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 ◆ Towards the Optimization of a Parallel Streaming 
Engine for Telco Applications
Bart Theeten, Ivan Bedini, Peter Cogan, Alessandra Sala, and 
Tommaso Cucinotta

Parallel and distributed computing is becoming essential to process in real 
time the increasingly massive volume of data collected by telecommunications 
companies. Existing computational paradigms such as MapReduce (and its 
popular open-source implementation Hadoop) provide a scalable, fault 
tolerant mechanism for large scale batch computations. However, many 
applications in the telco ecosystem require a real time, incremental streaming 
approach to process data in real time and enable proactive care. Storm is a 
scalable, fault tolerant framework for the analysis of real time streaming 
data. In this paper we provide a motivation for the use of real time streaming 
analytics in the telco ecosystem. We perform an experimental investigation 
into the performance of Storm, focusing in particular on the impact of 
parameter confi guration. This investigation reveals that optimal parameter 
choice is highly non-trivial and we use this as motivation to create a 
parameter confi guration engine. As fi rst steps towards the creation of this 
engine we provide a deep analysis of the inner workings of Storm and 
provide a set of models describing data fl ow cost, central processing unit 
(CPU) cost, and system management cost. © 2014 Alcatel-Lucent.

of functions for user implementation. However, the 

batch processing nature of MapReduce, which 

requires that the full dataset is available at the start of 

the analysis, may make it unsuitable for certain appli-

cations within the telco ecosystem. For instance if a 

backend server is producing a continuous stream of 

log data, these logs may contain early indications 

of network issues which the telecom providers must 

address as quickly as possible to ensure quality of ser-

vice to subscribers. Under the MapReduce paradigm, 

data would be aggregated over some time period τ, 

and provided to MapReduce for batch analysis. The 

Introduction
Telecom companies are increasingly seeing the 

need for big data platforms to handle the vast quan-

tity of data generated within their networks. Such 

data includes performance logs, call data records, cus-

tomer experience data, and fault reports. MapReduce 

has become a popular approach, both in industry and 

academia, for the batch analysis of large quantities of 

data and is a strong candidate for many telecom ana-

lytic applications. This is due to its scalability, fault 

tolerance, and relatively simple distributed program-

ming paradigm which require only a small number 
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computational cluster upon which the analysis is 

performed should be scaled such that the time, T, 

taken to complete the analysis should be smaller 

than τ, such that the analysis is complete before the 

next data aggregation arrives. As a result, all results 

will be at least T old and at most (T + τ) old.

Streaming analysis is seen as an emerging alter-

native to the batch computation approach used by 

MapReduce. Under this paradigm, data are consid-

ered as streams of tuples which are transformed and 

merged from different sources to create a fi nal stream 

of analyzed results. In this scenario, the age of the 

analyzed results is just given by the system traversal 

time (i.e., latency L), as long as the computational 

cluster is horizontally scaled such that the through-

put rate is greater than the data arrival rate. Note 

that we would expect L << T.

The most important consideration when deter-

mining whether it is appropriate to use a batch or 

streaming analysis is the specifi c algorithm that must 

be deployed. For example, an algorithm such as 

PageRank* requires multiple passes over the data 

which in turn requires that the entire dataset can be 

stored and is available. In such a case, a batch analy-

sis is appropriate. In contrast, if data requires single 

pass analysis (such as in some clustering techniques 

[3]), and/or the data cannot be stored for multiple 

passes, then streaming analysis is the most appropri-

ate choice. Furthermore, a streaming analysis can 

take advantage of incremental algorithms for updat-

ing results in real time for computations such as the 

mean, maximum, or minimum of some parameter. 

This approach facilitates live business intelligence 

applications, which is extremely useful in the tele-

com ecosystem. We provide more detailed examples 

in the “Use Cases” section below.

Hadoop* and Storm*, respectively, are open 

source implementations of MapReduce and streaming 

analytics. Both of these frameworks provide horizon-

tally scalable, fault tolerant platforms for distributed 

computation. Hadoop has enjoyed considerable suc-

cess as a mainstream distributed analytics platform, 

with many applications deployed in industrial produc-

tion systems. Storm is a relatively new framework for 

distributed computation of real time streaming data.

In this paper we present motivations and use 

cases for streaming analytics within the telecom eco-

system. We perform a series of investigative experi-

ments to better understand the impact of parameter 

confi guration upon Storm performance. In fi nding 

that the performance is highly dependent on this 

parameter tuning, and that a priori selection of opti-

mal parameters is non-trivial, we embark upon an 

effort to create an automatic engine for the selection 

of optimal parameters. We present the fi rst steps 

toward creating this engine by providing a deep 

description of the inner workings of Storm and by 

providing models which describe the data fl ow cost, 

central processing unit (CPU) cost, and system man-

agement costs. 

Use Cases
While data is growing at a speed never before 

seen, today’s consumers are increasingly demanding 

not only “always-on” connectivity and access, but 

better service quality and overall experience. Thus, 

operators look to real time analytics as an important 

enabler to speed-up the creation, delivery, and mon-

etization of service bundles and to provide a unique 

network experience for their customers. In this con-

text, the creation of new responsive and dynamic 

scalable solutions for data analytics is becoming 

essential.

Panel 1. Abbreviations, Acronyms, and Terms

3GPP—3rd Generation Partnership Project
BW—Bandwidth
CDR—Call data record
CPU—Central processing unit
HDFS—Hadoop Distributed File System
JVM—Java virtual machine
M3—Main-Memory MapReduce
MMS—Multimedia messaging service
OAM—Operations, administration, and 

maintenance
PM—Performance management
SMS—Short message service
SPADE—Stream Processing Application 

Declarative Engine
XML—Extensible Markup Language
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In this section we describe two broad use cases 

we have considered to build concrete scenarios for 

the real time big data analysis relevant to telecom-

munication companies. These include real time 

monitoring for smallcell performance management, 

and call data record analysis, where the prospect of 

capturing data in real time in concert with horizontal 

scalability are essential for proactive network man-

agement and traffi c monitoring. 

Smallcell Performance Management
Smallcells [5] were designed for use in a home, 

in a small business, or for boosting the network sig-

nal in busy metropolitan areas to improve localized 

cellular service and offl oad bandwidth usage from 

macrocells (i.e., traditional cell towers). During oper-

ation, smallcells (as well as most other network ele-

ments) produce many low-level performance metrics 

(e.g., number of successful handovers or number of 

call initiation attempts) across a range of perfor-

mance categories (e.g., packet data performance or 

handover performance). In most currently deployed 

architectures, this set of data is periodically captured 

and stored as Extensible Markup Language (XML) 

following the 3rd Generation Partnership Project 

(3GPP) specifi cation, either temporarily on the small-

cell or in a network management application. This 

data is usually batch-analyzed to monitor network 

performance characteristics, prediction of peak loads, 

and prediction of service interruptions.

As smallcells are deployed in rapidly increasing 

numbers, from 2.5 million in 2012 to a predicted 59 

million in 2015 (an increase of 2500 percent) with 

further increases projected for the years following, 

the management of large amounts of operational 

data generated by the smallcells, and an appropriate 

rapid response to analytic results, is becoming a key 

challenge. This data increase represents growth from 

50 GB/day to 12 TB/day. These responses are impor-

tant to assure the stability of the smallcell network, 

and they offer promising opportunities for dynamic 

confi guration management of the network. Current 

architectures and infrastructures based on relational 

databases do not effectively scale to the large amounts 

of data being generated, while emerging big data 

technologies provide the potential to both support 

this large amount of data and facilitate insightful net-

work analytics in near real time.

In our research work we envisage the design and 

realization of a cost-effective cloud architecture able 

to support these new real time analytic require-

ments. In the context of smallcells, this will not be to 

increase the processing capacity of small cells them-

selves, but to centralize the processing of perfor-

mance management data from the entire network in 

real time.

CDR Management
Telecom exchanges produce call data records 

(CDRs) when subscribers make calls, send short mes-

sage service/multimedia messaging service (SMS/

MMS) messages, and take other actions on the net-

work. These records contain the date and time of the 

call, the ID of the subscriber, ID of the call recipient, 

ID of the cell tower to which the handset is con-

nected, as well as account information. This data is 

used by the telecom provider for a variety of pur-

poses such as billing and diagnostics. The data can 

also be used to create advanced business intelligence 

services such as targeted advertisements [4], to better 

understand user behavior [17], to predict customers’ 

inclination to churn [18, 22], or to recommend new 

services [20]. However, as the number of subscribers 

continues to increase, and the frequency with which 

CDRs are generated increases, analysis of these 

records becomes burdensome. Indeed, a batch analy-

sis of this data for aggregations greater than two 

weeks apart is often impractical due to the sheer data 

size (typically several TB/day). As a result, a stream-

ing analysis which is horizontally scalable and fault 

tolerant, such as that discussed in this paper, becomes 

necessary. In [10] the authors use a custom stream-

ing analytics infrastructure to analyze CDRs at a rate 

of approximately 6 billion CDRs/day (depending on 

data size, this corresponds to approximately 5 TB/

day). Rather, we seek to leverage the open source 

Storm framework for real time streaming analytics.

Streaming analytics naturally lends itself to 

incremental computation, rather than iterative 

computation.
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For example, in the case of standard classifi ca-

tion algorithms, streaming analytics may not be ideal 

for the model training phase, where multiple itera-

tions on the data are typically required to achieve 

convergence. However, once the model has been 

created, streaming analytics are ideal for applying the 

model to new data. Similarly, in the case of cluster-

ing, once cluster centers have been established, 

streaming analytics is ideal for clustering of new data 

into existing centers. For example, suppose an opera-

tor has an existing model for the segmentation of 

users into large and small wallet size. Using stream-

ing analytics, the operator could identify the wallet 

size of new subscribers in real time as they start to 

use the network. With this approach, the operator 

could rapidly create services targeted to the new 

subscriber.

The Storm Framework
This section briefl y describes the Storm frame-

work. For a more detailed description, the reader is 

directed to [21]. Storm is a scalable, fault tolerant 

framework which facilitates the processing of stream-

ing data. The programming model involves the cre-

ation of a topology which represents the algorithm to 

be implemented. A topology consists of spouts and 

bolts. Spouts create one or more streams of tuples 

which are injected into the topology, while bolts 

receive one or more streams of tuples and can option-

ally output one or more streams of tuples (to other 

bolts). The topology can be modeled as a directed acy-

clic graph, where nodes correspond to spouts, and 

bolts and edges represent tuple streams between them. 

Parallelization is achieved by setting the number of 

instantiations of each spout and bolt. Typically, a spout 

or bolt instance is implemented as a Java* thread. 

Once started, a Storm topology runs continuously on 

incoming data until it is killed. This is demonstrative of 

how it is set apart from batch systems such as 

MapReduce which run on a fi xed set of data and then 

fi nish. The Storm framework provides mechanisms for 

automatically distributing processes across the cluster, 

for directing streams and ensuring fault tolerance.

The utility of big data engines, in an industrial 

context, is measured not only by fl exibility, but also 

on properties such as fault tolerance, load balancing, 

and system overhead. Storm is a novel computa-

tional engine for processing large scale streams of 

data. In order to understand the behavior of the 

Storm framework, we conducted an extensive exper-

imental investigation by running Storm in multiple 

confi gurations.

Experimental Investigation of Storm Behavior
This section provides a detailed experimental 

investigation of the performance characteristics of the 

Storm system using real industrial datasets. We aim to 

understand the impact of parameter selection upon 

the performance of Storm. Furthermore, our investi-

gation sought to determine just how straightforward 

it is to confi gure Storm for optimal performance, and 

to shed light on the precautions required in order to 

run the system under optimal confi gurations.

Dataset and Environment Setup
The experiments have been run with a real telco 

dataset consisting of operations, administration, and 

maintenance (OAM) performance management 

(PM) observations of a large femtocell (a specifi c 

smallcell) network. The considered dataset is com-

posed of hourly PM logs collected over 15 days for a 

network of 70K femtocells, totaling approximately 

22 million XML fi les. The scenario of the experi-

ments is such that the system replays the PM data as 

arriving in a streaming fashion with different arrival 

rates. This simulation is absolutely coherent and does 

not provide any signifi cant change to the data values 

themselves, but allows a good simulation of a real 

time architecture. These fi les contain a list of 128 

key-value pairs of operational and statistical counters 

with a mixture of integer and fl oating-point values. 

The experiments presented in this paper deploy a 

simple topology composed of two components (one 

spout and one bolt) whose task it is to identify those 

femtocells which require the highest bandwidth. The 

spout reads input messages from an external queue 

(this corresponds to the XML data) and produces a 

stream of tuples. The bolt receives the stream of 

tuples with a shuffl e grouping and emits any changes 

in the highest-bandwidth-consuming femtocells.
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For cluster confi guration, each test was run on a 

cluster comprising fi ve nodes of identical confi gura-

tion. Additional machines were used to generate 

load into this cluster and to host the external mes-

sage queue(s). Each machine is a dual four-core Intel 

Xeon* 3 GHz 32 bit 16 GB memory, 1 Gb/s network 

interface. Nodes are interconnected through an 

Alcatel-Lucent 10Gb OmniSwitchTM 6850 Ethernet 

switch. Each node runs Linux* version 2.6.32-

220.4.1.el6.i686. The following software compo-

nents were used: Java 1.6 OpenJDK Runtime 

Environment (IcedTea6 1.10.4), ZeroMQ* 2.1.7, 

ZooKeeper 3.4.2, and Kestrel 2.3.4 and Storm 0.8.2. 

Experiment Confi gurations
A comprehensive test automation suite was devel-

oped which is composed of various shell scripts and 

Java programs to automatically execute the Storm 

topologies and collect runtime statistics on system per-

formance. Storm confi gurations were tested while 

varying the number of nodes, spouts, bolts, and work-

ers. Each specifi c confi guration was tested 10 times in 

order to accumulate statistical information. Careful 

consideration was taken to ensure that each confi gura-

tion was tested under the same operational conditions.

Each individual test case is executed on a clean 

cluster, meaning that all processes from a previous 

run were killed on all cluster nodes before starting 

the new ones. In addition, all data generated by the 

previous run is erased from the fi le system. Each test 

consists of an initial warm-up phase of one minute 

(in which we do not collect statistics because the sys-

tem may not yet be in its computational steady state) 

followed by a fi ve minute measuring phase during 

which statistics are being gathered, including:

1. Throughput (μ) which represents the total num-

ber of events processed per second.

2. Latency (L) which represents time to process a 

tuple both within a single bolt process and within 

the entire system.

3. External and internal queue sizes and their 

growth rate.

4. Network bandwidth in terms of the number of 

messages exchanged among workers on differ-

ent nodes.

5. Various statistics on system management over-

head (e.g., communication with ZooKeeper).

6. Approximate memory usage and CPU usage per 

thread. Each test is run with a different Storm 

confi guration which is determined by the fol-

lowing parameters: 
• Parallelization factor. Represents the number of 

tasks, from {1, 2, 4, 8, 16, 24, 32}, instantiated 

per spout or a bolt.

• Cluster size. Represents the number of nodes 

participating in the Storm cluster, i.e., from 

one to fi ve.

• Worker pool size. Represents the number of 

workers (JVMs) per node, which host the 

tasks. In our experiment this number is 

selected from {1, 2, 4, 8, 16, 24, 32}.

• Event injection rate. Represents the number of 

events injected per second into the queue, 

which provides data to the spouts. In our 

experiments the event injection rate varies 

among three different rates, 5K, 10K, and 

50K tuples per second, to observe how Storm 

adjusts to different conditions.

Experimental Analysis
In order to optimize system performance while 

running Storm jobs, there are several variables and 

parameters which need manual confi guration. 

Confi guration is thus a complex task that requires a 

precise knowledge of the most relevant parameters 

and how they impact system performance. In partic-

ular, we focus on the following metrics: the through-

put (μ), the latency (L), and the system resource 

utilization (CPU, memory, network bandwidth). In 

the following subsections we present a set of experi-

ments that aim to shed light on how the choice of 

confi guration parameter impacts these metrics.

Parallelization performance. The experiments pre-

sented in this section comprise observations of the 

impact on latency and throughput produced by dif-

ferent confi gurations in terms of parallelization.

A confi guration is expressed as the specifi cation 

of the system parameters, i.e., number of nodes, 

spouts, bolts, and workers (hereafter simply < n, s, b, 

w >). For brevity, we only report experiments run 
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on a single node cluster with an external queue fed 

with 50K messages per second. However, the same 

experiments performed on cluster sizes of up to fi ve 

nodes show similar results, with only a few small 

deviations attributed to the increased system man-

agement costs to run more nodes.

• Spout parallelization. Spouts inject tuples into the 

topology. Increasing the amount of spouts is 

therefore expected to increase the throughput, 

as long as the bolts are able to keep up with the 

higher infl ux of tuples. At the point where bolts 

are no longer able to keep up (i.e., fully loaded), 

it is expected that the throughput will actually 

decrease because of the additional queue buildup 

in the system and the larger share of processing 

power claimed by the many spout instances ver-

sus the fi xed amount of bolt instances.

 In order to study the impact of the number of 

spouts on the overall system performance, we 

fi xed all other parameters at 1 while varying the 

number of spouts at {1, 2, 4, 8, 16, 24, 32}. 

Figure 1 illustrates the effect of spout and bolt 

parallelization on the throughput and latency. 

Specifi cally, Figure 1a illustrates the effect upon 

throughput (in terms of tuples per second) and 

Figure 1b the effect upon latency (in terms of 

milliseconds to process a tuple) as the number 

of spouts is increased. The system throughput 

can be increased by increasing the number of 

spouts, however, as the number of spouts con-

tinues to increase beyond some threshold, the 

throughput declines. This can be understood by 

observing the latency, which exhibits exponen-

tial growth. Beyond some threshold (determined 

by the system hardware), the system is over-

stressed with many processes and the context-

switching among them impairs the system 

performance.

• Bolt parallelization. Bolts process tuples emitted 

by spouts. Increasing the amount of bolts is 

therefore expected to lower the latency as the 

increased processing capabilities reduce the chance 

of queue buildup within the system. In other 

words, tuples have a higher chance of being pro-

cessed without delay by the available bolts.

 In order to study the impact of the number of 

bolts on the overall system performance, we fi x 

all other parameters at 1 while varying the num-

ber of bolts at {1, 2, 4, 8, 16, 24, 32}. Again, 

Figure 1a illustrates the effect upon throughput 

(in terms of tuples per second) and Figure 1b the 

effect upon the latency (in terms of milliseconds 

to process a tuple) as the number of bolts is 

increased. An increase in bolt parallelization 

reduces throughput due to the extra CPU load 

associated with scheduling. However, a reduc-

tion in latency towards a lower limit is also 

observed when the number of bolts is within the 

{8,  24} range. This limit represents the fastest 

possible bolt execution time, which is the cost of 

the system from the emission of the tuple by the 

spout up to the completion of the algorithm 

implemented by bolt B.

Power consumption. This section quantifi es how 

system confi guration impacts CPU usage (and hence 

power consumption). With this experiment we dem-

onstrate that CPU usage is not linearly dependent 

upon performance. For example, in Figure 2, we 

observe that the throughput for the confi guration 

< 1, 16, 1, 1 > is equivalent to the throughput for 

confi guration < 1, 8, 8, 16 >, yet the CPU usage is 

almost doubled. This observation demonstrates the 

complexity and subtleties involved in effi cient system 

confi guration.

Horizontal scalability confi guration. One of the 

benefi ts of a distributed system is its capacity to 

increase the number of parallel threads of execution 

and reliably distribute them over the cluster nodes so 

as to improve processing effi ciency in time and capac-

ity. However as shown above, tuning a confi guration 

is a complex manual task that can involve several 

tests before the optimal confi guration can be identi-

fi ed. While we have shown that it is rather complex 

to effi ciently confi gure a cluster with a single node, 

setting up a (possibly heterogeneous) dynamic cluster 

with a large number of nodes can become an even 

more diffi cult operation. With Storm, the number of 

parallel threads of execution can be adjusted by tun-

ing the number of spouts and bolts. As more nodes 

are added, the number of spouts can be safely 
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increased to some limit (i.e., before latency becomes a 

limiting factor as demonstrated previously). The num-

ber of bolts can be selected as a ratio of the number of 

spouts, for example with 100 spouts and a ratio of

0.2, we create 20 bolts. Figure 3 shows the result of 

a series of experiments where we created topologies 

on clusters of multiple sizes with an increasing num-

ber of spouts. We tested the throughput on these 

topologies where the ratio of the number of bolts to 

number of spouts is adjusted. Figure 3 demonstrates 

that the optimum ratio is independent of the cluster 

size and number of spouts, however we have not 

tested whether it is independent of the specifi c topol-

ogy. Nevertheless, this represents an important step 

in determining a method for optimally confi guring 

large Storm clusters based on experiments using a 

smaller test cluster.

Parameter Confi guration Engine: First Steps
In the previous section we demonstrated how 

the choice of confi guration parameters profoundly 

impacts the performance of Storm. However, it is 

almost impossible to determine a priori which con-

fi guration parameters are best. Our experiments 

have demonstrated that the confi guration of differ-

ent parameters impacts throughput and latency in 

different ways. To better understand this, we create 

insightful cost models [8] which better describe the 

interplay between these factors and how they impact 

data fl ow, data processing, and system management. 

Figure 1.
Measuring latency and throughput on the different system confi gurations.

(a) Effect of spout and bolt parallelization on the throughput

(b) Effect of spout and bolt parallelization on the latency 

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16 24 32

Number of spout/bolt replicas

1

10

100

1000

1 2 4 8 16 24 32
Number of spout/bolt replicas

La
te

n
cy

 (
m

se
c)

Th
ro

u
g

h
p

u
t 

 (
tu

p
le

/s
)

Spout parallelization Bolt parallelization



188   Bell Labs Technical Journal   DOI: 10.1002/bltj

Our long term goal is to create a confi guration engine 

based on these models which will enable optimal 

running of Storm. This will be achieved based on a 

search of the parameter space, and the insights pro-

vided by the cost models. In this paper, we present 

the fi rst steps to creating this engine by providing a 

deep description of Storm’s inner workings via these 

cost models.

Data Flow Cost Model
This section presents the data fl ow cost model 

used to characterize the size (in bytes) of data fl ow-

ing through an active Storm topology and the cost 

(in seconds) of transferring data between the process-

ing components (i.e., spouts and bolts). In the Storm 

framework, data are assumed to be made available 

by an external source (e.g., message queue or fi le 

Figure 2.
Comparing throughput and latency with CPU usage percentage.
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system) and read by a spout. The spout then trans-

forms the data from its raw format into tuples, i.e., 

the internal scheme. These tuples are then emitted 

into the Storm cluster according to a chosen parti-

tioning algorithm (i.e., stream grouping). This way, 

tuples are sent through the computational compo-

nents, i.e., the bolts. While tuples fl ow through the 

Storm topology, they may get merged, split, and 

transformed several times.

Data size. We compute the data size that fl ows in 

a Storm topology as the amount of data that enters 

the system in the form of tuples which are injected 

into the Storm cluster by the various spouts plus the 

tuples which are generated and emitted by the vari-

ous processing bolts and are consumed by other pro-

cessing bolts.

• Input-output data size. Considering that a spout 

can generate input tuples of different types, the 

data size of an input spout per time unit can be 

computed as the sum of all tuples arriving per 

time unit, multiplied by their respective byte size 

(according to the specifi c tuple type). Similar to 

the input data size for the spout, we can compute 

the corresponding output data size of the bolts. 

Each processing bolt in a topology consumes at 

least one stream of tuples and possibly generates 

and emits one or more new streams of tuples. 

Therefore, the number of output tuples in a pro-

cessing bolt is a function of the number of 

received tuples and their types per time unit.

• Topology data fl ow size. Finally, the total data fl ow 

size for a generic Storm topology can then be 

Figure 3.
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expressed as the total data input size injected by 

all spouts into the topology added to the total 

data output size emitted by all the processing 

bolts in the topology. Therefore, we can formal-

ize the total data fl ow as follows: 

   Flow.Size[bytes] =

where S is the set of spouts and B refers to the set of 

bolts which are instantiated in the executed topology.

Data transfer cost. The data transfer cost is the 

cost (in seconds) of actually delivering the tuple to a 

destination task (i.e., bolt instance). A distinction 

must be made between various allocations of com-

municating spouts and bolts across the cluster 

because running tasks remotely versus locally pro-

duces substantially different communication costs in 

terms of bandwidth consumption and communica-

tion time, i.e., latency. Therefore, we distinguish 

between three categories of data transfer cost: within 

the same Java virtual machine (JVM), within the 

same node but in different JVMs, and across different 

cluster nodes. In the case where the tuples are passed 

between spout-bolt or bolt-bolt in the same JVM, the 

tuples are immediately placed into the consuming 

bolt’s receive queue without any manipulation of 

their data format. In contrast, when tuples are 

exchanged between different JVMs in the same clus-

ter node, a serialization/deserialization cost is added 

to send the tuple from one JVM to another. Finally, 

when communicating spout-bolts or bolt-bolts are 

allocated on different JVMs hosted on different clus-

ter nodes, the added costs are generated both from 

the serialization/deserialization step and from net-

work transfer cost.

Data Processing Cost Model
The data processing cost model highlights the 

execution time computed as the composition of 

the spout and the bolt processing costs (both in units 

of seconds). Specifi cally, the spout processing cost 

represents the cost of reading a raw event from an 

unspecifi ed source and injecting a Storm tuple into 

the topology. The bolt processing cost, on the other 

hand, represents the cost of processing a tuple in a 

bolt and possibly emitting new tuples into the 

topology for further processing. Note that the bolt 

processing cost is fundamentally affected by the com-

putational complexity of the algorithmic intelligence 

implemented in the bolt logic.

• Spout CPU processing cost. The CPU processing cost 

of a spout (S) is a function of the tuple emit rate, 

where consideration must be made for possibly 

having multiple concurrent tuple types (t), each 

accounting for slightly different processing costs. 

Specifi cally, there is a CPU cost to read a raw 

input tuple of type t and a CPU cost of transform-

ing a raw input tuple of type t into a Storm tuple 

of type t. Finally, there is the cost of partitioning 

the input tuples of type t which varies according 

to the stream grouping algorithm (shuffl e, fi elds, 

all, global). There is also a serialization cost if the 

bolt is hosted on a different JVM.

• Bolt CPU processing cost. There are two sequential 

phases tuples go through while being processed 

by a bolt: a transform phase that accounts for 

tuple transformation steps, like serialization/

deserialization, and a more general execute 

phase in which the actual bolt’s processing logic 

is performed. Therefore the processing cost of a 

bolt is a function of the number of tuples (of type 

t) received by the bolt per time unit, plus the cost 

to generate (if any) new tuples (of type t’) in 

response to receiving input tuples (of type t). It is 

clear that the major cost for processing a bolt will 

be determined by the algorithmic intelligence 

implemented in the bolt.

• Topology CPU costs. The total processing cost on 

the entire Storm topology is represented as the 

sum of the total CPU processing cost for all of its 

spouts and bolts. Therefore, the topology cost, 

i.e., T:CPUCost, for a Storm topology is defi ned as:

     T.CPUCost[seconds] = 

where S and B represent the sets of spouts and bolts 

in the topology.

System Management Cost Model
The system management cost models the impact 

of the set of tasks, abstracted away from the user, 

which are required to run a Storm cluster. These 

 ∑ 
i=1

  
|S|

  Spout.Costi +   ∑ 
j=1

  
|B|

  Bolt.Costj  

 ∑ 
i=1

  
|S|

   Injected.Sizei +   ∑ 
j=1

  
|B|

   Emitted.Sizej  
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tasks include provision of support for node failure/

addition/removal, JVM failures, and network issues. 

Storm’s system management tasks are coordinated 

through ZooKeeper and are mainly related to the 

interaction between ZooKeeper and Nimbus, super-

visor and worker, as shown in Figure 4.

There are fi ve recurring system management 

tasks that interact with ZooKeeper:

1. Synchronize topology. Nimbus checks the active 

assignments and compares them to the required 

assignments according to the topology specifi ca-

tion. If a difference is detected, e.g., because of 

node failure, Nimbus will reassign the unas-

signed tasks over the available worker processes 

in the cluster.

2. Synchronize supervisors. Each supervisor reads its 

assignments from ZooKeeper and reassigns them 

if it detects a difference between what it has cur-

rently assigned across its workers. Reassignment 

takes the form of updates to ZooKeeper’s assign-

ments for the workers to query during their next 

poll cycle.

3. Synchronize workers. Each worker reads its assign-

ments from ZooKeeper. If there is a mismatch, 

the missing connections are established. In addi-

tion to this, each worker also checks the active 

Storm topologies. If the Storm topology for 

which it is running tasks is no longer active 

(because it was explicitly killed), the worker 

would need to stop processing.

4. Supervisor heartbeat. Each supervisor will send a 

heartbeat to ZooKeeper. A heartbeat takes the 

form of storing some run-time information about 

the supervisor in ZooKeeper.

5. Worker heartbeats. Similarly, each worker sends a 

heartbeat to ZooKeeper. A worker heartbeat 

includes statistical information describing each 

task running in that worker.

Figure 4.
ZooKeeper interactions.

Worker
Supervisor

Nimbus

ZooKeeper

1. Synchronize topology
    (check current assignments
    and reassign if necessary)

2. Synchronize supervisors
    (read assignments and reassign
     if necessary)

3. Synchronize worker
    (check active storms, check
    assignments and connections +
    reestablish if necessary)

4. Supervisor heartbeat
    (update run-time information
    about supervisor)

5. Worker heartbeat
    (update run-time information
    about each executor/task)



192   Bell Labs Technical Journal   DOI: 10.1002/bltj

In principle, the system management cost has 

two components: a component that refl ects the load 

on ZooKeeper, expressed in the number of requests 

per time unit and a network load component which 

represents the network bandwidth consumption.

From the experimental evaluation reported in 

Figure 5, we can summarize that ZooKeeper traffi c 

bandwidth increases proportionally with the number 

of tasks and nodes running in the cluster. In the fi g-

ure we plot the measured bandwidth (in KB/s) 

attributed to ZooKeeper communication as a func-

tion of the number of tasks running in the cluster, for 

various cluster sizes. Note also that ZooKeeper com-

munication is independent of the specifi c algorithms 

implemented in spouts or bolts and independent of 

the event input rate. Overall, the system manage-

ment cost (in seconds) represented less than 10 per-

cent of the cost of running our experimental Storm 

topology.

Building the Parameter Confi guration Engine
In the fi rst half of this paper we demonstrated that 

optimal confi guration of Storm is non-trivial. 

Increasing parallelization profoundly impacts through-

put and latency in a manner which is diffi cult to deter-

mine a priori. As a fi rst step to building a confi guration 

engine for Storm, we provided insightful models into 

the fundamental data fl ow, data processing, and sys-

tem managements costs which impact throughput 

and latency. Our plan is to develop an engine to 

Figure 5.
System management traffi c as a function of the number of components.
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leverage these models which, along with real time 

input from a running Storm system, will select a set 

of confi guration parameters to deliver optimal 

performance.

Related Work
The growing demand for large-scale data pro-

cessing and data analysis applications has spurred the 

development of novel solutions from both industry 

(e.g., web data analysis, click-stream analysis, net-

work-monitoring log analysis) and the sciences (e.g., 

analysis of data produced by massive scale simula-

tions, sensor deployments, and high-throughput lab 

equipment). MapReduce [12] is a framework which 

was introduced by Google for programming com-

modity computer clusters to perform large-scale data 

processing. The framework is designed such that a 

MapReduce cluster can scale to thousands of nodes 

in a fault-tolerant manner. However, the basic archi-

tecture of the MapReduce framework requires that 

the entire output of each respective map and reduce 

task be materialized into a local fi le and Hadoop 

Distributed File System (HDFS), before it can be con-

sumed by the next stage. Therefore, it is not adequate 

for supporting real time processing of streaming data.

Several approaches have been proposed to tackle 

this challenge. For example, the MapReduce online 

approach [11] has been proposed as a modifi ed 

architecture of the MapReduce framework in which 

intermediate data is pipelined between operators 

while preserving the programming interfaces and 

fault tolerance models of previous MapReduce frame-

works. The Incoop system [9] has been introduced as 

a MapReduce implementation that has been adapted 

for incremental computations which detect changes 

to input datasets and enable the automatic update of 

the outputs of the MapReduce jobs by employing a 

fi ne-grained result reuse mechanism. In particular, 

this allows MapReduce programs which have not 

been designed for incremental processing to be exe-

cuted transparently in an incremental manner. The 

Main-Memory MapReduce (M3) system [6] has been 

proposed to support the answer of continuous que-

ries over streams of data bypassing the HDFS so 

data is processed only through a main-memory-only 

data path and totally avoids disk access. In this 

approach, mappers and reducers never terminate 

where there is only one MapReduce job per query 

operator that is continuously executing.

While the above approaches are bringing 

MapReduce closer to a stream processing system and 

have the added benefi t of requiring only a single 

programming model to support both batch and 

streaming use cases, event stream processing sys-

tems have been designed from the ground up to sup-

port streaming use cases; they are not hampered by 

limitations or design decisions that were made in 

light of a totally different context. Moreover, the 

MapReduce paradigm seems to be counterintuitive 

to implementing sizeable topologies of processing 

nodes to handle complex analytical algorithms on 

streaming data. While MapReduce solves complex 

calculations through pipelining multiple map and 

reduce stages in a fl ow, an event stream processing 

system starts from a single input operator (which 

could be compared to a map stage), followed by a 

sequence of processing steps. At each step, a range of 

partitioning algorithms can be chosen to distribute 

output events over the available instances of the 

next processing step in the fl ow, allowing for a more 

natural design.

Several distributed stream processing systems 

have been presented in the literature. They include 

Aurora [2], Borealis [1], the Stream Processing 

Application Declarative Engine (SPADE) [13], 

Stormy [19] and Apache S4 [7]. For example, in 

Borealis, the collection of continuously running que-

ries is treated as one giant network of operators. The 

processing of these operators is distributed to multi-

ple sites where each site runs an instance of the 

Borealis server. The query processing is controlled by 

an admin component which takes care of moving 

query diagram fragments to and from remote Borealis 

nodes when instructed to do so by other compo-

nents. SPADE is a declarative stream processing 

engine which supports a set of basic stream-relational 

operators with powerful windowing and punctua-

tion semantics. The system is designed to execute a 

large number of long-running jobs that take the form 

of data fl ow graphs where each graph consists of a set 
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of processing elements connected by streams and 

each stream carries a series of stream data objects.

The processing elements can communicate with 

each other via their input and output ports. The con-

cepts and ideas of our proposed models can be easily 

adopted to be used within the context of these 

systems.

Giurgiu [14] has presented an approach for esti-

mating the performance of mobile-cloud applica-

tions. The approach tried to identify the factors that 

impact interaction response times, such as the appli-

cation distribution schemes, workload sizes and 

intensities, or the resource variations of the mobile-

cloud application setup. It also attempted to fi nd cor-

relations between these factors in order to better 

understand how to build a unifi ed and generic per-

formance estimation model. The Starfi sh system [15, 

16] is the most relevant system for our work. It rep-

resents a cost-based optimizer for MapReduce pro-

grams which focuses on the optimization of 

confi guration parameters for executing these pro-

grams on the Hadoop platform. It relies on a profi ler 

component that collects detailed statistical informa-

tion from executing the programs and a what-if 

engine for fi ne-grained cost estimation processing. 

For a given MapReduce program, the role of the 

cost-based optimizer component is to enumerate and 

search effi ciently through the high dimensional 

space of confi guration parameter settings, making 

appropriate calls to the what-if engine, in order to 

fi nd the optimal confi guration setting. It clusters 

parameters into lower-dimensional subspaces such 

that the globally-optimal parameter setting in the 

high-dimensional space can be generated by com-

posing the optimal settings found for the subspaces. 

Our current study represents the fi rst step in the 

implementation of a similar what-if analyzer compo-

nent in the more complex environment of real time 

distributed stream-processing engines.

Conclusion
Batch computation systems such as Hadoop have 

greatly aided the analysis of large datasets in the tele-

com ecosystem. The scalable, fault-tolerant nature of 

this framework has made it an important tool in 

distributed computation. However, adapting in real 

time to the rapidly changing conditions in a telco 

network requires real time streaming analysis that 

can be run without a complete dataset. Streaming 

analytics can prove benefi cial for the rapid response 

to performance data, fault data, and customer expe-

rience data which can indicate network issues and 

customer satisfaction issues. In this paper we have 

provided a set of use cases for real time streaming 

analytics in the telecom ecosystem. We have demon-

strated the inherent diffi culties in effi ciently tuning 

confi guration parameters in Storm and we used 

these diffi culties as a motivator to create a parameter 

confi guration engine. As a set of fi rst steps towards 

the creation of such an engine, we performed a deep 

analysis of the inner workings of Storm and created 

models for data fl ow, CPU cost, and system manage-

ment cost.

*T  rademarks
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Software Foundation.
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