit board
PDCP—Packet Data Convergence Protocol
PDU—Packet data units
RAM—Random access memory
RLC—Radio Link Control
RNC—Radio network controller
ROM—Read only memory
SA3—System Architecture group 3
SAE—System architecture evolution
SDRAM—Synchronized dynamic random access

memory
SGSN—Serving GPRS support node
SoC—System-on-a-chip
SRAM—Static random access memory
TCB—Trusted computing base
UICC—Universal integrated circuit card
UMTS—Universal Mobile Telecommunications

System
USIM—UMTS Subscriber Identity Module

228 Bell Labs Technical Journal DOI: 10.1002/bltj

Introduction
Security is an important consideration in cellular

networks. Traditionally, most of the network elements

that deal with security in a cellular network have been

housed in the operator’s core to prevent adversaries from

breaking into them. Such break-ins might be attempts to

eavesdrop on conversations, disrupt signaling, endanger

subscribers’ privacy, or engage in fraudulent activities,

i.e., to circumvent billing. Base stations, even though

they are usually placed in locked enclosures, are, nev-

ertheless, not considered secure enough to assume that

intrusions into them are impossible.

In Universal Mobile Telecommunications System

(UMTS), a base station is considered to be just a trans-

ceiver that passes all data, which is usually encrypted,

to a central radio network controller (RNC), without

decrypting or interpreting the data. The RNC, which

is located on the network operator’s premises, is a

physically secure network element where encrypted

telephone conversations and other user plane traffic

can be decrypted. Other components, such as a serving

GPRS support node (SGSN) and mobile switching cen-

ter (MSC), also located at secured premises, perform

the signaling associated with setting up and tearing

down calls. The RNC, SGSN, and MSC are housed in

the operator’s core, partly in order to reduce the risk of

a break-in, although there is some evidence even this

arrangement might not provide sufficient security [30].

The UMTS base station router (BSR) [19, 21] per-

forms all UMTS-specific protocol processing in the

base station. While this integration leads to serious

performance improvements, as reported separately, it

also implies that all functions that are traditionally

kept inside a secure cellular core infrastructure are

now integrated inside the seemingly insecure base

station. Obviously, the BSR approach presents the risk

of weakening the security architecture of the UMTS

system. To make matters worse, the emerging femto

base stations are, most likely, no longer under the

direct control of the wireless operator. From a security

perspective, the femto BSR represents the worst of all



DOI: 10.1002/bltj Bell Labs Technical Journal 229

scenarios: security-sensitive functionality placed

directly in the hands of potential adversaries where it

cannot be supervised by the network operator, cou-

pled with the incentive to reduce the complexity (and

thus cost) of the device as much as possible.

As was confirmed by the 3rd Generation

Partnership Project (3GPP*), the deployment of femto

base stations built according to the principles of a BSR

would run the risk of break-ins if no special meas-

ures are taken. Our challenge is to mitigate the risks

by designing an architecture that allows the macro

BSR and, more importantly, the femto BSR to be

secured in spite of its vulnerable situation.

While the security risk is made visible for the femto

BSR, we argue that as soon as operators place any form

of base station in the hands of potential adversaries,

they run the risk of attacks from these base stations. So,

even though the security architecture presented in this

paper is especially suited for the femto BSR, regular

femto base stations benefit from our security solution

as well. We argue that all communication to the opera-

tor requires a secure tunnel, and the only method to

secure such a tunnel is by using the same techniques as

the ones we use to secure the femto BSR.

The security issue first became apparent with the

introduction of the UMTS BSR. However, later 3GPP

deployment options, such as Evolved High Speed

Packet Access (HSPA) [13] and 3GPP’s System

Architecture Evolution (SAE) Long Term Evolution

(LTE) [14], require similar security solutions for base

stations. In both 3GPP systems, the user plane pro-

cessing executes completely inside the base station,

including the processing that needs to remain secure.

In fact, the security solution that was presented by

the 3GPP’s System Architecture Group 3 (SA3) to miti-

gate the security issues for the UMTS BSR is now also

applicable to the other 3GPP deployment options [7].

The security solution in this paper is presented

with securing the base station in mind. The solution is

equally pertinent to a variety of different application

domains as well, most notably consumer electronics.

UMTS Security Background
Before we describe how to protect BSRs from

attacks, we first present the background necessary to

understand the threats in more detail.

Currently, in UMTS, the security hierarchy is built

around its authentication and key agreement (AKA)

procedure [17]. The application—UMTS Subscriber

Identity Module (USIM)—residing on the mobile uni-

versal integrated circuit card (UICC) in the mobile ter-

minal contains a secret key which is shared with the

home operator. The home operator stores the secret

key in its authentication center. When the mobile ter-

minal signs onto a UMTS network, a key exchange

(the UMTS-AKA algorithm) takes place. UMTS AKA

allows the mobile terminal to verify that it is com-

municating with the appropriate operator, and, simi-

larly, the operator verifies that it is communicating

with one of its own UICC (USIM) cards. The essence

of this mutual authentication algorithm is based on

each side proving to the other that it has the appro-

priate key by encrypting something with it.

At the end of the UMTS-AKA procedure, the net-

work operator and the UICC card in the mobile ter-

minal agree on two temporary keys: the ciphering

key (CK) and the integrity key (IK). The UICC card

transfers its keys to the mobile terminal.

The CK is used to encrypt data packets that are

exchanged between the layer-2 protocol stacks in the

network and the mobile terminal. The IK is used to

verify that encrypted packets indeed were sent by one

of the key holders—by way of a message authentica-

tion code (MAC). It is clearly important that the CK

and IK are kept secret to avoid eavesdropping and call

hijacking.

In BSR-based base stations, the network operator

ensures the CK and IK are available to the base station

because it is the BSR application that must process

signaling traffic and transfer voice and data packets

between the wireless link and the “backhaul” Internet

Protocol (IP) network. The wireless link and the back-

haul link, unfortunately, use different encryption

standards, so all data must be decrypted and re-

encrypted by the BSR applications. The BSR applica-

tions, therefore, need to have the CK and IK (as well

as keys for encrypting backhaul data) and they also

“see” the unencrypted voice or packet data.

Attack Model
When a BSR boots up, the groundwork is laid for

the BSR to provide secure and dependable service.



230 Bell Labs Technical Journal DOI: 10.1002/bltj

The BSR must verify the authenticity of the network

service provider and be able to authenticate itself to it.

It must—through the way in which it is constructed—

convince the network service provider that it is a

genuine, tamper-resistant BSR running the correct

software. And, when the BSR starts providing service,

it must do so correctly and securely, while protecting

the privacy of the calls flowing through it.

The biggest challenge may be to convince the net-

work service provider (operator) that the BSR is the

genuine thing, with appropriate software running on

it. We assume that some of these BSRs are in people’s

homes (femto BSR), and that at least a few of the peo-

ple in physical possession of such BSRs will attempt to

foil their security.

It is important that we make assumptions about

the kinds of attacks the BSR must be protected

against. These assumptions can range from simple

attacks on the BSR via the radio channel or the back-

haul network (e.g., Ethernet), to very sophisticated

(and expensive) attacks involving drilling into the

chips, examining the chip internal state under an elec-

tron microscope, and other such intrusions.

We demand that BSRs are constructed in such a

way that a sophisticated attack on one of them, which

reveals all the secrets on that BSR, does not yield the

means to break into others without physically dam-

aging those as well. The profits from such an attack,

therefore, are limited to what service can be stolen

and what conversations can be eavesdropped from

the compromised BSR only. If the attack is expensive

enough, it is not worth pursuing.

BSRs in people’s homes are only allowed to serve

residents, and it is therefore up to homeowners to

protect home BSRs against physical attacks. BSRs

serving the general public and enterprises need addi-

tional physical protection, in the form of locked cabi-

nets, and other security measures to resist physical

tampering. Our assumption, therefore, is that a very

sophisticated and almost certainly destructive attack

on a BSR yields a financial reward that is a small

fraction of the cost of the attack, and is thus not an

appealing one.

Our concern is to protect against non-destructive

attacks: pure software attacks, attempts to read flash

memory, or attempts to use logic analyzers to monitor

the input/output (I/O) from the chips on board (e.g.,

traffic between the processor and memory).

Our defense against attacks on the BSR software is:

1. To protect the master keys used for loading the

operating system, verifying the authenticity of 

the network service provider and authenticating the

BSR to it, and for establishing session keys in such

a way that they are only accessible during the

bootstrap phase.

2. To concentrate all operations that require the

manipulation of secure data (i.e., keys and unen-

crypted private data) in a very small “trusted com-

puting base” (TCB) [33], which can only be

entered in a controlled manner (described in the

section titled “Secure Bootstrap”).

3. To never allow keys or unencrypted private data

to leave the central processing chip. This includes

disallowing keys or unencrypted data to be stored

in off-chip random access memory (RAM).

Cell Site Vault
To make sure that no adversary can obtain access

to the keys inside the BSR, we designed a cost-

effective secure processing environment for the base

station to mitigate the risk of such break-ins. Since

we focused on the femto base station, our solution

had to be a low-cost one. The low-cost constraint

implied that no special hardware could be used to

protect the secrets. We have termed our solution the

“BSR cell-site vault” [5, 6].

The vault is a small TCB in which all of the

security-related functions that the BSR must conduct

are concentrated. The vault is protected from the rest

of the system through mechanisms that are similar to

those used to protect an operating-system kernel from

user-level program attacks: the vault can only be

entered through a well-defined interface that is care-

fully controlled by the vault itself, just like an operat-

ing system kernel protects itself from attack by user

programs by restricting kernel entry to system calls

and traps only.

Figure 1 shows the environment in which the

cell-site vault operates. A base station is shown with

a secure (gray) portion and an unsecured (dark

brown) portion. The secure portion executes the soft-

ware that manages credentials that must be kept



DOI: 10.1002/bltj Bell Labs Technical Journal 231

secret, while the unsecured portion does everything

else (such as regular protocol processing). As shown,

all secure communication to external sources goes

through the cell-site vault (white arrows): there are

encrypted tunnels to the authentication center, to the

layer-3 mobility anchor, and to the terminal. The keys

are stored—and encryption/decryption is carried

out—in the cell-site vault.

Figure 2 shows the secure processing environ-

ment. The security boundary is inside the “system-on-a-

chip” (SoC). Typically, an SoC is implemented by an

application-specific integrated circuit (ASIC). We

assume it is hard to break into the SoC and to obtain

the secrets within it. The mandatory components that

are stored inside the cell-site vault are: a private mas-

ter key, a secure boot function, a secure hypervisor

[31], secure peripherals, and secure memory [20].

With these five components, we can build a processing

environment for the BSR base station that can run

security software so that no adversary can access the

security credentials that are kept in the SoC.

To minimize cost, we chose a single processor inside

the SoC that supports a secure hypervisor. The goal is to

execute security software in the secure state of the

processor, and execute regular base station software in

the regular state of the processor. Figure 3 shows the

various states of the processor: user and kernel space,

secure user and kernel space. Hence, UMTS security

applications execute in the secure space, while the regu-

lar base station applications execute in the regular

processor space. In addition, the interface between the

two components goes through the regular operating

system to a run-time system that executes inside the

secure portion of the processor. This run-time system

verifies all communication that goes through the inter-

face before the requests are dispatched to secure space.

Secure Bootstrap
The essential element for bootstrapping a BSR (or

any processing system with similar security require-

ments) is at least one key, within the SoC that needs to

be used to securely bootstrap the security hierarchy. If

the key is stored or generated off-processor, there is no

way it can be provided to the processor without being

observable by an attacker—one of the central assump-

tions is that an attacker can use a logic analyzer to

NAS�RR
MoIPAuC

Home agent

CK � IK NAS�RR

Protocol
stack

SIMRR � NAS signaling

Bearer path

Shared secret
key

IK � CK

Public/private
IP network

IPsec

Base station router

Protocol
stack

Secure tunnel

User equipment

Inter-cell site

AuC—Authentication center
BSR—Base station router
CK—Ciphering key
IK—Integrity key

IP—Internet Protocol
IPsec—Internet Protocol security
MoIP—Mobile IP

NAS—Non-access stratum
RR—Radio resource
SIM—Subscriber identity module

Cell-site vault

Figure 1.
A BSR base station in its environment.



232 Bell Labs Technical Journal DOI: 10.1002/bltj

observe all I/O for each of the chips on the printed cir-

cuit board (PCB). Any security solution, therefore, that

uses a UICC card to protect the BSR (as the only con-

tainer of a unique secret key) cannot work, given the

threat assumptions.

The master key or master keys must perform two

essential functions:

1. Verify the system software loaded into the proces-

sor before executing any of its instructions, and

2. Ensure mutual authentication between the ser-

vice provider and BSR base station, and the estab-

lishment of a session key.

Both essential functions can be performed with

one master key or two. The software verification key,

if public-key encryption is used, does not have to be

secret, but the matching key with which the software

is encrypted or signed does have to be secret. The sec-

ond key must be secret. It can be the private key in a

public-key pair, or a symmetric-encryption key shared

with the network service provider.

Note that although the software verification key

may be public and does not then have to be secret, 

it must be stored on-chip. If it is off-chip, it is liable to

be modified by an attacker when it is loaded onto the

chip; the system may then verify code as legal and

proper when it is not.

The mutual authentication key can be a symmet-

ric encryption key shared with the network service

Hypervisor-based
processor

L1 cache

SoC interconnect

Boot-ROM

Fused or
battery backed-up

key

Kasumi

AESSecure
memory
bridge

Other devices
(e.g., BB, Ethernet,

UART)

External
memory

Internal
memory

ASIC
boundary

Processor
security

state

AES—Advanced Encryption Standard
ASIC—Application-specific integrated circuit
BB—Broadband

ROM—Read only memory
SoC—System-on-a-chip
UART—Serial line

Figure 2.
A cell-site vault in a system-on-a-chip.



DOI: 10.1002/bltj Bell Labs Technical Journal 233

provider, or it can be a secret key that the chip uses to

authenticate to the network plus a (not necessarily

secret) public key that the chip uses to verify the iden-

tity of the network service provider.

The secret key embodies the fundamental identity

of the BSR. Under no circumstances should it become

public. Protecting it requires two things:

1. Making sure that the TCB that uses it is as small

and secure as possible, and

2. Using it as little as possible so cryptanalysis has as

little material to break it as possible.

One popular and perfectly adequate method to

store the keys in a processing chip is to use “fuse mem-

ory.” This is on-chip memory that, when the chip is

manufactured, contains all zeroes (or ones). When the

chip is inaugurated by the service provider, the fuses

can be individually flipped, essentially by burning the

fuses. One special fuse allows the burning to be carried

out and when the key has been entered, it too is

burned, making further modifications impossible.

There are other techniques, too. For example, using a

tiny amount of battery backed-up on-chip RAM to

contain the key; when the system senses an attack, or

when the chip is disconnected from the battery, the

keys are automatically erased.

We require two additional features for secure

bootstrap. One is a small amount of on-chip read only

memory (ROM) that contains the primary bootstrap

code. The other is a switch that can be thrown by soft-

ware to cut off access to the on-chip key memory. The

switch only returns to the access-allowed position by

a hard reset of the chip, and this will also initialize

the program counter to start executing the bootstrap

code in ROM.

The idea for such a switch is not new. Butler

Lampson mentions this switch in his article on

authentication in [27]. The switch must be consid-

ered essential if it can be assumed possible that an

attacker might compromise the operating system—

a sensible assumption.

Unsecured
user applications

Unsecured
operating system

kernel

Secured
run-time
system

Secured
user applications

Kernel trap Security
trap

Transition
to secure

user mode

Secure peripherals
can be accessedSecure peripherals

are inaccessible

Typical processor states Secure hypervisor state

Figure 3.
Secured and unsecured processing on the same processor.



234 Bell Labs Technical Journal DOI: 10.1002/bltj

With these ingredients, secure bootstrap proceeds

in the following steps:

1. The processor is reset (either by powering it on or

by pressing the reset button); the processor is

brought to a known state in which any previous

settings for memory management, interrupts,

peripheral device programming, and code run-

ning is rendered innocuous. The switch providing

access to key memory is set to allow access and

the processor starts executing the program stored

in on-chip secure ROM.

2. The primary loader program in ROM loads a sec-

ondary boot loader program from off-chip flash

memory into on-chip RAM. Most modern proces-

sors allow the on-chip cache to be used as RAM

during the boot phase. Systems-on-a-chip often

have on-chip static random access memory

(SRAM) that is used for other purposes during nor-

mal operation. Any of these methods suffice, pro-

vided the memory is on-chip so that it can neither

be monitored nor modified by an adversary. The

loader must check that loaded code does not over-

write any of the loader’s state as this would allow

an attack. It must also calculate a secure hash (also

known as a digest or checksum) of the loaded code

and verify it using a digitally signed copy of the

hash that must accompany the secondary boot

loader in the flash. If the signed hash does not

match, the primary boot loader halts the processor:

the flash has been damaged or tampered with.

3. When the secondary boot code has been success-

fully loaded and verified, it can be run (we repeat

here that it must be loaded into and run from on-

chip memory). Whereas the primary boot loader

in ROM may be only chip-specific (the only off-

chip access is to flash memory which can be con-

figured to be in a well-known location), the

secondary boot loader is system-specific. It can

use main memory, and devices such as the

Ethernet. The first task of the secondary boot

loader is to perform authentication to the net-

work service provider. So, it typically configures

the Ethernet, obtains an IP address (if not built

in), and establishes two-way communication with

the network service provider.

4. Using the on-chip authentication keys, the sec-

ondary boot loader performs authentication and,

assuming it succeeds, establishes a session key

that the BSR can use until the next reboot. The

secondary boot loader then throws the switch,

denying any future access to the master keys until

the next hard reset of the processor.

5. The secondary boot loader may now load the

operating system—from flash, from disk, or

downloaded from the network service provider.

The operating system must be signed and veri-

fied, just like the secondary boot loader, but pos-

sibly with a different key which may have been

supplied as part of the authentication process with

the network service provider.

6. Finally, the operating system is allowed to run

and it is provided with access to the session key,

so it can communicate with the network service

provider.

When the operating system is securely activated,

the BSR applications can be started in the secure and

un-secure portions of the processor.

Secure Memory
As described earlier, the vault uses a secure hyper-

visor [28, 31] or ARM Trustzone* [18] processing

environment to partition the application space into

an area that is protected from adversaries and an envi-

ronment for executing “regular” non-secret base sta-

tion functions. To protect the secure area, it is also

important to protect the memory in which the secure

applications operate: the code that is executed, the

keys on which that code operates and the data buffers

that are re-encrypted all need to be secret. We foresee

two solutions:

1. Include memory space within the vault, i.e.,

within the SoC. Note, this appears to be an

expensive proposition.

2. Use external off-chip memory, but use memory

encryption when the processor is operating in

secure mode. This section describes memory

encryption in detail.

The ARM Trustzone architecture broadcasts the

execution security level throughout the system (i.e.,

the SoC) as a modifier on the address bus. All load/store



DOI: 10.1002/bltj Bell Labs Technical Journal 235

operations of the processor to peripherals or memory

carries with it the processor’s current security level. We

use these security state bits to drive an encryption

engine within the memory controller to encrypt or

decrypt regions of memory that need to remain private.

This idea is not new and has been published before [20].

Our novelty here is the application to secure a low-cost

femto base station.

In what follows, we have connected an encryp-

tion engine in series with the memory controller.

Whenever the memory controller needs to write data

to off-chip memory, it encrypts and “integrity protects”

that data, and when data is read back, it decrypts and

“integrity checks” that data. In case a decryption fails,

the memory controller flags the operation as failed

and signals the processor of the event. The processor

may halt or reset on such events. The memory con-

troller’s encryption engine itself is part of the cell-site

vault: it is part of the SoC that also includes the main

processor and cell-site vault key material. We assume

it is not cost-effective for an intruder to break into the

SoC, and thus also into the memory controller.

Cryptographically secure messages are usually

signed by a message authentication code, which is a

cryptographic hash [29] of the message. Suppose a

256-bit message is encrypted, resulting in a 256-bit

scrambled version of the message. The 256-bit space of

possible clear text messages is mapped by the encrypt-

ing function to a 256-bit space of encrypted messages.

The mapping is one-to-one. Every 256-bit encrypted

message maps (via decryption) to a possible 256-bit

clear text message. So if an adversary replaces an

encrypted message with a different one, there’s no

way to detect tampering. The decryption system would

simply convert that illicit 256-bit encrypted data (via

decryption) to an incorrect clear text message and the

system would accept it as valid (but incorrect) data.

Including a MAC in the encryption system provides a

means to detect such tampering. Not only must the

adversary change the encrypted data, but they must

also create a corresponding MAC that is the crypto-

graphic hash of the new data. MACs are necessary to

detect tampering. The overhead of including a MAC in

each encrypted memory transaction is a necessary

overhead in a secure memory system.

Most modern processors have integrated instruc-

tion and data caches that constrain the types of mem-

ory transactions a memory system sees. Instead of 

the memory traffic produced by a processor’s bare

load/store instructions, the memory system sees cache

miss and cache flush traffic. Such cache systems trans-

fer one cache line at a time instead of individual

words or bytes. These larger blocks, typically 32-bytes,

can be more efficiently encrypted and decrypted. A

good encrypting memory system should be most effi-

cient in these cache line sized transactions, but also

support single byte transactions as well.

Another point to realize in processor/memory per-

formance is that processors need not wait for memory

write operations to complete and can execute ahead,

as long as the data has been transferred to the memory

system and is queued for writing sometime in 

the future. The data need not actually reside within the

memory before the processor proceeds in executing

subsequent instructions. Just the promise that it will be

written eventually is all that is necessary. In contrast,

processors often cannot usually perform any useful

operations while they wait for data to return from 

a memory read operation. They are stuck waiting, and

memory read latency directly impacts overall system

performance. This asymmetry in read/write latency

requirements is of paramount concern in designing an

efficient encrypted memory system.

Today’s dynamic random access memory (DRAM)

technology is inherently serial in nature. They are no

longer just random access memories, but also provide

access latency advantages for nearby sequential loca-

tions. In fact, double data rate, version 2 (DDR2) syn-

chronized dynamic random access memory (SDRAM)

chips do not transfer single words [26], but rather

bursts of two or four sequential words starting from

an initial address. Any efficient memory system must

take advantage of the improved access times provided

by such multi-word transfers.

Dynamic memory circuits operate as memory ele-

ments by “remembering” small electrical charges on

tiny capacitors. Whether that tiny charge is detectable

or not determines if the memory location contains a

one or a zero. Moreover, the “dynamic” aspect of

DRAM comes from the need to refresh the charges



236 Bell Labs Technical Journal DOI: 10.1002/bltj

periodically, otherwise the circuit forgets and the

DRAM becomes unreliable. Unfortunately, random

events in the environment such as radioactive decay

or even cosmic rays, can upset that charge storage and

disrupt the memory function completely. These events

are called single event upsets [24], because they are

unpredictable and statistical in nature and usually

only affect a single memory location.

While single event upsets may be rare, they

unfortunately do occur. So any encrypted memory

system that depends on MAC matching for tamper

detection must also be resilient under single event

upsets. The technology to correct single bit errors

involves storing redundant memory bits for each

word in memory and is called “error checking and

correction” (ECC) [23]. For a 32-bit wide memory

system, ECC adds an additional seven bits. Each 32-bit

memory word becomes a 39-bit (or 40-bit, with one

bit unused) wide memory system to provide the extra

seven ECC bits. Well-known parity circuitry gener-

ates the seven extra ECC bits on memory writes, and

the extra seven ECC bits are used on memory reads to

check and correct single bit errors in the 32-bit word.

An encrypted memory system must incorporate ECC

in order to distinguish random bit errors from mali-

cious attacks.

The components of an encrypted memory system

are shown in the block diagram of Figure 4. A dual-

ported write buffer is positioned between the bus

interface module and the encryption system. The

write buffer serves as a queue of pending write opera-

tions to the encrypted memory system and allows bus

write-transactions to complete early, before data is

actually written into off-chip memory. The write

buffer also supports sub-encryption-block sized data

transactions. Since the encryption process requires

entire 256-bit encryption blocks, bus transactions of

single bytes and words are captured in the write buffer

and then “backfilled” by reading the remaining bytes

from off-chip encrypted memory. Only when the

entire 256-bit write buffer entry is valid can it be

encrypted and retired to memory. Bus read-transactions

“hit” the write buffer return immediately, while those

that “miss” initiate an encrypted memory transaction

and only complete after the memory access latency

and decryption overhead. The write buffer increases

bus write performance, decouples the bus interface

logic from state machines that control the encryp-

tion/decryption process, and simplifies the design

effort. With this architecture, changing the bus inter-

face would have minimal impact on the rest of the

encrypted memory system.

The logical flow of the encryption/decryption

process is shown in Figure 5. The encryption algo-

rithm is Rijndael [22], the same chosen for the

Advanced Encryption Standard (AES). It is not exactly

AES, because AES is defined to operate only on fixed

128-bit blocks. Larger encryption tasks using AES are

composed of chaining multiple 128-bit encryption

operations together in a serial manner, which would

unreasonably extend the latency of the encrypted

memory system. But Rijndael is extensible to operate

on larger block sizes and still retain its cryptographic

properties. There are two properties that make Rijndael

Key

25632

Bus interface logic

Encryption/decryption
logic

CPU

Cache DMA

28832

40

DDR2
SDRAM

Off-chip

On-chip

DRAM
controller

CPU—Central processing unit
DDR2—Double data rate, version 2
DMA—Direct memory access
DRAM—Dynamic random access memory
SDRAM—Synchronized dynamic random access memory

Figure 4.
Encrypted memory block diagram.



DOI: 10.1002/bltj Bell Labs Technical Journal 237

a good cryptographic function, as detailed in Panel 2.

Instead of the 128-bit blocks used in AES, Rijndael is

used to directly encrypt a 288-bit block composed of

256-bits of data and 32-bits of address. The resultant

288-bits of encrypted output effectively encodes both

the data as well as a 32-bit message authentication

check value. Upon decryption, using an inverse

Rijndael function, if the address appears in the proper

32-bit locations then the authentication of the mes-

sage has been effectively checked and the 256-bits of

decrypted data is assumed to be correct. Using Rijndael

to produce a MAC in this way, spread across the entire

288-bit encrypted output, is more effective than having

a fixed 32-bit MAC field, because an adversary can no

longer attack the encryption by exhaustively search-

ing all four billion possible MAC values.

As mentioned earlier, adding MAC bits to each

encryption block is an essential overhead of an

encrypted memory system. Earlier encrypted memory

systems [32] have chosen to collect all the MAC fields

in a separate arena and recursively generate MAC

fields for them as well. This “tree” of MAC values pro-

vides a cryptographic hash of the entire memory space.

While this is no doubt more cryptographically secure,

the overhead of updating the tree of MACs for each

memory transaction has significant performance

impact. A 128 MB memory system, with MACs gen-

erated for each 256-bits of storage, would require nine

MAC updates for each memory transaction. While

these updates can be cached and retained on-chip,

they do represent significant chip resources and time.

Instead of building a tree of MAC values, we use

a single flat MAC for each 256-bit encryption block.

Each 8 words (256-bits) of address space is then

expanded to address 9 words (288-bits) of external

memory as shown in Figure 6. This expansion can be

readily implemented by a single 32-bit adder applied

to the address. It does, however, mean that only

eight-ninths of the physical memory is available for

encrypted memory use. The remaining one ninth,

though spread out in the memory space, effectively

holds the MACs. By placing the MACs inline with the

encrypted data as a ninth word, the system takes

advantage of memory’s inherently faster sequential

access and provides the entire 288-bit encryption

block and MAC with minimal latency.

In order to protect from replay (where an adver-

sary replaces the current encrypted memory contents

with a previously stored value) and k-wise attacks

(where the adversary takes advantage of seeing the

Rijndaelk Rijndaelk
-1

Addr
Read
data

288

32256

288 288

288

256 32

MAC � Addr
Write
data

?

Encrypted
write data

Encrypted
read data

Addr—Address
MAC—Message authentication code

Figure 5.
Encryption/decryption data flow. 

Panel 2. Rijndael cryptographic properties

1. Rijndael is good one-way function. With Rijndael it is straightforward to produce an encrypted
result given a key and input data. But it is difficult to invert that process and determine the key
from the encrypted data and unencrypted data. i.e., R(k,d) � e, is easy to compute while
R�1(d,e) � k is very difficult to compute and therefore it’s hard to guess the key.

2. Rijndael is a good pseudo-random function, i.e., there is a good probability that every bit of the
output is dependent on each bit of the input. Rijndael spreads the effects of changing a single bit
of input to all bits of the output. (And why error checking and correction [ECC] is mandatory. A
single bit error in the 256-bits of encrypted data would propagate to many bit errors in the
decrypted data.)



238 Bell Labs Technical Journal DOI: 10.1002/bltj

same key and address being used for encrypting k dif-

ferent data values) the encrypted memory system has

the ability to mutate the encryption key. This is simi-

lar to normal cryptographic communications where a

key goes stale after k-uses and must be discarded in

favor of a new key.

The memory space is partitioned in two regions

and the system can use two different cryptographic

keys, one for each region. By maintaining an address

register that defines the boundary between those

regions, a simple address comparison can be per-

formed to identify which region the memory trans-

action refers to, and which key to use. Then, to

change from one key to another, a mutation process

can be run to grow one region at the expense of the

other (incrementing the boundary register) and the data

can be read, decrypted with the first key, and

encrypted and written back to DRAM with the new

key. Once the boundary register reaches the end of

memory, the original key is no longer in use and can

be safely discarded. A new key is created and the

process repeats with the boundary register pointing

back to the beginning of memory. In this way, keys

can be regularly changed and prevented from going

stale, thus maintaining the integrity of the crypto-

graphic memory system.

There is no doubt an encrypted memory system

has an impact on performance. However, since the

write buffer allows writes to proceed offline, there is

little impact expected on write performance unless

the application is write-bound. But for read transac-

tions, the decryption latency is serially added to the

memory-read latency. In the prototype system based

on a Xilinx* Virtex-4* device, the average memory

latency and bus interface overhead observed was

about 180 nanoseconds (ns) with DDR2, while the

288-bit Rijndael decryption process takes 70 ns, or a

30 percent latency overhead. This is not too onerous

a price to pay for secure off-chip storage, especially

as the processor performance is shielded with two lev-

els of on-chip caching prior to the encrypted DRAM

system. We continue to investigate more efficient

methods for encrypted off-chip memory.

A UMTS Application on the Cell-Site Vault
This paper is about securing a femto BSR with the

UMTS application in mind. We have described various

components to secure the processor and to securely

boot the processor, as well as the execution model of

the processor and a method to secure the memory.

Here we combine the various components and

describe how to partition the UMTS BSR application

such that secure elements of the BSR UMTS applica-

tion operate from the unsecured components.

In this section, we assume a vault can be securely

booted and that applications can be started in 

the secure and insecure domain. Additionally, we

assume communication paths can be set up between

the unsecured applications and secure applications.

Figure 7 presents a possible break-up of the BSR

application on the cell-site vault. The figure shows

the following components that need to execute in the

processing environment:

1. Node B application. The Node B application is an

application that executes in the unsecured

domain and accepts encrypted packet data units

(PDUs) from the higher-level user protocol stack

and sends those PDUs into the layer-1 hardware.

Alternatively, it takes packets that have been

received by layer-1 and hands those packets to

the higher level user protocol stack. An HSDPA

scheduler would execute in this space. None of

this needs to run in the cell-site vault.

2. Layer-2 user plane protocol processing. Some parts of

the MAC, the complete Radio Link Control (RLC)

and Packet Data Convergence Protocol (PDCP)

layer [1–3] are part of the user plane protocol pro-

cessing. These parts need to run in the secure

Address

256

9/8 x
Address

Data�MACData
288

Logical
memory

Encrypted
memory

MAC—Message authentication code

Figure 6.
Expansion of encrypted memory space to include MAC. 



DOI: 10.1002/bltj Bell Labs Technical Journal 239

domain since Kasumi ciphering functions [12] are

part of the RLC and MAC layers, and the cipher-

ing functions and RLC/MAC are heavily inter-

twined. The ciphering functions encrypt the

unencrypted RLC/MAC PDUs that travel towards

the mobile terminal and decrypt the PDUs that

arrive from the mobile terminal. Since the PDCP

layer performs header compression, it needs to

be able to “see” the unencrypted IP packets and

thus needs to operate in the secure domain. The

per-user ciphering key CK and the associated

encryption state needs to be kept in the vault to

prevent adversaries from obtaining access to those

keys and thus prevent them from eavesdropping

or call hijacking.

3. Layer-3 user plane termination. This part needs to run

in the secure domain. The application terminates

IPsec/ESP tunnels [25], decrypts downlink packets,

and prepares those packets for the layer-2 user plane

processing. In the uplink, this application receives

packets from the layer-2 user plane in their unen-

crypted form and transmits the packets through the

Internet Protocol security/Encapsulating Security

Protocol (IPsec/ESP) tunnel to the operator. The

keys associated with the IPsec/ESP tunnel need to

be kept inside the vault to prevent adversaries from

obtaining the session keys which are used to com-

municate with the operator.

4. Layer-3 signaling plane. This part needs to run in the

secure domain since it needs to authenticate radio-

resource control packets with the integrity key [4]

and since it terminates the SGSN non-access stra-

tum (NAS) signaling [11, 15]. It is important to

protect the integrity key to prevent an adversary

Unsecured processing Secured processing

Layer-1 HW

L1 interfaceIP stack

Ethernet

User plane (L2)

IPsec/ESP term RRC/NAS

O&M

ESP—Encapsulating Security Protocol
HW—Hardware
IP—Internet Protocol
IPsec—Internet Protocol security
NAS—Non-access stratum

OA&M—Operations, administration, and maintenance
RRC—Radio resource control
term—Terminal
UMTS—Universal Mobile Telecommunications System

Figure 7.
A software architecture for a UMTS application.



240 Bell Labs Technical Journal DOI: 10.1002/bltj

from spoofing the radio resource messages, and it

is important to protect the ability of NAS signaling

to hide call details such as telephone numbers and

IP addresses that are assigned to the mobile.

For LTE, 3GPP has determined that NAS signaling

is performed by a central mobility management entity

(MME) while the radio resource function and user

plane encryption are handled at the base station [14].

By keeping the NAS handling in the core, the security

issues associated with NAS handling are less stringent

when compared to executing those functions inside

the base station. However, given that the LTE base

station performs ciphering and integrity protection

functions and terminates a secure tunnel between the

MME and the base station, we argue that the LTE base

station also requires a cell-site vault.

We do not worry much about other security func-

tions such as lawful intercept and charging. We argue

that those functions should not be part of a BSR and

really need to reside inside the operator core.

Security and 3GPP
In 2006, we set out to design the cell site vault

with the components described earlier in this paper.

The reason to design the cell-site vault was to con-

vince 3GPP that we can secure a base station in a cost-

effective manner and thus enable UMTS deployments

with security functions executing in the base station

(read: BSR). 3GPP System Architecture Group 3 is

responsible for analyzing and proposing security solu-

tions for the 3GPP group of cellular systems. SA3 has

analyzed 3GPP UMTS solutions before, though the

focus is currently very much on 3GPP LTE and UMTS

femtos.

In 2006, SA3 established that RNC security func-

tions can execute in the base stations [7, 8]. This deci-

sion enabled the deployments of combined RNC/Node

Bs for the so-called “Evolved HSPA” profile. The SA3

decision was in part based on presentations of a con-

ceptual cell-site vault. The cell-site vault as described

in this paper presents an instantiation of the cell-site

vault that was presented to SA3. Further, in [9] and

[10], SA3 reiterated its earlier decision on “Evolved

HSPA” and agreed that security functions for 3GPP

LTE can also execute inside the LTE base station. In

addition, SA3 presented arguments for securing the

backhaul through a cell-site vault [14].

Currently 3GPP SA3 is addressing the security

architecture for the home Node B (3G home base sta-

tion) as well as for the home LTE base station (4G

home base station), and we collectively call these net-

work elements the home evolved Node Bs (H(e)NBs).

Both solutions connect into an evolved packet system

(EPS) operated by the cellular operator. Security is a

critical aspect of H(e)NB, and 3GPP SA3 is currently

standardizing the security architecture [16] for such

network elements. Given the earlier decisions by

3GPP as described above, it is very likely that the study

item for the H(e)NB closely follows the results 

for Evolved HSPA and the security architecture for

3GPP LTE.

Reflections
In this paper, we have highlighted the development

of a cell-site vault: a secure processing environment that

was originally designed for a UMTS base station router

to address the security concerns raised by 3GPP SA3.

This cell-site vault provides an environment which

can be securely booted to set up secure connections

between the BSR and the operator, to securely re-

encrypt data between the operator’s core and the

wireless link and to execute the signaling functions

for a UMTS application. The solution provides a single

processor with multiple security domains where regu-

lar processing can be separated from the security-

related processing. In addition, main memory is

encrypted to protect against eavesdropping through

memory probes.

We argue that the cell-site vault is strong enough

to address most of the security concerns raised 

by 3GPP SA3. In fact, in part based on our presentations,

3GPP SA3 decided to facilitate the execution of secu-

rity functions in the cell-site vault for Evolved HSPA,

LTE and now for home base stations.

While the cell-site vault has been used for a base

station application here, there are many more appli-

cations of the cell-site vault. The vault can be used to

protect phones (to prevent the use of other operator’s

USIM cards), and it can be used in set-top boxes and

game consoles. In fact, we argue that the vault can

be used in any consumer electronics device that needs

to protect information such as keys, software, or

media. 



DOI: 10.1002/bltj Bell Labs Technical Journal 241

FTP/tsg_sa/WG3_Security/TSGS3_45_
Ashburn/Output�.

[9] 3rd Generation Partnership Project, “LS on
Potential Implementation of User Plane
Encryption in LTE Base Station Site, Release 8,”
3GPP TSG SA WG3 Security Meeting #46, S3-
070153, Feb. 2007, �http://www.3gpp.org/
FTP/tsg_sa/WG3_Security/TSGS3_46_Beijing/
Docs�.

[10] 3rd Generation Partnership Project, “eNB
Security Requirements,” 3GPP TSG SA WG3
Security Meeting SA3#46b, S3-070256, Nokia,
Siemens Networks, Mar. 2007, �http://www.
3gpp.org/FTP/tsg_sa/WG3_Security/TSGS3_
46b_LTESAE_adHoc_SophiaAntipolis/Docs�.

[11] 3rd Generation Partnership Project, “Mobile
Radio Interface Signalling Layer 3, General
Aspects (Release 7),” 3GPP TS 24.007,
2007, �http://www.3gpp.org/ftp/Specs/html-
info/24007.htm�.

[12] 3rd Generation Partnership Project,
“Specification of the 3GPP Confidentiality and
Integrity Algorithms—Document 1: f8 and f9
Specification,” 3GPP TS 35.201, 2007,
�http://www.3gpp.org/ftp/Specs/html-
info/35201.htm�.

[13] 3rd Generation Partnership Project, “High
Speed Packet Access (HSPA) Evolution—
Frequency Division Duplex (FDD) (Release 7),”
3GPP TR 25.999, v7.1.0, Mar. 2008,
�http://www.3gpp.org/ftp/Specs/html-
info/25999.htm�.

[14] 3rd Generation Partnership Project, “General
Packet Radio Service (GPRS) Enhancements for
Evolved Universal Terrestrial Radio Access
Network (E-UTRAN) Access,” 3GPP TS 23.401,
Rel. 8, 2008, �http://www.3gpp.org/
ftp/Specs/html-info/23401.htm�.

[15] 3rd Generation Partnership Project, “Mobile
Radio Interface Layer 3 Specification, Core
Network Protocols, Stage 3,” 3GPP TS 24.008,
2008, �http://www.3gpp.org/ftp/Specs/html-
info/24008.htm�.

[16] 3rd Generation Partnership Project, “Security of
H(e)NB (Release 8),” 3GPP TR 33.820,
�http://www.3gpp.org/ftp/Specs/html-
info/33820.htm�.

[17] 3rd Generation Partnership Project, “3G
Security—Security Architecture,” 3GPP TS
33.102, �http://www.3gpp.org/ftp/Specs/
html-info/33102.htm�.

[18] ARM, “TrustZone Technology
Overview,” �http://www.arm.com/products/esd/
trustzone_home.html�.

Acknowledgements
A great number of people contributed to this

work. We would like to acknowledge help from 

Juan Garay, Mark Kraml, Jim Seymour, Vladimir

Kolesnikov, and Ganesh Sundaram.

*Trademarks
3GPP is a trademark of the European Telecommunications

Standards Institute.
Trustzone is a trademark of ARM Limited.
Virtex-4 and Xilinx are trademarks of Xilinx, Inc.

References
[1] 3rd Generation Partnership Project, “Medium

Access Control (MAC) Protocol Specification,”
3GPP TS 25.321, 2003, �http://www.
3gpp.org/ftp/Specs/html-info/25321.htm�.

[2] 3rd Generation Partnership Project, “Radio
Link Control (RLC) Protocol Specification
(Release 5),” 3GPP TS 25.322, Rel. 5, 2003,
�http://www.3gpp.org/ftp/Specs/html-
info/25322.htm�.

[3] 3rd Generation Partnership Project, “Packet Data
Convergence Protocol (PDCP) Specification,”
3GPP TS 25.323, 2003, �http://www.3gpp.org/
ftp/Specs/html-info/25323.htm�.

[4] 3rd Generation Partnership Project, “Radio
Resource Control (RRC) Protocol Specification,”
3GPP TS 25.331, 2003, �http://www.3gpp.org/
ftp/Specs/html-info/25331.htm�.

[5] 3rd Generation Partnership Project, “SAE/LTE:
On the Termination Point for Security
Associations,” 3GPP TSG SA WG3 Security
Meeting SA3#44, S3-060436, Lucent
Technologies, July 2006, �http://www.
3gpp.org/FTP/tsg_sa/WG3_Security/TSGS3_44_
Tallinn/Docs�.

[6] 3rd Generation Partnership Project, “Collocating
the eNodeB and MME/UPE,” 3GPP TSG SA
WG3 Security Meeting SA3#44, S3-060437,
Lucent Technologies, July 2006, �http://www.
3gpp.org/FTP/tsg_sa/WG3_Security/TSGS3_44_
Tallinn/Docs/�.

[7] 3rd Generation Partnership Project, “HSPA
Evolution Option Security,” 3GPP TSG SA WG3
Meeting #45, S3-060654, Nokia, Lucent
Technologies, T-Mobile, Vodafone, Alcatel, China
Mobile, Telecom Italia, Nov. 2006, �http://www.
3gpp.org/FTP/tsg_sa/WG3_Security/TSGS3_45_
Ashburn/Docs�.

[8] 3rd Generation Partnership Project, “LS on
Security in HSPA Evolution, Release 7,” 3GPP
TSG SA WG3 Security Meeting #45, S3-
060789, Nov. 2006, �http://www.3gpp.org/



242 Bell Labs Technical Journal DOI: 10.1002/bltj

[19] M. Bauer, P. Bosch, N. Khrais, L. G. Samuel,
and P. Schefczik, “The UMTS Base Station
Router,” Bell Labs Tech. J., 11:4 (2007), 93–111.

[20] R. M. Best, “Microprocessor for Executing
Enciphered Programs,” U.S. Patent 4,168,396
(Sept. 18, 1979).

[21] P. Bosch, L. Samuel, S. Mullender, P. Polakos,
and G. Rittenhouse, “Flat Cellular (UMTS)
Networks,” Proc. IEEE Wireless Commun. and
Networking Conf. (WCNC ‘07) (Hong Kong,
Ch., 2007), pp. 3861–3866.

[22] J. Daemen and V. Rijmen, “AES Proposal:
Rijndael—The Rijndael Block Cipher,” National
Institute of Standards and Technology (NIST)
Proposal, Mar. 9, 1999, �http://ftp.csci.csusb.
edu/ykarant/courses/w2005/csci531/papers/
Rijndael.pdf�.

[23] R. W. Hamming, “Error Detecting and Error
Correcting Codes,” Bell Syst. Tech. J., 29:2
(1950), 147–160.

[24] T. Karnik, P. Hazucha, and J. Patel,
“Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes,” IEEE
Trans. Dependable and Secure Comput., 1:2
(2004), 128–143.

[25] S. Kent and R. Atkinson, “IP Encapsulating
Security Payload (ESP),” IETF RFC 2406, Nov.
1998, �http://www.ietf.org/rfc/rfc2406.txt�.

[26] T. Kinsley, “DDR2: The New DRAM Standard,”
Micron Technologies White Paper, 2006,
�http://download.micron.com/pdf/whitepapers/
DDR2_theNewStandard.pdf�.

[27] B. W. Lampson, “Authentication in Distributed
Systems,” Distributed Systems (S. Mullender,
ed.), Addison-Wesley, New York, Wokingham,
Eng., Reading, MA, 1993.

[28] G. Neiger, A. Santoni, F. Leung, D. Rodgers,
and R. Uhlig, “Intel Virtualization Technology:
Hardware Support for Efficient Processor
Virtualization,” Intel Technol. J., 10:3 (2006),
167–177.

[29] B. Preneel, Analysis and Design of
Cryptographic Hash Functions, Ph.D. Thesis,
Katholieke Universiteit Leuven, 1993.

[30] V. Prevelakis and D. Spinellis, “The Athens
Affair,” IEEE Spectrum, 44:7 (2007), 26–33.

[31] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van
Doorn, J. L. Griffin, and S. Berger, “sHype:
Secure Hypervisor Approach to Trusted
Virtualized Systems,” IBM Research, RC23511
(W0502-006), Feb. 2, 2005, �http://domino.

research.ibm.com/library/cyberdig.nsf/index.
html�.

[32] G. E. Suh, AEGIS: A Single-Chip Secure
Processor, Ph.D. Thesis, Massachusetts Institute
of Technology (MIT), Sept. 2005.

[33] United States, Department of Defense,
“Department of Defense Trusted Computer
System Evaluation Criteria,” DoD 5200.28-STD,
Dec. 1985, �http://nsi.org/ Library/Compsec/
orangebo.txt�.

(Manuscript approved October 2008)

PETER BOSCH is a department head for the Services
Infrastructure group at Bell Labs Antwerp,
in Belgium. Prior to joining the Services
Infrastructure group, he was a member of
technical staff in the Bell Labs End to End
Wireless Networking Research department

in Murray Hill, New Jersey. After receiving his Ph.D. in
computer science from the University of Twente in The
Netherlands, he joined the Plan 9® operating system
group at Bell Labs and later shifted his research focus
to wireless systems research. He has worked on the
initial prototypes for the BSR, co-developed the high-
speed downlink packet access (HSDPA) demonstrator,
integrated an enhanced mobility procedure for the
BSR, and is now involved in resolving SAE/LTE BSR
issues. His approach to building a well-integrated
cellular system encompasses an end-to-end view of the
distributed system—from radio frequency (RF) channels
to IP-based applications—rather than partitioning the
decision and development processes, which can lead to
complicated systems that do not work well.

ALEC BRUSILOVSKY is a member of technical staff in
the Secure Communications group of the
Alcatel-Lucent Wireless Standards
Development department in Naperville,
Illinois. He is a lead delegate to the 3GPP
SA3 (Security), with primary responsibilities

in the security aspects of EPS and its interworking with
HRPD as well as WiMAX. He has B.S. and M.S. degrees
from the Telecommunications and Informatics
University in Moscow, Russia. Prior to joining Alcatel-
Lucent, Mr. Brusilovsky developed engineering and
propagation design tools for US Cellular Corporation.
He has also served as past chair of the IETF Working
Group (IETF SPIRITS WG).



DOI: 10.1002/bltj Bell Labs Technical Journal 243

RAE MCLELLAN is a distinguished member of technical
staff in the Bell Labs End to End Wireless
Networking Research department in Murray
Hill, New Jersey. He is an expert in computer
architecture and VLSI systems. He created
NuBus, the IEEE-1196 32-bit system bus

standard used in the Apple Macintosh II; and
architected and implemented Crisp, a 32-bit CMOS
microprocessor, and a supporting system chipset for
pen-based mobile computing. Recently, he created an
integrated ASIC control system for a MEMS-based
spatial light modulator. He also has designed
telecommunication systems ranging from residential
gateways in access networks to terabit optical routers.
Mr. McLellan received his B.S. in electrical engineering,
and M.S. in computer science, both from the
Massachusetts Institute of Technology (MIT) in
Cambridge. He has published 20 technical papers and
holds eight U.S. patents.

SAPE MULLENDER is director of the Network Systems
Lab at Bell Labs Antwerp, in Belgium. He
has worked extensively in operating
systems, multimedia systems, and, in recent
years, wireless systems research. He was a
principal designer of the Amoeba

distributed system; he led the European Union’s
Pegasus project, which resulted in the design of the
Nemesis multimedia operating system; and he made
valuable contributions to work on the Plan 9® and
Inferno® operating systems. He received a Ph.D. from
the Vrije Universiteit in Amsterdam, The Netherlands,
where he also was formerly a faculty member. He
currently holds a chair part time in the Computer
Science Department at the University of Twente. Dr.
Mullender has published papers on file systems, high-
performance remote procedure call (RPC) protocols,
migratable object location in computer networks, and
protection mechanisms, and he was involved in the
organization of a series of advanced courses on
distributed systems.

PAUL POLAKOS is director of the Bell Labs End to End
Wireless Networking Research department
in Murray Hill, New Jersey. His focus at Bell
Labs is physics and wireless research. He has
been instrumental in the definition and
development of key technology initiatives

for digital wireless systems, including intelligent
antennas (IA) and multiple input-multiple output
(MIMO) Bell Labs Layered Space-Time (BLAST),
advanced base station and radio access network
architectures, radio signal processing, enhancements to
wireless networks for high data rates and high capacity,
and dynamic network optimization. He holds B.S., 
M.S., and Ph.D. degrees in physics from Rensselear
Polytechnic Institute in Troy, New York, and the
University of Arizona in Tucson. Prior to joining Alcatel-
Lucent, he was actively involved in elementary particle
physics research at the U.S. Department of Energy’s
Fermilab and at the European Organization for Nuclear
Research (CERN) and was on the staff of the Max-
Planck Institute for Physics and Astrophysics in Munich.
He is author or coauthor of more than 50 publications
and holds numerous patents. ◆




