
Bell Labs Technical Journal 18(4), 181–197 (2014) © 2014 Alcatel-Lucent. Published by Wiley Periodicals, Inc.
Published online in Wiley Online Library (wileyonlinelibrary.com) • DOI: 10.1002/bltj.21652

 ◆ Towards the Optimization of a Parallel Streaming
Engine for Telco Applications
Bart Theeten, Ivan Bedini, Peter Cogan, Alessandra Sala, and
Tommaso Cucinotta

Parallel and distributed computing is becoming essential to process in real
time the increasingly massive volume of data collected by telecommunications
companies. Existing computational paradigms such as MapReduce (and its
popular open-source implementation Hadoop) provide a scalable, fault
tolerant mechanism for large scale batch computations. However, many
applications in the telco ecosystem require a real time, incremental streaming
approach to process data in real time and enable proactive care. Storm is a
scalable, fault tolerant framework for the analysis of real time streaming
data. In this paper we provide a motivation for the use of real time streaming
analytics in the telco ecosystem. We perform an experimental investigation
into the performance of Storm, focusing in particular on the impact of
parameter confi guration. This investigation reveals that optimal parameter
choice is highly non-trivial and we use this as motivation to create a
parameter confi guration engine. As fi rst steps towards the creation of this
engine we provide a deep analysis of the inner workings of Storm and
provide a set of models describing data fl ow cost, central processing unit
(CPU) cost, and system management cost. © 2014 Alcatel-Lucent.

of functions for user implementation. However, the

batch processing nature of MapReduce, which

requires that the full dataset is available at the start of

the analysis, may make it unsuitable for certain appli-

cations within the telco ecosystem. For instance if a

backend server is producing a continuous stream of

log data, these logs may contain early indications

of network issues which the telecom providers must

address as quickly as possible to ensure quality of ser-

vice to subscribers. Under the MapReduce paradigm,

data would be aggregated over some time period τ,

and provided to MapReduce for batch analysis. The

Introduction
Telecom companies are increasingly seeing the

need for big data platforms to handle the vast quan-

tity of data generated within their networks. Such

data includes performance logs, call data records, cus-

tomer experience data, and fault reports. MapReduce

has become a popular approach, both in industry and

academia, for the batch analysis of large quantities of

data and is a strong candidate for many telecom ana-

lytic applications. This is due to its scalability, fault

tolerance, and relatively simple distributed program-

ming paradigm which require only a small number

182 Bell Labs Technical Journal DOI: 10.1002/bltj

computational cluster upon which the analysis is

performed should be scaled such that the time, T,

taken to complete the analysis should be smaller

than τ, such that the analysis is complete before the

next data aggregation arrives. As a result, all results

will be at least T old and at most (T + τ) old.

Streaming analysis is seen as an emerging alter-

native to the batch computation approach used by

MapReduce. Under this paradigm, data are consid-

ered as streams of tuples which are transformed and

merged from different sources to create a fi nal stream

of analyzed results. In this scenario, the age of the

analyzed results is just given by the system traversal

time (i.e., latency L), as long as the computational

cluster is horizontally scaled such that the through-

put rate is greater than the data arrival rate. Note

that we would expect L << T.

The most important consideration when deter-

mining whether it is appropriate to use a batch or

streaming analysis is the specifi c algorithm that must

be deployed. For example, an algorithm such as

PageRank* requires multiple passes over the data

which in turn requires that the entire dataset can be

stored and is available. In such a case, a batch analy-

sis is appropriate. In contrast, if data requires single

pass analysis (such as in some clustering techniques

[3]), and/or the data cannot be stored for multiple

passes, then streaming analysis is the most appropri-

ate choice. Furthermore, a streaming analysis can

take advantage of incremental algorithms for updat-

ing results in real time for computations such as the

mean, maximum, or minimum of some parameter.

This approach facilitates live business intelligence

applications, which is extremely useful in the tele-

com ecosystem. We provide more detailed examples

in the “Use Cases” section below.

Hadoop* and Storm*, respectively, are open

source implementations of MapReduce and streaming

analytics. Both of these frameworks provide horizon-

tally scalable, fault tolerant platforms for distributed

computation. Hadoop has enjoyed considerable suc-

cess as a mainstream distributed analytics platform,

with many applications deployed in industrial produc-

tion systems. Storm is a relatively new framework for

distributed computation of real time streaming data.

In this paper we present motivations and use

cases for streaming analytics within the telecom eco-

system. We perform a series of investigative experi-

ments to better understand the impact of parameter

confi guration upon Storm performance. In fi nding

that the performance is highly dependent on this

parameter tuning, and that a priori selection of opti-

mal parameters is non-trivial, we embark upon an

effort to create an automatic engine for the selection

of optimal parameters. We present the fi rst steps

toward creating this engine by providing a deep

description of the inner workings of Storm and by

providing models which describe the data fl ow cost,

central processing unit (CPU) cost, and system man-

agement costs.

Use Cases
While data is growing at a speed never before

seen, today’s consumers are increasingly demanding

not only “always-on” connectivity and access, but

better service quality and overall experience. Thus,

operators look to real time analytics as an important

enabler to speed-up the creation, delivery, and mon-

etization of service bundles and to provide a unique

network experience for their customers. In this con-

text, the creation of new responsive and dynamic

scalable solutions for data analytics is becoming

essential.

Panel 1. Abbreviations, Acronyms, and Terms

3GPP—3rd Generation Partnership Project
BW—Bandwidth
CDR—Call data record
CPU—Central processing unit
HDFS—Hadoop Distributed File System
JVM—Java virtual machine
M3—Main-Memory MapReduce
MMS—Multimedia messaging service
OAM—Operations, administration, and

maintenance
PM—Performance management
SMS—Short message service
SPADE—Stream Processing Application

Declarative Engine
XML—Extensible Markup Language

DOI: 10.1002/bltj Bell Labs Technical Journal 183

In this section we describe two broad use cases

we have considered to build concrete scenarios for

the real time big data analysis relevant to telecom-

munication companies. These include real time

monitoring for smallcell performance management,

and call data record analysis, where the prospect of

capturing data in real time in concert with horizontal

scalability are essential for proactive network man-

agement and traffi c monitoring.

Smallcell Performance Management
Smallcells [5] were designed for use in a home,

in a small business, or for boosting the network sig-

nal in busy metropolitan areas to improve localized

cellular service and offl oad bandwidth usage from

macrocells (i.e., traditional cell towers). During oper-

ation, smallcells (as well as most other network ele-

ments) produce many low-level performance metrics

(e.g., number of successful handovers or number of

call initiation attempts) across a range of perfor-

mance categories (e.g., packet data performance or

handover performance). In most currently deployed

architectures, this set of data is periodically captured

and stored as Extensible Markup Language (XML)

following the 3rd Generation Partnership Project

(3GPP) specifi cation, either temporarily on the small-

cell or in a network management application. This

data is usually batch-analyzed to monitor network

performance characteristics, prediction of peak loads,

and prediction of service interruptions.

As smallcells are deployed in rapidly increasing

numbers, from 2.5 million in 2012 to a predicted 59

million in 2015 (an increase of 2500 percent) with

further increases projected for the years following,

the management of large amounts of operational

data generated by the smallcells, and an appropriate

rapid response to analytic results, is becoming a key

challenge. This data increase represents growth from

50 GB/day to 12 TB/day. These responses are impor-

tant to assure the stability of the smallcell network,

and they offer promising opportunities for dynamic

confi guration management of the network. Current

architectures and infrastructures based on relational

databases do not effectively scale to the large amounts

of data being generated, while emerging big data

technologies provide the potential to both support

this large amount of data and facilitate insightful net-

work analytics in near real time.

In our research work we envisage the design and

realization of a cost-effective cloud architecture able

to support these new real time analytic require-

ments. In the context of smallcells, this will not be to

increase the processing capacity of small cells them-

selves, but to centralize the processing of perfor-

mance management data from the entire network in

real time.

CDR Management
Telecom exchanges produce call data records

(CDRs) when subscribers make calls, send short mes-

sage service/multimedia messaging service (SMS/

MMS) messages, and take other actions on the net-

work. These records contain the date and time of the

call, the ID of the subscriber, ID of the call recipient,

ID of the cell tower to which the handset is con-

nected, as well as account information. This data is

used by the telecom provider for a variety of pur-

poses such as billing and diagnostics. The data can

also be used to create advanced business intelligence

services such as targeted advertisements [4], to better

understand user behavior [17], to predict customers’

inclination to churn [18, 22], or to recommend new

services [20]. However, as the number of subscribers

continues to increase, and the frequency with which

CDRs are generated increases, analysis of these

records becomes burdensome. Indeed, a batch analy-

sis of this data for aggregations greater than two

weeks apart is often impractical due to the sheer data

size (typically several TB/day). As a result, a stream-

ing analysis which is horizontally scalable and fault

tolerant, such as that discussed in this paper, becomes

necessary. In [10] the authors use a custom stream-

ing analytics infrastructure to analyze CDRs at a rate

of approximately 6 billion CDRs/day (depending on

data size, this corresponds to approximately 5 TB/

day). Rather, we seek to leverage the open source

Storm framework for real time streaming analytics.

Streaming analytics naturally lends itself to

incremental computation, rather than iterative

computation.

184 Bell Labs Technical Journal DOI: 10.1002/bltj

For example, in the case of standard classifi ca-

tion algorithms, streaming analytics may not be ideal

for the model training phase, where multiple itera-

tions on the data are typically required to achieve

convergence. However, once the model has been

created, streaming analytics are ideal for applying the

model to new data. Similarly, in the case of cluster-

ing, once cluster centers have been established,

streaming analytics is ideal for clustering of new data

into existing centers. For example, suppose an opera-

tor has an existing model for the segmentation of

users into large and small wallet size. Using stream-

ing analytics, the operator could identify the wallet

size of new subscribers in real time as they start to

use the network. With this approach, the operator

could rapidly create services targeted to the new

subscriber.

The Storm Framework
This section briefl y describes the Storm frame-

work. For a more detailed description, the reader is

directed to [21]. Storm is a scalable, fault tolerant

framework which facilitates the processing of stream-

ing data. The programming model involves the cre-

ation of a topology which represents the algorithm to

be implemented. A topology consists of spouts and

bolts. Spouts create one or more streams of tuples

which are injected into the topology, while bolts

receive one or more streams of tuples and can option-

ally output one or more streams of tuples (to other

bolts). The topology can be modeled as a directed acy-

clic graph, where nodes correspond to spouts, and

bolts and edges represent tuple streams between them.

Parallelization is achieved by setting the number of

instantiations of each spout and bolt. Typically, a spout

or bolt instance is implemented as a Java* thread.

Once started, a Storm topology runs continuously on

incoming data until it is killed. This is demonstrative of

how it is set apart from batch systems such as

MapReduce which run on a fi xed set of data and then

fi nish. The Storm framework provides mechanisms for

automatically distributing processes across the cluster,

for directing streams and ensuring fault tolerance.

The utility of big data engines, in an industrial

context, is measured not only by fl exibility, but also

on properties such as fault tolerance, load balancing,

and system overhead. Storm is a novel computa-

tional engine for processing large scale streams of

data. In order to understand the behavior of the

Storm framework, we conducted an extensive exper-

imental investigation by running Storm in multiple

confi gurations.

Experimental Investigation of Storm Behavior
This section provides a detailed experimental

investigation of the performance characteristics of the

Storm system using real industrial datasets. We aim to

understand the impact of parameter selection upon

the performance of Storm. Furthermore, our investi-

gation sought to determine just how straightforward

it is to confi gure Storm for optimal performance, and

to shed light on the precautions required in order to

run the system under optimal confi gurations.

Dataset and Environment Setup
The experiments have been run with a real telco

dataset consisting of operations, administration, and

maintenance (OAM) performance management

(PM) observations of a large femtocell (a specifi c

smallcell) network. The considered dataset is com-

posed of hourly PM logs collected over 15 days for a

network of 70K femtocells, totaling approximately

22 million XML fi les. The scenario of the experi-

ments is such that the system replays the PM data as

arriving in a streaming fashion with different arrival

rates. This simulation is absolutely coherent and does

not provide any signifi cant change to the data values

themselves, but allows a good simulation of a real

time architecture. These fi les contain a list of 128

key-value pairs of operational and statistical counters

with a mixture of integer and fl oating-point values.

The experiments presented in this paper deploy a

simple topology composed of two components (one

spout and one bolt) whose task it is to identify those

femtocells which require the highest bandwidth. The

spout reads input messages from an external queue

(this corresponds to the XML data) and produces a

stream of tuples. The bolt receives the stream of

tuples with a shuffl e grouping and emits any changes

in the highest-bandwidth-consuming femtocells.

DOI: 10.1002/bltj Bell Labs Technical Journal 185

For cluster confi guration, each test was run on a

cluster comprising fi ve nodes of identical confi gura-

tion. Additional machines were used to generate

load into this cluster and to host the external mes-

sage queue(s). Each machine is a dual four-core Intel

Xeon* 3 GHz 32 bit 16 GB memory, 1 Gb/s network

interface. Nodes are interconnected through an

Alcatel-Lucent 10Gb OmniSwitchTM 6850 Ethernet

switch. Each node runs Linux* version 2.6.32-

220.4.1.el6.i686. The following software compo-

nents were used: Java 1.6 OpenJDK Runtime

Environment (IcedTea6 1.10.4), ZeroMQ* 2.1.7,

ZooKeeper 3.4.2, and Kestrel 2.3.4 and Storm 0.8.2.

Experiment Confi gurations
A comprehensive test automation suite was devel-

oped which is composed of various shell scripts and

Java programs to automatically execute the Storm

topologies and collect runtime statistics on system per-

formance. Storm confi gurations were tested while

varying the number of nodes, spouts, bolts, and work-

ers. Each specifi c confi guration was tested 10 times in

order to accumulate statistical information. Careful

consideration was taken to ensure that each confi gura-

tion was tested under the same operational conditions.

Each individual test case is executed on a clean

cluster, meaning that all processes from a previous

run were killed on all cluster nodes before starting

the new ones. In addition, all data generated by the

previous run is erased from the fi le system. Each test

consists of an initial warm-up phase of one minute

(in which we do not collect statistics because the sys-

tem may not yet be in its computational steady state)

followed by a fi ve minute measuring phase during

which statistics are being gathered, including:

1. Throughput (μ) which represents the total num-

ber of events processed per second.

2. Latency (L) which represents time to process a

tuple both within a single bolt process and within

the entire system.

3. External and internal queue sizes and their

growth rate.

4. Network bandwidth in terms of the number of

messages exchanged among workers on differ-

ent nodes.

5. Various statistics on system management over-

head (e.g., communication with ZooKeeper).

6. Approximate memory usage and CPU usage per

thread. Each test is run with a different Storm

confi guration which is determined by the fol-

lowing parameters:
• Parallelization factor. Represents the number of

tasks, from {1, 2, 4, 8, 16, 24, 32}, instantiated

per spout or a bolt.

• Cluster size. Represents the number of nodes

participating in the Storm cluster, i.e., from

one to fi ve.

• Worker pool size. Represents the number of

workers (JVMs) per node, which host the

tasks. In our experiment this number is

selected from {1, 2, 4, 8, 16, 24, 32}.

• Event injection rate. Represents the number of

events injected per second into the queue,

which provides data to the spouts. In our

experiments the event injection rate varies

among three different rates, 5K, 10K, and

50K tuples per second, to observe how Storm

adjusts to different conditions.

Experimental Analysis
In order to optimize system performance while

running Storm jobs, there are several variables and

parameters which need manual confi guration.

Confi guration is thus a complex task that requires a

precise knowledge of the most relevant parameters

and how they impact system performance. In partic-

ular, we focus on the following metrics: the through-

put (μ), the latency (L), and the system resource

utilization (CPU, memory, network bandwidth). In

the following subsections we present a set of experi-

ments that aim to shed light on how the choice of

confi guration parameter impacts these metrics.

Parallelization performance. The experiments pre-

sented in this section comprise observations of the

impact on latency and throughput produced by dif-

ferent confi gurations in terms of parallelization.

A confi guration is expressed as the specifi cation

of the system parameters, i.e., number of nodes,

spouts, bolts, and workers (hereafter simply < n, s, b,

w >). For brevity, we only report experiments run

186 Bell Labs Technical Journal DOI: 10.1002/bltj

on a single node cluster with an external queue fed

with 50K messages per second. However, the same

experiments performed on cluster sizes of up to fi ve

nodes show similar results, with only a few small

deviations attributed to the increased system man-

agement costs to run more nodes.

• Spout parallelization. Spouts inject tuples into the

topology. Increasing the amount of spouts is

therefore expected to increase the throughput,

as long as the bolts are able to keep up with the

higher infl ux of tuples. At the point where bolts

are no longer able to keep up (i.e., fully loaded),

it is expected that the throughput will actually

decrease because of the additional queue buildup

in the system and the larger share of processing

power claimed by the many spout instances ver-

sus the fi xed amount of bolt instances.

 In order to study the impact of the number of

spouts on the overall system performance, we

fi xed all other parameters at 1 while varying the

number of spouts at {1, 2, 4, 8, 16, 24, 32}.

Figure 1 illustrates the effect of spout and bolt

parallelization on the throughput and latency.

Specifi cally, Figure 1a illustrates the effect upon

throughput (in terms of tuples per second) and

Figure 1b the effect upon latency (in terms of

milliseconds to process a tuple) as the number

of spouts is increased. The system throughput

can be increased by increasing the number of

spouts, however, as the number of spouts con-

tinues to increase beyond some threshold, the

throughput declines. This can be understood by

observing the latency, which exhibits exponen-

tial growth. Beyond some threshold (determined

by the system hardware), the system is over-

stressed with many processes and the context-

switching among them impairs the system

performance.

• Bolt parallelization. Bolts process tuples emitted

by spouts. Increasing the amount of bolts is

therefore expected to lower the latency as the

increased processing capabilities reduce the chance

of queue buildup within the system. In other

words, tuples have a higher chance of being pro-

cessed without delay by the available bolts.

 In order to study the impact of the number of

bolts on the overall system performance, we fi x

all other parameters at 1 while varying the num-

ber of bolts at {1, 2, 4, 8, 16, 24, 32}. Again,

Figure 1a illustrates the effect upon throughput

(in terms of tuples per second) and Figure 1b the

effect upon the latency (in terms of milliseconds

to process a tuple) as the number of bolts is

increased. An increase in bolt parallelization

reduces throughput due to the extra CPU load

associated with scheduling. However, a reduc-

tion in latency towards a lower limit is also

observed when the number of bolts is within the

{8, 24} range. This limit represents the fastest

possible bolt execution time, which is the cost of

the system from the emission of the tuple by the

spout up to the completion of the algorithm

implemented by bolt B.

Power consumption. This section quantifi es how

system confi guration impacts CPU usage (and hence

power consumption). With this experiment we dem-

onstrate that CPU usage is not linearly dependent

upon performance. For example, in Figure 2, we

observe that the throughput for the confi guration

< 1, 16, 1, 1 > is equivalent to the throughput for

confi guration < 1, 8, 8, 16 >, yet the CPU usage is

almost doubled. This observation demonstrates the

complexity and subtleties involved in effi cient system

confi guration.

Horizontal scalability confi guration. One of the

benefi ts of a distributed system is its capacity to

increase the number of parallel threads of execution

and reliably distribute them over the cluster nodes so

as to improve processing effi ciency in time and capac-

ity. However as shown above, tuning a confi guration

is a complex manual task that can involve several

tests before the optimal confi guration can be identi-

fi ed. While we have shown that it is rather complex

to effi ciently confi gure a cluster with a single node,

setting up a (possibly heterogeneous) dynamic cluster

with a large number of nodes can become an even

more diffi cult operation. With Storm, the number of

parallel threads of execution can be adjusted by tun-

ing the number of spouts and bolts. As more nodes

are added, the number of spouts can be safely

DOI: 10.1002/bltj Bell Labs Technical Journal 187

increased to some limit (i.e., before latency becomes a

limiting factor as demonstrated previously). The num-

ber of bolts can be selected as a ratio of the number of

spouts, for example with 100 spouts and a ratio of

0.2, we create 20 bolts. Figure 3 shows the result of

a series of experiments where we created topologies

on clusters of multiple sizes with an increasing num-

ber of spouts. We tested the throughput on these

topologies where the ratio of the number of bolts to

number of spouts is adjusted. Figure 3 demonstrates

that the optimum ratio is independent of the cluster

size and number of spouts, however we have not

tested whether it is independent of the specifi c topol-

ogy. Nevertheless, this represents an important step

in determining a method for optimally confi guring

large Storm clusters based on experiments using a

smaller test cluster.

Parameter Confi guration Engine: First Steps
In the previous section we demonstrated how

the choice of confi guration parameters profoundly

impacts the performance of Storm. However, it is

almost impossible to determine a priori which con-

fi guration parameters are best. Our experiments

have demonstrated that the confi guration of differ-

ent parameters impacts throughput and latency in

different ways. To better understand this, we create

insightful cost models [8] which better describe the

interplay between these factors and how they impact

data fl ow, data processing, and system management.

Figure 1.
Measuring latency and throughput on the different system confi gurations.

(a) Effect of spout and bolt parallelization on the throughput

(b) Effect of spout and bolt parallelization on the latency

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16 24 32

Number of spout/bolt replicas

1

10

100

1000

1 2 4 8 16 24 32
Number of spout/bolt replicas

La
te

n
cy

 (
m

se
c)

Th
ro

u
g

h
p

u
t

 (
tu

p
le

/s
)

Spout parallelization Bolt parallelization

188 Bell Labs Technical Journal DOI: 10.1002/bltj

Our long term goal is to create a confi guration engine

based on these models which will enable optimal

running of Storm. This will be achieved based on a

search of the parameter space, and the insights pro-

vided by the cost models. In this paper, we present

the fi rst steps to creating this engine by providing a

deep description of Storm’s inner workings via these

cost models.

Data Flow Cost Model
This section presents the data fl ow cost model

used to characterize the size (in bytes) of data fl ow-

ing through an active Storm topology and the cost

(in seconds) of transferring data between the process-

ing components (i.e., spouts and bolts). In the Storm

framework, data are assumed to be made available

by an external source (e.g., message queue or fi le

Figure 2.
Comparing throughput and latency with CPU usage percentage.

%

0

100

200

300

400

500

600

0

2000

4000

6000

8000

10000

12000

14000

%

Th
ro

u
g

h
p

u
t

(t
u

p
le

s/
s)

Configuration

1,
1,

1,
1

1,
1,

2,
1

1,
1,

4,
1

1,
1,

8,
1

1,
1,

16
,1

1,
2,

1,
1

1,
4,

1,
1

1,
8,

1,
1

1,
16

,1
,1

1,
1,

1,
2

1,
2,

2,
1

1,
2,

2,
2

1,
2,

2,
4

1,
4,

4,
1

1,
4,

4,
2

1,
4,

4,
4

1,
4,

4,
8

1,
8,

8,
2

1,
8,

8,
1

1,
8,

8,
4

1,
8,

8,
8

1,
8,

8,
16

1,
1,

1,
1

1,
1,

2,
1

1,
1,

4,
1

1,
1,

8,
1

1,
1,

16
,1

1,
2,

1,
1

1,
4,

1,
1

1,
8,

1,
1

1,
16

,1
,1

1,
1,

1,
2

1,
2,

2,
1

1,
2,

2,
2

1,
2,

2,
4

1,
4,

4,
1

1,
4,

4,
2

1,
4,

4,
4

1,
4,

4,
8

1,
8,

8,
2

1,
8,

8,
1

1,
8,

8,
4

1,
8,

8,
8

1,
8,

8,
16

(b) CPU usage and throughput comparison

CPU—Central processing unit

0

100

200

300

400

500

600

0

10

20

30

40

50

60

La
te

n
cy

 (
m

se
c)

Configuration

(a) CPU usage and latency comparison

Latency CPU Usage %

Throughput CPU Usage %

DOI: 10.1002/bltj Bell Labs Technical Journal 189

system) and read by a spout. The spout then trans-

forms the data from its raw format into tuples, i.e.,

the internal scheme. These tuples are then emitted

into the Storm cluster according to a chosen parti-

tioning algorithm (i.e., stream grouping). This way,

tuples are sent through the computational compo-

nents, i.e., the bolts. While tuples fl ow through the

Storm topology, they may get merged, split, and

transformed several times.

Data size. We compute the data size that fl ows in

a Storm topology as the amount of data that enters

the system in the form of tuples which are injected

into the Storm cluster by the various spouts plus the

tuples which are generated and emitted by the vari-

ous processing bolts and are consumed by other pro-

cessing bolts.

• Input-output data size. Considering that a spout

can generate input tuples of different types, the

data size of an input spout per time unit can be

computed as the sum of all tuples arriving per

time unit, multiplied by their respective byte size

(according to the specifi c tuple type). Similar to

the input data size for the spout, we can compute

the corresponding output data size of the bolts.

Each processing bolt in a topology consumes at

least one stream of tuples and possibly generates

and emits one or more new streams of tuples.

Therefore, the number of output tuples in a pro-

cessing bolt is a function of the number of

received tuples and their types per time unit.

• Topology data fl ow size. Finally, the total data fl ow

size for a generic Storm topology can then be

Figure 3.
Horizontal scalability optimal confi guration range.

5 nodes - 150 spouts

5 nodes - 100 spouts

4 nodes -150 spouts

4 nodes -100 spouts

3 nodes - 100 spouts

3 nodes - 50 spouts

2 nodes -100 spouts

2 nodes -50 spouts

1 node - 50 spouts 1 node - 10 spouts

0

100000

200000

300000

400000

500000

600000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ev
en

ts
/s

Balance (=bolts/spouts)

Events per bolts and spouts

190 Bell Labs Technical Journal DOI: 10.1002/bltj

expressed as the total data input size injected by

all spouts into the topology added to the total

data output size emitted by all the processing

bolts in the topology. Therefore, we can formal-

ize the total data fl ow as follows:

 Flow.Size[bytes] =

where S is the set of spouts and B refers to the set of

bolts which are instantiated in the executed topology.

Data transfer cost. The data transfer cost is the

cost (in seconds) of actually delivering the tuple to a

destination task (i.e., bolt instance). A distinction

must be made between various allocations of com-

municating spouts and bolts across the cluster

because running tasks remotely versus locally pro-

duces substantially different communication costs in

terms of bandwidth consumption and communica-

tion time, i.e., latency. Therefore, we distinguish

between three categories of data transfer cost: within

the same Java virtual machine (JVM), within the

same node but in different JVMs, and across different

cluster nodes. In the case where the tuples are passed

between spout-bolt or bolt-bolt in the same JVM, the

tuples are immediately placed into the consuming

bolt’s receive queue without any manipulation of

their data format. In contrast, when tuples are

exchanged between different JVMs in the same clus-

ter node, a serialization/deserialization cost is added

to send the tuple from one JVM to another. Finally,

when communicating spout-bolts or bolt-bolts are

allocated on different JVMs hosted on different clus-

ter nodes, the added costs are generated both from

the serialization/deserialization step and from net-

work transfer cost.

Data Processing Cost Model
The data processing cost model highlights the

execution time computed as the composition of

the spout and the bolt processing costs (both in units

of seconds). Specifi cally, the spout processing cost

represents the cost of reading a raw event from an

unspecifi ed source and injecting a Storm tuple into

the topology. The bolt processing cost, on the other

hand, represents the cost of processing a tuple in a

bolt and possibly emitting new tuples into the

topology for further processing. Note that the bolt

processing cost is fundamentally affected by the com-

putational complexity of the algorithmic intelligence

implemented in the bolt logic.

• Spout CPU processing cost. The CPU processing cost

of a spout (S) is a function of the tuple emit rate,

where consideration must be made for possibly

having multiple concurrent tuple types (t), each

accounting for slightly different processing costs.

Specifi cally, there is a CPU cost to read a raw

input tuple of type t and a CPU cost of transform-

ing a raw input tuple of type t into a Storm tuple

of type t. Finally, there is the cost of partitioning

the input tuples of type t which varies according

to the stream grouping algorithm (shuffl e, fi elds,

all, global). There is also a serialization cost if the

bolt is hosted on a different JVM.

• Bolt CPU processing cost. There are two sequential

phases tuples go through while being processed

by a bolt: a transform phase that accounts for

tuple transformation steps, like serialization/

deserialization, and a more general execute

phase in which the actual bolt’s processing logic

is performed. Therefore the processing cost of a

bolt is a function of the number of tuples (of type

t) received by the bolt per time unit, plus the cost

to generate (if any) new tuples (of type t’) in

response to receiving input tuples (of type t). It is

clear that the major cost for processing a bolt will

be determined by the algorithmic intelligence

implemented in the bolt.

• Topology CPU costs. The total processing cost on

the entire Storm topology is represented as the

sum of the total CPU processing cost for all of its

spouts and bolts. Therefore, the topology cost,

i.e., T:CPUCost, for a Storm topology is defi ned as:

 T.CPUCost[seconds] =

where S and B represent the sets of spouts and bolts

in the topology.

System Management Cost Model
The system management cost models the impact

of the set of tasks, abstracted away from the user,

which are required to run a Storm cluster. These

 ∑
i=1

|S|

 Spout.Costi + ∑
j=1

|B|

 Bolt.Costj

 ∑
i=1

|S|

 Injected.Sizei + ∑
j=1

|B|

 Emitted.Sizej

DOI: 10.1002/bltj Bell Labs Technical Journal 191

tasks include provision of support for node failure/

addition/removal, JVM failures, and network issues.

Storm’s system management tasks are coordinated

through ZooKeeper and are mainly related to the

interaction between ZooKeeper and Nimbus, super-

visor and worker, as shown in Figure 4.

There are fi ve recurring system management

tasks that interact with ZooKeeper:

1. Synchronize topology. Nimbus checks the active

assignments and compares them to the required

assignments according to the topology specifi ca-

tion. If a difference is detected, e.g., because of

node failure, Nimbus will reassign the unas-

signed tasks over the available worker processes

in the cluster.

2. Synchronize supervisors. Each supervisor reads its

assignments from ZooKeeper and reassigns them

if it detects a difference between what it has cur-

rently assigned across its workers. Reassignment

takes the form of updates to ZooKeeper’s assign-

ments for the workers to query during their next

poll cycle.

3. Synchronize workers. Each worker reads its assign-

ments from ZooKeeper. If there is a mismatch,

the missing connections are established. In addi-

tion to this, each worker also checks the active

Storm topologies. If the Storm topology for

which it is running tasks is no longer active

(because it was explicitly killed), the worker

would need to stop processing.

4. Supervisor heartbeat. Each supervisor will send a

heartbeat to ZooKeeper. A heartbeat takes the

form of storing some run-time information about

the supervisor in ZooKeeper.

5. Worker heartbeats. Similarly, each worker sends a

heartbeat to ZooKeeper. A worker heartbeat

includes statistical information describing each

task running in that worker.

Figure 4.
ZooKeeper interactions.

Worker
Supervisor

Nimbus

ZooKeeper

1. Synchronize topology
 (check current assignments
 and reassign if necessary)

2. Synchronize supervisors
 (read assignments and reassign
 if necessary)

3. Synchronize worker
 (check active storms, check
 assignments and connections +
 reestablish if necessary)

4. Supervisor heartbeat
 (update run-time information
 about supervisor)

5. Worker heartbeat
 (update run-time information
 about each executor/task)

192 Bell Labs Technical Journal DOI: 10.1002/bltj

In principle, the system management cost has

two components: a component that refl ects the load

on ZooKeeper, expressed in the number of requests

per time unit and a network load component which

represents the network bandwidth consumption.

From the experimental evaluation reported in

Figure 5, we can summarize that ZooKeeper traffi c

bandwidth increases proportionally with the number

of tasks and nodes running in the cluster. In the fi g-

ure we plot the measured bandwidth (in KB/s)

attributed to ZooKeeper communication as a func-

tion of the number of tasks running in the cluster, for

various cluster sizes. Note also that ZooKeeper com-

munication is independent of the specifi c algorithms

implemented in spouts or bolts and independent of

the event input rate. Overall, the system manage-

ment cost (in seconds) represented less than 10 per-

cent of the cost of running our experimental Storm

topology.

Building the Parameter Confi guration Engine
In the fi rst half of this paper we demonstrated that

optimal confi guration of Storm is non-trivial.

Increasing parallelization profoundly impacts through-

put and latency in a manner which is diffi cult to deter-

mine a priori. As a fi rst step to building a confi guration

engine for Storm, we provided insightful models into

the fundamental data fl ow, data processing, and sys-

tem managements costs which impact throughput

and latency. Our plan is to develop an engine to

Figure 5.
System management traffi c as a function of the number of components.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180

B
an

d
w

id
th

 (
K

B
/s

)

Number of tasks

1 node
2 nodes
3 nodes

4 nodes
5 nodes

Linear (1 node)
Linear (2 nodes)
Linear (3 nodes)

Linear (4 nodes)
Linear (5 nodes)

DOI: 10.1002/bltj Bell Labs Technical Journal 193

leverage these models which, along with real time

input from a running Storm system, will select a set

of confi guration parameters to deliver optimal

performance.

Related Work
The growing demand for large-scale data pro-

cessing and data analysis applications has spurred the

development of novel solutions from both industry

(e.g., web data analysis, click-stream analysis, net-

work-monitoring log analysis) and the sciences (e.g.,

analysis of data produced by massive scale simula-

tions, sensor deployments, and high-throughput lab

equipment). MapReduce [12] is a framework which

was introduced by Google for programming com-

modity computer clusters to perform large-scale data

processing. The framework is designed such that a

MapReduce cluster can scale to thousands of nodes

in a fault-tolerant manner. However, the basic archi-

tecture of the MapReduce framework requires that

the entire output of each respective map and reduce

task be materialized into a local fi le and Hadoop

Distributed File System (HDFS), before it can be con-

sumed by the next stage. Therefore, it is not adequate

for supporting real time processing of streaming data.

Several approaches have been proposed to tackle

this challenge. For example, the MapReduce online

approach [11] has been proposed as a modifi ed

architecture of the MapReduce framework in which

intermediate data is pipelined between operators

while preserving the programming interfaces and

fault tolerance models of previous MapReduce frame-

works. The Incoop system [9] has been introduced as

a MapReduce implementation that has been adapted

for incremental computations which detect changes

to input datasets and enable the automatic update of

the outputs of the MapReduce jobs by employing a

fi ne-grained result reuse mechanism. In particular,

this allows MapReduce programs which have not

been designed for incremental processing to be exe-

cuted transparently in an incremental manner. The

Main-Memory MapReduce (M3) system [6] has been

proposed to support the answer of continuous que-

ries over streams of data bypassing the HDFS so

data is processed only through a main-memory-only

data path and totally avoids disk access. In this

approach, mappers and reducers never terminate

where there is only one MapReduce job per query

operator that is continuously executing.

While the above approaches are bringing

MapReduce closer to a stream processing system and

have the added benefi t of requiring only a single

programming model to support both batch and

streaming use cases, event stream processing sys-

tems have been designed from the ground up to sup-

port streaming use cases; they are not hampered by

limitations or design decisions that were made in

light of a totally different context. Moreover, the

MapReduce paradigm seems to be counterintuitive

to implementing sizeable topologies of processing

nodes to handle complex analytical algorithms on

streaming data. While MapReduce solves complex

calculations through pipelining multiple map and

reduce stages in a fl ow, an event stream processing

system starts from a single input operator (which

could be compared to a map stage), followed by a

sequence of processing steps. At each step, a range of

partitioning algorithms can be chosen to distribute

output events over the available instances of the

next processing step in the fl ow, allowing for a more

natural design.

Several distributed stream processing systems

have been presented in the literature. They include

Aurora [2], Borealis [1], the Stream Processing

Application Declarative Engine (SPADE) [13],

Stormy [19] and Apache S4 [7]. For example, in

Borealis, the collection of continuously running que-

ries is treated as one giant network of operators. The

processing of these operators is distributed to multi-

ple sites where each site runs an instance of the

Borealis server. The query processing is controlled by

an admin component which takes care of moving

query diagram fragments to and from remote Borealis

nodes when instructed to do so by other compo-

nents. SPADE is a declarative stream processing

engine which supports a set of basic stream-relational

operators with powerful windowing and punctua-

tion semantics. The system is designed to execute a

large number of long-running jobs that take the form

of data fl ow graphs where each graph consists of a set

194 Bell Labs Technical Journal DOI: 10.1002/bltj

of processing elements connected by streams and

each stream carries a series of stream data objects.

The processing elements can communicate with

each other via their input and output ports. The con-

cepts and ideas of our proposed models can be easily

adopted to be used within the context of these

systems.

Giurgiu [14] has presented an approach for esti-

mating the performance of mobile-cloud applica-

tions. The approach tried to identify the factors that

impact interaction response times, such as the appli-

cation distribution schemes, workload sizes and

intensities, or the resource variations of the mobile-

cloud application setup. It also attempted to fi nd cor-

relations between these factors in order to better

understand how to build a unifi ed and generic per-

formance estimation model. The Starfi sh system [15,

16] is the most relevant system for our work. It rep-

resents a cost-based optimizer for MapReduce pro-

grams which focuses on the optimization of

confi guration parameters for executing these pro-

grams on the Hadoop platform. It relies on a profi ler

component that collects detailed statistical informa-

tion from executing the programs and a what-if

engine for fi ne-grained cost estimation processing.

For a given MapReduce program, the role of the

cost-based optimizer component is to enumerate and

search effi ciently through the high dimensional

space of confi guration parameter settings, making

appropriate calls to the what-if engine, in order to

fi nd the optimal confi guration setting. It clusters

parameters into lower-dimensional subspaces such

that the globally-optimal parameter setting in the

high-dimensional space can be generated by com-

posing the optimal settings found for the subspaces.

Our current study represents the fi rst step in the

implementation of a similar what-if analyzer compo-

nent in the more complex environment of real time

distributed stream-processing engines.

Conclusion
Batch computation systems such as Hadoop have

greatly aided the analysis of large datasets in the tele-

com ecosystem. The scalable, fault-tolerant nature of

this framework has made it an important tool in

distributed computation. However, adapting in real

time to the rapidly changing conditions in a telco

network requires real time streaming analysis that

can be run without a complete dataset. Streaming

analytics can prove benefi cial for the rapid response

to performance data, fault data, and customer expe-

rience data which can indicate network issues and

customer satisfaction issues. In this paper we have

provided a set of use cases for real time streaming

analytics in the telecom ecosystem. We have demon-

strated the inherent diffi culties in effi ciently tuning

confi guration parameters in Storm and we used

these diffi culties as a motivator to create a parameter

confi guration engine. As a set of fi rst steps towards

the creation of such an engine, we performed a deep

analysis of the inner workings of Storm and created

models for data fl ow, CPU cost, and system manage-

ment cost.

*T rademarks
Hadoop is a registered trademark of The Apache

Software Foundation.
Java is a trademark of Sun Microsystems Inc.
Linux is a trademark of Linus Torvalds.
PageRank is a registered trademark of Google, Inc.
Storm is a registered trademark of Storm Software

Incorporated.
Xeon is a registered trademark of Intel Corporation.
ZeroMQ is a trademark of iMatix Corporation.

References
 [1] D. J. Abadi, Y. Ahmad, M. Balazinska,

U. Çetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik, “The Design
of the Borealis Stream Processing Engine,”
Proc. 2nd Biennial Conf. on Innovative Data
Syst. Res. (CIDR ’05) (Asilomar, CA, 2005),
pp. 277–289.

 [2] D. J. Abadi, D. Carney, U. Çetintemel,
M. Cherniack, C. Convey, C. Erwin, E. Galvez,
M. Hatoun, A. Maskey, A. Rasin, A. Singer,
M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and
S. B. Zdonik, “Aurora: A Data Stream
Management System,” Proc. ACM SIGMOD
Internat. Conf. on Management of Data
(SIGMOD ’03) (San Diego, CA, 2003),
Demonstration, p. 666.

 [3] M. R. Ackermann, M. Märtens, C. Raupach,
K. Swierkot, C. Lammersen, and C. Sohler,
“StreamKM++: A Clustering Algorithm for

DOI: 10.1002/bltj Bell Labs Technical Journal 195

Data Streams,” ACM J. Exp. Algorithmics,
17:2 (2012), article 2.4.

 [4] R. Ahas, M. Tiru, and A. Kuusik, “Measuring
Repeated Visitations with Mobile Positioning
Data. Applications for Marketing,” Proc. 2nd
Conf. on the Analysis of Mobile Phone
Datasets and Networks (NetMob ’11)
(Cambridge, MA, 2011).

 [5] Alcatel-Lucent, “9360 Small Cells,” <http://
www.alcatel-lucent.com/products/9360-small-
cell>.

 [6] A. M. Aly, A. Sallam, B. M. Gnanasekaran,
L.-V. Nguyen-Dinh, W. G. Aref, M. Ouzzani,
and A. Ghafoor, “M3: Stream Processing on
Main-Memory MapReduce,” Proc. 28th IEEE
Internat. Conf. on Data Eng. (ICDE ’12)
(Washington, DC, 2012), pp. 1253–1256.

 [7] Apache Software Foundation, “S4 Distributed
Stream Computing Platform,” <http://
incubator.apache.org/s4/>.

 [8] I. Bedini, S. Sakr, B. Theeten, A. Sala, and
P. Cogan, “Modeling Performance of a Parallel
Streaming Engine: Bridging Theory and
Costs,” Proc. 4th ACM/SPEC Internat. Conf.
on Perform. Eng. (ICPE ’13) (Prague, Cze.,
2013), pp. 173–184.

 [9] P. Bhatotia, A. Wieder, R. Rodrigues, U. A.
Acar, and R. Pasquini, “Incoop: MapReduce
for Incremental Computations,” Proc. 2nd
ACM Symp. on Cloud Comput. (SOCC ’11)
(Cascais, Prt., 2011), article no. 7.

[10] E. Bouillet, R. Kothari, V. Kumar, L. Mignet,
S. Nathan, A. Ranganathan, D. S. Turaga,
O. Udrea, and O. Verscheure, “Experience
Report: Processing 6 Billion CDRs/Day: From
Research to Production,” Proc. 6th ACM
Internat. Conf. on Distrib. Event-Based Syst.
(DEBS ’12) (Berlin, Ger., 2012), pp. 264–267.

[11] T. Condie, N. Conway, P. Alvaro, J. M.
Hellerstein, K. Elmeleegy, and R. Sears,
“MapReduce Online,” Proc. 7th USENIX
Symp. on Networked Syst. Design and
Implementation (NSDI ’10) (San Jose, CA,
2010), pp. 313–328.

[12] J. Dean and S. Ghemawat, “MapReduce:
Simplifi ed Data Processing on Large Clusters,”
Proc. 6th Symp. on Operating Syst. Design
and Implementation (OSDI ’04) (San
Francisco, CA, 2004), pp. 137–150.

[13] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo, “SPADE: The System S Declarative
Stream Processing Engine,” Proc. ACM

SIGMOD Internat. Conf. on Management of
Data (SIGMOD ’08) (Vancouver, BC, Can.,
2008), pp. 1123–1134.

[14] I. Giurgiu, “Understanding Performance
Modeling for Modular Mobile-Cloud
Applications,” Proc. 3rd ACM/SPEC Internat.
Conf. on Perform. Eng. (ICPE ’12) (Boston,
MA, 2012), pp. 259–262.

[15] H. Herodotou, F. Dong, and S. Babu,
“MapReduce Programming and Cost-Based
Optimization? Crossing This Chasm with
Starfi sh,” Proc. VLDB Endowment, 4:12
(2011), 1446–1449.

[16] H. Herodotou, H. Lim, G. Luo, N. Borisov,
L. Dong, F. B. Cetin, and S. Babu, “Starfi sh: A
Self-Tuning System for Big Data Analytics,”
Proc. 5th Biennial Conf. on Innovative Data
Syst. Res. (CIDR ’11) (Asilomar, CA, 2011),
pp. 261–272.

[17] C. Kaiser and A. Pozdnoukhov, “Modelling
City Population Dynamics from Cell Phone
Usage Data Streams,” Proc. 2nd Conf. on the
Analysis of Mobile Phone Datasets and
Networks (NetMob ’11) (Cambridge, MA,
2011), pp. 69–71.

[18] P. Krivitsky, P. Ferreira, and R. Telang,
“Network Neighbor Effects on Customer
Churn in Cell Phone Networks,” Proc. 2nd
Conf. on the Analysis of Mobile Phone
Datasets and Networks (NetMob ’11)
(Cambridge, MA, 2011), pp. 112–116.

[19] S. Loesing, M. Hentschel, T. Kraska, and
D. Kossmann, “Stormy: An Elastic and Highly
Available Streaming Service in the Cloud,”
Proc. EDBT/ICDT Joint Conf.: 15th EDBT
Internat. Conf. on Extending Database
Technol., and 15th ICDT Internat. Conf. on
Database Theory (EDBT/ICDT ’12) (Berlin,
Ger., 2012), pp. 55–60.

[20] W. Pan, N. Aharony, and A. Pentland,
“Composite Social Network for Predicting
Mobile Apps Installation,” Proc. 2nd Conf. on
the Analysis of Mobile Phone Datasets and
Networks (NetMob ’11) (Cambridge, MA,
2011), pp. 100–102.

[21] Storm, <http://storm-project.net/
documentation.html>.

[22] V. Yeshwanth and M. Saravanan, “Churn
Analysis in Mobile Telecom Data Using Hybrid
Paradigms,” Proc. 2nd Conf. on the Analysis of
Mobile Phone Datasets and Networks (NetMob
’11) (Cambridge, MA, 2011), pp. 105–108.

196 Bell Labs Technical Journal DOI: 10.1002/bltj

 (Manuscript approved August 2013)

BART THEETEN is a member of technical staff at Bell
Labs in Antwerp, Belgium. He holds an
M.Sc. in computer engineering from the
University of Ghent. He began his career as
a software engineer working on various
network and element management

solutions in various locations throughout the company,
including Alcatel USA in Raleigh, North Carolina and
Alcatel CIT in France, before joining Bell Labs in
Antwerp, where he specializes in service-oriented
architectures, service/application enablement
technologies, and web services.

IVAN BEDINI was a member of technical staff at Bell Labs
in Blanchardstown, Ireland while this
research was conducted and the paper
prepared for publication. He is currently
team leader for the BigData project at
Trento RISE, an EIT ICT Labs partner founded

by the University of Trento and the Bruno Kessler
Foundation. The aim of Trento RISE is to contribute to the
creation of a center of excellence for research, innovation,
and advanced training in the fi eld of information and
communications technology. Dr. Bedini is responsible for
developing innovative solutions for the collection,
integration, and analysis of big data, as well as the
creation of a big data services platform. During his tenure
at Bell Labs, he was an active contributor to the Semantic
Data Access (SDA) and BigData analytics projects. Prior to
joining Bell Labs, he spent 10 years as a researcher with
Orange Labs France in the Enterprise Applications and the
Trust & Secure Transactions research departments. He has
also four years of contribution to standardization bodies
as member of the UN/CEFACT Information Content
Management Group and as a member of the OASIS
ebXML Registry/Repository Committee. He received his
Ph.D. from the University of Versailles, France. He is an
expert in information extraction, data integration,
semantic technologies, big data technologies, and
distributed computing.

 PETER COGAN was a member of technical staff at Bell
Labs in Blanchardstown, Ireland while this
research was conducted and the paper
prepared for publication. He is currently a
senior data scientist with Changing Worlds
at Amdocs. Changing Worlds is a

University College Dublin spinout specializing in data
analytics and recommendation which was acquired by
Amdocs in 2008. At Amdocs, Dr. Cogan is conducting

research and development into machine learning and
big data in the Telco space. Prior to his appointment at
Amdocs, Dr. Cogan was a member of technical staff at
Bell Labs in Dublin, Ireland. At Bell Labs Dr. Cogan
conducted research into diverse big data projects
related to workforce planning, social networks, CDR
analytics, proactive care and real time machine
learning. He completed both his primary degree in
experimental and mathematical physics and his Ph.D. in
high energy astrophysics at University College Dublin.
During his Ph.D., he specialized in analysis techniques
for nanosecond sampling of atmospheric Cerenkov
radiation and applied these techniques to analysis of
gamma-ray observations of blazars. He was appointed
as a postdoctoral researcher at McGill University,
Montreal, Canada where he worked for two years prior
to joining Bell Labs.

ALESSANDRA SALA is the technical manager of the Data
Analytics and Operations Research group
at Bell Labs in Dublin, Ireland. In her prior
appointment, she held a research associate
position in the Department of Computer
Science at the University of California

Santa Barbara. During this appointment, she was a key
contributor to several research proposals funded by the
U.S. National Science Foundation and she received the
Cisco Research Award in 2011. She focused her research
on modeling massive graphs with an emphasis on
privacy threats for online social network users. Before
that, she worked for two years as post-doctoral fellow
with the CurrentLab research group led by Prof. Ben Y.
Zhao. She completed her Ph.D. in computer science at
University of Salerno, Italy. Her research interests include
distributed algorithms and complexity analysis with an
emphasis on graph algorithms and privacy issues in
large-scale networks. Currently, she is investigating
massive call detail record (CDR) data and large-scale
graphs, like online social networks, to extract and
combine valuable information from heterogeneous
data sources. Ultimately, her research aims to design
private solutions to access and analyze users’ sensitive
information while preserving their privacy.

TOMMASO CUCINOTTA is a member of technical staff
at Bell Labs in Dublin, Ireland. He has a
computer engineering degree from the
University of Pisa, as well as a Ph.D. in
computer engineering from the Scuola
Superiore Sant’Anna of Pisa, where he

spent more than 10 years researching topics including
computer security, smartcard-based authentication,

DOI: 10.1002/bltj Bell Labs Technical Journal 197

soft real time scheduling, embedded systems, resource
management, general purpose operating systems, real
time virtualization and cloud computing. He has
published several scientifi c papers on the topics above
and serves as reviewer for several international
journals, conferences, and workshops in his areas of
expertise. ◆

