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Abstract

A computer simulation has to be fast to be helpful, if it is em-
ployed to study the behavior of a multicomponent dynamic system.
This paper discusses modeling concepts and algorithmic techniques
useful for creating such fast simulations. Concrete examples of sim-
ulations that range from econometric modeling to communications to
material science are used to illustrate these techniques and concepts.
The algorithmic and modeling methods discussed include event-driven
processing, “anticipating” data structures, and “lazy” evaluation, Pois-
son dispenser, parallel processing by cautious advancements and by
synchronous relaxations. The paper gives examples of how these tech-
niques and models are employed in assessing efficiency of capacity man-
agement methods in wireless and wired networks, in studies of mag-
netization, crystalline structure, and sediment formation in material
science, in studies of competition in economics.

1 Introduction

Dynamic systems with many interacting components are encountered in
areas ranging from econometric modeling to communications to material
science. Individual components and their local interactions may or may not
be complex, but their mere multiplicity often creates a complexity which
needs to be addressed.

As an example, consider the Flexchan feature, introduced in new releases
of the TDMA wireless system. According to the Flexchan method, each base
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station that serves a cell in the service area, periodically checks interference
level on different channels and dynamically rearranges the channels in the
order of the increase of the expected interference. A new service request
(a new call or a handoff request from a mobile with the call in progress) is
allocated according to an accepted strategy taking into account availabil-
ity of free channels and the segregation order. For instance, a “greedy”
strategy places the call on the unoccupied channel with the least expected
interference.

All the channel capacity of the system is potentially available to each
cell in Flexchan in contrast with Fixed allocation schemes, that are largely
in use today. The latter prespecifies a partition of capacity among the cells
in anticipation of the traffic. Under the Flexchan, cells themselves negotiate
the capacity, dynamically forming an allocation pattern in response to the
actual traffic. Thus, the Flexchan eliminates the manual planning, reduces
the operating cost and presumably increases capacity and QoS.

Does it? Will the channel segregation adapt to the traffic, or maybe
it will instead oscillate somehow, with base stations “fighting” each other
for the capacity? If it does adapt, how long would the adaptation process
take depending on algorithm parameters such as the frequency of checking
the interference by base stations? Short of actual system deployment, only
simulations can answer these questions.

To be convincing, the simulation should be dynamic with base stations
asynchronously working out their Flexchan routine while users are moving
in the service area. Many base stations should be represented in order
to demonstrate the algorithm viability; it is possible to imagine how the
algorithm would work for just a few base stations, but break down for, say,
a hundred base stations. It becomes obvious that a crucial element of this
simulation is the computing efficiency of the simulation algorithm.

This paper reviews algorithmic and programming techniques which were
used to answer the posed questions by simulation[1]. The program was
written so that, say, for about 100 base stations and 1000 active mobiles,
simulating one hour of operation requires only several hours of processing
on a single PC or workstation.

Similar algorithmic concepts and techniques for improving efficiency of
discrete event simulations recur in diverse applications such as:

- an econometric model of telephone companies, like AT&T and MCI,
fighting among themselves for the residential telephone market quotas. To
attract the customers, the players introduce various payment plans, like
“Friends and Family” or “Volume discount.” A question may be: which
policy/discount works better given the same cost for the player. The cus-
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tomers behave randomly, their response is staggered, but they tend to behave
in accordance with their individual economic interests. It was possible to
simulate such systems with more than 100,000 customers with individual-
ized connections and “habits” in calling each other during several simulated
years with a single run taking a few minutes on a PC.

- a dynamic routing in a wired network, like the long distance AT&T
network, where the use of an “anticipating” data structure allows one to
cut processing time of simulating one operating hour from a hundred hours
to under a ten hours and where further speed improvement using parallel
processing shrinks the processing time to a few minutes.

- multiparticle studies in computational physics, and material science,
such as a model of magnetization, a model of particle deposition, a study
of impurity-perturbed crystals. Here “lazy” evaluation, Poisson dispensing,
and parallel processing lead to several order of magnitude speed improve-
ments. Some simulations previously thought impossible, as they would take
years to complete under old techniques, with the new programming tech-
niques move to the category of possible ones, those that can be completed
in several hours.

This paper is organized as follows. Sections 2, 3, and 4 present techniques
and concepts for simulating multicomponent systems on a uniprocessor. The
advantages and difficulties of event-driven processing are discussed in Section
2, the balance between “lazy” and anticipatory methods of evaluation is
explained in Section 3, and a general method of event-driven simulation
which avoids, and which is faster than the event list method is introduced
in Section 4. Sections 5 and 6 present technique for simulating efficiently
large multicomponent systems on a multiprocessor. A “cautious” technique
which avoids speculative computations is discussed in Section 5. If the
latter technique is not feasible, one may resort to the synchronous relaxation
method, presented in Section 6. The lessons learned in the course of the
practical application of the discussed methods are discussed in Conclusion.

2 Time-driven vs. event-driven simulations

A time-driven description of a dynamic system involves the global clock. The
time-driven computer model keeps in memory the global state of the system
and modifies the entire state as the global time advances in finite increments.
Although time-driven models are intuitive and convenient to think of, one
should try to avoid them in simulations because of their computational in-
efficiency. Converting the model from the time-driven to an event-driven
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form, whenever such conversion is possible, is a single best improvement to
a computer simulation. That is a classical textbook recommendation. In a
general case, it is not known, though, how to do the conversion.

2.1 Time-driven one-dimensional billiards

As an example of the conversion, consider simulation of a collection of chaot-
ically colliding billiard balls. Despite its toyish appearance, the “billiards”
simulation technically is non-trivial and has serious applications.

For simplicity consider billiards in one dimension. We may imagine a
gutter bounded from both ends, which contains N absolutely hard elastic
balls of equal mass and size. The width of the gutter is just enough to
let the balls move without friction in one dimension. The gutter is placed
horizontally which excludes the effect of gravitation on the ball movements.
The gutter filled with N = 4 balls is shown at the bottom of Figure 1 which Figure 1

also presents the initial time-space trajectories of the balls for times t > 0.
The trajectories are indicated by dashed lines, they are initiated at t = 0 by
the shown positions and velocities.

To simulate the system evolution in a time-driven way, we integrate equa-
tions of motion along small time segments of duration ∆t. Thus, starting
with time 0 we advance the state to time ∆t, then to 2∆t, then to 3∆t, and
so on.

If a ball experiences no collision during the advancement interval (t, t+∆t),
then, because there is no friction, we have

x(t+∆t) = x(t) + v(t)∆t, v(t+∆t) = v(t) (2.1)

where x(t) is the one-dimensional position coordinate and v(t) is the velocity
of the ball (center) at time t.

At each step the time-driven method monitors distances between com-
ponents that might come in contact. Ball-ball collisions are detected by
monitoring distances d(i, i+ 1) between centers of balls i and i+ 1. Such a
collision occurs during time interval (t, t+∆t) if d(i, i+1) becomes smaller
that ball diameter D at time t + ∆, while d(i, i + 1) ≥ D at time t. Once
detected, the collision is processed by exchanging velocities of the balls at
time t+∆t:

vi
new = vi+1

old , vi+1
new = vi

old (2.2)

It follows, that for a single ball the algorithm detects and processes at
most one collision during a ∆t step. With a large ∆t, the algorithm may
fail to represent interdependent collisions that follow over a single ∆t step.
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Hence, ∆t determines the accuracy of the simulation; smaller ∆t higher the
accuracy.

2.2 An application: impurity perturbed crystal

A high accuracy is required in many applications of the billiards simulation,
for instance, for generating a pattern of impurity perturbed crystal. A
material scientist might be interested to know the geometry of displacements
of particles in a crystal formed of identical particles with a tiny fraction of
inserted isolated particles of a different kind, the impurity.

The mechanism of generating a displacement pattern in two dimensions,
see Figures 2 and 3, can be modeled by billiards as follow. We introduce an Figures 2,3

impurity larger particle into a perfect hexagonal crystal of circular particles
of common diameter packed inside a bounded geometric shape, say, inside
a hexagon. To fit the larger diameter circle we loosen the assembly by
simultaneously decreasing the diameters of all the circles. The decrease of
the particles matches the excess size of the impurity so that we then able to
substitute a single regular particle with the larger impurity particle without
creating particle overlaps. The impurity particle is in the center in Figures
2 and 3. We then randomly assign a velocity to each particle and let them
all uniformly increase in diameter, so that the ratios of the diameters of the
particles remain constant. “Swelling” particles chaotically move in different
directions colliding with each other thereby negotiating the limited free space
inside the bounded region until the final “jammed” state delivers the sought
pattern.

Figure 2 represents vectors of displacement of the particles from their
respective original positions in the unperturbed crystal and Figure 3 repre-
sents the particles themselves in the central square fragment of the pattern
in Figure 2. The pattern is robust. It repeats itself under different initial
conditions within a range of parameters such as a ratio of the larger particle
to the regular ones and a rate of particle expansion.

At the final phase of the expansion, when the particles are almost “jammed”
a quick sequence of interdependent collisions has a high chance to occur
within the array of 11,000 particle. The accuracy required for capturing
this interdependence is high and the ∆t required for it is small. Should the
∆t be not small enough, the simulation fails to produce the correct pattern.

Unfortunately, the accuracy does not agree with the efficiency of compu-
tations. In a typical ∆t step, if the ∆t is small, the state of most particles
is advanced according to (2.1) with no collision. Such is the case for the
∆t step shown in Figure 1. The no-collision advancements waste computing
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power: generating the pattern similar to the one shown in Figures 2 and 3
would take more than a year on a personal computer.

That is an estimate though, because the time-driven method was never
tried successfully in this example. Instead, the pattern was generated using
an event-driven method and the computations for a pattern like the one in
Figures 2 and 3 were typically completed in under 10 hours of processing on
a PC.

2.3 Event-driven billiards

The event-driven method assumes a discrete event model of the system,
wherein the system and its components change their states instantaneously
at discrete times; those changes are called the events. The state remains
constant on the intervals between the events. The trajectory of the system
is a directed acyclic event dependency graph. The nodes of it are the events,
and the links represent cause-effect relations in pairs of events.

This graph can be also viewed as a data-flow diagram. To each node-
event corresponds the event descriptor, which consists of the time of the
event and of the specification of the state change represented by the event.
If events e1, e2, ...., ek are all the immediate causes of event e, then the de-
scriptor of event e is a function of the descriptors of e1, e2, ...., ek . Generating
the descriptor of event e from the descriptors of e’s causes is processing event
e.

Figure 1 represents not only the 4-ball system trajectory but can be also
viewed as the event dependency graph corresponding to this trajectory. The
events ei, i = 1, 2, ..., are ball-ball and ball-wall collisions. The arrows from
an event to an event along a ball trajectory can be seen as cause-effect links
on the event dependency graph or as data-dependency links of the data-
flow diagram. An event descriptor here consists of: the collision time, the
positions and velocities of the involved balls immediately after the collision.

One can check, for instance, that (the descriptor of) event e5, a collision
of balls 3 and 4, is a function of (the descriptors of) event e4, a collision of
2 and 3, and e2, a bounce of 4 against the right end of the gutter. Namely,
the time component of e5 descriptor, t(e5) = t5, is computed as

t5 = t4 +
x4(t2)− x3(t4) + v4(t2) (t4 − t2)−D

v4(t2)− v3(t4)
(2.3)

where xi(t) and vi(t) are position and velocity of ball i, i = 1, 2, 3, 4, at time
t, ti = t(ei) is the time of event ei as indicated on the time axis in Figure
1, and D is the ball diameter. As claimed, the right hand-side in (2.3) is a
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function of event e2 descriptor, including t2, x4(t2), and (negative) v4(t2),
and event e4 descriptor, including t4, x3(t4), and (positive) v3(t4).

Producing the simulated history of a system under study is the goal of
a simulation. The goal is achieved by processing events along the history.
But how do we know which events to process? Neither the event descriptors
nor the topology of the event dependency graph is known in advance. The
event-driven simulation must do both construct the event dependency graph
and process the events on it. The former activity, is also referred to as event
scheduling.

The task of designing an efficient scheduling usually constitutes the main
difficulty of recasting a time-driven model into an event-driven form. A well
known mechanism of scheduling an event-driven simulation on a uniproces-
sor is a queue of events. With the queue one is able to insert future events
in the schedule, and to retrieve the next event for processing. A popular
data structure [8] for the event queue is heap with which either operation is
performed in order of logN computing operations where N is the number
of events in the queue. By contrast, a straightforward scheduling method
would need order of N operations either for retrieving or for inserting or for
both. If N = 11, 000, say, then slow down may be substantial.

It should be stressed though, that handling event queue efficiently does
not cover the entire task of efficient event-driven simulation [15]. The simula-
tionist also has to impose appropriate modeling assumptions. For example,
in the simulation of billiards, were the balls not absolutely hard, the col-
lisions would not be instantaneous. Instead of a simple velocity exchange
in (2.2), this would force a (slow) time-driven evaluation of the collisions.
Equally important for the speed of computation is the assumption of the
motion without friction. With friction, the ball motions would not be inte-
grable as simply as in (2.1).

2.4 Mobility of users in wireless simulations

The wireless simulations discussed in Section 1 are naturally of a discrete
event type, events being call arrival, termination, handoff, interference mea-
surement, adjustment of the channel segregation order. Among few excep-
tions is the users’ mobility. The users may move along curvy trajectories
with variable speeds. It is decided, however, that the simulated users move
with constant velocities along straight line segments. As in the billiards
model, this assumption leads to an event-driven processing. Validity of
the simulation results is not seriously affected because a curvy motion with
variable velocity can be approximated with a sequence of the motions of the
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considered type.
Selecting a model agreeable with the event-driven mechanism and using

an efficient event queue may still be not enough for efficiency of an event-
driven simulation. The following sections will discuss more techniques and
approaches toward the goal of a fast multicomponent simulation.

3 Anticipatory vs. “lazy” evaluation

A simulation may generate queries concerning the system state. The antic-
ipatory method can be defined as constructing answers for questions which
have not yet been asked. It can be contrasted with a “lazy” evaluation
method according to which generation of the answer is delayed until the lat-
est possible moment when the query is issued. The anticipatory evaluation
tends to be event-driven, while the lazy evaluation time-driven.

3.1 Example: an output statistics

Let us discuss the two approaches in the following simple example. In the
wireless simulation, discussed in Section 1, it is necessary to output, as a
function of time, the number of mobile users that request but do not obtain a
connection. Together with other information, this quantity is to be displayed
on the PC screen as the simulation progresses. Thus, given a time increment
∆t, for each time instance t = 0,∆t, 2∆t, . . . , the simulation is supposed to
report the number of trying users among all the users present at time t.

The lazy method is straightforward: we scan the list of users and de-
pending on whether a user is trying or non-trying at time t, increment the
corresponding quantity trying(t) by one or not. Before each scanning in-
stance t, we reset counter trying(t) to 0. This is obviously a time-driven
method.

The anticipatory method is driven by events. It does not reset or re-
compute trying at each reporting time instant. Instead, it maintains the
correct value of trying continuously by updating it appropriately at every
event which may change trying. Such events are: call arrivals to the system,
call releases from the system, and users that obtain a connection after a pe-
riod of retrials. For example, when a user arrives to the system, we would
increment trying by one if the user does not immediately get connected.

Note that both solutions “deliver” the same value of counter trying.
This facilitates the development of the simulation program. In the initial
phase, one may program a simpler lazy solution. Then an anticipatory
solution should be programmed. Both solutions should then be tried in
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representative examples, where first we compare values of the results, and
then, after the values are found identical, we compare the running times.

3.2 Space sectorization

An example of the anticipatory data structure is space sectorization. Bil-
liards simulation in dimensions two and higher share this method with wire-
less mobile simulations. The query, in the case of wireless simulations, may
be to locate all the mobiles that are close to a given point (x, y) on the
plane. Similar queries exist in the billiards simulation. Let us consider the
wireless simulation case. There exists a straightforward method to locate
all mobiles which are within a given distance r from the point (x, y). In
this method, we would find the position (xm, ym) of each mobile, compute
the distance rm from (xm, ym) to (x, y), and then select those m for which
rm < r. In practice, r is small and there are just a few such m, but to find
them we would have to scan all the mobiles.

A structure that helps reduce the computation cost is partitioning the
simulation area into smaller sectors. The geometry of a sector may be dif-
ferent, a usual choice is a square. Given such a square j, there is a set of
all the mobiles {m}j that are inside it. Knowing positions of all the mo-
biles, we can, of course, find the set {m}j using a total scan of all mobiles
when a query is offered. In the anticipatory method, we maintain the sets
{m}j continuously independently of queries. This entails updating two such
sets each time a mobile crosses a demarcation line between the squares; the
crossing becomes an extra event to process.

Having invested in this anticipatory structure, we now find the mobiles
r-close to a point (x, y) in a different manner. Namely, we first determine
the square j0 in which (x, y) is located, then scan nearby squares j that
intersect with any circle of radius r with center anywhere in j0, and then
check only the mobiles that belong to sets {m}j .

3.3 The balance between anticipatory and lazy computations

The same two query evaluation approaches, anticipatory and lazy, can be
considered with respect to Web search engines. For many query types,
when a search request is submitted on a Web search service, a lazy on line

evaluation of the request is non-feasible. Too few users would be willing
to wait for the server to scan the World Wide Web. The global scanning
is being performed but off line. Mechanical and manual methods are used
to create structures which contain answers to various anticipated questions
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and mechanisms exist to quickly retrieve these answers concentrated at a
few data base sites of the search server.

The “economics” of a Web server query evaluation and that in a simu-
lation are different, though. In the former, high computational and manual
labor costs are justifiable by the need of short response time. In the latter,
an anticipatory method can be only justified if total computing effort when
using the method decreases.

With a lazy evaluation, while there may be high cost of retrieving the
answer when needed, no resource is spent for anticipating the question. With
an anticipatory evaluation, the cost of retrieving the answer may be smaller,
but possibly a high investment may be needed for anticipating the question.
Anticipatory mechanisms should be advanced only as far as savings on the
retrieving end of the balance are higher than spendings on the investing end.

3.4 Example: a circuit switched network

The situation may be illustrated with the following example [3] of simulating
a circuit-switched wired network, like the AT&T telephone network. In the
model, the network consists of N nodes that represent the switches and
L = N(N − 1)/2 links that connect the nodes. A link consists of a fixed
number (possibly zero) of trunks. The model assumes, that if a call is to be
carried along some path in the network, then one trunk from each link on
the path must be allocated for the exclusive use of the call. The model also
assumes that calls are randomly generated between node pairs (n1, n2) and
that a routing policy decides whether to block (reject) such a call or carry
it on some path between n1 and n2. The simulation is used to assess the
quality of different routing policies in terms of the blocking produced for
given traffic loads.

Consider the Least Busy Alternative (LBA) policy and the Aggregated

Least Busy Alternative (ALBA) policy. Both policies allocate a trunk on the
link between nodes n1 and n2 if an idle trunk is available. If not, both offer
the call to a two-link path that uses an additional node ν. The intermediate
node ν is called the via. In LBA policy, the overflowing call is offered to the
two-link path that has the most idle capacity. Specifically, path (n1, ν, n2)
is used if ν∗ = ν maximizes

min(idle(n1, ν), idle(ν, n2)) (3.1)

where idle(x, y) is the number of idle trunks currently on link (x, y). If no
idle capacity is available - expression (3.1) is zero for all ν - then the call is
blocked.
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The ALBA policy is a coarsening of LBA, which is less costly to imple-
ment. The overflow calls are offered to a two-link path with a minimum load

class. Load classes are defined by a fixed number of prespecified capacity
boundaries. For instance, three load classes can be defined with boundaries
0% = g0 < g1 < g2 < g3 = 100% , where say g1 =80% and g2 =90%. If on
a given link the proportion of occupied trunks is g, then the link belongs to
the load class i with gi−1 ≤ g < gi. Thus, class 1 contains the lightly loaded
links, class 2 contains the moderately loaded links, and class 3 contains the
heavily loaded links. The load class of a two-link pass is defined to be the
smaller of the load classes of the two links. An overflowing call between
n1 and n2 uses a two-link path whose load class is the minimum among all
two-link paths between this node pair. If no two-link path has sufficient idle
capacity, then the call is blocked.

The query subject to discussion here is finding the via ν when no idle
capacity exists on the direct path (n1, n2). The “lazy” method operates
exactly as the definition says: when the query is issued, it scans all possible
vias ν, for each ν computes the idle capacity (3.1) and chooses the ν which
yields the maximum to (3.1) in the case of LBA policy, or it chooses a via
with the minimum of the load class in the case of ALBA policy.

An anticipatory data structure may be suggested for the case of LBA
policy which for each node pair (n1, n2) consists of a list of vias ν sorted
decreasingly according to (3.1). Whenever a least busy via is needed, the
first via in the list is chosen which greatly decreases the computations on the
retrieving end of the balance. On the investing end of the balance, each time
a trunk is allocated or freed on any link ν1, ν2, the (N − 1)(N − 2) sorted
lists for all links (n1, n2) which can use either ν1 or ν2 as a via have to be
updated. As a result, there is no overall saving if anticipatory approach is
used for the LBA simulation.

However, for the ALBA simulation, the anticipatory approach yields a
significant improvement comparing with the lazy approach. The capacity
of a link is usually measured in hundreds if not thousands of trunks while
there are typically only a few, say three load classes. Thus, when a link
trunk occupancy changes, the link rarely changes its load class. If the load
class does not change, no expensive update of sorted class-via lists is needed.

In the ALBA case, both lazy and anticipatory methods were tried. While
a useful lazy simulation run of the network took more than 100 hours, the
corresponding anticipatory simulation run took 3 to 10 hours on the same
uniprocessor.
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3.5 Anticipatory and lazy billiards simulations

We now examine event-driven billiards simulations with respect to the topic
of anticipatory vs. lazy evaluation. The query concerning a ball location
is better accommodated by the anticipatory sectoring as discussed above.
Another basic query in the billiards simulation is: which collision has to
be processed next? In the anticipatory method of D. Rapaport [14], the
data structure, which accommodates the answer, includes for each ball a
set of all future events which can not be easily excluded. (Future collisions
with distant balls in dimensions two and higher can be excluded using the
sectoring method.) The minimum time event in this list is the best candidate
event to next occur with the given ball. The minimum time event among
all the best candidates is the query answer. This event is to be processed
next.

Maintaining such lists is an easy task for the gutter billiards, as there
are only two candidates for a collision with any ball i, its left neighbor i− 1
and its right neighbor i+ 1. (The neighbor may be a gutter end for balls 1
and N .)

In higher dimensions, the task of maintaining the lists becomes more
involved, since many balls can not be excluded beforehand as candidates
for future collisions of a ball, even if using the sectoring method. These
anticipatory lists may include large and variable number of candidates and
they have to be examined and updated for each event processed.

On the positive side, method [14] handles easily the collision preemption

which occurs as follows. Suppose the algorithm schedules a collision of two
balls, say A and B, for some future time tAB and this collision becomes the
best candidate event to occur for each ball A and B. However, before the
processing reaches time tAB, a third ball, say C, intercepts ball A with a
collision scheduled to occur at time tAC so that tAC < tAB . Now, of course,
the collision of A with C becomes the best candidate for A. What should
become the new best candidate for ball B ? The answer is ready, anticipated
in the list of ball B: the previously rated next-best candidate event for ball
B is upgraded in status to become the best candidate.

This anticipatory event-driven algorithm can be contrasted with the
method [13], which also presents an event-driven, but “lazy” simulation
algorithm for billiards. Here only one future event is kept in each individ-
ual ball list. Maintaining this structure is easy: when a better candidate
emerges, it replaces the old one, which is simply discarded.

However, we should reexamine for the “lazy” method the described above
collision preemption situation with balls A,B, and C. What will be the new
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candidate event for ball B ? The solution [13] introduces a new event type on
a ball trajectory, an “advancement” event. When processing such an event,
the ball is advanced to the new position without changing its velocity. Thus,
when the collision between A and B, which was scheduled for time tAB, is
preempted by an earlier collision between A and C, the new candidate event
for ball B is such an advancement to the former collision site with ball A.
The time of the advancement event is tAB , which is the time of the previously
scheduled and then discarded collision of A and B. This is similar to the
time-driven ∆t advancement in (2.1); the lazy method [13] can be viewed as
a fall back to a time-driven mechanism. However, the lazy method proved
to be not slower than the anticipatory method, while the overall algorithm
is simpler.

4 Poisson dispenser

4.1 A model of telephone providers competition

Consider in more detail mentioned in Section 1 econometric model [10] of two
competing telephone providers, name them company 1 and company 2 (the
model generalizes easily to M > 2 providers). The model also includes N
telephone customers. At any time instant t each customer subscribes either
to company 1 or to company 2. Let si(t) denote the subscription status
of customer i, i = 1, ...N , at time t, so si(t) = 1 or si(t) = 2. Potential
bill amounts Bki = Bki(t) can be computed for each customer i if being
a subscriber to company k, k = 1, 2. That is, the service would cost Bki

dollars per month to customer i if si = k.
For example, to compute Bki under the MCI’s “Friends and Family”

plan, we add up the minutes-per-month customer i calls all his/her calling
parties who subscribe to the same provider (here the MCI), and multiply this
by the plan discount price. Then we add the minutes-per-month customer
i calls the calling parties who subscribe to the other provider, multiplied by
the larger regular price.

According to this model, a tendency to switch the provider originates
in comparing alternative bills: if B1i < B2i then customer i wants to be
served by provider 1, and if B1i > B2i, then by provider 2. A customer
who subscribes to one provider but wants to be served by the other one is
subject to a “pull” to the opposite provider. The intensity of the pull toward
provider 1 for customer i who is currently with provider 2 in case B1i < B2i

is expressed by the rate ri = f(B2i −B1i) where f() is an explicitly defined
monotonically increasing function. If such customer i is with provider 2 at
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time t, then during a small time interval (t, t+∆t), customer i tosses a coin
and switches to provider 1 with probability ri∆t. If the switch attempt is
not successful, the switch is similarly reattempted during the next interval
(t + ∆t, t + 2∆t), then next interval and so on. A similarly defined “pull”
toward company 2 affects a customer i who is currently served by but is not
happy with company 1. The switch attempts are statistically independent
of each other for different customers within the same ∆t interval and they
do not depend on the system state before time t.

The model assumes an individual calling pattern for each customer i; the
pattern is defined by specifying minutes-per-month vij customer i calls each
“friend” j of his/her. The calling habits of the customers are stationary,
that is, the calling volume matrix {vij |1 ≤ i, j ≤ N} is independent of
time. The parameters of the providers’ plans, e.g., prices, are also time-
independent. (These assumptions can be relaxed.) Despite the stationarity,
Bki and the strength ri of the pull may change with time, Bki = Bki(t),
ri = ri(t). This is so, because in plans like “Friends and Family” when
your call-destination “friend” switches the allegiance, it affects your bill. You
become more susceptible to switching to the same provider if your “friend”
has done so, and that is what plans like “Friends and Family” count upon.

4.2 Methods of simulating telephone providers competition

An obvious method of simulating the outlined model is time-driven, it pro-
ceeds exactly as the model states. Time is increased in small ∆t steps. At
each step each customer who is not satisfied with the provider randomly
attempts to switch. Then based on the new assignments si, new Bki and
new rates ri are computed to be valid for the next ∆t step.

Now we describe an alternative event-driven method of simulating this
model. The method is based on the observation that the sequence of times of
switching allegiance for each customer forms a Poisson process with the rate
ri which varies in time, ri = ri(t). Note that a stationary Poisson process
(that with a constant arrival rate r = const) can be simulated as a sequence
of arrival times t0 < t1 < t2... with independent distributed exponentially
with mean 1/r interarrival times. That is, given arrival tm, to sample tm+1

one draws an independent sample q of a random value uniformly distributed
in 0 < q < 1, and then one computes tm+1 = tm −

log
e
(q)

r
.

The Poisson property is preserved when several arrival processes are
aggregated into a single arrival process. Say, we have N Poisson arrival
processes and ith process has arrival rate ri(t), i = 1, ...N . The aggregate
process is defined as the one that has an arrival when any component process
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does. So defined, the aggregate is also a Poisson process. The arrival rate
of the aggregate is R(t) =

∑N
i=1 ri(t).

One way of arranging an event-driven simulation of the competition be-
tween the telephone providers is as follows. A next anticipated switch event
is associated with each of the N customers. The event time is generated by
sampling the exponential distribution with the current rate of “pull” dis-
cussed above. The case of rate 0 is reserved for customers who are satisfied
with the provider. Such a customer does not wish to switch and the next
switch time is set to infinity. The event queue is arranged as usual. Process-
ing each customer switch modifies some rates ri. This, in turn, modifies the
time remaining to switch in the events scheduled for the affected customers;
sometimes it may reduce the rate to 0 which would postpone the switch
event to the infinite future.

Having the Poisson property preserved under the aggregation, the event-
driven simulation of this model can be arranged in a different way without
presampling and then updating future switch events and without the event
queue. In the alternative method, these are replaced with the following
Poisson dispenser mechanism. A single Poisson arrival stream with rate R(t)
is generated and then is being “dispensed” among the component Poisson
streams in accordance with their partial arrival rates ri(t), larger the ri(t)
more probable is to delegate an arrival of the aggregate process to customer
i’s process.

Rate ri(t) of a component Poisson process may experience changes within
the time interval between the consecutive arrivals of the component process.
By contrast, the aggregate rate R(t) remains constant between arrivals of its
process. Hence the interarrivals of the aggregate are distributed exponen-
tially; once next event is scheduled its time never gets changed or postponed.
This simplifies and speeds up the computing. The dispenser procedure con-
sists of the cyclic repetition of the two steps specified below; the execution
begins with m = 1 and current time t1 = 0.
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DO

1. Using the current aggregate arrival rate R(tm) =
∑N

i=1 ri(tm),
sample the time increment ∆tm from the current time tm
to the next arrival of the aggregate process.

2. Select a component process i with probability pi = ri(tm)/R(tm).
Advance the current time to tm+1 = tm+∆tm and change the state
of component i. Set new arrival rate ri for component i and compute
new arrival rates rj(tm+1) for components j whose event arrival rates
may change as a result of the state change of component i.

UNTIL the simulation is complete

This procedure is formulated above for a general multicomponent system.
In the considered example, a telephone customer is a component, and the
state change of component i is switch si(tm+1) = 3−si(tm) of the telephone
provider for customer i, where map x← 3−x turns 1 into 2 and 2 into 1 as
required to effect the provider switch. Since after the switch the customer
is “happy” with the new provider, the new arrival rate in Step 2 is zero;
it may become positive again later as a result of “friends” switching. Also,
values pi, are indeed a probability distribution, as pi ≥ 0 and

∑N
i=1 pi = 1.

In a straightforward method the selection in step 2 is implemented as
follows. First, we draw an independent sample q of a random value uniformly
distributed in 0 < q < 1. Then we scan monotonically non-decreasing
sequence V0 = 0, V1 = r1(tm),... Vi =

∑i
j=1 rj(tm),... VN =

∑N
j=1 rj(tm),

fitting value Rq between consecutive terms Vi−1 ≤ Rq < Vi. This is possible,
since 0 = V0 < Rq < VN = R. The found i is index of the customer to
whom the arrival is delegated. Unfortunately, an order of N computations
is required for the scanning and this is slow for a large N .

Better methods exist. Figure 4 exemplifies the binary tree method in
which the component i is found in log2(N) steps (if N is a whole degree of
2; otherwise ⌈log2(N)⌉ steps). This method also starts with an independent
sample q of a random value uniformly distributed in 0 < q < 1. Then,
instead of a linear scan, a binary tree is traced to fit this value. Figure 4

The tracing is started from the root which is entered with θ1 = Rq. We
then steer our way down the tree in log2(N) steps. At step m + 1, having
value θm, 0 ≤ θm < r1,..j,j+1,..k, we enter node with inscription ri,..j,j+1,..k =
ri..j + rj+1,..k on it. If θm happens to be smaller than r1,..j, then we go to
the left branch r1,..j producing θm+1 = θm. If r1,..j ≤ θm < ri,..j,j+1,..k, then
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we go to the right branch rj+1,..k producing θm+1 = θm − r1,...j.
To maintain current the weights on the tree, each time a rate ri changes,

the contents of log2(N) + 1 nodes is updated. The update begins with the
bottom node i, continues up, and terminates at the root.

A useful simulation run is the switching history of several thousand cus-
tomers during a few simulated years. A time-driven version takes several
computing hours to complete the run. The corresponding event-driven ver-
sion with a Poisson dispenser implemented using the binary tree, takes sev-
eral seconds. The latter version allows one to easily simulate markets of a
much larger size while keeping the running time bearable. For example the
behavior of a 100,000-customer market during several simulated years can
be simulated in less than 2 minutes.

4.3 Ising spin simulations

Another application for the dispenser technique, is an Ising spin model [6]
[2] in computational physics. As a computational mechanism, the Ising spin
simulation is very similar to the econometric model of competition between
the telephone providers which has been just discussed. N ferromagnetic
particles are in place of N telephone customers. An external magnetic field
pulling the particles so that they would align in the field’s direction plays
the role of the economic incentive for customers to “align” their allegiance
to the provider which gives best saving. And the additional local magnetic
field around a particle when its neighbors have already aligned is analogous
to the additional incentive for a customer to switch the provider when the
customer’s calling parties have done so.

Specifically, the magnetic state called spin of each particle i, takes on
two values, si(t) = 1 or si(t) = −1. Depending on the current spins sj(t)
of the near-neighbors j of particle i, pulls to flip si(t) = 1 to −1 and to flip
si(t) = −1 to 1 are defined. The dependence involves external field direction
and intensity. (The form of this dependence is not essential for the present
discussion.) Similarly to the model discussed before, the flip mechanism is
probabilistic. Simulation of the dynamics of Ising spins can thus be arranged
using the efficient binary tree Poisson dispenser mechanism discussed above.
In this method flipping one spin takes log2(N) computations.

One feature in the Ising model is different from the telephone competi-
tion model though. The Ising particles are arranged in a regular fashion.
For example, they are placed in vertices of a two-dimensional square lattice
where each particle has four near-neighbors: at the North, East, South, and
West. By contrast, the calling volume matrix vij which defines calling par-
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ties of a customer is not assumed to be regular. Because of the regularity
in the Ising model, for any particle, there is only a small number of possible
combinations of neighboring particle states. Let us count these combina-
tions, say, for a planar square grid arrangement of the particles. Each of
the North, East, South, and West spin can take on 2 values, which yields 16
combinations. The particle itself can be in the two spin states. Hence there
are at most 32 different combinations each of which may define a different
pull-to-flip rate. Therefore there are at most 32 different rates and this finite
set is the same for all N particles. (Examining the form in which the rate
depends on the combination, this set further reduces to only 10 different
rates [2].) Thus, each of the N leaves in the dispenser tree contains one of a
small number of possible values. The finiteness allows one [2] to improve the
Poisson dispenser algorithm so that delegating one arrival of the aggregate
process to a component process takes a constant amount of computations,
instead of log2(N) computations.

5 Simulating sequential random update in parallel

Sequential random update is a general mechanism for modeling evolution
of a multicomponent dynamic system. In this model, we consider a system
with N components, the state of the system is composed of states si of its
components, The system state changes at discrete instances m = 1, 2, ....
according to the following cyclic procedure.

DO

1. Select a component i randomly and uniformly in the range
1 ≤ i ≤ N .

2. Change the state si of the selected component. The new state sm+1
i

is a function of the old state smi and perhaps the states of some other
components smj .

3. Increment m by 1.

UNTIL enough cycles are processed

Both the Ising spin model and the model of competition between telephone
providers discussed in Section 4 fit the sequential random update scheme, if
two transformations are made: 1) uniformizing the event arrival rates among
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the system components, 2) abandoning the continuous time and retaining
only the update counter m.

The latter transformation is obvious. Let us explain the former one.
We choose an upper bound r∗ on the event arrival rates ri(t) among the
components. This can be easily done in the Ising model: r∗ is the largest
among the finite number of possible rates ri, see the discussion in Section
4.3. In the provider competition model, the most “unhappy” customer yields
the upper bound on the switch rate.

We attribute the same rate r∗ to all components so that the components
are selected with equal probability as required in Step 1 above. Suppose
a component i at Step 1 is selected. To compensate for the smaller rate
with which the component i is being updated, we make an additional coin
toss and choose to update state si in Step 2 with probability ri/r∗. With
the complimentary probability 1 − ri/r∗ the state does not change. The
no-change of state si does not violate the format of the procedure; it is a
special case of the update when sm+1

i = smi .
The model of circuit-switched wired network discussed in Section 3 al-

most fits this scheme, if we take N(N − 1)/2 links between the switches
as components and equate the number of occupied trunks on a link with
the state of the component. If different node pairs (n1, n2) have different
call arrival rates, we uniformize the rates as in the previous two models.
The feature that does not fit the scheme is that when a call request arrives
between a node pair (n1, n2) and is placed via node ν instead of the direct
link, the state of components (n1, ν) and (ν, n2) is updated instead of the
state of the original component (n1, n2).

5.1 Ballistic particle deposition

Other instances of the sequential random update include cellular arrays and
neural nets. We will now discuss an example [12] of a ballistic particle depo-

sition. The deposition model is aimed at studying morphology of amorphous
layers growing on planar substrates, the subject of interest to material scien-
tists. In the model, spheres of equal diameters 1 are falling vertically down
toward the flat horizontal surface, see an example in Figure 5. Figure 5

The deposition process is arranged as follows. Particles are deposited
one at a time. To deposit a particle, first its center x coordinate is sampled
randomly and uniformly over the adsorbing range. The range is segment
(0,10) in Figure 5. Different particles have their x generated independently
of each other. The initial height of the center, is chosen sufficiently high
above the surface. Then the particle is falling vertically down until a contact
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occurs. For the particles that begin the process, the contact is likely to be
with the adsorbing surface. Later in the process, a falling particle is more
likely to contact a stationary one, deposited before. In either case, the first
contact instantly stops the incoming particle thus defining its z coordinate.

The ballistic deposition scheme is an instance of the random sequential
update. We split the adsorbing range into sectors of equal measure (con-
gruent segments in 2D or planar figures of equal area in 3D) and declare
sectors to be the components of the system. The particle order index m be-
comes the update order index. The state smi of component i consists of the
coordinates of those among the first m particles, that have been deposited
over sector i. That is, say in a two dimensional case, the x of those particles
centers must be in segment i.

A particle from sector i but located close to the sector’s boundary may
attach itself to a particle which was earlier deposited in sector j, j 6= i.
That is how components/sectors j may get involved in the state update of
component i in Step 2 of the sequential update scheme.

Whereas Figure 5 represents a small-scale “educational” example of de-
position in two dimensions, interesting simulations are in three dimensions
with two dimensional adsorbing range of a size larger than say 1000×1000.
Many millions if not billions of particles are supposed to be processed. Figure Figure 6

6 presents particle density as a function of both time and height z in a three
dimensional deposition of 100 million particles. Running such an experiment
on a workstation would take about a week of execution time. Can paral-
lel processing be employed to speed up the deposition and other sequential
update schemes?

5.2 Methods of parallelizing sequential random update

One idea of making the update scheme parallel may be to have a parallel
computer dedicate N processing elements (PEs) to the N components of the
system so that PEi would host component i, i = 1, 2, ...N . The components
would be updated concurrently without an organizing order. PEi would
repeatedly update the state of component i, asynchronously obtaining from
other PEs the current values of states of those components j which are
required for computing the new value of state of component i.

This proposal can be criticized from several viewpoints. The most basic
objection is that it violates the standard model of reproducible computer
execution. This entails various shortcomings. The generated trajectory of
the system may be different from that generated sequentially. Say in the
deposition example, the deposit structures generated in parallel may be
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statistically different from those generated sequentially. Moreover, the state
change trajectories resulted in different runs of the same system with the
same initial states, in general, will be different. This is very inconvenient as it
makes both studying the obtained structures and debugging the simulation
program very difficult.

Another proposal is to use N + 1 PEs. A single “master” PE would be
dedicated to dispensing the updates among the components. The N “slave”
PEs would host the N components. A “slave” would be responsible for up-
dating the state of the hosted component. Without further elaboration of
the “master-slaves” scheme, we note that it can be organized so that the
computations are reproducible and generate trajectories identical to those
in the sequential procedure. Moreover, for a small number of PEs, the pro-
cedure may even be efficient. However, it does not scale for a large number
of PEs. The sequential dispensing performed by the “master” becomes a
bottleneck for a large N .

5.3 Cautious advancement method

In the example of ballistic deposition, we now describe another method
of running the sequential random update scheme in parallel. Unlike the
“chaotic” and the “master-slaves” methods, this method possesses both de-
sirable properties: it generates a reproducible, correct simulated trajectory,
and its good performance scales to a large size systems and large number N
of PEs.

The first step of the method is a reformulation of the sequential random
update scheme in continuous time. In the old formulation the components
are updated at discrete instances m = 1, 2.... In the new formulation the
components are updated at instances t1, t2, ...tm, ... of the continuous time,
the instances constitute a Poisson process. An arbitrary positive λ is chosen
and fixed. The rate of the Poisson process is Nλ. It follows, that each of
the N component processes also has arrivals that form a Poisson process.
The component processes will be mutually independent. The rate of each
component process will be λ.

Of course, in the Ising spins simulation model and in the provider com-
petition model we have the Poisson processes to start with. We can reuse
them with their original rates for the purpose of rendering the models in
parallel. However, in the deposition model, the Poisson process is an addi-
tional structure, introduced only for the purpose of running the model in
parallel.

In the Poisson dispenser method discussed in Section 4, we aggregated ar-
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rivals of individual components into a single stream which was to be sampled
by the sequential computer. Here we do the opposite, namely, disaggregate
the summary Poisson arrival stream into the independent streams of the
components and let each component i stream be sampled by a separate PEi

which would be also responsible for maintaining state si of component i.
Let ti denote the Poisson clock maintained by PEi. That is, changes of

state si occur at time instances ti1, t
i
2, ..... In the beginning of simulation each

PEi sets its Poisson clock ti to 0 and has si assume its initial value. Then
each PEi asynchronously from other PEs executes the following procedure,
which can be called “cautious advancements.”

DO

1. Sample next arrival ti of the Poisson process with rate λ.

2. If changing state si at time ti requires the values sj of states of other
components j, then wait until each such component j reaches time
tj so that it will become tj ≥ ti.

3. Change the state si of the hosted components as required, possibly
using current values of states sj of other components j.

UNTIL the simulation of component i is completed

The PEs may execute this procedure with no other synchronization than
that in the wait statement in Step 2, which is supposed to assure the “cau-
tious advancement” of local times ti. Because of the asynchrony, it might be
not obvious that the procedure is correctly defined, let alone works correctly.
For example, if concurrently with PEi updating si and using state values sj,
PEj is changing sj, is the state update in Step 3 well defined?

It was shown [11] that the cautious advancement scheme is correctly de-
fined, works and is correct. Specifically, with probability 1, during an update
of state si, other states sj, the values of which are used in the si update, are
not themselves being changed. Cautious advancement is deadlock-free: no
PE waits forever in Step 2. The sequence of updates obtained by merging
the sequences of component updates generated by each PE is statistically
identical to the sequence generated by the sequential procedure.

Reproducibility also takes place: if the cautious advancement procedure
is executed twice with the same initial settings, including the same seeds of
pseudorandom number generators, used for sampling Poisson arrivals, then
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the two resulting sequences of state updates will be identical with probability
1. This is despite that execution timings in different runs may be different.

To get insight into the behavior of the cautious advancements, consider
a simple example presented in Figure 7. Time lines of 10 components of a Figure 7

simulated model are depicted. For concreteness, we assume that the model
represents the deposition of unit diameter circular particles over the segment
of length 10 as in Figure 5. In the latter case, the substrate segment (0,10)
is divided into 10 smaller segments: [0,1),[1,2),...[9,10). Segment [i− 1, i) is
component i and it is hosted by PEi.

Dots on the time lines mark the Poisson arrivals. At each arrival to
segment [i− 1, i), a particle with coordinate x, i − 1 ≤ x < i, is deposited.
Given that both the particle diameter and component segment length are
unity, to know the landing height of the particle, there is no need to know
positions of particles previously deposited over segments that are more than
one component-segment away. However, a caution is exercised with respect
to the immediate left and right neighbors of segment [i − 1, i). PEi only
deposits a particle at time ti if its two neighbors advanced their simulated
times to reach or exceed ti.

The immediate left neighbor is segment [i − 2, i − 1), unless i = 1. The
immediate right neighbor is segment [i, i+1), unless i = N . Points 0 and 10
representing the same point, the immediate left neighbor of component 1 is
component N , whose immediate right neighbor is component 1. To be able
to relate the arrival times for neighbors 1 and N , the time line of component
1 is drawn twice.

Although no additional synchronization is necessary for correctness and
efficiency of the general cautious advancement procedure, it would help in
understanding the procedure of deposition, if we assume that it is executed
in lockstep. That is, no PE executes Step 2, before Step 1 is completed by
all the PEs that are non-waiting at Step 2 of a preceding cycle. Then, in
Step 2, all PEs check the simulated times achieved by their neighbors. As
a result, the set of all PEs splits into those able to proceed further, and the
rest which must wait. The non-waiting PEs begin Step 3 only after all PEs
have finished the checking in Step 2. Finally, the new cycle by the non-
waiting PEs begins not earlier, than all the non-waiting PEs have updated
their state, i.e., deposited a particle.

The lockstep execution enables us to say at which cycle each state update
occurs, that is, each particle gets deposited. In the situation of Figure 7,
PE1, PE6, and PE9 are lucky to process an event at cycle 1, while the rest
of PEs are waiting. Values t1, t6, and t9 get advanced to the second arrival
time and as a result PE2, PE5, PE7, and PE10 can process their events at
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cycle 2. Values t2, t5, t7, and t10 get advanced to the second arrival time and
as a result PE6 is lucky again and processes its second event.

In Figure 7, the cycle-per-event assignment is followed up to cycle 10. As
an exercise, the reader may continue the task for the following cycles. The
computational efficiency is determined by the fraction of non-waiting PEs at
each cycle. This fraction is close to 25% on average in the example shown.
Looking at the picture it seems likely that the fraction remains bounded
from below and separated from zero when the size of the system gets larger
and number of PEs increases proportionally. Mathematical studies [5] of
this assertion confirm it in a general case. This means scalability of the par-
allel simulation performed by the cautious advancement mechanism. Using
additional methods [12], in particular, allowing one PE to hold a larger sec-
tor or segment, the efficiency can be substantially increased, e.g., from 25%
to 60% and higher. The mentioned above 100 million particle deposition
experiment was run on a Maspar MP-1216 computer with 16,384 PEs. The
run took 620 seconds (instead of a week on a workstation).

It becomes clear from the deposition example, that the efficiency of the
cautious advancement parallel method for sequential random update de-
pends on the topology of the connections among the components. The
sparse fixed connections and a large diameter of the connection graph in-
crease the efficiency. A small-diameter graph with all-to-all connections or
close to such makes the PEs to be too cautious; too few of them would be
non-waiting. In the worst case only one PE dares to advance the local time
during a cycle while all the other PEs are cautiously waiting.

That is the case in the circuit-switched network simulation, where node
pairs (n1, n2) are close to each other in the sense of network connectivity.
Even if we somehow resolved the difficulty that this model does not com-
pletely fit the random sequential update model as discussed in the beginning
of the section, its parallel execution by the described method would not be
efficient. However, the actual event dependency along the executional path is
rather sparse which presents an opportunity for parallelism. Unfortunately,
this parallelism is not extracted by the cautious advancement method, be-
cause the method requires a variable event dependency graph to be upper
bounded by the fixed component connectivity graph.

Ising model and the phone provider competition model have a sparse
component connectivity, but they still may fail to produce an efficient sim-
ulation using the described technique. This is because, for example in the
Ising model, among the parameters the spin flip rate depends on is the
temperature [6], and a low temperature causes the ratio between a particle
update rate and its upper bound to be large. Even though a high enough
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fraction of PEs do not wait with processing their events, most of the pro-
cessed events are trivial time advancements without a flip. This ruins the
efficiency of the parallel execution in low temperature regimes.

A successful use of the cautious advancement technique and its further
developments for an Ising model at a non-very-low temperature has been
demonstrated [9] with the model running on 400 PEs of a parallel super-
computer T3E and yielding a speedup of 260. Another example is a wireless
simulation [4] where the calls are dynamically arriving at random positions
in the service area according to a fixed distribution and the users are not
moving during the calls. With such assumptions it is possible to arrange a
variant of efficient cautious advancement parallel processing.

Next section discusses an alternative method of parallel execution. It
aims to extract parallelism as it emerges during the execution rather than
relying on a worst case estimate given by the connectivity graph. Also it
needs no uniformization of the event arrival rates.

6 Synchronous relaxation

As in Section 5, we consider a discrete event simulation of a dynamic sys-
tem with N components. The simulation is to be performed on a parallel
computer with N processing elements. As before, the procedure is to give
each PE a component to host, and have the PE produce the state change
history of that component. The method to do so will be different from the
one discussed in Section 5. Unlike the previous method in which the event
processing is final, the present method involves speculative computations
wherein an event can be processed and then later rejected. The procedure
was called synchronous relaxation[3].

In this procedure, each PE keeps track of the simulated time before which
no event is to be rejected in the course of further processing; this quantity is
called committed time. The PEs increase the committed time in lockstep, its
value is common to all PEs. Each step consists of several iterations. At each
iteration, while the committed time value does not change, each PE produces
a speculative state change trajectory of the component it hosts beyond the
committed time. The PE extends the trajectory until its local time reaches
the committed time plus ∆t, where ∆t is the step size of committed time
increases. Unlike the ∆t of a time-driven simulation discussed in Section 2,
here ∆t does not define the accuracy of simulation and may be not small.

Since components are, in general, connected, to produce a correct tra-
jectory of its component, a PE needs to know the correct histories of other
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components. But they are not known, because other PEs are in the same
quandary. The mechanism of generating the correct trajectories is by iter-
ations. During the first iteration, each PE makes the simplest assumption
about the trajectories of the other components, for example, that the other
trajectories are empty of events, i.e., states do not change. This will enable
the PE to produce the hosted component trajectory.

After every PE generates the speculative trajectory for additional ∆t
units, they compare the trajectories. This comparison phase is started only
after all PEs have generated the trajectories. As a rule, a PE will detect
inconsistencies between the assumed and actually generated trajectories of
other components. If so, PEs perform more iterations.

During subsequent iterations, if a PE needs to know the trajectory of a
component hosted by another PE, it uses the trajectory generated in the last
iteration. The goal of producing correct trajectories at a step is achieved if no
PE detects any inconsistencies between the assumed and actually generated
trajectories of other PEs. Once this happens, all PEs increase committed
time by ∆t and continue.

The synchronous relaxation parallel algorithm [3], used on a Maspar
computer with 16,384 PEs, cuts the running time of simulating a circuit-
switched wired network to a few minutes (from several hours in the best
sequential implementation on a fast workstation).

Naturally, the efficiency of the synchronous relaxation method relies on
the convergence to be achieved at each step in a small number of iterations.
To assess the number of iterations we examine the event dependency graph.
For the event chains like the one in Figure 8 there will be many iterations.
Figure 8 depicts an artificially difficult, worst case example. Such event Figures 8, 9

dependency graph may correspond to a single indivisible object which moves
in space visiting the areas hosted by different PEs. It is not feasible to make
an efficient parallel simulation in such a special example.

In Figure 9, on the other hand, an “average” example is presented. It is
obtained by randomly “sprinkling” the events-circles and possible event de-
pendency links on the time-space diagram, without a particular application
in mind. A good upper bound on the number of iterations can be supplied
by counting levels. The levels can be identified without knowing the sys-
tem partitioning into components hence no such partitioning is shown in
Figure 9. Level 0 consists of already processed events that are positioned
below the ∆t strip. Level 1 consists of those events at or above the lower
boundary of the strip, which are immediate effects of only level 0 events.
By induction, level k consists of the events at or above the lower boundary
of the strip, whose immediate causes are events at levels k − 1, k − 2, ...1.
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In addition, to qualify for being on level k, the event must have al least one
event on level k − 1 among its immediate causes.

Before the step begins, all level 0 events are correct. After all the PEs
generate their trajectories at iteration 1, all level 1 events at least will be
among the correctly settled events. It can be seen by induction that after
iteration k, all events on level k or lower are correct. Thus, the number
of levels for those events of the event dependency graph that fit within the
considered ∆t-strip is an upper bound on the number of iterations needed
for correctly determining all events for this strip.

The actual number of iterations can be smaller than this upper bound for
two reasons: 1) initial guesses of events are correct, 2) the event dependency
subgraph hosted by a PE contains a complete set of cause-effects for several
levels without need to know events in the neighboring PEs. Situation 1 is
not always negligibly rare: in the applications in which there are only two
choices for an event, reasonable initial guessing might save iterations. An
extreme case of situation 2 is completely independent subsystems hosted by
different PEs, or, for that matter, just a single PE which hosts the entire
system. In these conditions, all events are determined correctly at the first
iteration.

The question remains: How many event levels fits in the ∆t-strip on an
“average”? A conjecture can be proposed which says, that, in a “generic”
example, if N tends to infinity, the “average” number of levels increases
not faster than logN . This has been established in several applications, for
example, in the simulation of circuit-switched networks [3].

One may notice a similarity of the synchronous relaxation algorithm and
the Time Warp algorithm [7]. Indeed, both algorithms use speculative event
processing. The Time Warp procedure can be qualified as an asynchronous

relaxation. Instead of frequent synchronization, the original TW procedure
allows each PE to proceed at its own pace, without explicitly synchronizing
with other PEs. As a result of tighter synchronization, the synchronous
relaxation performs better than the TW in a worst case. The TW is known
to sometimes enter undesirable modes like rollback avalanche or cascading,
which might slow down unduly even well parallelizable simulations. Unlike
the synchronous relaxation, no mathematical guarantee of scalability of the
TW algorithm to a large N has been offered.

Whenever there is a choice between a method with speculative computa-
tions and a method without, if both methods should deliver a scalable paral-
lel simulation, the non-speculative method should be taken because specula-
tive computations always involve a heavy computing overhead. Sometimes
for the same simulation model in some regimes one can do well without
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speculative computations, while in the other regimes one can not. Such is
the Ising model example. The uniformization entails a heavy overhead only
for a low temperature and then synchronous relaxation is warranted. For
higher temperatures, the method discussed in Section 5 provides a reason-
able alternative.

7 Conclusion

There are many aspects in computer simulations, such as visualization, user
interface, convenience and efficiency of programming etc. The aspect which
comes first in simulating large dynamic systems is that of computing effi-
ciency. A lesson learned from experiences in such tasks is that computing
efficiency is determined by the properties of the underlying computational
technique whereas the choice of the best technique is not defined by the
modeling area. The same algorithmic idea may work well across diverse
applications and modeling areas. Another lesson is that no single “silver
bullet” technique for efficient simulation has been offered thus far and that
a concrete simulation model may need a combination of available techniques
to work fast. Sometimes one has to modify the model to fit a good tech-
nique. Yet in other cases very substantial improvements in computing speed
are achieved if a basic technique is modified or augmented to fit the appli-
cation, rather than being used in a fixed “prepackaged” form.
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Figure 1: Billiards in one dimension
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Figure 2: Displacement pattern of particles in a hexagonal crystal perturbed
by a larger impurity particle in the center. The assembly consists of about
11000 particles. The outlined central square is reproduced in Figure 3
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Figure 3: Particle arrangement in the central square oulined in Figure 2. The
impurity particle in the center is 20% larger that the rest. Particles have
been classified by number of contacts with neighbors according to shading:
those that have more contacts with neighbors are darker, white particles are
“rattlers” with no contacts
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r 1 = 2. 7 r 2 = 0. 8 r 3 = 0 r 4 = 2. 2 r 5 = 3. 9 r 6 = 1. 1 r 7 = 0. 3 r 8 = 1. 3

r 12 = r 1 + r 2 = 3. 5 r 34 = r 3 + r 4 = 2. 2 r 56 = r 5 + r 6 = 5 r 78 = r 7 + r 8 = 1. 6

r 1234 = r 12 + r 34 = 5. 7 r 5678 = r 56 + r 78 = 6. 6

R = r 12345678 = r 1234 + r 5678 = 12. 3

θ 1 = Rq = 9. 8

θ 2 = θ 1 − r 1234 = 4. 1

θ 3 = θ 2 = 4. 1

θ 4

θ 4 = θ 3 − r 5 = 0. 2

Figure 4: Tracing down a binary dispenser tree with N = 8 terminal nodes.
An arrival of the aggregate process is delegated to a component process in
log2(N) = 3 steps.
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Figure 5: First 100 particles deposited over a segment of length 10. Particle
1 was deposited first, then particle 2, and so on. The endpoints of the
segment are “glued” together to form a circle. Because of this, the particles
that fell close to a dashed boundary, like particle 1, are shown twice.
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Figure 6: The density of deposited particles as a function of height and
deposition time. The height, measured as z − 1/2, is changing along the
lower front horizontal edge of the box, the time is changing along the lower
left horizontal edge. The rear facet of the box is the plane of zero time. The
density is changing vertically.

35



t

t = 0

PE 1

1

9

PE 1

1

9

PE 2

2

7
10

PE 3

6

PE 4

5

7

PE 5

2
4

6

8

PE 6

1
3

10

PE 7

2
4

9

PE 8

5
7
8

PE 9

1
6

PE 10

2
7
8

10
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a sequential random update, e.g., the particle deposition as in Figure 5. Dots
mark the state update instants, e.g., instants when particles are deposited.
The indices near the dots indicate the cycles when the updates occur
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Figure 8: An event dependency graph which makes inefficient a parallel
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