Real-Time Path Planning in Heterogeneous Environments

Norman Jaklin', Atlas Cook IVZ, and Roland Geraerts'

1Department of Information and Computing Sciences, Utrecht University
2Institute for Computational Engineering and Sciences, University of Texas at Austin

Abstract

Modern virtual environments can contain a variety of
characters and traversable regions. Each character may
have different preferences for the traversable region
types. Pedestrians may prefer to walk on sidewalks,
but they may occasionally need to traverse roads and
dirt paths. By contrast, wild animals might try to stay
in forest areas, but they are able to leave their protec-
tive environment when necessary. This paper presents
a novel path planning method named MIRAN (Mod-
ified Indicative Routes and Navigation) that takes a
character’s region preferences into account. Given an
indicative route as a rough estimation of a character’s
preferred route, MIRAN efficiently computes a visu-
ally convincing path that is smooth, keeps clearance
from obstacles, avoids unnecessary detours, and allows
local changes to avoid other characters. To the best
of our knowledge, MIRAN is the first path planning
method that supports the above features while using
an exact representation of the navigable space. Ex-
periments show that with our approach a wide range
of different character behaviors can be simulated. It
also overcomes problems that occur in previous path
planning methods such as the Indicative Route Method.
The resulting paths are well-suited for real-time simu-
lations and gaming applications.

Keywords: path planning, autonomous agents, hetero-
geneous virtual environments

1 Introduction

The goal of this paper is to show how virtual characters
can be steered through a heterogeneous environment in
real-time. Such an environment contains impassable
obstacles plus many types of traversable regions. Our
method uses customizable weights for arbitrary terrain
polygons, thus making it applicable for a great variety

Figure 1: A path (gray) in a forest (green) with obsta-
cle trees (black), puddles (blue), fallen trees (brown)
and a spot with a panoramic view (light gray). Two
characters (adult and child) follow automatically com-
puted indicative routes (solid and dashed black). The
smoothed paths (solid red for the adult, dashed red
for the child) are computed with our MIRAN method.
Both the indicative routes and the paths are based on
the characters’ terrain preferences. The adult avoids
puddles and fallen trees, and is attracted to the spot
with the panoramic view. The child prefers to walk
through puddles, climbs over the trees and is not inter-
ested in the panoramic view.

of settings. City environments with traversable regions
such as sidewalks, roads, and lawns can be modeled
in the same way as weather-influenced environments
such as swamps, dirt paths, deserts, and frozen lakes.
Furthermore, psychological influences like unattrac-
tive environments (narrow passages or trashy areas) or
attractive areas (artsy neighborhoods or areas with a
panoramic view; see Fig. 1) can be modeled as well.

The ability to guide virtual characters along their pre-
ferred traversable regions enhances realism in simula-

tion applications. It also improves player immersion in
digital games.

1.1 Related Work

The general path planning problem in homogeneous
virtual environments has been widely studied in the
past. Such environments have traversable regions and
non-traversable obstacles. This research has led to ad-
vanced data structures and algorithms. We refer the
reader to the books of Latombe [1], LaValle [2] and
Choset et al. [3] for an overview.

Other related works have considered autonomous agent
navigation in virtual environments. Shao and Ter-
zopoulos [4] present an artificial life approach that in-
tegrates and combines motor, perceptual, behavioral,
and cognitive components to emulate the complexity of
real pedestrians in urban environments. Only recently,
Lo et al. [5] showed how agents can learn from raw vi-
sion input to navigate autonomously. They introduce
a hierarchical state model and a novel regression algo-
rithm to avoid the ’curse of dimensionality’. Kang et
al. [6] use a different approach to find paths for agents
in virtual environments. Their adaptive agent naviga-
tion approach collects data and learns new paths from
user-controlled characters.

The problem we tackle can be seen as a variant of
the weighted region problem (WRP) that was intro-
duced by Mitchell and Papadimitriou [7]. They assign
a weight to each type of region. The weighted length of
a path inside any single region is the arc length of that
path times the weight of the containing region. The
weighted length of a path that passes through multi-
ple regions is the sum of the weighted path lengths
inside each region. An optimal path between two
points is a path with the minimum possible weighted
length. Solving the WRP means finding such an op-
timal path. The algorithm of Mitchell and Papadim-
itriou has O(n®) time complexity with n being the to-
tal number of vertices in a heterogeneous environment.
Because this running time is too large for most practi-
cal applications, research has been carried out on find-
ing feasible approximation algorithms [8—13]. Only re-
cently, De Carufel et al. [14] showed that the WRP is
unsolvable in the Algebraic Computation Model over
the Rational Numbers.

Because of the computational complexity of the WRP,
many experimental works show how to compute rea-
sonably short paths through an environment by com-
bining a grid or quadtree with an A* or D* search
[15,16]. Harabor and Botea [17] use a grid to guide
a set of uniquely sized characters through a heteroge-

neous environment. Each character occupies a ¢ X ¢
square in the grid. The value of ¢ can be any non-
negative integer, and ¢ can be unique for each char-
acter. They keep track of the nearest obstacle to each
grid cell to guarantee that paths have good clearance
with respect to the obstacles. Multiple terrain types
are handled by associating each character with a set
of terrain types that this character can traverse. These
kinds of grid-based approaches often approximate an
environment and can sometimes produce non-smooth
paths that are located very close to obstacles. This be-
havior can make it difficult to avoid other moving char-
acters. Furthermore, the approaches are expensive and
can yield long computation times when dealing with a
large number of characters.

Geraerts [18] presented an augmented medial axis to
create a navigation mesh called the Explicit Corridor
Map (ECM). The ECM can compute paths with any
desired amount of clearance to obstacles and permits
each character to have any desired size. Although
this navigation mesh is compact and exact, each re-
gion in the environment is strictly traversable or not
traversable. Thus, the ECM does not consider hetero-
geneous environments. By contrast, our method can
use the ECM and its concept of corridors as an under-
lying data structure to handle local collision avoidance.
Karamouzas et al. [19] introduced the Indicative Route
Method (IRM) as a force-based approach to steer char-
acters through a homogeneous environment. An in-
dicative route is a rough estimation of the preferred
path from a character’s start position to a goal position.
An indicative route can be manually designed or au-
tomatically computed by a higher-level path planning
approach such as an A* search on a grid [20]. How-
ever, an indicative route is usually not natural enough
for a character to strictly follow. Local collision avoid-
ance is also difficult if characters strictly follow their
indicative route. Instead, an indicative route can be
used as a guideline to produce smooth trajectories for
a character. In the IRM, an attraction point on the in-
dicative route is computed to make the character follow
the route while avoiding obstacles and other moving
characters. Using the ECM as an underlying naviga-
tion mesh, the paths can have any desired amount of
clearance from obstacles.

1.2 Contribution

The main focus of our work lies in computing visually
convincing and terrain-dependent paths for characters
in virtual environments. We solve a generalized vari-
ant of the weighted region problem [7]. In this variant,

we do not look for a shortest path to a goal destination
while taking weighted regions into account. Instead,
we compute natural-looking paths that follow an arbi-
trary indicative route. Such an indicative route func-
tions as a rough estimation of the characters’ preferred
path. We adopt the concept from the Indicative Route
Method (IRM) by Karamouzas et al. [19] of using at-
traction points on the indicative route to let the charac-
ter follow the route until the goal position is reached.
Our method supports heterogeneous environments be-
cause the character follows the indicative route based
on its individual terrain preferences. To the best of
our knowledge, it is the first path planning method that
combines the aforementioned features with the possi-
bility to use it on an exact representation of the envi-
ronment.

Such an exact representation is provided by the Ex-
plicit Corridor Map (ECM) that was introduced by
Geraerts [21]. MIRAN is general enough to be used
with any other type of underlying representation of the
navigable space. However, using it on an exact repre-
sentation such as the ECM overcomes the problems ap-
proximated representations (such as grids) suffer from.
For example, narrow passages between obstacles will
never be blocked, which can be the case whe nusing a
grid with large cell sizes.

MIRAN also overcomes the following problem: In the
IRM, the character may skip arbitrarily large parts of
the indicative route. See Fig. 8 for an example. This
is because the attraction point is defined as the inter-
section of the indicative route with a maximum clear-
ance disc centered on the medial axis of the navigable
space. Whenever there is a large area of free space
around the indicative route, the radius of the maximum
clearance disc is also large. This permits the attraction
point to be farther away along the indicative route. If
the indicative route has many turns inside the clearance
disc, those turns will be skipped by the character. Our
method presented in Section 3 overcomes this issue be-
cause the computation of attraction points is indepen-
dent of the amount of free space around the character.
It is therefore applicable to both virtual indoor and out-
door environments.

1.3 Overview

This paper is organized as follows. Section 2 intro-
duces the terminology and a navigation mesh that is
well-suited for heterogeneous environments. In Sec-
tion 3, we present our new MIRAN method for using
an indicative route to compute the final path trajecto-
ries. We provide the theoretical background and show

that a character will always reach the goal position. In
Section 4, we briefly discuss how indicative routes can
be automatically computed with respect to a charac-
ter’s traversable region preferences. We conduct ex-
periments in Section 5 and conclude in Section 6 that
MIRAN can be used to compute visually convincing
paths in heterogeneous environments in real-time.

2 Preliminaries

We say that a two-dimensional polygonal environment
is heterogeneous when it contains more than one type
of traversable region. A traversable region is a two-
dimensional polygon that is annotated with a type. Ex-
amples of types are roads, sidewalks, carpeted floors,
tile floors, grasslands, snowlands, deserts, and mud
pits. A region type can also represent a psychological
aspect like a dangerous area or a pleasant spot with a
panoramic view. Slope information and crowd density
information [22] could be used to weight the attractive-
ness of a traversable region as well. The union of these
regions make up the free navigable space of the envi-
ronment.

Our method generally works with any popular repre-
sentation of the navigable space like grids, waypoint
graphs or navigation meshes. We choose the Explicit
Corridor Map (ECM) data structure of Geraerts [21]
as a navigation mesh because it yields a storage space-
efficient representation of the exact geometry of the en-
vironment. We construct the ECM based on the obsta-
cle polygons and consider the union of all traversable
terrain polygons to be free space. The ECM works both
on 2D and multi-layered 3D environments [23].

For our method, we assume that a character is repre-
sented by a single point in the environment. Each char-
acter has a unique set of region preferences that are
given as positive numerical values. For example, con-
sider a family that strolls through a park. A child might
walk through mud and puddles, whereas the adults will
avoid those spots (Fig. 1). Furthermore, a person who
is very late might be willing to run through muddy ter-
rain to save time, whereas a person in a nice suit is
willing to take large detours. Those kind of higher-
level considerations can be modeled with MIRAN in
the same way as geometrical terrain information by set-
ting the character’s preferences accordingly.

A character is steered through a heterogeneous envi-
ronment using both an indicative route and local steer-
ing methods. An indicative route is a curve T;,q :
[0,1] — R? through the environment. This curve
passes through a sequence of traversable regions which
a character prefers to traverse. The character can lo-

cally diverge from the route to walk a smooth path or
to avoid collisions with other characters.

3 The MIRAN method

In this section, we show how MIRAN works in detail.
Given an indicative route 7,4, we assume that the ini-
tial character’s position xg equals the starting point s of
Tind- Otherwise, we first compute a connection from
Zo to s to bridge the gap.

Because of smoothing and taking shortcuts along the
way, the character’s position will usually not be ex-
actly on the indicative route. Furthermore, the char-
acter can be pushed away from 7,4 by other forces
(such as other moving characters). In each step ¢ of the
method, we compute a reference point r; on m;,q to in-
dicate how far along the route the character has come.

We use two user-controlled parameters, the shortcut
parameter o and the sampling distance d. Together
with the reference point, they determine the set A; of
candidate attraction points. Our method ensures that
each candidate attraction point in A; is visible from
the character’s current position. Once A; is computed,
we pick the best attraction point with respect to a cost-
function. This cost function assigns a cost to each
straight-line segment between the character’s current
position and a candidate attraction point. The costs de-
pend on the Euclidean length of the line segment, the
types of terrain it intersects, and the position of the can-
didate point on 7;,4. The farther ahead the candidate
point is on 7;,4, the lower the cost. In this way, we
reward picking the farthest candidate attraction point
whenever there are multiple choices. We then use the
same force-based steering approach that is used in the
IRM [19] to move the character.

The below pseudo-code shows how the overall method
works. In Section 3.1, we describe how to compute the
reference point in each step of the simulation. In Sec-
tion 3.2, we give details on how the set .4; of candidate
attraction points is computed, and in Section 3.3, we
explain how to choose an attraction point from .4; us-
ing our cost-function. In Section 3.4, we discuss the
force-based approach to steer the character through the
heterogeneous environment. We prove the correctness
of our method in Section 3.5.

3.1 Computing a reference point

We will now discuss how to compute a reference
point 7; in each step ¢ of the method. Let x; be the
character’s current position. We define r; as the first
closest point from z; to the part of m;,q that lies

Tind Li—1
Figure 2: Only the subpath of 7;,, between r;_; and
a;—1 (shown in red) is taken into consideration for the
computation of reference point r;. Choosing the clos-
est point c as the reference point would lead to an un-
desired shortcut.

between the previous reference point 7;,_; and the
previous attraction point ;1 for ¢ > 1 (Fig. 2).
For the initial step ¢ = 0, we have rp = x(because
we assumed xg to be the starting point s of ;4.
Whenever the character is standing on the indicative
route, the reference point r; equals the current position
x;. We restrict the reference point to the given subpath
of m;,q because otherwise we might refer to a point
that lies too far ahead along the route, leading to
undesired shortcuts. In the example shown in Fig.
2, picking the closest point ¢ as the next reference
point r; would lead to skipping the whole part of the
indicative route between «;_; and ¢, which can be
arbitrarily large in general.

With the aforementioned definition of the reference
point, we are now able to compute the set A; of
candidate attraction points. We will show next how
this is performed in detail.

THE MIRAN METHOD
Input. Start s, goal g, indicative route from s to g

Output. Smooth terrain-dependent path from s to g

1: 1+ 0

2: xp < S

3: while x; # g do

4: r; < COMPUTEREFERENCEPOINT(z;)

5: A; < COMPUTECANDIDATEATTRACTION-
POINTS (75, x;)
a; < PICKBESTCANDIDATE(A;, ;)
Zir1 + MOVECHARACTERTOWARDSAT-
TRACTIONPOINT(z;, c;)

8 i<+ 1+1

9: end while

3.2 Computing the candidate attraction points

As sketched previously, we introduce two parameters
that can be adjusted by the user to compute the set A;
of candidate attraction points:

e The shortcut parameter o defines the maximum
allowed curve length distance from the reference
point to the farthest candidate attraction point.

e The sampling distance d defines the maximum
curve length distance between each candidate at-
traction point.

The shortcut parameter o is used to control the de-
gree of smoothing we want to allow and to prevent the
character from taking undesired shortcuts. It defines
the maximum curve length distance the character is al-
lowed to skip when following the route. Because all
candidate attraction points in 4; are not farther away
from r; than o (with respect to the curve length of
Tind)> We ensure that we can pick any of them with-
out generating undesired shortcuts. By o;, we denote
the point on 7;,4 that has curve length distance o from
ri. Let miua(ri,0;) be the subpath of 7,4 from r;
to 0;. Our candidate attraction points are always on
Tind(Ti, 7).

Now, the first step in the computation of A4; is to deter-
mine all parts of 7;,4(r;, 0;) that are visible from the
current position x; with respect to all static obstacle
polygons. Formally, we compute the visibility polygon
‘P; for x; and the union of all static obstacle polygons,
and let the intersection V; := P; (| mina(ri, 0;) be the
set of all points on 7;,,4(7;, 0;) that are currently visible
(Fig. 3). The set V; yields a division of the indicative
route into a set of real intervals V; = [a;, b;] C R, such
that 7;,,4(t) is visible from z; for all t € V;. We let
each visible end point 7;,,4(a;) and 7;,4(b;) of each
interval be a candidate attraction point. The only ex-
ception is that we do not want the reference point r;
to become a candidate point whenever r; = ;. Be-
cause ; equals 7;,4(a1) whenever the reference point
is visible, the character would be attracted to its current
position. We ignore a; in this case and start assigning
the candidate attraction points with the point 7;,,4(b1).
Note, however, that we do not exclude r; from the set of
candidate attraction points if x; # r; because r; might
be the only visible and valid candidate point.

We continue to add more values to our set A; by sam-
pling each visible interval of the indicative route using
the sampling distance d. The closer to 0 the sampling
distance, the more candidate attraction points we gen-
erate, and the more is our set .A; an approximation of a
continuous set. A smaller sampling distance therefore

Figure 3: Visible parts of the environment and the in-
dicative route from the current position x;.

r; =

Figure 4: Example of candidate attraction points com-
puted by our method.

generates higher accuracy while increasing computa-
tion time. If d is set too large, the resulting inaccu-
racy may lead to undesired output paths. In practice,
however, feasible values of d can be easily set if the
size of the environment and the curve length of the in-
dicative route are known (see Section 5 for examples).
Once set to a feasible value, smaller values affect the
overall output paths only insignificantly. In areas near
static obstacles with no change of the underlying ter-
rain, smaller values of d do not change the output paths
at all because the last visible point along the route will
always be picked as an attraction point (see Section 3.3
for details).

Sampling each visible interval is performed as follows.
If for any real interval V; the curve length distance be-
tween minq(a;) and m;pq(b;) is greater than the sam-
pling distance d, we add a candidate attraction point
between those two points with curve length distance d
from ;pq(a;). We iterate this process until the max-
imum distance between any two subsequent candidate
attraction points is d. Note that the curve length dis-
tance between b; and the previous sampled candidate
attraction point can be smaller than d. We then let
A; = {wi,, a;,, ...} be the final set of candidate attrac-
tion points, ordered by their positions along the indica-
tive route. See Fig. 4 for an example of the resulting

set A;.

3.3 Choosing the attraction point

Now that we have computed the set .A; of candidate at-
traction points, we pick the best candidate with respect
to a weight function w as our final attraction point c;
for the current step ¢ of the algorithm.

Let k be the total number of candidate attraction points
in the current step . We consider the straight line seg-
ments [(c;,, ;) between «;; and x;, with 1 < j < k.
We compute a weight w(l(al ,x;)) for each such line
segment and choose «; to be the final attraction point
for which the corresponding line segment has mini-
mum weight. The Euclidean length of the line seg-
ments, the different types of terrain the line segments
intersect, as well as the corresponding character’s pref-
erence values influence the weight function. Further-
more, we define the weight function such that candi-
date attraction points that are farther away from the
current position reduce the weight of the line segments.
This ensures that the character will be rewarded for
picking an attraction point that is farther away.

For each line segment [(c;, z;), let T;; be the set of
all terrain types that [(c;;, 7;) intersects. Let d;; be the
curve length distance along the indicative route from
the reference point r; to the candidate attraction point
«;;. For each terrain T' € T;,, we let w(T) > 0 be
the character’s terrain preference By lJ, we denote
the amount of terrain type 7" on [(c;;, ;) by summing
up the length of all parts of /(c;;, z;) that cross terrain
type T'. We define the weight

"
w(l(ag;, i) = Z w(T) - d—J
T€T;; K

lT
The fraction a, L describes the relation between the Eu-
clidean length of the line segment with underlying ter-
rain 7" and the curve length distance d;;. It ensures
that we reward picking an attraction point that is far-
ther away along the route.
After computing the weights for each one of the k line
segments, we pick the final attraction point
@ 1= Qjm Withm = argmin w(l(a;;, 7;)).
1<j<k
If there are several candidate points with minimum
weight for the corresponding line segments, we pick
the one with greatest curve length distance from the
reference point along the indicative route.

3.4 Moving the character

Once the final attraction point «; is computed for the
current step ¢ of the algorithm, the character moves to-

wards that point. We basically use the same local force-
based steering method as described in the IRM [19].
However, other force-based approaches can be used, as
well. Furthermore, we use the concept of corridors
in the ECM structure [21] to let the character avoid
static obstacles with a variable user-controlled amount
of clearance.

For a fixed time step, let z be the character’s current po-
sition and ||.|| be the standard Euclidean norm. Three
forces are applied to the character in each step: the
steering force Fs(x) to let the character move towards
its attraction point, the boundary force Fy(z) to push
the character away from the boundary of the ECM cor-
ridor, and the obstacle avoidance force F,(x) to avoid
small local obstacles or other moving characters.

Let « be the current attraction point and cs be a con-
stant specifying the relative strength of F(z). We then
define Fy(z) := csﬁ We use the parameters ¢,
and ¢, to scale the effect of Fy(x) and F,(x), respec-
tively. The closer to the boundary or obstacle the char-
acter is, the stronger the repelling force. Let b(z) be
the closest point on the boundary of the corridor. We
define Fy(x) := ¢ Hi ZE SH

For n being the number of local obstacles or other char-
acters, we let O;,1 < j < n, be the current position of

the jth obstacle. We define I, () :== >, ¢, Hi 8 -

We then let F(x) = Fy(x)+ Fy(z)+ Fy(z) be the final
force exerting on the character at position x.

3.5 Proof of Correctness

Now we show that our method ensures that the char-
acter will always find a path to the goal position g —
provided the goal can be reached and the character is
not pushed away by other forces (e.g. other moving
characters) such that the indicative route becomes in-
visible. Note that the latter can always happen when-
ever the character is pushed behind an obstacle. In this
case our method ends, and we continue recomputing
a part of the indicative route from the character’s new
position to its goal.

To prove the correctness, we assume that we have a
finite number of polygons that are not infinitesimally
small. Note that this does not imply any restrictions
for most practical applications. In addition, we as-
sume that the character is moving towards each at-
traction point directly. While in practice one can use
a velocity-based integration scheme such as Euler In-
tegration to compute paths that are proven to be C'!-
continuous [24], we do not assume such an approach in
theory. This is because in theory, the character might
be pushed behind an obstacle due to a too large step

size of the integration scheme. In practice, however,
this is unlikely and can be avoided by adjusting the step
size accordingly.

First, we prove that in each step of the algorithm there
is at least one candidate attraction point we can choose
from.

Lemma 1. Let i be the current step of the algorithm.
It holds that A; # .

Proof. We prove this by induction on .

For ¢ = 0, we have x9 = ryg = s. The character’s
initial position is the starting point s of the indicative
route. Because of the definition of the visibility inter-
vals V; = [a;,b;] in Section 3.2, it immediately fol-
lows that 7;,,4(a1) = 2. Because the character’s posi-
tion xg cannot be the only visible point on the route
up to 7nq(b1), we conclude that a; # by and also
Tind(@1) # Tina(b1) (note that the latter does not nec-
essarily follow from a; # by in general, as the route
can have self-intersections). By definition of the set
A;, it follows that TFind(bl) e Ap.

Let ¢ > 0. By the induction assumption, we have
A;_1 # (. Therefore, an attraction point ;1 has been
chosen in step ¢ — 1 and the character moved from po-
sition x;_1 to position x;, with z;_1, z; and ;1 being
collinear. It immediately follows that the point «v;_; is
still visible in step 7. So there must be an index j such
that ;1 € V; = [a;,b;]. By definition of A;, the
points 7;,4(a;) and 7;,4(b;) are both valid candidate
attraction points. O

Next, we show that the sequence of reference points
moves forward along the indicative route.

Lemma 2. Let i be the current step of the algorithm.
It holds that there is a future step j > 1 in which the
reference point r; is ahead of r; along the indicative
route.

Proof. Assume by way of contradiction that the oppo-
site holds. Because we define the reference point to
be a point between the last reference point and the last
attraction point, the opposite assumption would mean
that there is a reference point that does not change for
all future steps. So we assume that there is a step ¢ in
which the reference point r; equals r; for all 7 > 7. To
simplify the notation, we skip the index and denote the
fixed reference point as r. It immediately follows that
the character does not reach the goal position g. Other-
wise there would be a step j > ¢ in which z; is closer
to g than to r, thus making g the new reference point in
step 5 + 1.

Because the character does not reach g but moves for-
ward in each step because of Lemma 1, it follows

Cs

Figure 5: The distance between z; and «; differs from
the distance between x ;1 and «; by the amount of the
strength ¢, of the steering force.

that we have an infinite sequence of character posi-
tions x;, T;11, Ti+2,.... Lhe Euclidean distance be-
tween each x; and x,; 1 in this sequence always equals
the relative strength ¢ of the attraction force Fy(x)
(see Fig. 5 and Section 3.4). When the character
moves from x; to x;.1, there is a corresponding at-
traction point «; colinear with x; and x;, that has
been picked as the best point among all candidate at-
traction points in A;. This means that the weight

L
w(l(aj,z;)) = 3 w(T)- 7= is minimal among all
TET; K
candidate line segments in step j.

Now, in the following step 7 + 1, the next candidate at-
traction point is computed. The former attraction point
aj has the same curve length distance d; = d;41 from
the reference point r along the indicative route as in
step j, because r stays the same point. So the weight
w(l(ay, zj41)) differs from w(l(a;,x;)) only in the
Euclidean distance between the corresponding points
and the terrain segments along the line. Because the
Euclidean distance is smaller (it has been reduced by
cs > 0 see Fig. 5), the weight for o; in step 5 + 1
is smaller than the weight for «; in step j. It follows
that the attraction point picked in step 7 + 1 must have
a smaller weight than the one picked in step j. So,
following the sequence z;,z;11, Tiy2, ... of character
positions, the weight for picking the corresponding at-
traction points becomes smaller in each step by an ab-
solute amount.

However, there is a lower bound for the weight. Let
dpin = m<1n| |z;—7|| be the minimal distance between
i<j

the fixed reference point r and all character positions
Tj, Tit1, Tit2,.... Then it holds that ||[(a;,z;)|] >
dpmin. Otherwise the corresponding attraction point «;
would be closer to z; than r, thus becoming the new
reference point in step j + 1. This contradicts our as-
sumption that r stays the same point for all future steps.
Furthermore, the curve length distance d; between the

reference point and the attraction point is never greater

than the shortcut parameter o, i.e. d; < o. If we let

Wnin = gugl_ w(T') be the character’s minimum pref-
€

erence value for all terrain types, the following lower

bound for the weight w(l(«a, z;)) applies:

wlifag,a) = 7 3 w(m) 17 > U §7 gt

g

jTe?} TEeT;
Wyni Wi
= =iz, @)l = =2 - din.

Now we know that the weights become smaller in
each step, we have an infinite number of such steps,
and there is a lower bound for the weight. It follows
that the weights must asymptotically approximate the
lower bound. This corresponds, however, to an infi-
nite number of asymptotically small portions of terrain
polygons that the character crosses. Because we as-
sume that there are a finite number of polygons that are
not infinitesimally small, we get a contradiction to our
assumption, which proves the lemma. O

Lemmata 1 and 2 ensure that our method makes the
character move forward in each step of the algorithm.
Now we prove that the character will always reach the
goal position g.

Theorem 1. There is an index i € N such that x; = g.

Proof. By Lemma 2, it holds that the curve length dis-
tance along 7;,4 from the reference point to g becomes
smaller over time.

Assume by way of contradiction that the character does
not reach its goal, i.e. for all steps ¢ the character’s po-
sition z; does not equal g. Because the reference point
gets closer to g over time, it follows that the sequence
(r;)ien of reference points has a limit [€ 7;,,4. This
limit [cannot be reached. Otherwise, if there was a step
Jj such that z; = [, by Lemma 1 there would be at least
one candidate attraction point we could choose from,
thus making the character go beyond [, a contradiction.
Because [is a limit point on the indicative route and
the character moves forward in each step, it follows
that there is a step ¢ in the algorithm where the curve
length distance along 7;,4 between r; and [is smaller
than the sampling distance d. By Lemma 1, we know
that there is at least one candidate attraction point c;
to choose from. By the definition of the set .4; and
because of the sampling distance d, this point o ei-
ther lies beyond ! or equals the reference point r;. If
the latter case holds and r; = «;, the character is at-
tracted to its reference point until it reaches that point

or a different attraction point beyond [will be picked.
In any case, an attraction point a; beyond [will finally
be picked. The attraction force lets the character go
towards «; and beyond [, yielding a contradiction. []

4 Computing an indicative route

We now briefly discuss how to compute an indicative
route with a higher-level path planning approach. The
general idea is to tessellate all navigable space and to
perform an A* search [20] on the dual graph of the
tessellation. Note that the resulting routes are neither
smooth nor natural-looking. They are therefore not
used as final paths. However, they give a rough estima-
tion of the characters preferred route and can be used
as input for our MIRAN approach.

The indicative route can be computed by using a small
grid to represent the environment, or by computing a
constrained triangulation of all traversable regions. We
then let G = (V, E') be a weighted dual graph of the
tessellation 7. Each tessellated polygon (grid cell, tri-
angle or other) is associated with both a vertex v € V
and with the traversable region type. A pair of nodes
u, v is connected by an edge e, € F if the associated
polygons are adjacent in the tessellation 7.

We assign a weight w(e) > 0 to each edge e € FE,
based on the character’s terrain preferences, as follows:
Each edge e,, € E is associated with the two poly-
gons P,, P, € T that correspond to the vertices u
and v. Each one of the polygons has a terrain type
T, T, in the environment. There is a point p on e,
where the underlying polygon in 7 changes from P,
to P,. See Fig. 6 for an example with triangles. We
can split e, at p into two curve segments e, and e,,.
The curve length ||ey, || of ey, equals ||e, || + ||ey]|. Let
w(T,), w(T,) € R be the character’s preferences for
terrain types 7, and 7,. We then define the weight
w(ew) = w(Ty) - [leu]| +w(Ty) - ||ev]|. We can then
use an A* search in this weighted dual graph to com-
pute the indicative route.

In the forest example in Fig. 1, we use an A* search on
a grid to compute the indicative routes. For the adult
character, each grid cell is weighted with one of the
following weights: forest = 30, path = 2, puddles = 10,
trees = 30, and panoramic view = 1. For the child, the
weights are: forest = 30, path = 2, puddles = 1, trees =
1, and panoramic view = 10. The used MIRAN param-
eters to follow the routes are 0 = 80 and d = 20 for
the adult. For the child we set ¢ = 100 and d = 20.

Figure 6: Example of how to weight edges in the dual
graph GG. Here, we show triangles A, A, € T and
the straight-line edge ey, .

—o0 = 100
o =400

- - o0=250
- - o0 =1250

— Tind
—0o =300 ----

Figure 7: Output paths for different values of 0. The
sampling distance d used in all examples is 20.

5 Experiments

We performed experiments in a framework using the
ECM data structure [21]. To demonstrate specific fea-
tures of the method, we used indicative routes that
were manually created in 2D polygonal environments
containing multiple terrain types. All our experiments
were performed on a PC running Windows 7, with a
3.2 GHz AMD Phenom™]II X2 CPU and 4 GB mem-
ory. We used one CPU core for the computations. In
this implementation, we discretized the environment.
We built the ECM using graphics hardware [21] and
extracted all terrain and obstacle information from the
color buffer during this building process. We used Bre-
senham’s line algorithm [25] for checking visibility for
all candidate attraction points. We also used the same
algorithm for computing their weights and to let the
character keep clearance from obstacles. In addition,
we use Euler Integration in each step after computing
the current attraction point to generate smooth paths.
The ECM structure was also used to implement the
IRM [19] and compare it to our method.

First, we tested the method with a 2D footprint of
the McKenna MOUT training site at Fort Benning,
Georgia, USA (Fig. 7). This scene spans an area of

Figure 8: Comparison of MIRAN (solid red path) and
IRM (dashed purple path) for a pedestrian character.

200 x 200 units. It contains one type of terrain and
a set of 23 convex obstacle polygons. These polygons
represent buildings, and they have a total of 96 vertices.
Using a fixed sampling distance of 20 and different set-
tings for the the shortcut parameter o, we computed
five output paths for the same indicative route ;4. As
expected, the smaller the value of o, the closer the char-
acter follows m;,4. With higher values of o, large parts
of 7,4 can be skipped. If the size of a scene and the
length of m;,4 is known, appropriate values of ¢ can be
easily set to produce the desired behavior. This is be-
cause o corresponds to the exact distance the character
may look ahead along 7;,,4. With o = 300, the charac-
ter neither follows the loop contained in 7;,4 nor does
it skip it entirely. This results in the path shown in Fig.
7 (light blue). One might argue that this is an unneces-
sary detour. However, the MIRAN approach does not
tackle the problem of how to reach a goal destination
along a shortest path. Instead, it generalizes this idea
and shows how to follow an arbitrary route while tak-
ing terrain information into account. Furthermore, the
shown behavior can be easily changed if needed by ad-
justing the value of o accordingly.

We compared MIRAN to the IRM in the McKenna
scene with an additional road, sidewalk and some
muddy terrain next to the sidewalk (Fig. 8). This scene
spans the same area and contains the same obstacle
polygons as the original scene, but it has 10 additional
convex terrain polygons with 39 vertices. The charac-
ter is assumed to be a pedestrian that has a preference
for sidewalks. Sidewalks are weighted with a cost of
0.5. The road terrain is weighted with a cost of 4.0,
and the mud has a high cost of 40.0. The remaining
terrain has a weight of 1.0. For MIRAN, we set the
shortcut parameter o to 40 and the sampling distance
d to 10. By running both methods on the same indica-

Table 1: Computation times

Scene Method o d Time
McKenna MIRAN 100 20 7.13ms
McKenna MIRAN 250 20 16.50ms
McKenna MIRAN 300 20 16.04ms
McKenna MIRAN 400 20 20.90 ms
McKenna MIRAN 1250 20 63.33ms

McKenna + Road MIRAN 40 10 4.66 ms
McKenna + Road IRM - - 4.48 ms
Forest (Adult) MIRAN 80 20 8.00 ms
Forest (Child) MIRAN 100 20 10.52ms

tive route, the experiment shows that MIRAN lets the
character stay on the sidewalk as long as possible. Mud
is completely avoided, and no larger parts of the route
are skipped. By contrast, the IRM lets the character
stay on the road for a long time, crosses the mud, and
always skips the last part of the route.

The computation time needed to compute the shown
paths can be seen in Table 1. It shows that the number
of candidate attraction points has a great impact on the
computation time. With a shortcut parameter of 1250
and a sampling distance of 20, the number of candidate
attraction points is large, and this yields higher compu-
tation times. By contrast, with a shortcut parameter of
40 and a sampling distance of 10, the number of can-
didate attraction points is small. The amount of time
used for computing the path in the McKenna + Road
scene is therefore small as well.

6 Conclusion

We introduced MIRAN, a novel algorithm that enables
advanced path planning in environments that contain
weighted regions. It can be used to compute visually
convincing and terrain-dependent paths in real-time ap-
plications, and it solves a variant of the weighted region
problem [7]. Those regions can describe a great vari-
ety of terrain types or regions of variable attractiveness
with respect to psychological influences. The method
also overcomes some issues of the IRM [19] by giving
the user control over the desired amount of smooth-
ing. We presented the details of the algorithm, proved
its correctness, and conducted experiments. The forest
example as well as the comparison with the IRM are
also illustrated in the video accompanying this paper.

MIRAN can be used by level designers to create indi-
vidual predefined routes in heterogeneous virtual envi-
ronments. Furthermore, it can be used as part of an
artificial intelligence system when applied to virtual
agents or robots that compute their indicative routes au-

tomatically with a higher-level path planning approach.
One open research question is how to modify MIRAN
to handle a character that is represented as a disc with
variable radius. Furthermore, the automated compu-
tation of indicative routes can be improved. Up un-
til now, we use a higher-level path planning algorithm
such as an A* search [20] on a grid. Applying MIRAN
to the corresponding indicative routes already produces
convincing results. However, improving this prepro-
cessing step could enhance MIRAN output paths even
more.

We believe that MIRAN is a promising and flexible
method that can form the basis for solving many chal-
lenging path planning problems for future simulation,
gaming and robotics applications.

7 Acknowledgements

This research has been supported by the COM-
MIT project (http://www.commit-nl.nl/) and the COM-
MANDS project in cooperation with the European De-
sign Center (http://www.edc.nl/) and the Netherlands
Forensic Institute (http://www.forensicinstitute.nl/).
Norman Jaklin and Roland Geraerts are part of the
Institute of Information and Computing Sciences,
Utrecht University, 3584 CC Utrecht, the Netherlands.
Atlas Cook IV is part of the Institute for Computational
Engineering and Sciences at the University of Texas at
Austin, USA.

References

[1] J.-C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Norwell, MA, USA, 1991.

[2] S. M. LaValle. Planning Algorithms.
versity Press, Cambridge, U.K., 2006.
http://planning.cs.uiuc.edu/.

Cambridge Uni-
Available at

[3] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. E.
Kavraki, K. Lynch, and S. Thrun. Principles of Robot Mo-
tion: Theory, Algorithms, and Implementation. MIT Press,
Cambridge, MA, USA, June 2005.

[4] W. Shao and D. Terzopoulos. Autonomous pedestrians.
In Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA 05, pages 19-28,
New York, NY, USA, 2005. ACM.

[5] W.-Y. Lo, C. Knaus, and M. Zwicker. Learning motion
controllers with adaptive depth perception. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, SCA 12, pages 145-154, Aire-la-Ville,
Switzerland, Switzerland, 2012. Eurographics Association.

[6] S.-J. Kang, Y. Kim, and C.-H. Kim. Live path: adaptive
agent navigation in the interactive virtual world. Vis. Com-
put., 26(6-8):467-476, June 2010.

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

J. S. B. Mitchell and C. H. Papadimitriou. The weighted re-
gion problem: finding shortest paths through a weighted pla-
nar subdivision. Journal of the ACM, 38(1):18-73, 1991.

L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari,
D. Nussbaum, and J.-R. Sack. Algorithms for approximate
shortest path queries on weighted polyhedral surfaces. Dis-
crete & Computational Geometry, 44:762-801, 2010.

C. S. Mata and J.S.B. Mitchell. A new algorithm for comput-
ing shortest paths in weighted planar subdivisions (extended
abstract). In Proc. 13th Annu. ACM Sympos. Comput. Geom,
pages 264-273. ACM Press, 1997.

L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack.
An e-approximation algorithm for weighted shortest paths on
polyhedral surfaces. In Proceedings of the 6th Scandinavian
Workshop on Algorithm Theory, pages 11-22, 1998.

L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining
approximate shortest paths on weighted polyhedral surfaces.
J. ACM, 52(1):25-53, January 2005.

J. Reif and Z. Sun. An efficient approximation algorithm
for weighted region shortest path problem. In Algorithmic
and Computational Robotics: New Directions - The Fourth
Workshop on the Algorithmic Foundations of Robotics, 2000.

Z. Sun and J. Reif. Bushwhack: An approximation algorithm
for minimal paths through pseudo-euclidean spaces. In Pro-
ceedings of the 12th Annual International Symposium on Al-
gorithms and Computation, pages 160—171. Springer, 2001.

J.-L. De Carufel, C. Grimm, A. Maheshwari, M. Owen, and
M. Smid. Unsolvability of the weighted region shortest path
problem. In European Workshop on Computational Geome-
try (EuroCG), pages 65-68, 2012.

Y. Guo, L.E. Parker, D. Jung, and Z. Dong. Performance-
based rough terrain navigation for nonholonomic mobile
robots. IEEE Industrial Electronics Society, 3:2811-2816,
2003.

A. Yahja, S. Singh, and A. Stentz. An efficient online path
planner for outdoor mobile robots. Robotics and Autonomous
Systems, 32:129-143, 2000.

D. Harabor and A. Botea. Hierarchical path planning for
multi-size agents in heterogeneous environments. Compu-
tational Intelligence and Games, pages 258-265, 2008.

R. Geraerts and M.H. Overmars. Enhancing corridor maps
for real-time path planning in virtual environments. Com-
puter Animation and Social Agents, pages 64-71, 2008.

I. Karamouzas, R. Geraerts, and M.H. Overmars. Indicative
routes for path planning and crowd simulation. In 4th Inter-
national Conference on Foundations of Digital Games, pages
113-120, 20009.

PE. Hart, N.J. Nilsson, and B. Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100
-107, 1968.

R. Geraerts. Planning short paths with clearance using Ex-
plicit Corridors. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1997-2004,
2010.

W.G. van Toll, A.F. Cook IV, and R. Geraerts. Real-time
density-based crowd simulation. Computer Animation and
Virtual Worlds (CAVW), 23:59-69, 2012.

[23]

[24]

[25]

W.G. van Toll, A.F. Cook 1V, and R. Geraerts. Navigation
meshes for realistic multi-layered environments. In Proceed-
ings of the International Conference on Intelligent Robots
and Systems, pages 3526-3532, 2011.

I. Karamouzas. Motion Planning for Human Crowds: From
Individuals to Groups of Virtual Characters. PhD thesis,
Utrecht University, 2012.

J. E. Bresenham. Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1):25 -30, 1965.

