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Figure 1: Navigation under different constraint specifications. (a) Attractor to go behind an obstacle and a repeller to avoid going in front
of an obstacle. (b) Combination of attractors to go along a wall. (c) Combination of attractors and repellers to alternate going in front of and
behind obstacles, producing a (d) Lane formation with multiple agents under same constraints. (e)–(h) Dynamic constraints used to avoid
navigating in front of vehicles.

Abstract

Path planning is a fundamental problem in many areas ranging from
robotics and artificial intelligence to computer graphics and ani-
mation. While there is extensive literature for computing optimal,
collision-free paths, there is little work that explores the satisfaction
of spatial constraints between objects and agents at the global navi-
gation layer. This paper presents a planning framework that satisfies
multiple spatial constraints imposed on the path. The type of con-
straints specified could include staying behind a building, walking
along walls, or avoiding the line of sight of patrolling agents. We
introduce a hybrid environment representation that balances com-
putational efficiency and discretization resolution, to provide a min-
imal, yet sufficient discretization of the search graph for constraint-
aware navigation. An extended anytime-dynamic planner is used
to compute constraint-aware paths, while efficiently repairing so-
lutions to account for dynamic constraints. We demonstrate the
benefits of our method on challenging navigation problems in com-
plex environments for dynamic agents using combinations of hard
and soft constraints, attracting and repelling constraints, on static
obstacles and moving obstacles.
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1 Introduction

The efficient computation of free movement paths is a fundamental
requirement in many disciplines including robotics, artificial intel-
ligence, computer animation, and games. Robotic agents need to
perceive and maintain a mental model of their environment while
computing collision-free paths that efficiently navigate them to their
destinations. Populating virtual environments with autonomous
agents is a key step in making them appear more lifelike and feel
more immersive. To contribute to this goal, the autonomous agents
themselves must be capable of environment reasoning and pathfind-
ing capabilities, a cognitive ability that serves as the foundation for
character animation and behavior synthesis.

There exists a large body of work in path planning research [Kapa-
dia and Badler 2013], with many proposed solutions that balance
path optimality and computational efficiency. These approaches
produce trajectories that minimize total distance traveled and use
reactive policies to account for constraints (e.g., collision avoid-



ance, inter-agent relationships, and so on). This produces locally
optimal results with no strict guarantees on constraint satisfaction,
and does not scale well to handle constraint combinations. Com-
puting global trajectories that account for spatial constraints with
respect to obstacles and other agents is still a challenging prob-
lem [Al Marzouqi and Jarvis 2011] that is of value to the commu-
nity.

This paper presents a planning approach for constraint-aware nav-
igation that enables autonomous agents to be more aware of the
semantics of objects in the environment and thus interpret high
level navigation goals with dynamic and meaningful spatial path
constraints. Such constraints may include specific location inves-
tigation (“check behind the building”), dynamic agent evasion and
stealth (“avoid being seen”), instructions with path requirements
for the mission (“follow the path”), or organization (“stay between
these two guys”). A hybrid discretization of the environment com-
bines the computational benefits of triangulations, while a uni-
form grid ensures sufficient resolution to account for dynamic con-
straints. Hard constraints, which must be satisfied, effectively prune
invalid transitions in the search graph, while soft constraints (attrac-
tors or repellers) have a multiplicative effect on the cost of choos-
ing a transition. Constraints are represented as continuous potential
fields, which can be easily superimposed to calculate the cumula-
tive effect of multiple constraints in the same region, and can be
efficiently queried during search exploration. An extended anytime
dynamic planner is used to compute constraint-aware paths while
efficiently repairing solutions to account for dynamic constraints
(e.g., other agents).

This paper makes the following contributions:

• A hybrid environment representation that balances compu-
tational efficiency and discretization resolution to provide a
minimal, yet sufficient discretization of the search graph for
constraint-aware navigation.

• A method of constraint specification using simple preposi-
tional phrases, that can be easily concatenated to specify com-
plex custom constraints.

• A quantitative description of qualitative motion constraint
specifications that can be applied generally to cost-
minimizing pathfinding methods.

• A real-time anytime dynamic planning framework that com-
putes trajectories adhering to spatial constraints on both static
obstacles and dynamic agents, while efficiently repairing
plans to accommodate constraint changes.

To demonstrate the benefits our method, we present challenging
navigation problems in complex environments using combinations
of constraints on static obstacles and dynamic agents, including
various combinations of hard, soft, attracting, and repelling con-
straints.

2 Related Work

Depending upon application requirements, a variety of navigation
approaches [Kapadia and Badler 2013] have been proposed for au-
tonomous agents, some of which are described below.

Potential Fields. The approach of potential fields [Warren 1989;
Warren 1990; Shimoda et al. 2005; Goldenstein et al. 2001; Arkin
1987] generates a global field for the entire landscape where
the potential gradient is contingent upon the presence of obsta-
cles and distance to goal. These methods suffer from local min-
ima where the agents can get stuck and never reach the goal.

Since a change in target or environment requires significant re-
computation, these navigation methods are generally confined to
systems with non-changing goals and static environments. Dy-
namic potential fields [Treuille et al. 2006] have been used to in-
tegrate global navigation with moving obstacles and people, effi-
ciently solving the motion of large crowds without the need for ex-
plicit collision avoidance. The work of Kapadia et al. [2009; 2012]
uses local variable-resolution fields to mitigate the need for com-
puting uniform global fields for the whole environment, and uses
best-first search techniques to avoid local minima.

Discrete Graph-based Search. Discrete search methods such as
A* [Hart et al. 1968; Hart et al. 1972; Dechter and Pearl 1985] are
robust and simple to implement, with strict guarantees on optimal-
ity and completeness of solution. Hence, they represent a popular
and widely used method for path planning in commercial systems
such as games. However, the performance and quality of the ob-
tained paths greatly depend on the resolution of the discretization
with coarse resolution producing low-quality paths and fine reso-
lution grids proving to be computationally prohibitive for real-time
applications. The work of Mononen [2009] and Kallmann [2010]
propose a triangulation-based representation of the environment for
efficient pathfinding. D* Lite [Koenig and Likhachev 2002] is
able to efficiently repair computed paths to accommodate dynamic
changes in the environment, while ARA* [Likhachev et al. 2003]
provides anytime solution guarantees with strict bounds on subopti-
mality. These methods provide the basis for AD* [Likhachev et al.
2005], which combines the properties of D* Lite and ARA*, to
provide an efficient real-time search technique that is applicable in
dynamic environments.

Local Collision-Avoidance. There is extensive work [Pelechano
et al. 2008] that relies on local goal-directed collision-avoidance
for simulating large crowds. These include rule-based ap-
proaches [Reynolds 1999], social forces [Helbing and Molnár 1995;
Pelechano et al. 2007], predictive methods [Paris et al. 2007;
van den Berg et al. 2008; Singh et al. 2011a], local fields [Kapa-
dia et al. 2009], and planning-based approaches [Singh et al. 2011b;
Kapadia et al. 2013]. The work of Schuerman et al. [2010] external-
izes steering logic to enforce local constraints for group formations.

Navigation with Constraints. The work of Xu and Badler [2000]
describes a list of representative prepositions for constraining
motion trajectories in goal-directed navigation. The work of
André [André et al. 1986] analyses the semantics of spatial rela-
tions including along and past to characterize the path of moving
objects. In addition, several search methods based on homotopy
classes have been proposed. Bhattacharya et al. [2012b; 2012a]
explore the use of homotopy class of trajectories in graph-based
search for path planning with constraints. This method is extended
by Bhattacharya et al. [2012b] to handle 3D spaces. A homotopy
class-based approach to A* called HA* [Hernandez et al. 2011],
ensures optimality and directs the search by exploring areas that
satisfy a given homotopy class. The work of Phillips et al. [2013]
demonstrates constrained manipulation using experience graphs.
The work in [Geraerts 2010; Kallmann 2010] embeds additional
information in the underlying environment representation to effi-
ciently compute shortest paths with clearance constraints.

Comparison to Prior Work. Our method provides a generic way
to specify spatial constraints, including constraints on dynamic ob-
jects such as other agents, modeled as local artificial potential fields
which contribute to the cost of a node in the search graph. We use a
hybrid environment representation that combines the benefits of tri-
angulations and a uniform grid, and annotate the environment to fo-
cus and accelerate the search in the constrained region. Compared
to [Xu and Badler 2000], we utilize an anytime dynamic planner
which can efficiently repair solutions to accommodate constraint



changes. The resulting trajectory does not depend on the shape of
an object, but rather on the location and affecting area of the con-
straints. Thus, we do not encounter the issues described in [André
et al. 1986].

3 Problem Definition

The problem domain, Σ = 〈S,A〉 defines the set of all possible
states S, and the set of permissible transitions A. Every prob-
lem instance P, for a particular domain Σ, is defined as P =
〈Σ, sstart, sgoal,C〉, where (sstart, sgoal) are the start and goal
state, and C is the set of active hard and soft constraints. A hard
constraint is used to prune transitions in A. For example, consider a
flower bed which must not be stepped upon. A hard constraint could
be specified for that area, pruning every transition that could violate
this restriction. A soft constraint influences the costs of actions in
the action space, and can lead the agent towards a certain region in
space or away from it. A planner generates a plan, Π(sstart, sgoal),
which is a sequence of states from sstart to sgoal that satisfies C.

The rest of this paper is organized as follows. Section 4 describes
the discretization and annotation of the environment to define Σ.
Section 5 discusses the specification of constraints and their rep-
resentation as multiplier fields. Section 6 describes the planning
algorithm for generating paths with spatial constraints in dynamic
environments. Section 7 evaluates our method, with concluding re-
marks in Section 8.

4 Environment Representation

In this section, we describe the discretized environment represen-
tation that we use for constraint-aware pathfinding. A coarse-
resolution representation facilitates efficient search, but cannot ac-
commodate all constraints due to insufficient resolution in regions
of the environment where constraints maybe specified. A dense
representation of the environment can account for all constraints
(including dynamic objects), but is not efficient for large environ-
ments. To offset these limitations, we propose a hybrid search graph
that has sufficient resolution, and accelerates search computations
by exploiting coarse transitions, when possible.

4.1 Triangulation

We define a simple triangulated representation of free space in the
environment, represented by Σtri = 〈Stri,Atri〉 where Stri are the
midpoints of the edges in the mesh and Atri are the six directed
transitions per triangle, two bi-directional edges for each vertex
pair. This triangulation can be easily replaced by more complex
solutions proposed by Mononen [2009] and Kallmann [2010], and
provides a coarse discretization of the state and action space. Fig-
ure 3(a) illustrates Σtri for a simple environment. The triangula-
tion domain Σtri provides a coarse-resolution discretization of free
space in the environment, and facilitates efficient pathfinding. How-
ever, the resulting graph is too sparse to represent paths adhering to
constraints such as spatial relation to an object.

To offset this limitation, we annotate objects in the environment
with additional geometry to describe relative spatial relationships
(e.g., Near, Left, Between etc.). These annotations generate
additional triangles in the mesh, which expands Σtri to include
states and transitions that can represent these spatial relations. An-
notations, and the corresponding triangulation are illustrated in Fig-
ure 3(b). These annotations are useful for constraints relative to
static objects. However, Σtri cannot account for dynamic objects
as the triangulation cannot be efficiently recomputed on the fly. To

handle dynamic constraints, we provide a dense graph representa-
tion, described below.

4.2 Dense Uniform Graph

To generate Σdense = 〈Sdense,Adense〉, we densely sample points
in the 3D environment, separated by a uniform distance dgrid,
which represents the graph discretization. For each of these points,
we add a state to Sdense if it is within

√
3

2
dgrid of the nearest point in

Stri, and clamp it to that point. Each state in Sdense can have a max-
imum of 26 neighbors. However, in practice we have approximately
8 neighbors for planar environments. The dense domain Σdense can
be precomputed or generated on the fly, depending on environment
size and application requirements. However, it greatly increases the
computational burden of the search due to the increased number of
nodes and transitions.

4.3 Hybrid Graph

To mitigate the performance problem of Σdense, we combine
Σdense and Σtri to generate a hybrid domain Σhybrid = 〈Shybrid =
Sdense,Ahybrid = Adense ∪Atri〉. First, we add all the states and
transitions in Σdense to Σhybrid. For each state in Stri, we find the
closest state in Sdense, creating a mapping between the state sets,
λ : Stri → Sdense. Then, for each transition (s, s′) ∈ Atri, we
add the corresponding transition (λ(s), λ(s′)) in Adense. The re-
sulting hybrid domain Σhybrid has the same states as Σdense with
additional transitions. These transitions are generally much longer
than those in Adense, creating a low-density network of highways
through the dense graph.

In Σhybrid, a pathfinding search can choose highways for long dis-
tances, and only use the dense graph when it is necessary. As be-
fore, the dense graph allows the planner to find paths that adhere to
constraints. But when there is no strong influence of nearby con-
straints, the planner can take highways to improve its performance.
In addition, with a planner like AD* [Likhachev et al. 2005], we
can inflate the influence of the heuristic to produce suboptimal paths
very quickly that favor highway selection, and iteratively improve
the path quality by using dense transitions, while maintaining in-
teractive frame rates. The performance benefits of Σhybrid are de-
scribed in Section 7.1.

5 Constraints

Constraints imposed on how an agent navigates to its destination
greatly influence the motion trajectories that are produced, and of-
ten result in global changes to the paths that cannot be met using
local solutions. For example, an agent who wishes to stay behind
a building or outside another agent’s line of sight, may choose ex-
tremely circuitous paths that satisfy these constraints. Our frame-
work supports hard constraints which must always be met, attrac-
tors which reduce transition costs, and repellers which increase
transition costs.

5.1 Hard Constraints

Hard constraints have very simple definitions comprising two
fields: an object and a relative position. These two fields (explained
below) allow us to define an area of influence of the constraint,
where all transitions in Σhybrid that fall within the area are pruned.
Hard constraints can only be Not constraints. In order to spec-
ify hard attractor constraints, we use a sequence of goals that the
agent must navigate to (e.g., go behind the building and then to the
mailbox). Hard constraints simply prevent all violating transitions
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Figure 2: (a) An environment with annotations such as Front, Left, Between, and LineOfSight. (b) Transitions in hybrid domain
Σhybrid. (c) A specific problem instance with the following constraints: Not In Grass ∧ Not Near LineOfSight (Agent) ∧ Near
Between (B, C). (d) Static optimal path, in absence of constraints. (e) Resulting path produced for problem instance (c). (f)–(g) Plan
repair to accommodate dynamic LineOfSight constraint. The Between constraint is invalidated due to the LineOfSight constraint,
of higher priority. (h) Multiple characters simultaneously navigate under different constraint specifications, producing different paths from
the same start/goal configuration.

(a) (b) (c) (d)

Figure 3: (a) Environment triangulation Σtri. (b) Object annotations, with additional nodes added to Σtri, to accommodate static spatial
constraints. (c) Dense uniform graph Σdense, for same environment. (d) A hybrid graph Σhybrid of (a) Σtri and (c) Σdense; highways are
indicated in red.

from being expanded during the search, thus producing a plan that
always avoids the region.

5.2 Soft Constraints

A soft constraint specification consists of three fields: (a) a prepo-
sition, (b) an object with annotations, and (c) the constraint weight.
As soft constraints are an extension of hard constraints, they are
simply referred to as “constraints” henceforth.

Preposition. We define two simple prepositions, Near and In
which define the boundaries of the region of influence. For exam-
ple, we might wish to navigate Near a building (a fuzzily-defined
area of effect), while making sure that we are not In the grass (a
well-defined area of effect). These two prepositions gain significant
power by leveraging annotations, described below.

Annotations. An annotated object provides positions as well as
semantics. Annotations define spatial regions relative to an object
(or multiple objects) for the purposes of customizing prepositions.
Figure 3(b) illustrates the annotations: Back, Front, Left, and
Right, for a static object in the environment. Annotations can
be easily added for dynamic objects as well, for example, to spec-
ify an agent’s LineOfSight. The relationships between multiple
objects can be similarly described by introducing annotations such
as Between. The annotations define the area of influence of the
constraint, relative to the position of the object.

Weight. The weight defines the influence of a constraint, and can
be positive or negative. For example, one constraint may be a weak
preference (w = 1), while another may be a very strong aversion
(w = −5) where a negative weight indicates a repelling factor.
Weights allow us to define the influence of constraints relative to
one another, where one constraint may have higher priority over
another, facilitating the superimposition of multiple constraints in
the same area.



5.3 Multiplier Field

(a) (b)

Figure 4: A 3D depiction of the multiplier field mc (~x) for (a)
attracting and (b) repelling constraints.

Constraints must modify the costs of transitions in the search graph,
in order to have an effect on the resulting path generated. To achieve
this, it is important to maintain several properties:

1. The modified cost of a transition must never be negative, to
ensure that the search technique will complete. In our system,
the cost of a transition will always be greater than or equal
to its unmodified distance cost, even under the influence of
attractor constraints. With A* and variants such as AD*, this
guarantees optimality when the unmodified distance cost is
used as a heuristic cost estimate.

2. We must be able to efficiently compute the cost of a transition,
influenced by several constraints. The weighted influence of
all constraints at a particular state are simply added together,
and multiplied to the base cost.

3. Constraints should only affect a limited region of influence.
In our system, soft constraints may have a smooth gradient or
a hard edge, and hard constraints have a sharp cut-off. We
model constraints as artificial potential fields and define the
influence of a constraint at a particular position as a function
of its radial distance from the constraint center. A decay of
r−2 ensures that the influence is strong at small distances, and
negligible beyond a certain distance. A hard constraint only
affects states that are within its region of influence.

4. The total cost along a path must be independent of the num-
ber of states along that path. To maintain this property, the
cost calculation must be continuous, and modeled as a path
integral (see below). The path integral will always have the
same value regardless of path sub-division.

Formulation. The influence of a constraint is defined using a con-
tinuous multiplier fieldm (~x), wherem (~x) denotes the multiplica-
tive effect of the constraint at a particular position ~x in the envi-
ronment. It is important to note that, due to its continuous nature,
multiplier fields can be easily translated to any pathfinding system;
it is not specific to graph search representations of pathfinding prob-
lems. For a single constraint c with the preposition Near, the cost
multiplier field mc (~x) is defined as follows:

mc (~x) = −w (k1 + k2 · r(c, ~x))−2

mc (~x) =

{
mc (~x) : |mc (~x)| < ε
0 : otherwise

where w is the constraint weight, k1 = 0.4 and k2 = 0.5 are con-
stants affecting the sharpness and influence radius of a constraint,

respectively, and r(c, ~x) is the shortest distance between the posi-
tion ~x and the constraint c. We define a zone beyond which the
constraint has no effect and clamp its value to zero when its influ-
ence is below a certain threshold ε. This is especially important for
dynamic constraints, as we must monitor all the states whose costs
are updated, while performing plan repair. Explicitly defining the
boundary of a constraint limits the number of states that a planner
must consider. Multiplier fields for Near attractor and repeller are
illustrated in Figure 4. For In constraints, mc (~x) = −wk−2

1 for
all positions within the constraint annotation, and mc (~x) = 0 for
all positions outside the annotation.

Multiple Constraints. For a set of constraints C, we define the
aggregate cost multiplier field,

mC (~x) = max

(
1,m0 +

∑
c∈C

mc (~x)

)

To accommodate attractor constraints which reduce cost, we define
a “base” multiplier m0 (with a value around 3 to 10). This multi-
plier affects costs even in the absence of constraints, which allows
attractors to reduce the cost of a transition, without it ever going be-
low the default cost. The resulting cost multiplier never goes below
1, to preserve the optimality guarantees of the planner.

Cost multiplier for a transition. The cost multiplier for a transi-
tion (s→ s′), given a set of constraints C, is defined as follows:

MC

(
s, s′

)
=

∫
s→s′

mC (~x) d~x

We choose to define this as a path integral because it is general-
ized to any path, not just a single discrete transition, and because it
perfectly preserves cost under any path subdivision. For our graph
representation, since the path integral is inefficient to compute on
the fly, we approximate it by taking the value of the multiplier field
at the midpoint of the transition,

MC

(
s, s′

)
≈ mC

(
~xs + ~xs′

2

)
where ~xs and ~xs′ are the position vectors of s and s′, respectively.

6 Planning Algorithm

We use Anytime Dynamic A* [Likhachev et al. 2005] as our under-
lying planner, which combines the incremental planning properties
of D* Lite [Koenig and Likhachev 2002] and the anytime planning
properties of ARA* [Likhachev et al. 2003] to efficiently repair so-
lutions after world changes and agent movement. It quickly gener-
ates an initial suboptimal plan, bounded by an initial inflation factor
ε0 which focus search efforts towards the goal. This initial plan is
then improved by lowering the weight of ε with each new plan gen-
erated until ε becomes 1.0, thus guaranteeing optimality in the final
solution.

AD* can interleave planning with execution by allowing the agent
to move along the path, and handles start update by performing a
backwards search. The planner, however, cannot handle dynamic
changes in goal, so in those circumstance we can simply reset ε
to its default value and plan from scratch. Dynamic state changes
are efficiently handled by keeping track of states whose costs are
inconsistent, which are re-expanded to repair the solution. This
avoids having to re-plan from scratch every time there is a dynamic



event in the environment. For more details on AD*, we refer the
readers to the work of Likhachev et al. [2005], and describe the
changes to accommodate constraint satisfaction below. Appendix A
provides the algorithmic details of AD* for reference.

Cost Computation. The modified cost of reaching a state s from
sstart, under the influence of constraints, is computed as follows:

g(sstart, s) = g(sstart, s
′) +MC

(
s, s′

)
· c(s, s′)

where c(s, s′) is the cost of a transition from s → s′, and
MC (s, s′) is the aggregate influence of all constraint multiplier
fields, as described in Section 5.3. This is recursively expanded
to produce:

g(sstart, s) =
∑

(si,sj)∈Π(sstart,s)

MC (si, sj) · c(si, sj)

which utilizes the constraint-aware multiplier field to compute the
modified least-cost path from sstart to s, under the influence of ac-
tive constraints C. States keep track of the set of constraints that in-
fluence its cost, which mitigates the need of exhaustively evaluating
every constraint to compute the cost of each transition. When the
area of influence of a constraint changes, the states are efficiently
updated, as described below.

Accommodating Dynamic Constraints: Over time, objects asso-
ciated with a constraint may change in location, affecting the con-
straint multiplier field which influences the search. For example,
an agent constrained by a LineOfSight constraint may change
position, requiring the planner to update the plan to ensure that the
constraint is satisfied. Each constraint multiplier field mc (~x) has
a region of influence region(mc, ~x), which defines the finite set of
states Sc that is currently under its influence. When a constraint
c moves from ~xprevto ~xnext, the union of the states that were pre-
viously and currently under its region of influence (Sprev

c ∪ Snext
c )

are marked as inconsistent (their costs have changed) and they must
be updated. Additionally, for states s ∈ Snext

c , if c is a hard con-
straint, its cost g(s) = ∞. Algorithm 1 provides the pseudo code
for ConstraintChangeUpdate. The routine UpdateState(s), used
to recompute the costs of states, is provided in Appendix A, and is
modified slightly from its original definition [Likhachev et al. 2005]
to incorporate the multiplier fields during cost calculation.

Algorithm 1 ConstraintChangeUpdate (c, ~xprev, ~xnext)

1: Sprev
c = region(mc, ~xprev)

2: Snext
c = region(mc, ~xnext)

3: for each s ∈ Sprev
c ∪ Snext

c do
4: if pred(s)

⋂
VISITED 6= NULL then

5: UpdateState(s)

6: if s′ ∈ Snext
c ∧ c ∈ Ch then g(s′) =∞

7: if s′ ∈ CLOSED then
8: for each s′′ ∈ succ(s′) do
9: if s′′ ∈ VISITED then

10: UpdateState(s′′)

7 Results

Our framework is implemented in C# in the Unity game engine,
and uses the ADAPT platform [Shoulson et al. 2013] for character
animation. Our framework is real-time, and all results described
here and shown in the supplementary video were captured at 30 fps
or higher.

7.1 Benefit of Hybrid Domain

(a) Σdense 〈145, 16, 0〉 (b) Σhybrid 〈90, 7, 4〉

(c) Σdense 〈545, 25, 0〉 (d) Σhybrid 〈527, 12, 4〉

Figure 6: Comparative evaluation of dense and hybrid domains.
Blue indicates transitions in Adense, red indicates highway transi-
tions from Atri. Numbers shown are 〈 number of nodes expanded,
number of dense nodes chosen in path, number of highway nodes
chosen in path 〉.

The number of nodes in the plan to reach a particular goal (effec-
tively translating to the depth of the search) impacts the computa-
tional complexity of the search, ranging from a polynomial to an
exponential effect in the worst case. The use of highway transi-
tions (transitions from Atri) significantly reduce the search depth,
as the length of a utilized transition from Atri is, on average, 2 to
6 times longer than a transition in Adense. Figure 6 compares the
use of Σhybrid and Σdense for the same problem instance. We ob-
serve that there is a reduction of 45 nodes expanded, for 4 highway
nodes used in the plan for the problem instance in Figure 6(a),(b).
The problem instance in (c),(d) is particularly challenging for the
planner as the heuristic focuses the search in directions that are ul-
timately blocked. This leads to a significantly greater exploration
of nodes in Σdense before a solution can be found, and dilutes the
benefits of highway selection.

Based on our experiments, we observe that the number of high-
way nodes nh used in the final plan reduces the number of nodes
expanded in the search by a factor of ∼ 10 · nh. This varies de-
pending upon the environment configuration, the number and type
of constraints used, and where in the plan a highway node is cho-
sen. The earlier a highway node is chosen during plan computation,
the more significant its impact on the reduction in node expansion.

Highway Selection. The selection of highway nodes depends on
the quality of triangulation, and the relative position of the start
and goal, in comparison to where these nodes are present in the
environment. This could be potentially mitigated by using high-
quality navigation meshes [Mononen 2009; Kallmann 2010]. The
inflation factor used in the search also influences highway selection.
For a high inflation factor, the search is more prone to selecting
highway nodes which greatly accelerate and focus the search, while
compromising optimality of solution.

7.2 Examples

Figure 2 illustrates a variety of navigation examples for a simple
environment. Static obstacles and agents are annotated to add ad-
ditional nodes in the triangulation to accommodate spatial relation-
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Figure 5: (a)–(d) Not In LineOfSight constraint. (e)–(h) In LineOfSight constraint. Both cases utilize multiple dynamic agents.
A user interactively moves agents and the plan is repaired to accommodate constraint change.

ships including Between, Front, Back, Left, etc. The hy-
brid graph, illustrated in (b) combines the transitions in Σtri and
Σdense. A specific problem instance P, illustrated in (c), includes
a start, goal configuration, and a set of hard and/or soft constraints.
In this example, the agent is instructed to go Near Between B
and C (a soft attractor), Not Near LineOfSight of the agent
(a soft repeller), and Not In the grass (a well-defined area with
a soft repeller). Image (e) illustrates the resulting node expansion
and path produced, which is drastically different from the static op-
timal path without any constraints, shown in (d). Images (f) and
(g) illustrate the efficient plan repair to accommodate constraint
changes where the plan must be refined to avoid the line of sight
of a moving agent. By changing the relative influence of the con-
straints using constraint weightsw, we can produce different results
where one constraint gains priority over another. In this example,
the constraint to avoid line of sight is stronger than the constraint to
stay between the two obstacles. Hence, we observe that if no valid
path exists that satisfies all constraints, a solution is produced that
accommodates as many constraints as possible, based on weights.
Image (h) illustrates multiple agents planning with different combi-
nations of constraints.

We also demonstrate our framework on challenging game environ-
ments [Sturtevant 2012]. The method of constraint specification
using simple prepositional phrases is extensible, and simple atomic
constraints can be easily combined to create more complex, com-
posite constraints. Compound constraints like staying along the
wall or alternating between the left and right of obstacles to pro-
duce a zig-zag path can be created by using combinations of mul-
tiple attractors and repellers, as shown in Figures 1(a)–(c). Fig-
ure 1(d) illustrates multiple agents conforming to a common set
of constraints in their paths, to produce a lane formation behavior.
Figures 1(e)–(h) show the use of constraints in a highway cross-
ing scenario, where the agent avoids navigating in front of moving
vehicles. Plan repair to avoid the line of sight of multiple mov-
ing agents is shown in Figure 5(a)–(d). Here, the user interactively
selects agents associated with the constraints and changes their po-
sition, thus invalidating the current plan. The same problem con-
figuration using attractor constraints for LineOfSight produces
a drastic change in the resulting path, as shown in Figure 5(e)–(h).
Our framework efficiently repairs the existing solution to accom-
modate the constraint changes. The supplementary video provides

additional examples.

7.3 Parameter Selection and Performance

For our experiments, ε was initially set to a value of 2.5 to quickly
produce a sub-optimal solution while meeting time constraints,
which could be iteratively refined over subsequent plan iterations.
tmax was set to 0.033s and the plan computations of multiple agents
were distributed over successive frames, to ensure that the frame
rate was always greater than 30Hz. The maximum allotted time can
be further calibrated to introduce limits on computational resources
or accommodate many characters, at the expense of plan quality.
We observed that on average, the value of ε quickly converges to
1.0 to produce an optimal path, and requires a few frames to re-
pair solutions to accommodate dynamic events. For rapid changes
in the environment over many frames, the planner maybe unable to
find a solution and the agent stops till a valid path is computed for
execution.

The AD* algorithm requires all visited nodes in the search graph
to be cached to facilitate efficient plan repair, imposing a memory
overhead for large environments. There exists a trade-off between
computational performance and memory requirements where using
a traditional A* search would require less nodes to be stored, at the
expense of planning from scratch whenever the plan is invalidated.

The choice of the base multiplierm0 impacts how constraints affect
the resulting cost formulation, with higher values diluting the influ-
ence of the distance cost and the heuristic on the resulting search.
We pick the lowest possible value of m0 to accommodate the max-
imum value of repelling constraints with an upper bound of 10,
while preserving optimality guarantees. A cost model where the
base multiplier has no adverse effect on admissibility or the influ-
ence of the heuristic is the subject of future work.

8 Conclusion

In this paper, we present a goal-directed navigation system that sat-
isfies multiple spatial constraints imposed on the path. Constraints
can be specified with respect to obstacles in the environment, as
well as other agents. For example, a path to a target could be al-



tered to stay behind buildings, walk along the walls, while avoiding
line of sight with patrolling guards. An extended anytime-dynamic
planner is used to compute constraint-aware paths, while efficiently
repairing solutions to account for dynamic constraints.

Future Work. The performance of the hybrid domain is sensi-
tive to the kind of triangulations produced for the environment.
For future work, we would like explore better automated solu-
tions [Mononen 2009; Kallmann 2010] and manually annotated
waypoint graphs to improve computational performance. The an-
notations for an object are currently limited to a single object (e.g.,
Front) or for object-pairs (e.g., Between). Static analysis of
the environment could potentially yield automatic annotation gen-
eration for more complex spatial relationships, and is the subject
of future exploration. We have only considered spatial constraints
in this paper, but our framework is general and extensible to other
problem domains. For future work, we would like to extend our
specification to enforce movement as well as temporal constraints.

To highlight the benefits of our method, all constraints were ac-
counted for at the global planning layer. However, in some cases
where the constraint is constantly changing, such as a moving vehi-
cle, it may be prudent to use a locally optimal strategy for constraint
satisfaction. A hybrid approach that combines the benefits of both
global planning and local collision-avoidance for constraint satis-
faction is the subject of future exploration.

A Anytime Dynamic Planner

EventHandler (Algorithm 2 [24–31]) monitors events in the simu-
lation and triggers appropriate routines. ComputeOrImprovePath
(Algorithm 2 [15–23]) is invoked each time the planning task is
executed. This function monitors events and calls the appropriate
event handlers for changes in start, goal and constraints. Given
a maximum amount to deliberate tmax, it refines the plan and
publishes the ε-suboptimal solution using the AD* planning algo-
rithm [Likhachev et al. 2005]. We briefly describe our implemen-
tation of the AD* algorithm and how we handle changes in start,
goal, and constraint movement and refer the readers to [Likhachev
et al. 2005] for more details.

AD* performs a backward search and maintains a least cost path
from the goal sgoal to the start sstart by storing the cost estimate
g(s) from s to sgoal. However, in dynamic environments, edge
costs in the search graph may constantly change and expanded
nodes may become inconsistent. Hence, a one-step look ahead cost
estimate rhs(s) is introduced [Koenig and Likhachev 2002] to de-
termine node consistency.

The priority queue OPEN contains the states that need to be ex-
panded for every plan iteration, with the priority defined using a
lexicographic ordering of a two-tuple key(s), defined for each state.
OPEN contains only the inconsistent states (g(s) 6= rhs(s)) which
need to be updated to become consistent. Nodes are expanded in
increasing priority until there is no state with a key value less than
the start state. A heuristic function h(s, s′) computes an estimate of
the optimal cost between two states, and is used to focus the search
towards sstart.

Instead of processing all inconsistent nodes, only those nodes
whose costs may be inconsistent beyond a certain bound, defined by
the inflation factor ε are expanded. It performs an initial search with
an inflation factor ε0 and is guaranteed to expand each state only
once. An INCONS list keeps track of already expanded nodes that
become inconsistent due to cost changes in neighboring nodes. As-
suming no world changes, ε is decreased iteratively and plan quality
is improved until an optimal solution is reached (ε = 1). Each time
ε is decreased, all states made inconsistent due to change in ε are

moved from INCONS to OPEN with key(s) based on the reduced
inflation factor, and CLOSED is made empty. This improves effi-
ciency since it only expands a state at most once in a given search
and reconsidering the states from the previous search that were in-
consistent allows much of the previous search effort to be reused,
requiring only a minor amount of computation to refine the solu-
tion. ComputeOrImprovePath (Algorithm 2 [15–23]) gives the
routine for computing or refining a path from sstart to sgoal.

When change in edge costs are detected, new inconsistent nodes
are placed into OPEN and node expansion is repeated until a least
cost solution is achieved within the current ε bounds. When the
environment changes substantially, it may not be feasible to repair
the current solution and it is better to increase ε so that a less optimal
solution is reached more quickly.

An increase in edge cost may cause states to become under-
consistent (g(s) < rhs(s)) where states need to be inserted into
OPEN with a key value reflecting the minimum of their old cost and
their new cost. In order to guarantee that under-consistent states
propagate their new costs to their affected neighbors, their key val-
ues must use uninflated heuristic values. This means that different
key values must be computed for under- and over-consistent states,
as shown in Algorithm 2 [1–5]. This key definition allows AD*
to efficiently handle changes in edge costs and changes to inflation
factor.

AD* uses a backward search to handle agent movement along the
plan by recalculating key values to automatically focus the search
repair near the updated agent state. It can handle changes in edge
costs due to obstacle and start movement, and needs to plan from
scratch each time the goal changes. The routines to handle start
and goal changes are described below, while the routine to handle
constraint changes is described in Algorithm 1.

StartChangeUpdate. When the start moves along the current plan,
the key values of all states in OPEN are recomputed to re-prioritize
the nodes to be expanded. This focuses processing towards the up-
dated agent state allowing the agent to improve and update its so-
lution path while it is being traversed. When the new start state de-
viates substantially from the path, it is better to plan from scratch.
Alg 2 [32–40] provides the routine to handle start movement.

GoalChangeUpdate. Alg 2 [41–44] clears plan data and resets ε
whenever the goal changes and plans from scratch at the next step.
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