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This paper presents an original model with methodologies that integrate in a novel way

different types of an autonomous virtual agent’s perception in a virtual environment. Our

first new approach permits the coherent management of the shared virtual environment for

the simulations of an autonomous virtual agent (AVA). Our second approach allows the

prediction or the estimation of both the orientation and the attention of an AVA in a virtual

environment. By means of a test application with a ‘virtual goalkeeper’, we demonstrate the

speed and the robustness of our technique. Copyright # 2006 John Wiley & Sons, Ltd.
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Introduction

The issue concerning the interface between the decision-

taking part and the animating part of an autonomous

virtual agent (AVA) is a challenging one. These two

parts are represented differently in a virtual environ-

ment (VE). For the purpose of visualisation and

animation, the VE is pictured by a set of geometric

objects; whereas most behavioural models use an

abstract and symbolic representation. Perception is an

important process that helps reduce the difference

between the two parts of the AVA since this enables it to

understand its environment. Gilles1 has further

observed that for a simulation of human behaviour to

be effective ‘it must include the characters’ interaction

with their environment and to do this it must simulate

the character’s perception of the environment’.

An AVA uses virtual sensors for vision, audition and

tactile to obtain a perception. The AVA has to carry out

actions of different degrees of complexity such as

evolving in its VE, interacting with it or communicating

with other AVAs. To do so, the AVAhas tomove around

or be able to seize objects based on its perception.

Limitations appear when the AVA actions require a

dynamic knowledge of the environment, necessitating a

perception system. This requirement, together with the

intrinsic complexity and cognitive constraints, charac-

terises the boundary between the AVA actions and

behaviours. The connection with reflex actions, which

require perception but not memory of what has been

perceived, takes place at this point. In a common

approach, behaviour implements its own perception

mechanism, which generates a duplication of calcu-

lations, whenever several behaviours are implied.

Contributions

In this paper, we will propose two novel methodologies:

1. The first technique integrates proprioception into a

unified perception concept for an AVA in a situated

VE. Our motivation was to reach persistency and to

obtain a cognitive map of the perceived VE.

2. The second technique integrates a perception

approach by including the faculty of prediction, for

example, the orientation of the AVA attention.

RelatedWork

Reynolds2 presented a distributed behavioural model

for flocks of birds and herds of animals. An interesting

result revealed that the ‘flocking’ behaviour was not

only improved by a limited view of the world, but also
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depended on it. Tu3 proposed a framework for

animation featuring the realistic appearance, movement

and behaviour of individual and schools of fish with a

minimal input from the animator. Their repertoire of

behaviours was reliant upon their perception of the

dynamic environment. Individual fish had motivations

as well as simple reactive behaviours.

Renault4 introduced a synthetic vision system for high-

level animation characters. The goal of this systemwas to

let the character move along a corridor whilst avoiding

objects and other synthetic characters. Noser5 extended

previous works by adding memory and learning

mechanisms. They considered the navigation feature to

be comprised of two parts: a global and a local one.

Kuffner6 proposed an ethologically inspired approach for

real-time obstacle avoidance and navigation. Again, a

character rendered the scene from its own viewpoint.

Gilles1 used a psychological approach to design a

visual algorithm. This method did not try to simulate the

image on the retina of the character or allow it to

perceive features such as colour and shape. Chopra7

introduced a framework for generating visual attention

behaviour in a simulated human agent based on

observations from psychology, human factors and

computer vision. Itti8 utilised a selective visual attention

mechanism, which could rapidly direct the eye towards

the objects of interest in the environment.

Peters9 proposed a combination of synthetic vision

modules with a memory model build on a stage theory

from the field of cognitive psychology to let a virtual

human attend to its environment. Peters10 added to their

work a system for automatic generation of bottom-up

visual attention behaviours in virtual humans. Bottom-

up attention refers to the way the environment

solicits one’s attention without regard to task-level

goals. Courty11 introduced a model to simulate visual

perception based on the detection of salient features,

corresponding to the maximum conspicuity in a static

image or in a sequence of images. Berthoz12 advanced

the following hypothesis: ‘the principle of a huge

network of specialised contracted systems, completely

decentralised but globally converging, can also be used

in an artificial system to integrate different sensorial

information and processing algorithms’.

Methodology

Unif|ed Perception

The difficulty of coherence and unity of perception

cannot be resolved with geometry or dynamics alone. It

also requires the use of central active mechanisms,

which can be adjusted for differential delays between

sensors.

Several methods have been advanced to implement

perception. Our approach proposes a newmethodology

for predictive perception inspired partly by the active

perception concepts described by Bordeux13 for Syn-

thetic Vision and Database Access. In this model, an

AVAmaintains a perception puzzle in which each piece

corresponds to a specific virtual sensor. A pipeline is

composed of filters capable of extracting relevant

information from the data supplied by the related

sensor. In the next sections, we will describe the main

ideas which have been incorporated into our artificial

life environment (ALifeE) framework.14 Our approach of a

unified perception has been integrated in our ALifeE

framework (see Figure 1). It contains virtual sensors for

vision, audition and touch as well as proprioception, active

and predictive forms of perception.

Figure 1. A schematic representation of our ALifeE frame-

work. Virtual Vision discovers the VE, constructs the different

types of Perception and updates the AVA cognitive map to

obtain a multi-perceptive mapping. Then, the control archi-

tecture uses the cognitive maps and the memory model to

interact with the learning, evolving and control processes of

the AVA (virtual human controller).
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The information comes from diverse sensorial mod-

alities and is processed by specialised regions with the

help of our ALifeE framework. This leads to an attempt at

a unified perception, resulting from the reciprocal

connections between these different regions. Moreover,

the interaction loops are a particularly effective and

quick means of sharing out the processing of infor-

mation between the various systems, since the entire

response time never exceeds that of the slowest system.

We have drawn inspiration from the approach described

by Ledoux.15

Proprioception

Proprioception is inspired by the human immune system,

which is composed of functional layers combining rapid

and archaic mechanisms of innate immunity with

slower mechanisms of acquired or adaptive immunity.

Our proprioception relies on the integration in a single

model of three components: endogenous and homeostatic

variables as well as reinforcement learning as proposed by

Bersini16 and adapted to our ALifeEframework:

1. The notion of endogenous variables relates to the

internal state of the AVA, which is affected princi-

pally by theAVAperceptions and actions. Additional

influences allow differentiation between the effects of

similar perception inputs on the resulting AVA

actions.

2. The notion of homeostatic variables describes variables

whose temporal dynamics guarantees that they stay

within pre-determined boundaries. Since exceeding

these boundaries would result in either a larger dis-

comfort of the AVA or in the death of the human

being, actions are taken to prevent these variables

from parting from the set-values.

3. To be truly autonomous, the AVA must not only be

capable of intelligent actions, but must also be self-

sustaining. The delicate problem of simultaneously

maintaining the viability of all the variables was

resolved with the implementation of a reinforcement

learning mechanism, namely Q-Learning Sutton.17

This provided a sequence of actions to keep the

AVA viable despite the strong constraints exerted

by the VE and the AVAs own endogenous variability.

Active Perception

In the classical approach, each mode of behaviour is

implemented with its own perception mechanism. We

have improved the method proposed by Bordeux13 by

adding the sensorial modalities of vision, audition and

touch. The AVA maintains a set of perception pipelines,

each one corresponding to a specific virtual sensor. A

pipeline is composed of self-coordinating filters or

AgentFilters, capable of extracting relevant information

from the data provided by the matching sensor (see

example in Figure 2 for a virtual vision sensor).

Perception becomes active once the information has

been acquired, filtered and simplified by the different

virtual sensors. It is then integrated in our ALifeE

framework (see Figure 1). This perception system can

be usedwith the database of any virtual sensor suited to a

Figure 2. Example of a perception pipeline for a virtual vision sensor.
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list of perceived sound objects or events (e.g. collisions

detection).

Active perception provides the framework necessary

for the perception of the AVA behaviour and prepares

for a unified perception. For example, the auditory

location of an object can be predicted from its visual

location through a transformation of eye-centred

coordinates to head-centred ones (see Figure 3).

Predictive Perception

An important notion in the AVA perception is the

faculty of predicting. Being one of the main activities of

the human brain, it naturally plays a fundamental role in

active perception. It gives, for instance, the AVA the

possibility to direct its look and attention to a sound

object.

Our predictive perception model is partly based on the

mathematical theory of the observer. Algorithms are

used to predict the internal state of a system, generally

non-linear, from partial and often external measure-

ments. An observer, a software sensor, is typically

composed of a system simulation using an internal,

perhaps approximate model, which is guided and

corrected by the measurements taken on the system.

In active perception, and under certain circumstances,

the observer also permits the selection or the combi-

nation of the measurements. Like in the nervous system,

it is most useful in improving the estimate of the system

state at any given moment. We have drawn inspiration

from the functioning of the human eye.

Realisation

Integration of Proprioception

Because of the presence of endogenous variables in the

AVA architecture, its behaviour is not simply influenced

by its perception Bersini.16 These variables can be

associated with internal mental or emotional states and

reactions to external stimuli. They should not be

confused with another type of internal variables (form

of short memory) which allow the AVA to decide its

actions on the basis of not only its current but also past

perceptions and actions. These endogenous variables

learn to obey homeostatic constraints such as staying

within the pre-determined boundaries of a viabilityzone

(see Figure 4).

Figure 3. Multi-Sensory Integration. (1) Virtual World—extraction of the information from the VE, voxelization and insertion

into the cognitive map; (2) Virtual Vision—extraction of the information from the VE seen by the AVA in coordination with the

perception and insertion into the cognitive map and visual memory; (3) Virtual Audition—extraction of the information from the

sound environment by the AVA in coordination with the perception and insertion into the cognitive map; (4) Virtual Touch—

extraction of the information from the tactile environment seen by the AVA in coordination with the perception and insertion into

the cognitive map.
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Propioception provides the endogenous parameters

necessary to ensure that the predictive perception

functions well:

1. Attention Factor (Af): settles the compromise between

an AVAmainly analysing the VE (real-time motion is

practically impossible) and an AVA acting blindly

(going through objects).

2. Distance Factor (Df): takes only the obstacles situated

inside a defined perimeter into account.

3. Q-Learning: Q-values are updated with the Q-Learn-

ing mechanism. The Q-Learning (Equation (1) learns

to select which action to execute for each state (per-

ception state of an AVA Pe and endogenous variables

Af and Df). At the end of the sequence of actions, the

selected action policy maximises a utility function

computed over the full sequence with:

QðAf;Df;PeÞ  ð1� aÞQðAf;Df ;PeÞ
þ a½r þ g Max QðA0fD0fP0eÞ�

(1)

where: a¼ learning rate and r¼ reinforcement.

Since the objective for the learning AVA is to maintain

its endogenous variables within their viability zone, the

type of the reinforcement measure should be chosen

accordingly (a¼ 0.8, r¼þ1 if the viability zone is not

transgressed).

Integration of Predictive Perception

Our model of predictive perception is based on a set of

simultaneous steps:

1. The identification of a specific situation (situated VE)

with the use of a database inside the VE.

2. The identification of the object that goes through

different physical and contextual mechanisms. The

virtual vision sensor provides the identification and

approximates the position of the object. The position

is represented by a dot, which gives an outline of the

borders.

3. The computation of the Priority Factor (Pf) (from 1 to

10)—defines the perception priority to object groups

and is fixed in a context (e.g. traffic lights and road

signals in a virtual city).

4. The computation of the Attention Factor (Af) (from 1

to 10)—governs the speed and precision of the

analysis in following the object. This factor is pro-

vided by the AVA proprioception (see Figure 4). It is

variable in the course of time and returns to 1 when

the object is identified.

5. The actual identification with the extraction of the

useful information.

Our visual part is based on the following hypotheses:

1. The act of vision is undertaken by one eye.

2. The objects move slowly and the AVAx,z moves even

more slowly (for the purpose of real-time use).

3. The closer the AVAx,z comes to the object, the greater

is the accuracy of perception.

The AVAx,z is located by a position and a vector of

absolute direction which is time-dependent. It corre-

sponds to a projection in 3D spherical coordinates (u, w

and d) of the AVAx,z vision and to a focalisation plan

distance (Di) with the projection method.

The memorisation of the successive movements

depends on both the parameters calculated internally

and on the Af.

The successive steps of modelling for predictive

perception involve:

1. Algorithm of visualisation (pseudo-code is illustrated in

Figure 5): provides a rough circle (shaded in green)

associated to the centre of the object (Pox,z) and also

displays continuously its outline. Moreover, it imple-

ments an approximate field of vision which situates

the distance of the AVAx,z from the object (Di)

represented by a semicircle (shaded in orange).

2. Algorithm of space vision (pseudo-code is illustrated in

Figure 5): divides the space into concentric circles

(coloured in blue) centred on the orientation vector of

the observer and displayed continuously. The space

is then broken down into areas. Finally, the field of

vision is divided into semicircles with a periodicity of

radius that decreases as the distance from the AVA

Figure 4. A schematic view of the two endogenous variables

Af and Df used by predictive perception.
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increases. The operation permits a spatial quantifi-

cation of the AVA and the Af is used to increase its

level. This allows the model to come closer to human

functioning in which perception is approximated

with regard to positioning. The model, moreover,

is simplified.

3. Position of object (Pox,z): is associated with the three

values necessary for the identification of the portions

of the visual space containing the object: a semicircle

(shaded in orange), an area in the focalisation plan

distance and a field of view with the method of

projection.

4. Static approach—predicted object does not move: a circle

centred on the centre of vision (Cvx,z) with a variable

radius (Ri) defines the zone where the object should

be. The radius of the circle is linked to theAf. To avoid

unnecessary movements, the circle associated to the

centre of the object and the one associated to the

centre of vision must overlap to a certain degree

(Rc). This again depends on the Af. The same concept

is applied to the notion of the field of vision. If these

conditions are not fulfilled, a movement with a speed

and precision determined by the Af should be induced.

The direction of the movement is obtained with the

following formula: projection of the position of the area

on axes x and z and normalisation to the defined field of

view. As for the focalisation distance, the model is

trivial. The object is maintained in the centre of the

field of vision until the Af drops to 1, indicating that the

predicted object has been identified.

5. Dynamic approach—predicted object moves: if the object

is in movement, the successive positions are iterated

according to a time constant. The notion of speed is

unnecessary as the information perceived by the eye

is approximate and corresponds rather to the percep-

tion of a movement given by an orientation vector

displayed continuously in a virtual simulation.

The number of dots considered and the degree of

interpolation are equal. This means that their memor-

isation starts from 1 and increases, depending on the

complexity and the speed of the movement, by a factor

that can be calculated. The interpolation allows the

measurement of the new position and the deduction of

the AVA movement.

The speed of the movement depends on the Af. The

coordinates of the dots are used to induce a movement

as in the static approach. The AVA movement produces

Figure 5. A schematic representation of predictive perception—vision Space of an AVA. Ri, radius of the clear identification

zone; Di, focalisation distance between the centre of vision (Cvx,z) and the position of the object that should be predicted. Rc,

recovery factor between Ri and Di. Pox,z: position of the object that should be predicted.
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a change in the position of the object. The difference

between the predicted position and the real one is

introduced into our interpolation model. The movement

is deduced by an interpolation (see Figure 6) that utilises

a Kalman filter.18

The use of the Kalman filter addresses the following

question: given our knowledge of the system behaviour

and our measurements, what is the best estimate of the

object position? We know how the system behaves

(Equation (2) and we havemeasurements of the position

of the object. So, the Kalman filter permits the evaluation

of the state x 2 Rn of a quantified time-controlled

process that is governed by a linear stochastic difference

equation:

xk ¼ Axk�1 þ B uk þ wk�1 with a measurement

z 2 Rm that is zk ¼ H xk þ vk
(2)

The random variables wk and vk represent the process

and the measurement noise respectively. Matrix A

relates the state at the previous time step k�1 to the state

at the current time step k, in the absence of a driving

function or a process noise. Matrix B relates the optional

control input u 2 Rl to the state x. Matrix H relates the

state to the measurement zk.

Experimental Results

Using different scenarios, we could verify that our

ALifeE framework associated sensorial and perceptual

modalities in a coherent way. Indeed, perception is an

interpretation; its coherence depends on endogenous

factors and on the actions. However, perception is above

all predictive, given that memory helps to anticipate the

consequences of a future action.

Therefore, it is not only the number of sensors that is

important, but also the questions that the curious human

brain asks the world based on the hypotheses it

elaborates and the tasks it proposes to achieve. The

senses constitute a source for hypotheses and function to

verify them. Directing one’s look is one of the primary

functions required by the development of the curious

brain that simulates action. Berthoz12 said ‘to go in the

direction I am looking’ and not ‘to look where I see’. We

simulate the path mentally and we compare the

movement that our feet will make with the predicted

one. This method has greatly inspired us in the

modelling of our predictive perception approach.

The Simplif|ed Model

Initially, we adopted a simplified model for the

interpolation of the various real and predicted positions

of the object. The dot product of the different move-

ments (vectors) of the object that should be predicted

was utilised (see Figure 7 and Equation (3).

k ¼
Pn

i¼1
ðai!� a!nþ1Þ
Pn

i¼1
di

with k 2 ½0:0; . . . ; 1:0� (3)

Figure 6. The ongoing discrete Kalman filter cycle. The time update projects the current state estimate ahead in time. The

measurement update adjusts the projected estimate by an actual measurement at that time. For specific equations, description of

the parameters and the Kalman algorithm, see Reference [18].
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where: k¼ coefficient of the tendency of the movement

(trajectory of the object), ~ai:::n¼positions i of the object

and di¼distance between the positions i.

After several simulations in real time, we defined

empirically that if the result of the dot product rangewas

between:

1. [0.8 . . . 1.0], the trajectories of the object movement

were almost linear. We used the last vector calculated

for the prediction of the object position.

2. [0.4 . . . 0.8], the trajectories of the object movement

were sometimes linear or jerked. We therefore used the

average of the vectors calculated for the prediction of

the object position.

3. [0.2 . . . 0.4], the trajectories of the object movement

were strongly jerked. The prediction was more com-

plex to estimate. We used therefore the Kalman filter

for the prediction of the object position.

The ComplexModel

The criteria of validation of our method were to predict

the position of an object compatible with our real-time

constraints, which are specific to the behavioural

animation of AVAs.

Figure 8 demonstrates how the Kalman filter handling

strongly jerked trajectories of the object movement was

able to interpolate the predicted position with the

parameters: w (horizontal angle), u (azimuth angle) and

Di (focalisation distance), and the real position of the

spherical coordinates of the AVA eyes: a (the offset to w),

b (the offset to u) and d (the offset to Di).

After several tests, we considered that a value of 150

Points-Time was sufficient for an AVA to predict an

object with jerked trajectories. On Figure 8, the first 150

Points-Time show the evolution of the AVAmovements

before it can detect the graphic object to predict. Then,

during the following 280 Points-Time the AVA carries

on its way towards the next graphic object to predict.

The model of interpolation for predicting the object

movement was stabilised and integrated into the ALifeE

framework. Figure 9(a–d) shows successive snapshots of

an AVA predicting the movement of a pyramid in a

virtual world composed of different graphical objects

such as cubes, cylinders and pyramids.

Figure 7. Simplified model for the interpolation of the

movement of the object that should be predicted.

Figure 8. The Kalman filter combined with our predictive perception model was able to correctly estimate the position of the object

(measured during 430 Points-Time of the object movement).
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Figure 9. (a–d): Snapshots of ALifeE—AVA predicting the movement of a pyramid. The blue pyramid in (a) and (b) turns green

in (c) once it has been predicted. In (d) the AVA carries on its way towards the next graphic object to predict.

Figure 10. (a–d): Snapshots of a ‘virtual goalkeeper’ with integration of active and predictive perception.
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Figure 9(a–d) illustrates the following elements:

� An AVA moving in a VE. The black discontinuous

arrow indicates the AVA movement of walk.

� A graphic object represented by a blue pyramid mov-

ing in a VE. The purple discontinuous arrow indicates

the dynamic movement of the object.

� The AVA field of vision, whose direction is indicated

by a red arrow.

� The attention factor (Af) represented by a green bar-

graph.

Test ApplicationWith a ‘Virtual
Goalkeeper’

To show the feasibility of using active and predictive

perception, we have implemented a test application

with a ‘virtual goalkeeper’. The AVA (virtual goal-

keeper) stands in front of the goal. The objective is to see

its different levels of reaction depending on the

perceived situation.

The test consists in preventing the ball from entering

the goal by placing the hands of the goalkeeper on its

trajectory. In order to know if the ball ‘touches’ one of the

goalkeeper’s gloves, it is necessary to carry out, at every

moment, a collision detection between the ball and the

gloves.

There are two categories of collision detection:

� The first one detects the collision between a moving

object and the static geometries belonging to the

environment, and

� The second one detects the collision between two

moving objects.

It is the latter which we used in our test application,

since the ball and the goalkeeper’s gloves are constantly

moving on a horizontal plan.

The parameters of our ‘virtual goalkeeper‘ are the

following:

� The legs of the goalkeeper can move from left to right,

and

� The gloves of the goalkeeper, as described above,

remain on a horizontal plan.

All animations were rendered in real time using

OpenGL on a 3.0 GHz PC with an nVIDIA GeForce

FX Go5350 video card and are represented in

Figure 10(a–d).

On Figure 10(a–d), the ‘virtual goalkeeper‘ is

represented by a black discontinuous arrow and its

Figure 11. Plot of performances obtained with our predictive perception methodology, with the collision detection approach and

with a professional goalkeeper. All animations were rendered in real time using OpenGL on a 3.0GHz PC with an nVIDIA

GeForce FX Go5350 video card.
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field of vision is in yellow. Thanks to its active and

predictive perception, it is able to perceive the ball

whose direction is indicated by a purple discontinuous

arrow. The attention factor (Af) is represented by a green

bar-graph.

ComparisionWith Different Models

We compared in Figure 11 the performance of our

complex model with that of the classical approach with

collision detection and with the success rate of catching

penalties by a professional goalkeeper provided by the

Union of European Football Association (UEFA).

FutureWork and Conclusions

There are some weaknesses in our approach. Since the

cognitive map gives only an approximate mapping,

entirely correct results cannot be guaranteed. Also the

cognitive map inputs must be processed with care. Our

methodology in case of parallel movement of both the

AVA and the object can introduce instabilities. The

problem of observational instabilities can be optimised

by introducing asymmetries in the boundaries between

the different zones. This will be the objective of our next

research.

Our approach is part of a more complex model. The

goal is to realise a virtual life environment for an AVA

including different interfaces and sensorial modalities

coupled with various evolving learning methodologies.
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