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Abstract

We present a system that allows non-programmers to create generic controllers for
physically simulated characters. The core of our system is based on a directed acyclic
graph of trajectory transformations, which can be modified by feedback terms and serve
as reference motions tracked by the physically simulated character. We then introduce
tools to enable the automatic creation of robust and parameterized controllers suitable
for running in real-time applications, such as in computer games. The entire process
is accomplished by means of a graphical user interface and we demonstrate how our
system can be intuitively used to design a simbicon-like walking controller and a pa-
rameterized jump controller to be used in real-time simulations.
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1 Introduction
While kinematic motion generation techniques easily offer real-time performance and pre-
dictability of the resulting motions, they lack realistic interactions with the environment and
reactions to disturbances. Physics-based simulated characters have great potential to im-
prove these aspects, however useful controllers remain difficult to design and to integrate in
real-time applications.

Although research on physically simulated characters have tremendously improved the
creation of new and more robust motion controllers for a variety of tasks [1, 2, 3], controller
design remains complex and difficult to extend to generic situations and tasks.

This paper proposes a system to enable the easy exploration, creation, and customiza-
tion of real-time controllers without requiring low-level programming. The system enables
the user to graphically create a directed acyclic graph of trajectory transformations, which



can then be modified by feedback terms in order to generate reference motions that can be
tracked by the physically simulated character while handling disturbances.

Tools for expanding the controllers in respect to desired parameterizations are also in-
troduced in order to enable the creation of robust controllers suitable for running at real
time frame rates. We demonstrate how our system can be used to design a simbicon-like
walking controller, to create a parameterized jump controller, and to adapt motion capture
data to new constraints. We then present a case study to show the steps needed to create the
walking controller.

2 Related Work
The main current approach for real-time motion generation remains based on kinematic an-
imations, typically using a finite set of motion capture or keyframed clips augmented with
some blending and warping. For example, Levine et al. [4] show how a small number of mo-
tions can control a kinematic character in real time. But as with any kinematic approach, the
motions generated are limited to the examples given. Physics can also be used to transform
kinematic animations. For instance, de Lasa et al. [5] show a feature-based method for creat-
ing controllers for dynamic characters; and Popovic et al. [6] use a space-time optimization
approach to transform motions in physically accurate ways.

Since the 90s researchers have been implementing increasingly robust control strategies
for achieving a diverse set of skills for physics based characters. We provide here a summary
of key contributions proposed in previous work. Early work by Hodgins et al. [2] showed
how controllers could be adapted to new characters. Laszlo et al. [7] explored limit cycle
control to combine a closed loop animation cycle with open loop feedback control. Virtual
mode control developed by Pratt et al. [8] was a key insight to how to control individual
parts of an articulated figure using a Jacobian transpose method. This work was further
developed by Pratt et al. [9] where they used velocity based control strategies to achieve fast
walking.

The role of physically simulated characters in video games and movies has been antic-
ipated for quite some time but to this date is mostly present as passive ragdoll interactions.
Promising research has however been proposed to improve physics based characters while
maintaining real-time performance and the realism of motion capture data. Macchietto et
al. [10] used momentum control to allow a character to follow motion capture data while
responding to large disturbances. Methods for automatically switching from kinematics to
physics only when needed have been developed [11], and methods for extracting the style in
a motion capture clip have been transferred to physically simulated characters [12]. Com-
plex motion capture sequences have also been achieved with physically simulated charac-
ters [3], however requiring computationally heavy sampling strategies and without response
to disturbances. DaSilva et al. [13] explored adaptation of human styles from motion cap-
ture to Physics-based characters. The use of motion capture data is desirable because it
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guarantees realistic motions, but it also serves to understand the principles of how humans
(and other animals) interact with the physical world.

Human locomotion is difficult to simulate mainly because the motion is typically not
statically balanced. This leads to an inherently unstable system, and many researchers have
investigated foot placement strategies in order to maintain dynamic balance while walking.
Yin et al. [14] introduced simple feedback rules for the swing leg to produce robust walking
behavior. Tsai et al. [15] used an Inverted Pendulum (IP) model for the swing foot placement
in locomotion. Kajita et al. [16] used Zero Moment Point (ZMP) strategies to determine
swing foot location. While usual IP and ZMP strategies assume that the contact surface is a
plane, Pratt et al. [17] have explored a more general capture point method that can generalize
to non flat surfaces. Muico et al. [18] proposed a system that looks several steps ahead to
determine contact states that can keep a character balanced. These foot placement control
strategies work well for individual locomotion skills and they provide foundations for more
complex systems of combined behaviors.

With the development of many low level balance control schemes many researchers
have investigated how to incorporate them into a more diverse skill set. Coros et al. [1]
demonstrated robust bipeds performing various skills such as pushing and carrying objects,
extending early work on the use of virtual forces. Faloutsos et al. [19] determined a range of
controller operations considering initial conditions (pre-conditions) using a Support Vector
Machine that allows controllers to be concatenated together. Coros et al. [20] developed a
task based control framework using a set of balance-aware locomotion controllers that can
operate in complex environments [21]. Jain et al. [22] explored an optimization approach to
interactively synthesize physics based motion in a dynamic environment. Coros et al. [23]
developed a robust parameterizable control framework for a simulated quadruped. Finally,
recent work by Liu et al. [24] have showed impressive results able to sequence controllers
in order to perform parkour-style terrain crossing.

In summary, previous work in physics-based character animation has focused on the
development of successful controllers for a number of tasks and situations. In this paper we
introduce a system that is able to expose the creation and exploration of such controllers to
designers in an intuitive way. In doing so our system proposes two main contributions: 1) a
set of data processing nodes to model controllers with graph-like connections able to form
complete control feedback loops, and 2) a simple and effective sampling-based algorithmic
approach to automatically achieve robustness and parameterization of designed controllers.

3 System Overview
The core of our system has two main modules: an animation module and a physics mod-
ule. The animation module generates target angles based on input trajectories. The physics
module contains a tracking controller that produces the torques necessary to drive each joint
of the physically simulated character towards the target angles specified by the animation
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module. Additionally, the physics module has a virtual force controller that adds additional
torques to achieve higher level requirements such as staying balanced or achieving a global
position of a body part in the joint hierarchy. See Figure 1 for an overview of the main parts
of the system.

Figure 1: Data flow of the system.

The animation module operates at 60fps feeding a stream of postures to the physically
simulated character. The output trajectories are specified in joint angles, or also as end-
effector positions, which are then converted to joint angles using Inverse Kinematics (IK).

The physically simulated character is composed of a set of rigid bodies connected by
hinge, universal and ball joints as shown in Figure 2. Each rigid body in the character is
approximated by an oriented bounding box for fast collision handling. The character is
simulated using the Open Dynamics engine (ODE) and is running at 1200 FPS. The reason
for the high simulation frame rate is to handle high speed contacts, which is a potential
problem with typical forward dynamic simulations.

Figure 2: Simplified model for collision detection (left) and full character model (right).
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The Section 4 describes the physics module. The animation module is then presented in
Section 5.

4 Physics Module
The Physics Module has two main components: tracking control and virtual force control.
The tracking control makes the character follow joint angles specified by the animation
module. The virtual force control allows higher level goals such as maintaining balance,
global effector goals and gravity compensation.

4.1 Tracking control
A PD servo at each joint is responsible for tracking the target angular value θgoal and rota-
tional velocity vgoal specified from the animation module for each rigid body. We use PD
gain coefficients of kp = 4kn/rad and kd = 2

√
kp.

The goal angle θgoal for each joint can be either specified in local coordinates or in a
heading-based frame. The heading-based frame is calculated by starting with the root joint
global orientation then aligning it with the world up vector. Knowing the heading of the
character is useful for encoding the notion of front, back, left and right of the character
independent of its orientation and is critical for balance feedback. However, this approxi-
mation can be a problem if the character flips upside down since the heading will suddenly
change. If there are inputs that cannot be achieved, as is common with PD tracking joint
angles, It will approach the target as close as possible.

4.2 Virtual force control
Virtual model control was introduced by Pratt et al.[8] for bipedal robots and has then been
used in many systems such as[1]. Considering the character is under actuated, it is desirable
to control certain components with external forces. It would be a trivial matter to have
a character stay balanced and track arbitrary motions by applying external forces to each
rigid body that composes the character, however this would effectively defeat the purpose of
physics simulation since the result would typically be unrealistic. To approximate this level
of global control we can imagine a virtual external force acting on a rigid body to achieve
some goal, then convert this virtual force to internally realizable torques that span from the
affected body up the joint hierarchy to a more stationary body.

For example, to control the position of a character’s hand in global coordinates we cal-
culate a virtual force that will move the hand towards a goal configuration (see Figure 3),
and then convert this virtual force into a set of torques that can be applied to the arm joints
to achieve a similar motion. Ideally this chain of rigid bodies would span all the way to
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the foot in contact with the ground but in practice it only needs to go to the torso of the
character.

Another use of virtual control is to control the swing foot during a walk cycle, since
it will rarely be at the same state as the input motion, this can be critical for preventing
premature foot contact with the ground. To maintain static balance of the character we
employ a similar virtual force on the COM to bring its floor projection to the center of the
support polygon and then convert the virtual force to joint torques for the stance leg. It is
also a simple way to control the velocity of the COM while walking.

Figure 3: Global targets may be difficult to reach with joint control (left). Virtual forces can
be effective (right).

Gravity compensation torques are also computed to allow lower gain tracking by proac-
tively countering the effects of gravity. For each joint that is considered for gravity compen-
sation the COM and mass of the descendant joints is calculated, then a torque is applied that
would counter the moment this mass would create. Gravity compensation is typically only
applied to the upper body but can also be used for the swing leg for walking.

An important component of our balance strategy is controlling the orientation of the
torso independent of the contact configuration. Without considering the root orientation the
character typically leans over and falls as soon as it lifts the swing leg due to the sudden
change in torque requirements for the stance leg. However, since the torso has no parent
joints directly in contact with the ground it cannot directly be actuated, so instead a virtual
torque is calculated for the root that must be distributed to the stance leg, for double support
this torque is distributed to both legs.

With these components we are able to achieve full body posture control to maintain
balance while completing complex global objectives, such as touching a characters toe while
standing on one foot and holding the arm parallel to the ground, as showin in Figure 4.
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Figure 4: Character performing balance and reaching

5 Animation Module
The animation module creates kinematic motions that are used as input to the physics mod-
ule. The motion can be described as a sequence of full body postures determined at each
frame by spline trajectories controlling joint angles or effector trajectories (that are later
converted to angles by IK). Trajectories can be encoded by a sparse list of control points
and tangents or by a dense list of points that are linearly interpolated (typically the case of
mocap data).

Another common type of trajectory in our system is a step function, where each control
point is constrained to be either zero or one, representing true or false. The output may be
a combination of the above methods, for example the upper body may be driven by Euler
angles derived from motion capture data while the lower body may be driven by feet IK
trajectories.

The methods described above can create simple motions that maintain balance such as
jumping to a known goal, but they fail when there are external disturbances or changes in
the environment, or if the motion gets complicated with large sudden changes in contact.
Typically, to control balance, a separate system of feedback controllers is layered over the
animation module to override or modulate the reference motions that are produced. But we
are interested in a composite/unified approach that brings feedback terms directly into the
animation module.

In addition to having control points (or frames) serving as input for the animation mod-
ule, feedback variables become additional inputs to the animation system and gain parame-
ters become additional outputs. Trajectories can thus control any parameter in the system.
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For example for jumping, a trajectory is needed for representing a global gain multiplier for
the tracking control so the character can become stiff before jumping, then less stiff during
flight, then gradually stiffer to the default value for landing. Another trajectory can be used
to change the gains on a virtual force that is computed for the swing foot that gradually
transitions towards the end of a step.

By exposing the lowest level control parameters to the designer we raise the risk of them
creating non-functioning controllers, but we also provide the potential of exploration and
creation of endless possible controllers.

6 Time-Dependent Directed Acyclic Graph
The physics module is able to maintain balance and achieve high level goals such as foot
and hand global positions but the parameters are static. The animation engine generates
motion but it has no notion of the physics. To interconnect these two modules we present a
system called a Time-dependent Directed Acyclic Graph (T-DAG), inspired by the Directed
Acyclic Graph in Autodesk Maya.

The T-DAG interconnects the animation module with the physics module. To foster the
intuitive development of controllers we then propose a graphics user interface to expose the
parameters of the physics module and to connect them with appropriate channels from the
animation module.

Any relevant parameter can be exposed as a channel. Channels can represent the orien-
tation or position of an IK end-effector, an individual joint angle, boolean values, feedback
parameters or gain parameters. Some examples of feedback parameters are: the pressure
of the stance foot, the velocity or relative position of the COM, and many others which are
described in more detail in Section 8.

The user interface allows the individual or group assignment of channels to any type
of trajectory. For example with a forward jump, since the motion is typically left-right
symmetric, we have one trajectory that specifies the rotation of the foot but we connect it to
both feet.

6.1 Operation Nodes
To transform the motions several operation nodes are introduced. Each node in the control
graph takes as input a set of channels (trajectories or feedback parameters), performs an
operation, and then outputs the transformed value.

The animation module outputs trajectories based on editable splines or on feedback pa-
rameter that are used as input (see Figure 5). After a group of nodes is connected in a
desired way, the T-DAG network can be saved as a template to be used for other controllers
or duplicated for other channels. Then, by varying the input trajectories several goals can
be achieved without changing the network connections.
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Figure 5: Animation nodes can be based on spline input (left) or feedback input (right).

Several key operations needed to model controllers are available as nodes to be inter-
connected and added to the T-DAG. These operations are illustrated in Figure 6, and are
described below:

• Addition node: adds the input trajectories. It can take any number of inputs.

• Multiplication node: multiplies the values from a set of input trajectories.

• Modulation node: this node requires one step function and at least one trajectory
input. For each high step in the control input (step function) the first input trajectory
is scaled in time to fit within the step, and for each low step the second input trajectory,
if there is one, is scaled in time and fit within the low step.

• Switch node: it also requires one step function and one or two input channels. If the
step function is high it outputs the first input, and if it is low it outputs the second
input (if there is one).

Figure 6: Operation nodes, in top-down left-right order: addition, multiplication, modula-
tion and switch.

An intuitive graphical user interface was developed to allow designers to edit and explore
T-DAGs. Figures 8, 9 and 10 are direct snapshots from the graphical input panel of our
motion network editor. The accompanying video to this paper illustrates interactive sessions
with our system1.

1video available at http://graphics.ucmerced.edu/projects/12-mig-mnet/
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7 Trajectory Randomization to discover controllers
Once a T-DAG is built trajectories can be connected in different ways. They can be designed
by hand (using editable Splines) or they can come from motion capture. Editable offset
trajectories can also be easily associated to motion capture trajectories by using an addition
node, allowing different possibilities for customization. Any set of control points can then
be exposed to an automatic sampling procedure that will explore successful variations of the
controller in order to achieve parameterizations for real-time execution.

A cost function is selected as a network of feedback channels, for example jumping
requires the character to be statically balanced at the end of the motion and to minimize the
total torque of the tracking control. Walking requires the character to be upright and have
the COM moved by some minimum distance. Additionally, there is a boolean parameter
provided by the physics module which looks for non-foot contacts with the environment
which multiplies with the cost to ignore any motions that have bad contacts. There is also
an objective function that is the goal of the simulation, the goal can be a certain target
distance, or for example, a certain distance and height for a jump controller to achieve.

Once the objective and cost networks are constructed, a sampling process can be ini-
tiated. The trajectory control points that are exposed are randomly sampled within initial
sampling bounds and the simulation is run along with the controller. If after n tries the
controller does not achieve the objective, the sampling bounds are enlarged and the process
re-starts. If the objective is satisfied then the control points are saved to a file along with mo-
tion descriptors of the outcome (the achieved jump distance, walk speed, etc). If a controller
fails in some more global way, such as falling over, then it is discarded during the sampling
phase. To assure that a controller will work some representation of the environment and
character initial state need to be embedded into the controller.

After several motions are found that successfully complete several objectives, the suc-
cessful motions are then used as starting points for a new round of iterations. We randomly
choose new objectives and then use radial basis interpolation of the k-closest previous suc-
cessful examples to find a set of trajectories which would ideally meet the objective. This
typically does not work at first since there is no guarantee that interpolating successful con-
trollers will give a new functional controller, but it works well as a starting point for the
next round of sampling. The longer the sampling process runs, the better the interpolations
become. When enough coverage of the desired variations is achieved, an effective parame-
terization of the objective space is achieved.

8 Parameters
Any parameter in the system can be exposed to the motion network to design a controller.
Here we will explain a few of the parameters that are needed for the controllers in the paper.
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8.1 Control Parameters
Root (Position and Rotation): the root of the character can be animated and at each frame
the joint angles are determined based on IK effectors that are specified in global coordi-
nates.
End-Effectors (Position and Rotation): the character frame based position and rotation
solved with analytical Inverse Kinematics.
Joint Offsets (Rotation): added to the reference joint angle before tracking torque is calcu-
lated.
Joint Angle (Rotation): for non IK joints the desired rotation can be specified directly.
Desired COM Velocity (Vector): the desired velocity of the COM which is used as input
into the Balance controller.
Toe Heel Ratio (Scalar): specifies how much the COM should shift to the front or back of
the foot, a value of one puts the COM at the toes, 0.5 is midway between the toe and the
heels.
Stance Swing Ratio (Scalar): specifies how much the center of mass should be above the
stance foot(determined by stance state) a value of 1 puts the COM on the outside edge of
the stance foot.
Stiffness Multiplier (Scalar): global value that applies to all joints or per joint to change
the overall stiffness of the tracking controller.
Stance State (Boolean): specifies which foot is the stance state, if Stance State is true the
left foot is the stance foot otherwise it is the right foot.
Character Frame (Boolean): specifies if the tracking controller should calculate torques
relative to the parent joint or the character frame.

8.2 Feedback Parameters
COM Position (Vector): distance between the COM and stance foot in character frame co-
ordinates.
COM Velocity (Vector): velocity of the COM in the character frame coordinates.
Total Torque (Scalar): the sum of all the torques from the tracking control on the previous
frame.

9 Results and Discussion
We show three T-DAG examples for achieving walking, jumping and an example of motion
capture editing.

For achieving walking (see Figure 7), we start with a step in place motion that was user
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created and the objective was to move at least 5 meters while staying balanced for 10 sec-
onds. The sampled control points were the root joint and stance foot rotation in the sagittal
plane, and the desired velocity of the COM. Then the motion that traveled the furthest was
used as the starting point for the next iteration of trials with an increased objective distance
of 10 meters.

Figure 7: Example walking using the Simbicon controller.

Figure 8 shows the used feedback nodes, which implements the Simbicon feedback rules
θd = θd0 + CdD + CvV [14]. It offsets the swing leg and root joint target angle according
to the distance from the COM to the stance foot. The inputs to the network are the offset
between the COM and the stance foot trajectory in the previous frame as well as the COM
velocity. This is multiplied by a gain parameter and passed into the offset parameter of the
swing leg. The swing leg is determined by a switch node that has as input the stance state
step function. We describe in more detail the construction of this network in Section 10.

Figure 8: Simbicon feedback rules in sagittal plane

To achieve jumping (see Figure 9) the objective was to achieve static balance within 5
seconds and to travel at least 0.5 meters. The root joint position and orientation in the sagit-
tal plane was sampled while the feet were stationary and solved for with IK. Both feet were
connected to the same trajectory for the rotation in the sagittal plane to achieve desired toe
off in the jump. Also, the upper arms were connected to a single trajectory. Figure 12 shows
an example of two separate jumps that were created from the same network.

Figure 11 shows an example where we use the network in Figure 10 to modify the step
height of the motion with a single trajectory. We hope to use this in future work to achieve

12



Figure 9: The network to generate jumps.

physically simulated characters following motion capture. The goal is to produce swing
foot offsets that will raise the foot independent of the step phase of the motion capture data.
The nodes in the center of Figure 10 have as inputs trajectories extracted from the motion
capture data (in this case the y position of each foot). These are added to a swing trajectory
(far left) that is modulated based on the stance state. Several of these results are presented
in the accompanying video.

Figure 10: The network to transform the motion.

Figure 11: Three values for the swing foot offset curve.
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Figure 12: Two jumps created from the same motion network.

10 Case Study
In this section we summarize in more detail the steps required for creating a walking con-
troller including the balance feedback terms. The gate period of the walk is defined by the
step function in Figure 13-left. The step function is defined by two control points and since
we desire a symmetric gate the middle control point is half the duration of the trajectory.

Figure 13: Left: the stance state. Right: swing Y trajectory.

Figure 13-right shows the trajectory that controls the vertical position of the foot. The
trajectory is routed to the foot in Figure 14-left modulated by the step function defined in
Figure 13-left.

Similarly the Z position (Figure 14-right) of the foot and the X rotation (Figure 15-left)
are modulated based on the step function in Figure 13-left.

The arm rotation is defined by two trajectories (Figure 15-right): one for the stance (bot-
tom) and one for the swing (top). They are routed to each arm in Figure 16 and modulated
by the step function in Figure 13-left. The angle is inverted for the right arm. The value for
each arm receives a further offset and is then added to the forearm.
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Figure 14: Left: the swing Y network. Right: the Z position of the foot.

Figure 15: Left: the X rotation of the foot. Right: arm trajectories.

Figure 16: Trajectories to control arm swing.

15



Up till this point we have simply built a kinematic walking controller that can be param-
eterized by editing the control points of the input trajectories. What we need to do next is
define the feedback control that will allow the character to maintain balance while walking
under physics. The first thing we define are several constant value parameters (Figure 17)
that are needed by the virtual force controller. These include the stance swing ratio and the
toe heel ratio, which define the desired contact state of the character. The desired forward
velocity is routed to the balance controller and the X rotation of the torso gives the character
an initial lean in the forward direction.

Figure 17: Constant values for the virtual force controller.

To generate the Simbicon-like [14] feedback rules we first determine the sagittal and
coronal offset angles based on the current velocity and the offset of the COM to the stance
location. These values are multiplied by gain parameters and routed to one node for the
sagittal plane and to another node for the coronal plane. Figure 18 shows the feedback
network for the sagittal plane.

Figure 18: Feedback Terms.

The feedback value is sent to either the right or left leg in Figure 19 (the sagittal plane)
depending on the step function in Figure 13-left. The same value is then scaled and added
to the torso orientation.
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Figure 19: Sagittal Control.

Figures 13- 19 demonstrate the typical operations needed in order to design controllers
involving walking. While the presented case study is specific for walking with disturbances,
the same operations can be extended for different new styles of walking or other forms of
physics based motion. The resulted network can then be integrated into a higher level control
framework in order to make sequences of controllers to have more complex behavior. When
the entire network presented in Figures 13- 19 is put together the resulting graph is shown
in Figure 20 and the resulting motion is shown in Figure 7.

Our prototype system is not yet ready to be used by novice users. With expert knowl-
edge, the development of a working jump controller can be completed in under 20 minutes.
The walking controller described in this section takes about 35 minutes. In addition to devel-
oping controllers the system has showed to be very useful for understanding and visualizing
the effects of all terms of a controller, what indicates great potential for educational use. As
future work, we intend to develop a comprehensive user study in order to better understand
the bottlenecks in developing controllers with the proposed operations.

11 Conclusions and Final Remarks
We presented a system that allows users to create controllers for physically simulated char-
acters without low-level programming. Our system introduces a new methodology to ex-
plore, edit and create parameterized physics controllers that can be later used in real-time
applications. We are starting to use our system for the rapid prototyping and customization
of physics behaviors designed to improve game-based therapeutic applications and the re-
sults obtained so far are promising.

Acknowledgments This work was partially supported by CITRIS grant 128.
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Figure 20: Topology of the complete network.
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