
An Intelligent Tutor for
Teaching Software
Design Patterns
LUIS BERDUN,1 ANALIA AMANDI,1,2 MARCELO CAMPO1,2

1ISISTAN Research Institute, Faculty of Sciences, UNICEN University, Campus Universitario, B7001BBO Tandil,

Buenos Aires, Argentina

2CONICET, Argentina

Received 15 April 2011; accepted 6 October 2011

ABSTRACT: How to teach students to design in the classroom? When is experience crucial to do design? In

particular, how to teach design patterns to students who are beginning to know the importance of a good design?

Experience is essential to understand and apply patterns in an effective way. Generally, novice users are not

good at working in real experiences while they are good at learning new techniques and methods for designing.

In this work, we show the results of teaching patterns using an artificial intelligent assistant that helps novice

developers during the design process. Our assistant is an interface agent that observes novice users working, and

when it detects that a design pattern can be applied, it makes a suggestion justifying its opinion. Thus, students

understand when and where a pattern could be applied. � 2011 Wiley Periodicals, Inc. Comput Appl Eng Educ

22:583–592, 2014; View this article online at wileyonlinelibrary.com/journal/cae; DOI 10.1002/cae.20582

Keywords: intelligent agents; teaching design patterns; intelligent tutor

INTRODUCTION

Teaching design patterns is a challenging task. Not only it is

necessary to communicate the solution structure offered by a

design pattern, it is also essential students understand when and

where a pattern could be applied [1].

In the last few years, pattern catalogues have become a

commonplace in the development and design of applications

and frameworks. These catalogues have shown to be very useful

to capture flexible and reusable object-oriented structures, pro-

moting also a shared vocabulary for developers to talk about

object-oriented design issues. Undoubtedly, design patterns rep-

resent one of the most important contributions to design prac-

tice, but paradoxically, to understand and, what is yet more

important, apply them in a productive way require much design

experience. In other words, inexperienced designers tend to

overuse or misuse knowledge of patterns producing poor quality

designs.

Experience at teaching design patterns has revealed that

simply picking out a particular pattern from ‘the gang of four

book’ [2], or similar text, and presenting it in the well-known

format (intent, motivation, applicability, structure,. . ., known

uses) is ineffective to teach people who lack design experience

and typically cannot see the real value of a pattern. Often the

adequacy of a given pattern to solve a problem in the best way

is more a matter of common sense than knowledge of patterns

themselves. Novice designers, who are exposed to patterns for

the first time, should engage in real problems where patterns

can help in order to understand that a given solution can exist

and be applied [3]. In general, the students are often unable to

comprehend patterns from isolated examples [4].

Biggs remarks that activities that have a significant and

positive impact on learning include talking things through with

others, using and doing things in real life, and teaching others

[5]. It is well known that reading does not stimulate high-order

thinking since students remain as passive recipients of informa-

tion, then teaching patterns only by the exclusive use of tradi-

tional reading of patterns catalogues could be a problem.

Apart from learning individual patterns and the principle be-

hind them, students should learn how to understand and apply

patterns they have not seen before, how to integrate different pat-

terns and how to use this knowledge in real-life situations [6].

According to this, Goldfedder and Rising [7] highlight a

remark taken from a Personal Communication with Ralph John-

son that they proved to be right after their experience with a

beta course: ‘. . . people cannot learn patterns without trying

them out. Also, people need to find them in their own problem

domain’.

An example of this, but applied for teaching drawing-

based conceptual design skills, is the work presented in Ref. 8

Correspondence to L. Berdun (luis.berdun@isistan.unicen.edu.ar).

� 2011 Wiley Periodicals, Inc.

583



where preliminary tests show how using an education-oriented

computer application improves the capacity for spatial vision.

An approach satisfying these requirements would involve a

student solving a real problem (in a domain that he/she knows)

and a tutor making suggestions about the application of a pattern

(if any). The application of this approach, however, could be

very hard because it requires a high number of tutors and real

problems tend to be too large and complex to be implemented

within the time available in an undergraduate course. Therefore,

automated assistance complementing a CASE1 tool to help the

novice developer to understand, learn and apply design patterns

becomes a valuable help in the teaching process.

In particular, we argue that an interesting approach to ap-

proximate the previous goal is the use of interface agents [9].

We base this argument on the fact that these agents have been

designed to assist human users. Basically, the main idea is to

have a specialised entity monitoring the user’s activities, detect-

ing opportunities to help his/her work, and then, offering guid-

ance on how specific tasks should be carried out. Interface

agents have been used to assist students in other subjects such

as personalised assistance to e-learning [10], also as intelligent

tutors at different domains SQL-Tutor [11]; German Tutor [12];

a prelab tutoring system [13] to helps students to get acquainted

with laboratory instruments as well as experimental procedures

for the Strength of Materials experiment; ITSPOKE [14] in the

domain of physics problems; CIRCSIM-Tutor [15], who helps

students solve a class of problems in cardiovascular physiology

dealing with the regulation of blood pressure; and KERMIT

[16], who teaches conceptual database design using the Entity-

Relationship data model.

In the teaching of design patterns these agents are able to

help students during their design process like a personal tutor.

We envision the following: (i) a student modelling some design

problems through a CASE environment; (ii) the specification of

diagrams within the CASE; (iii) our agent, designed to recog-

nise situations where patterns can be applicable, can suggest

the pattern solution (if any) that best suits the current design

context. To enact with the above scenario, we have improved a

CASE tool with an intelligent agent called PatternAdvisor. This

agent observes the work that is being developed by a student

and suggests, according to this, which patterns could be useful

to apply. The suggestion is accompanied with information about

the pattern, their benefits and problems, and how to modify the

student’s design to apply the pattern. The suggestion always

tries to improve the user solution using a design pattern; in the

proposal the user classes to be modified are included as well as

how to modify them. In general, there may be several sugges-

tions for the same user design; this could be the same pattern

several times, but with different ways to be applied in the user

design, or different design patterns. Because all suggestions are

linked with the pattern explanation, the user may select the best

way of modifying his/her design. The suggestions include a full

explanation of the design pattern, including benefits and prob-

lems of its application.

With this assistance, the students learn how patterns can

be applied to their work. They experiment the whole process of

a pattern, from definition to instantiation, learning how the pat-

tern can help them to improve their design.

The rest of the article is organised as follows. Section 2

describes the main characteristics of our PatternAdvisor agent.

Section 3 introduces how PatternAdvisor can assist students

with respect to design patterns. Section 4 discusses some expe-

riences and experiments carried out to test the tool with stu-

dents. Finally, section 5 outlines the conclusions of the article

as well as some lines about future work.

AN OVERVIEW OF THE PatternAdvisor AGENT

The main topic of this article is the use of an intelligent tutor

for teaching patterns. To understand this we need to know how

the PatternAdvisor agent works. First we explain the PatternAd-

visor behaviour and its general operation, after that we will fo-

cus the explanation on the relation between the agent and

novice users.

The PatternAdvisor is an interface agent that collaborates

with a user using a CASE tool, through a visual interface that

allows the user to interact with the agent when it has some

suggestion to make. As mentioned, we have two different types

of users, expert developers and novice developers (our stu-

dents). PatternAdvisor assists students in relation to the design

pattern application using the knowledge obtained by the obser-

vation of expert designers and the pattern catalogue.

PatternAdvisor is provided with knowledge of pattern

catalogues represented through a Bayesian Network (BN). A

Bayesian Network is a compact, expressive representation of

uncertain relationships among variables of interest in a domain.

A BN is a directed acyclic graph that represents a probability

distribution, where nodes represent variables and arcs represent

probabilistic correlation or dependency between variables

[17]. The strengths of the dependencies are given by probability

values. For each node, a probability table specifies the probabil-

ity of each possible state of the node given each possible com-

bination of state of its parents. These tables are known as

conditional probability tables (CPT). Tables for root nodes (or

independent nodes) just contain unconditional probabilities.

This network is appropriate to represent causal relationships

among design patterns and design tasks. These relationships

have been defined from the individual analysis of each design

pattern and an analysis of the relations among patterns in the

pattern catalogue. Also, the agent’s knowledge base can be en-

hanced through the observation of the design actions that an

expert takes to incorporate design patterns into a design specifi-

cation. In this way, PatternAdvisor follows the steps involved in

the correct application of design patterns. This information is

used to update the probabilities of the theoretical BN allowing

the representation of heuristic knowledge of the application of

design patterns. In such a way that our agent follows the steps

involved in a right application of design patterns, although the

developer is not aware of this situation.

At some point in time, PatternAdvisor will have accumu-

lated enough evidence, and it is determined that some pattern(s)

may be of utility to restructure the classes in the diagram.

When doing so, the agent observes a novice developer when

he/she performs tasks such as: creation of classes and sequence

diagrams, addition/removal of classes and objects, drawing of

class relationships and message flows, edition of names, attrib-

utes or operations, among others. All these actions help to de-

termine a potential application context for pattern solutions

basing the decision on the Bayesian Network.

1Computer-aided software engineering, software used for the
automated development of systems software.

584 BERDUN, AMANDI, AND CAMPO



Figure 1 shows the lifecycle of the PatternAdvisor agent

when it is working with a novice user. Here, a developer inter-

acts with a traditional CASE application, editing different

UML2 diagrams of his/her project. Also, this figure shows the

different interfaces and dialogs displayed by the agent; the

agent colour is blue when it is monitoring the user actions and

is yellow when it has some advice to give. It is important to

point out that the agent usually does its work in an autonomous

way, although the user can still require the agent’s guidance

explicitly or ignore the agent.

The lifecycle starts when the novice user creates a new

project. The agent observes him/her while he/she is performing

tasks such as: creation of classes and sequence diagrams, addi-

tion/removal of classes and objects, drawing of class relation-

ships and message flows, edition of names, attributes or

operations, among others. These observations are used and

gathered as evidence. When the PatternAdvisor will have col-

lected enough evidence, and so it will be able to decide that

some pattern(s) may be of high utility to (re)structure the clas-

ses in the diagram.

At this point, the agent starts a conversation with the user

in order to offer advice (Advising phase in Fig. 1). As an out-

come, the user will receive a list of recommended patterns. He/

she may consult one of the patterns, prefer to get an alternative

pattern or simply turn down the suggestions and proceed with

the design on his/hers own.

If the user selects a design pattern from the list of suggested

patterns (Helping phase in Fig. 1), the agent will provide an ex-

planation for the pattern, including class and sequence diagrams,

and the needed actions to transform the current user’s design to

include the suggested pattern. Also, it is feasible for the agent to

propose more than one alternative to apply the suggested design

pattern; this is because sometimes there are different ways to

apply a given pattern. It is always the user who decides to apply

or not the changes suggested by the agent.

Figure 2 shows the conversation between the agent and

the student. In this case the conversation has been initiated by

the agent. The boxes contain the sentences said by the agent

and the arrows are labelled with the options selected by the

user. In box number 3 of Figure 2, we can appreciate how the

agent suggests a pattern and the required changes to apply this

pattern in the current work.

ASSISTIVE FEATURES

In terms of assisting novice users, the goal of assistant agents is

the identification of which patterns could improve the student’s

project. Basically, the PatternAdvisor monitors the work devel-

oped by the user and searches for evidence that suggest that

applying a pattern to improve the current design could be

Figure 1 The work phases of PatternAdvisor agent. [Color figure can be seen in the online version of this article,

available at http://wileyonlinelibrary.com/journal/cae]

2Unified Modelling Language is a standard notation for the
modelling of real-world objects as a first step in developing an
object-oriented design methodology [16].

TEACHING SOFTWARE DESIGN PATTERNS 585



useful. The agent registers each action of the user in the case

tool and transforms the actions in evidence. For example, if the

user adds a new class called aClassName, the agent registers

class(XX), where XX is the variable which represents the

new class. After that the user adds a relation of uses between

the class aClassName with itself, then the agent registers

uses(XX,XX).

The agent uses as core of the assistance process a BN. It

keeps tracks of the changes in the different available UML dia-

grams in the project, and transfers them to its BN representa-

tion. Afterwards, it calls a specific algorithm in order to infer a

list of candidate design patterns. The patterns on this list can be

actually thought of as the ‘most probable’ patterns for the actu-

al design context.

Monitoring the User

In this section, a rather simple example based on the Composite

pattern is presented with the goal of emphasising the mecha-

nisms used by the agent and not the pattern complexity. As

defined, the aim of the Composite pattern is to compose objects

in tree structures to represent part-whole hierarchies. This pat-

tern lets clients deal with individual objects and compositions

of objects uniformly [2]. This knowledge is used to guess the

user’s intentions, and give him suggestions on the application

of the pattern.

The scenario starts when a user begins to design his/her

solution to the given problem using the CASE tool. In

Figure 3a, we can appreciate the first approach developed.

These classes, relations and operations are analysed by the

agent in order to gather some evidence that suggests the

possibility of applying a pattern. The analysis of this first ap-

proach evidences that the Composite pattern could be applied

to the current design because the user shows interest in working

with a composition of objects. While the user adds classes, rela-

tions or operations, the agent can find new evidence that con-

firms or refuses its hypothesis.

In the example, the user adds several elements originating

Figure 3b. In this situation the agent maintains the first evidence

as true, and adds new evidence about the application of the

Composite pattern. This is because now it is easier to see that

the user wants to work with a composition of objects. Also, in

this case the classes Rectangle and Line represent evidence that

the user desires to treat individual objects and compositions of

objects uniformly (class Picture).

Moreover, the class diagrams are not the only way used

by the agent to discover evidence. It uses sequence diagrams as

another way to find new evidence. This kind of diagrams gives

information about the dynamicity of the design developed by

the user. Because of this, the agent can learn how the user

intends to use the classes that are present in the class diagram.

Figure 4 shows two different sequence diagrams devel-

oped by the user. These diagrams add more evidence of

the applicability of the Composite pattern. For example,

Figure 4a shows an object C (instance of class Client) sending

the message aOperation() to the object PA (instance of class

Picture) and how this object delegates some part of its behav-

iour to the object PB (instance of class Picture) using the same

method aOperation(). On the other hand, Figure 4b shows how

the functionality of an object Pa is carried out among the com-

posed functionality of several objects (simple objects or com-

posed objects).

Figure 2 Conversation between the agent and the developer.

586 BERDUN, AMANDI, AND CAMPO



Advising the User

The previous example shows how, from the work done by the

user, the agent searches evidence to make suggestions on the

possibility of applying design patterns. Likewise, it is necessary

to point out that evidence represents only subsets of the work

developed by the user. In other words, to suggest a pattern,

only the presence of evidence in some part of the user’s work is

necessary. With this mechanism the agent can suggest the appli-

cation of several patterns in different places of the design. The

latter allows the user to understand the individual pattern and

how the patterns can be composed to do a better job.

Moreover, the names assigned by the user to the classes or

methods are not used by the agent at the moment of detecting

evidence (this may sound obvious, but sometimes the names of

Figure 3 Class diagrams developed by the user using the CASE tool. [Color figure can be seen in the online

version of this article, available at http://wileyonlinelibrary.com/journal/cae]

Figure 4 Sequence diagrams developed by the user in the CASE tool. [Color figure can be seen in the online

version of this article, available at http://wileyonlinelibrary.com/journal/cae]

TEACHING SOFTWARE DESIGN PATTERNS 587



the classes can be used as evidence, for example classes named

‘single’ and ‘compose’ can evidence the composite pattern). In-

stead, the agent searches the structure of the evidence. For ex-

ample, in Figure 3b it only asks for the equivalence of the

methods, that is that the method present in the class Picture is

the same as that present in the class Rectangle and the class

Line.

Each piece of evidence is a variable of the BN and stands

for a set of Prolog rules. For instance, a Prolog-like characteri-

sation of an application context for this pattern would look

like the one shown in Figure 5. For a better understanding of

the rules that define this context, we have additionally included

the visual counterparts of these rules.

Each time a predicate evidence . . . (_,_) holds, the agent

will have a new argument for the applicability of the associated

patterns. In general, the specification of rules relies on a collec-

tion of predefined Prolog predicates, which can be checked as

the UML diagrams stored in the CASE tool.

In Figure 5 we can see the specification of two common

pieces of evidence to apply both, the Composite and Inter-

preter patterns. The first evidence in the figure is related to a

sequence diagram. In this case, we check the existence of a

method that invokes objects that are playing a particular

role. If these restrictions are fulfilled on the sequence dia-

gram, we have evidence about the application of the Compos-

ite pattern.

The second evidence is related to class structure on a spe-

cific diagram. In such a diagram, three classes with any name

are instantiated in the variables Client, Expression and Termi-

nalA. Then, we look for some relationships like a use relation-

ship between Client and Expression, an aggregation relationship

in Expression, and an aggregation or generalisation relationship

between Expression and TerminalA. Then, we control the exis-

tence of the same operation in the class Expression and the

class TerminalA. If these relationships are found, we have one

piece of evidence about the possibility of applying the Compos-

ite pattern or the Interpreter pattern. In this case, these two pat-

terns could be put forward because this class evidence is used

to detect both of them.

In this example, according to the diagrams developed by

the user, the PatternAdvisor collected enough evidence and it

suggests the Composite pattern. In this case, the agent suggests

only one pattern, but depending on the context it could suggest

more than one.

Helping Users

Finally, the agent shows how the user could improve his/her

design by applying a given pattern, in our example the Com-

posite one. The agent shows information about the pattern

(structure, intend, etc.) and the list of changes needed to apply

the recommended pattern.

Figure 5 Evidence used by the agent to detect patterns. [Color figure can be seen in the online version of this

article, available at http://wileyonlinelibrary.com/journal/cae]

588 BERDUN, AMANDI, AND CAMPO



The agent only suggests the list of changes; it does not pro-

pose the automatic transformation for two primary reasons: first,

it is necessary for the user to understand the pattern and how it

should be applied in the current design; and second, it is feasible

for the agent to suggest several alternatives to apply the pattern.

Moreover, the automatic transformation of the user’s work does

not stimulate users to learn about the suggested pattern.

Learning From the Expert User

Previously we mentioned that the notion of ‘applicability’

should be interpreted in terms of ‘a higher probability of’ rather

than ‘a definitive advice for’ the target pattern. The question is,

when should the agent make a suggestion about the applicabili-

ty of a pattern? Even if the agent can detect if a piece of evi-

dence of a pattern is true or false, the problem arises when

defining the moment it gathers enough evidence to suggest the

applicability of a pattern.

The use of a Bayesian Network allows us to work with

uncertainties. Moreover, the agent watches and learns from the

expert user with the goal of adjusting the suggestion thresholds.

As this user discards or accepts suggestions about the applica-

bility of a given pattern, it is feasible to calibrate the BN

parameters. This mechanism allows adjusting the suggestions to

the expert user criteria.

In this way, the expert user defines when the agent should

suggest a given pattern. This training is obtained by the agent

in a non-intrusive way. The agent uses the responses given by

the expert, in the dialog with the agent (e.g. Fig. 2) to calibrate

the BN parameters. With this training, the expert user could

influence the agent suggestion, putting emphasis on the deter-

mination of patterns.

Using the tool, it is possible for a different expert to cali-

brate the BN parameters changing the emphasis of the patterns

according to his/her belief. There is not collision between dif-

ferent experts because a different training re-calibrates the BN

adapting the emphasis to the new knowledge.

EXPERIENCES

We have carried out some tests to prove the impact of using the

PatternAdvisor agent in the learning of design patterns. We

evaluated the behaviour of our agent with a set of 120 System

Engineering students. As a requirement of the course Object

Oriented Programming they had to solve one exercise individu-

ally using the tool improved with the PatternAdvisor. In order

to vary the topics of the exercises we divided the students into

four groups of 30. The evaluation was made in the Computers

Labs of the Faculty.

Previous to each experiment we explained briefly Design

Patterns to the students and gave to them some examples of

their application. We made this in order to involve the students

with background knowledge about patterns. In general, the ex-

ercise was a simple OOP problem that they could solve using

previous knowledge, but the solution was a known pattern

design. With this mechanism we tried to prove the utility of

PatternAdvisor during the whole process of learning patterns.

Environment Setup

Before the experiments, we adjusted the precision of the pattern

advisor. To do this we tested the assistance in different

scenarios (around 15 classes, objects and relationships). After

that, we evaluated the agent behaviour when it was exposed

to several groups of patterns (we use scenarios with 4, 5 and

6 patterns together). This evaluation involves the possibility of

feedback with respect to the usefulness of the recommenda-

tions; at this stage we use the tool in expert mode. Table 1

shows the results for one of the evaluated scenarios. Each test

incorporates gradually expert developer’s feedback (test1 has

no feedback). The precision can be seen as the number of pat-

terns correctly detected divided by the total number of patterns

actually identified. The recall can be seen as the number of

patterns correctly classified divided by the total number of pat-

terns that should have been identified. F-Measure combines the

previous indicators and it is calculated as 2�recall�precision,

the F-measure should tend to 1 as long as the agent becomes

more proficient with its recommendations. This table shows the

evolution of the precision, recall and F-measure indicators in

the evaluated scenario.

The evaluated scenario was composed by 8 classes, 8 rela-

tions, 3 attributes and 11 methods.

Student Experiences

In general, the results were positive and the student did not feel

invaded by the agent. On the contrary, the users explicitly asked

the agent for suggestions, this was because they were expecting

for a suggestion.

During the first test, the students asked the agent for a

suggestion with only a few classes without relationships, wait-

ing for the complete solution from the agent. To minimise this

attitude we explained that the agents helped them with their

design process and did not solve problems. After this explana-

tion they understood that they had to solve the problem and

then, during this process, they could be helped by the agent.

Figure 6 shows an example of suggestion made by the

agent. The figure shows the design made by a student and how

the pattern advisor suggests a modification to his/her design.

The suggestion includes a list of possible patterns; for this ex-

ample the patterns are Bridge, Flyweight and Adapter. When

the student selects a pattern from the list, the agent shows the

options for the selection. In the figure, the student selected

the pattern Adapter and the Agent shows: (1) the context of the

pattern, with an explanation, examples, and the benefits and

problems; (2) the structure of the pattern, a class diagram and a

sequence diagram explaining the pattern; (3) the way of apply-

ing the pattern in the user design. At this stage the agent pre-

sented how to adapt the user design to include the pattern, as it

is highlighted in the figure remarks, the explanation is personal-

ised to the student design.

One of the features that the students most appreciated was

the possibility of knowing about the context of the pattern, and

examples. Table 2 shows a summary of both positive and nega-

tive issues obtained from the experiments with the students.

Table 1 Evolution of the Measures According to Expert

Developer’s Feedback

Test1 Test2 Test3

Precision 0.86 0.91 1

Recall 0.77 0.88 1

F-measure 0.74 0.92 1

TEACHING SOFTWARE DESIGN PATTERNS 589



In several cases, some students applied a pattern and

waited for a suggestion from the PatternAdvisor. This was a

mistake because the agent suggests applying a pattern to

improve the design and it does not inform the user that he/she

has applied a pattern. In the next session we discuss these

questions.

As a result from these experiments we could appreciate

different positive aspects:

� Students do not feel invaded. They do not feel PatternAd-

visor as an evaluator, and they have collaborative

behaviour.
� PatternAdvisor as an active pattern catalogue. Students

use the knowledge of PatternAdvisor to clear up their

doubts.
� Suggestion during their task. Students see how PatternAd-

visor suggests modifications to their designs; they do not

see the agent’s suggestion as an abstract one, they appre-

ciate how their design could be improved applying a pat-

tern design.
� Common language. After the evaluations the students

show a common knowledge of patterns. This difference

was notorious with other students from previous years.

They understand the context, benefits and problems of ap-

plying a pattern.

� The pattern as a proven solution to a particular problem.

This could be one of the most important achievements

when using PatternAdvisor; they understand that the pat-

tern is a solution to a particular problem and not to all

possible problems.
� In previous years, students tried to apply patterns to all

the possible scenarios and they believed that more patterns

were equivalent to better designs. Now, they understand

that a pattern could improve some aspects of their design,

but that could worsen other aspects.

CONCLUSIONS AND FUTURE WORK

In this article, we have outlined an approach to assist the novice

developer in the application and learning of design patterns.

This approach is based on an interface agent called PatternAd-

visor. It analyses class and sequence diagrams edited by the

developer in a CASE tool, and gives advice on those pattern

solutions that seem more adequate for the design under consid-

eration. This mechanism allows reducing one of the problems

of teaching patterns: the students are not passive recipients of

information; now, they are using and doing things in real life.

This last issue has a significant and positive impact on learning.

Figure 6 An example of suggestion made by the agent. [Color figure can be seen in the online version of this

article, available at http://wileyonlinelibrary.com/journal/cae]

590 BERDUN, AMANDI, AND CAMPO



Also, the students learn how to apply patterns in their own

problem domain, making it easier to understand the principle

behind the patterns.

The current version of PatternAdvisor exemplifies the pos-

sibility to facilitate teaching patterns, transforming the passive

use of a pattern catalogue into an active piece of advice. Now,

the user experiments the full lifecycle of a pattern, from prob-

lem analysis to implementation.

Perhaps, the main limitation of the approach is that

sometimes certain patterns (State or Strategy, for example)

are justified if the functionality tends to change into different

applications. This kind of knowledge depends on the applica-

tion requirements and operational environment and should

be decided by the developer; students are often inclined

to overuse patterns in their designs. Anyway, PatternAdvisor

can show the potential risks defined in the pattern

specification.

Currently we are improving the PatternAdvisor so that the

user expert can evaluate the learning of the novice users, and

how these interact with the agent. We are also working on the

development of a collaborative tool, so the teacher and the stu-

dents can work in the same environment. With the suggested

issues (see Table 2) we are improving the agent’s detection so

that it informs the users when they apply a pattern in their de-

sign. We made this because on several occasions the user did

not know information about the context and positive and nega-

tives effects of the pattern which was applied.

REFERENCES

[1] S. Sendall, Gauging the quality of examples for teaching design

patterns. Workshop on ‘‘Killer Examples’’ for Design Patterns and

Objects First. OOPSLA 2002, Conference on Object-Oriented Pro-

gramming Systems, Languages and Applications, Seattle, USA,

2002.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

patterns: Elements of reusable object-oriented software, Addison-

Wesley Professional, 1995.

[3] I. Warren, Teaching patterns and software design, Seventh Austral-

asian Computing Education Conference (ACE2005), 2005,

pp 39–49.

[4] P. Gestwicki and F. Sun, Design patterns through computer game

development, J Educ Resour Comput 8 (2008), 1–22.

[5] J. Biggs, Teaching for quality learning at university, SRHE

(Society for Research into Higher Education) & Open University

Press, Buckingham UK, 1999.

[6] S. Stuurman and G. Florijn, Experiences with teaching design

patterns, In ITiCSE ’04: Proceedings of the 9th annual SIGCSE

conference on Innovation and technology in computer science

education, 2004, pp 151–155.

[7] B. Goldfedder and L. Rising, A training experience with patterns,

Commun ACM 39 (1996), 60–64.

[8] P. Company, M. Contero, A. Piquer, N. Aleixos, J. Conesa, and F.

Naya, Educational software for teaching drawing-based conceptual

design skills, Comput Appl Eng Educ 12 (2004), 257–268.

[9] P. Maes, Agents that reduce work and information overload,

Commun ACM 37 (1994), 31–40.

[10] S. Schiaffino, P. Garcia, and A. Amandi, eTeacher: Providing

personalized assistance to e-learning students, Comput Educ 51

(2008), 1744–1754.

[11] A. Mitrovic, An intelligent SQL tutor on the web, Int J Artif Intell

Educ 13 (2003), 171–195.

[12] T. Heift and D. Nicholson, Web delivery of adaptive and interac-

tive language tutoring, Int J Artif Intell Educ 12 (2001), 310–324.

[13] C. Chen, S. Hsieh, S. Chuang, and S. Lin, A prelab tutoring

system for Strength of Materials experiment, Comput Appl Eng

Educ 12 (2004), 98–105.

[14] K. Forbes-Riley, D. Litman, and M. Rotaru, Responding to student

uncertainty during computer tutoring: A preliminary evaluation,

Proceedings of the 9th International Conference on Intelligent

Tutoring Systems (ITS), Montreal, Canada, 2008.

[15] M. Evens, S. Brandle, R. Chang, R. Freedman, M. Glass, and Y.

Lee, CIRCSIM-Tutor: An intelligent tutoring system using natural

language dialogue. Proceedings of the 12th Midwest AI and

Cognitive Science Conference (MAICS 2001), 2001, pp 16–23.

[16] P. Suraweera and C. A. Mitrovi, Kermit: A constraint-based tutor

for database modeling. Proceedings 6th International Conference

on Intelligent Tutoring Systems ITS, 2002.

[17] F. Jensen, Bayesian networks and decision graphs, Springer-

Verlag, Secaucus, NJ, 2001, ISBN: 0387952594.

Table 2 Summary of the User’s Comments.

Issue Description

þ Autonomous and non intrusive The agent only interrupts the user when it has a suggestion

þ The tool learns from the expert user With the use of the tool the suggestions are improved

þ The user does not need to know about patterns It is not necessary to have background knowledge of patterns. The suggestions and the

information provided by the agent allow users to learn about patterns and how to use

them

� It does not detect the occurrence of patterns Sometimes, the novice user applies patterns without knowing this. In this case it could

be useful to notify the user, because he can learn that the solution developed

includes a pattern

þ It can be consulted about patterns The user might consult the agent about a specific pattern. In this case, the agent is also

used as a source of information about design patterns

� Novice user evaluations The agent does not allow the expert user to know how the novice user is using the tool

and to evaluate his progress

� Multiple users The agent does not work as a distributed collaborative tool

þ Domain independence The agent monitors the actions of the user when he develops Class and Sequence

Diagrams. The problem domain is not taken into account

� It suggests patterns that may not be necessary The agent suggests a pattern according to evidence in the user’s work. Sometimes,

although there are pieces of evidence of a pattern, the user should decide whether he

applies it or not depending on the characteristics of the problem

TEACHING SOFTWARE DESIGN PATTERNS 591



BIOGRAPHIES

Luis Berdun received a PhD degree in Com-

puter Science from the Universidad Nacional

del Centro de la Provincia de Buenos Aires,

Tandil, Argentina in 2009, the Master in Sys-

tems Engineering in 2005 and the Systems

Engineer degree from the UNICEN in 2002.

Currently he is a Professor at UNICEN where

he is member of the ISISTAN research Insti-

tute. His research interests include intelligent

aided software engineering, planning algo-

rithms, Knowledge Management. More information can be found at

http://www.exa.unicen.edu.ar/�lberdun.

Analia Amandi received a PhD degree in

Computer Science from the Universidade

Federal do Rio Grande do Sul, Porto Alegre,

Brazil, in 1997 and Bachelor’s degree in infor-

matics UNL in 1990. Currently she is a Pro-

fessor at UNICEN where she leads the

ISISTAN Research Institute’s Knowledge

Management Group. She is also a research fel-

low of the CONICET. Her research interests

include personal assistants and Knowledge

Management. More information can be found at http://www.exa.unicen.

edu.ar/�amandi.

Marcelo Campo received a PhD degree in

Computer Science from the Universidade

Federal do Rio Grande do Sul, Porto Alegre,

Brazil, in 1997 and the Systems Engineer

degree from the UNICEN, in 1988. Currently

he is an Associate Professor at UNICEN and

Head of the ISISTAN Research Institute. He is

also a research fellow of the CONICET. His

research interests include intelligent aided

software engineering, Software architectures

and frameworks, agent technology and software visualization. More

information can be found at http://www.exa.unicen.edu.ar/�mcampo.

592 BERDUN, AMANDI, AND CAMPO

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION 2014


