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Abstract
With the growth in available computing power, we see increasingly crowded vir-
tual environments. In densely crowded situations, collisions are likely to occur, and
the choice in collision detection technique can impact the perceived realism of a
real-time crowd. This paper presents an investigation into the accuracy of human
observers with regard to the recognition of collisions between virtual characters. We
show the result of two user studies, where participants classify scenarios as “col-
liding” or “not colliding”; a pilot study investigates the perception of static images,
whereas the main study expands on this by employing animated videos. In the pilot
experiment, we investigated the effect of two variables on the ability to recognize
collisions: distance between the character meshes and visibility of the inter-character
gap. In the main experiment, we investigate the angle between the character paths
and the severity of the (near) collision. On average, respondents correctly classified
72% (static) and 68% (animated) of the scenarios. A notable result is that the maxi-
mum uncertainty in determining existence of collisions occurs when the characters
are overlapping and that there is a significant bias towards answering “not collid-
ing.” We also discuss differences in bias in the recognition of upper- and lower-body
collisions.
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1 INTRODUCTION

Animating a crowded scene, such as a busy shopping street,
evacuation scenario, or large procession, requires tight pack-
ing of virtual characters. In such cases, collisions are likely to
occur. The choice in collision detection technique can impact
the maximum density, which can be handled in real-time, and
perceived realism of the crowd.

Many collision detection schemes aim at exactness, which
is vital in areas like computer-aided design and robotic
product manufacturing. Such exactness may not be the best
approach for collision detection between virtual characters.
People observing virtual characters may not be able to rec-
ognize collisions in certain configurations, and thus specific
optimizations could exploit this to improve collision detec-
tion performance without sacrificing perceived quality, or to
provide a better match between observed and detected colli-
sions. Exactness seems even less crucial in crowds of virtual
characters; people observing a crowd of virtual characters do

not always have all the information to determine whether a
collision occurs.

1.1 Main contribution

This article presents an investigation into the accuracy of
human observers with regard to the recognition of colli-
sions between virtual characters. We have performed two
user studies into the perception of collisions between virtual
characters, to determine how accurate human observers can
classify a situation as “colliding” or “not colliding.” A pilot
experiment investigates the perception of static images. The
main experiment uses video to explore the effects of move-
ment; we have investigated the angle between the character
paths and the severity of the (near) collision, and present a
statistical model for the expected accuracy.

Our results show that the average observer has a bias
towards negative (“not colliding”) answers, mostly in cases
of minor collisions, and that the accuracy of the answers
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has an asymmetrical relation with the severity of the (near)
collisions. To conclude, we suggest a technique to improve
performance of collision handling possible collision shape
and a simplification scheme that matches human percep-
tion. This simplification is based on inner approximations
rather than the coarse cylindrical outer approximations that
are commonly used in animations.

Furthermore, we investigate the difference in perception of
lower-body and upper-body collisions, which, to our knowl-
edge, has not been explored yet.

1.2 Organization

The remainder of this article is organized as follows. Section 2
discusses related work. The overall experiment design is
described in Section 3. The pilot experiment is described
in Section 4, and the main experiment in Section 5. The
implications are discussed in Section 6. Section 7 concludes
the paper.

2 RELATED WORK

The perception of collisions between large numbers of objects
was studied by O’Sullivan et al.1,2 They showed that when
the simulation becomes more complex, observers rely on their
own naïve or common-sense judgements of dynamics, which
are often inaccurate.2 We will come back to this later in this
section.

Perceptual studies of virtual characters have been per-
formed with regards to motion, emotion, timing, and
sound.3–5 An experiment by Hoyet et al.6 investigated the
perception of causality in virtual interactions, dealing with
pushing interactions between characters. Their focus lies on
the perceived realism of a scene, after applying alterations
commonly found in virtual environments such as games. In
contrast, our experiment does not focus on perceived realism,
but on whether collisions can be perceived at all.

Perception of collisions between a real user and a virtual
entity has also been studied. DeLucia7 investigated the per-
ception of collision with respect to traffic safety, that is,
collision between moving obstacles and a stationary observer.
Olivier et al.8 performed a user experiment to assess whether
real humans are also able to accurately estimate a virtual
human motion before collision avoidance and conclude that
when an observer is in front of a simple display, judgement
of crossing order was easier than recognition of future col-
lisions. This shows that perceiving collisions, at least when
one virtual character is involved, is nontrivial. They con-
tinue to show that the “bearing angle,” the angle at which
one entity sees the other, plays a large role in the perception
of collisions.

Kulpa et al. present an experiment of both the percep-
tion of crowds of virtual humans, and an accompanying
level of detail (LOD) technique for collision detection.9

Their focus lies on the accuracy of human observers in
recognizing collisions, based on various parameters such
as camera distance, horizontal and vertical camera angle,
and character distance. They measure the latter as the dis-
tance between the characters’ root joints, which, although
easy to compute, provides only a rough estimate for the
distance between the two characters. In contrast, in this
paper, we use the actual distance between the character
shapes, as described by LaValle.10 This metric also deter-
mines whether there is actually a collision or not. Another
contrast to the aforementioned work by Kulpa et al. lies
in the placement of the camera. We place the camera such
that the collision itself is maximally visible. Furthermore,
rather than having the characters walk along parallel paths,
we consider crossing paths of the characters and measure the
effect of the angle between those paths on the perception of
the collision.

To speed up collision detection algorithms, it is com-
mon to forego the possibly complex shape of the object
and use a simplified shape instead. LOD techniques can
generate such shapes, most notably applied to model sim-
plification for rendering acceleration.11,12 LOD techniques
have seen less emphasis in the area of collision detec-
tion and mostly focus on the simplification of the colliding
shapes.13–15 Otaduy and Lin16 introduced a technique that
also considers the velocity and view size of the objects, and
allows for time-critical detection in a similar way as intro-
duced by Hubbard.17 Apart from the velocity-based LOD
technique, these techniques do not focus on human per-
ception of collisions, and taking this into account could
lead to better algorithms. O’Sullivan et al.18 incorporated
LOD techniques not only in rendering and collision han-
dling, but also in the animation and behavioral algorithms.
In the discussion section, we explore possible adaptations of
LOD techniques to bring them in line with our findings on
human perception.

We have performed two user studies. The first exper-
iment is a pilot experiment, the main goal of which is
to determine reasonable ranges of parameters to be used
in the main experiment. The pilot experiment uses static
poses rather than animated characters, because it is nearly
impossible to find animated cases corresponding to spe-
cific desired parameter values, even though we are aware
of the limitation that the lack of movement may make it
difficult to fully assess the situation. As such, the partici-
pants’ answers may depend on common-sense judgements,
which O’Sullivan and Dingliana2 described as inaccurate.
However, their conclusions are based on geometric shapes,
and it will be interesting to see how accurate or inaccurate
the results are for human shapes. The main user experi-
ment uses animated characters, because we aim at apply-
ing our results to collision detection strategies for moving
characters. We examine the effect of the severity of the
(near) collision and the angle between the paths of the two
characters.
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3 EXPERIMENT DESIGN

In this section, we describe the common experiment design,
which is shared by both the pilot and main experiments. In
both user studies, we show rendered 3D scenes involving two
virtual characters in an otherwise empty virtual world. One
of the characters is male, the other is female. The two char-
acters are posed using previously recorded motion capture
data of a walking person. The following invariants are taken
into account.

• The ground plane is evenly textured and blends into a
solid background, such that it gives the user some sense of
perspective without distracting.

• Characters are fully textured and rendered using smooth
shading. This provides the most realistic rendering of our
character models, while maintaining the exact triangular
shape used in the distance and collision computations.

• The characters are placed such that the (near) collision
occurs in the vicinity of the origin.

• The camera is placed at an eye height of 1.75m and slightly
looking downward as to show both characters from head
to toe, mimicking the viewpoint of a human observer in a
similar real-life situation. The downward angle is adjusted
such that the point at 0.89m above the origin is at the center
of the view.

• The camera’s field of view is chosen to mimic a 50-mm
lens on a 35-mm (“full-frame”) camera, which is known
to result in a perspective distortion similar to that of the
human eye.

• Lights are attached to the camera at an offset; lighting is
constant with respect to the camera angle.

Participants are presented with an online web-based ques-
tionnaire. Before starting the test, they are instructed that any
physical contact between the displayed characters (including
the slightest touch) is considered “a collision.” Each partici-
pant is shown a scene, advancing to the next after the question
“Do these characters collide?” is answered. The questions are
binary; it is only possible to answer “yes” or “no.” Answer
buttons are always visible and can be used at any time. Partici-
pants have to click on their answer, and then on a confirmation
button, which is placed equidistant to the “yes” and “no” but-
tons (see Figure 1). This ensures that the mouse has to travel
a similar distance regardless of the answer to the previous
question, preventing bias towards repeating answers.

The questionnaire, for both the pilot and main experiment,
was open to any participant, who were sourced among col-
leagues, students, members of computer science and game
development forums, and several other non-computer science
forums. A small reward was raffled off among interested
participants that completed the survey.

Four types of answers are considered: true positive (TP)
when there was a collision and it was recognized as such; false
positive (FP) when there was no collision but it was recog-
nized as one; true negative (TN) when there was no collision
and recognized as such; false negative (FN) when there was
a collision but not recognized as one. Accuracy A is com-
puted in a similar way as by Kulpa et al.,9 as the fraction of
correct answers

FIGURE 1 Screenshot of the questionnaire
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A = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Absolute uncertainty (i.e., pure guesswork) would result in
A = 50%. With continuous data, absolute uncertainty would
result in a normal distribution around A= 50%; analysis of the
standard deviation would be needed to determine whether the
observed distribution differs significantly from pure guess-
work. However, due to the binary nature of our data, the stan-
dard deviation contains no information regarding the spread
of the answers.

4 PILOT EXPERIMENT

In this section, we describe our pilot experiment. We investi-
gate the ability of observers to recognize collisions between
virtual characters in static situations. Using static images
allows us to test a wider range of situations that are difficult
to create in an animated context, especially given the require-
ments that there is only a single collision and that the forward
velocity is more or less constant.

4.1 Overview

This section describes the pilot experiment design, invariants,
and variables. The invariants as described in Section 3 are
taken into account, and shadow is not rendered at all.

The characters are placed on the ground (xy) plane such
that the distance between their meshes is Dm meters. Both
are initially placed in a random pose at the origin and then
moved apart along the x-axis until the desired distance is
obtained. A negative value for Dm models the penetration
depth. For simplicity of computation, we use a reasonable
approximation and define it as the minimum distance to travel
along the x-axis in order to separate the two meshes.∗ To
generate such cases, we use a two-step approach. First the
characters are placed at Dm = 0 as described above, then
they are both moved along the x-axis towards the origin by
Dm/2; by moving both meshes, the collision will still be
near the origin. The line segment L is defined by the clos-
est points on the two meshes, hence ||L|| = max(0,Dm)
(assuming L is unique). When Dm<0, ||L|| is a degen-
erate line segment, and defined as the point where the
meshes touched in the first step of the two-step approach we
described earlier.

The camera is placed at a random distance Dc to the cen-
troid of L and a random angle, and an image is rendered. A
selection of these images are then used in the user experi-
ment; details are presented in Section 4.2. The front and rear
character are defined respectively as the characters closest

∗Although theoretically there is the possibility that this metric is very dif-
ferent from the penetration depth, in our test cases this difference is only
small.

to and furthest from the camera, based on their root joint
positions.

Our pilot experiment considers three variables. The first
two variables are randomly sampled from a suitable distri-
bution, and used as input to generate the images used in the
experiment. The other variable is derived from the randomly
generated scene.

• Mesh-mesh distance Dm was chosen uniformly from the
interval [−0.09, 0.15], in meters. We do not use any image
with |Dm|<0.001.

• Camera distance Dc ∈ [4,16], from camera to centroid of L,
in meters. In the case of animated characters, Kulpa et al.9

found that up to a certain projected size of the characters
camera distance had little influence on accuracy. We are
interested to see if this holds for static situations as well.
This variable is chosen from an exponential distribution,
such that more samples are chosen at smaller distances.
When a character is close to the camera, perspective distor-
tion is stronger and resulting effects are easier to measure.
The lower bound is chosen such that characters fit entirely
inside the camera frustum.

• Variable 𝜆 ∈ [0,∞) measures the length of the visible (i.e.,
not occluded by the front character) part of L, measured
in meters. 𝜆 is undefined when the characters are collid-
ing, as there is no visible gap between the characters in
those cases. Note that this metric does not denote the gap
between the silhouettes of the characters; there are many
cases in which the visible part of L lies in front of the rear
character, such as depicted in Figure 2a.

We want to investigate the role of these variables in
the perception of collision detection. Given a configura-
tion of two characters, variables Dm and 𝜆 are relatively
hard to compute, because computing L is a non-trivial
task. This means that these variables cannot be directly
used in a crowd simulation system. Nevertheless, we sus-
pect that they model important aspects of the perception
of the observers. With respect to variable Dm, we expect
the accuracy to be the lowest around Dm = 0, with a lin-
ear positive dependency between |Dm| and the accuracy of
observers. We expect a positive linear correlation between
the accuracy and 𝜆, as a more visible “gap” should result in
higher accuracy.

Note that the camera angle is not directly part of the vari-
ables we consider. Even though the angle of the camera with
respect to the walking direction of the characters has been
shown in previous work to be relevant to perception.9 our
characters do not share a single direction, hence this metric
loses its meaning.

4.2 Experiment

To generate the images, the characters were posed using
a randomly selected frame from a motion capture corpus
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FIGURE 2 Front and top-down view of the experiment setup

FIGURE 3 Plots of the results of the static experiment. Results are binned; the blue, continuous line shows the accuracy of each bin, with red error bars

denoting the standard deviation. The red dotted line shows the linear fit of the accuracy. Note that the R2 numbers relate only to a single parameter of our

model with respect to the entire variance in the observations

consisting of stepping and walking motions. An additional
random orientation around their up-axis prevented correlation
between the test cases and the absolute orientation recorded
in the motion capture lab.

The images are rendered at a resolution of 800 × 600 pixels.
Each variable’s range is uniformly split up into eight bins,

as shown in Figure 3. Each image is assigned a bin index for
each of the three variables. The interval [−0.09,0.15] meters
allows us to place Dm = 0 at a bin boundary, separating
colliding and non-colliding images into different bins. A ran-
dom sampling technique described by Wand and Straßer23 is
used to ensure at least 22 images per bin, resulting in a total
of 373 images.

Participants are presented with an online web-based ques-
tionnaire, as described in Section 3. Each image is shown for
6s and is then hidden; this timeout ensures that all partici-
pants look at an image for a more or less equal duration. In
order to prevent bias towards positive or negative answers,
we include both colliding (i.e., Dm<0) and non-colliding
(i.e., Dm>0) images in the experiment. An exact 50%/50%
distribution for any single participant who completes the

survey is ensured, and approximated for participants that
do not.

Per participant, a random subset of the test cases is shown.
This allows us to use a large test set without forcing par-
ticipants to answer all 373 questions. Image selection is
biased towards images in bins containing the least number of
answers, providing a more even spread of answers over the
bins than when uniformly selecting images.

4.3 Results

A total of 212 actively participating users provided 9,179
answers, averaging 43 answers per participant. The accuracy
over all participants was 72% for this experiment.

For each variable, a graph is shown in Figure 3. These
graphs show the likelihood that the participants correctly
identified the situation, averaged over the images in each bin.
The solid blue graph shows the average accuracy per bin,
with the error bars indicating the standard deviation. The scat-
ter plot shows a dot for each image in the survey. The dark
red dashed graph shows the trend and consists of one or two
linear pieces.
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To define the trend of the accuracy, we investigate, in order
of simplicity, a linear function or a piecewise linear function.
We accept the simplest function that describes the data well.
An analysis of the variance shows how well the found trend
fits the data (R2).

As the projected size of 𝜆 is dependent on Dm, we also
investigated the visible percentage 𝜆

′ = 𝜆/Dm to remove this
dependency. However, as can be seen in Figure 3, the results
are less relevant than for 𝜆 (R2 = 8%).

The effect of camera distance Dc (not included in graph) is
negligible, resulting in R2 = 0% for camera distances up to
12m. This confirms that the findings by Kulpa et al. 9 are also
applicable to static situations.

Computing the average over all participants, we see that
53% of the answers was “not colliding” and 47% was “col-
liding.” The ratio of FP to FN provides information to the
bias in the observations, and its significance can be com-
puted using a binomial test. The binomial test is an exact
test to compare the distribution of observations with an
expected distribution, and can only be applied when there
are two categories of observations (in this case, ‘false pos-
itive’ and ‘false negative’).6 When there is no bias, the
FP:FN ratio of N observations will show the same distribu-
tion as the ratio of heads:tails in N fair coin tosses; this is
the null hypothesis. The binomial test results in the proba-
bility p that, given the observations, these distributions are
indeed equal. When p < 0.05, it is 95% certain that the null
hypothesis can be rejected, and we can interpret the FP:FN
ratio as significantly different from fair coin tosses, and thus
biased. We use a binomial test per participant, to compute
the number of participants that are neutral, err towards false
positives, or err towards false negatives. Using a 95% confi-
dence interval, none of the participants had a significant bias
towards false positives, that is, incorrectly answering “collid-
ing.” Fifty-eight percent of the participants did not show any
bias, whereas 41% of the participants showed a significant
bias towards false negatives, that is, incorrectly answering
“not colliding.”

By using the height of the (near) collision, we can sepa-
rate the stimuli into “upper body” and “lower body.” Figure 4
shows the distribution of the height of the collision, or the
centroid of L in non-colliding cases, and confirms that such
a distinction is sensible. We use k-means clustering (k = 2)
to separate the test cases into “upper body” and “lower body”
clusters, and apply the same analysis as before to each cluster
individually.

With A = 71% and A = 73% for respectively the upper and
lower body, the overall accuracy is almost the same. How-
ever, the FN:FP ratio is different, with 63%:37% for the upper
body and 47%:53% for the lower body. This difference is also
reflected in the results of a binomial test. None of the par-
ticipants showed a significant bias towards false positives,
that is, incorrectly answering “colliding,” both for the upper
and lower body. Thirty-four percent and 17% of the partic-
ipants, for respectively the upper and lower body, showed a

FIGURE 4 Histogram of the height of the static (near) collisions, clustered

into “upper” and “lower” collisions

significant bias towards false negatives, that is, incorrectly
answering “not colliding.” The remaining participants did not
show significant bias.

These results may impact strategies for collision detection,
as those are generally aimed at the prevention of false nega-
tives; this analysis will be performed in the main experiment
as well, to investigate whether the same bias towards false
negatives is seen in animated situations.

5 MAIN EXPERIMENT

In this section, we describe our main experiment, in which
we investigate the ability of observers to recognize col-
lisions between virtual characters in animated scenarios.
Using animated characters, we aim for our results to be
applicable to other animated situations, such as crowds of
virtual characters.

5.1 Overview and variables

This section provides an overview of the main experiment
design. The two characters are animated using previously
recorded motion capture data of a person walking in a straight
line. Collision responses were not animated; participants
could not discriminate colliding from non-colliding scenar-
ios by looking at the animated behavior. Figure 5 shows an
example still from one of the animations.

The same invariants as in Section 3 are taken into account,
albeit with two differences with the pilot experiment. Firstly,
to improve the perceived realism, and to visually ground the
characters on the floor plane, shadows are rendered. These
are very soft (i.e., no hard edges) by employing multiple,
large light sources, preventing a second angle of view onto
the scene. Secondly, since Kulpa et al.9 showed that there is
no statistical significance of the camera distance, the camera
is placed at a fixed distance of 6.6m from the collision point.
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FIGURE 5 Still from one of the videos used in the animated experiment. Only 9% of the participants recognized the left scenario as a collision. The feet of

the characters intersect, as can be seen from the side view on the right

The characters are placed on the ground (XY) plane, such
that their paths cross at an angle 𝛼. By modifying this angle,
the starting positions, and animation offsets, a total of 16
colliding and 16 non-colliding scenarios were constructed.
To allow reasoning about the collision, we make sure that
for the colliding cases there was only a single, continuous
time interval in which the characters were intersecting. As
a result, 𝛼 = 0 could not be investigated, as it would be
impossible to create a scenario with a single collision of the
intended severity.

To give the best view of the (near) collision, the camera
is placed on either the positive or negative side of one of
the two bisectors of the character’s paths. For each video,
we manually select which of those four possible positions
provides the best view. This provides us with a worst case
scenario, as when looking at animated characters in gen-
eral, often the user will not have an unobstructed view of
the collision.

Our experiment considers four variables, defined below.
The first two are selected from a set of predefined val-
ues. The character animation is adjusted as described ear-
lier, to produce a video that adheres to those parameters.
The second two parameters are derived from this anima-
tion, and allow us to perform more statistical analyses on
our data in order to find out which component is important
for the recognition of collisions. The variables are defined
as follows.

• Character angle 𝛼∈{45,90,135,180} degrees. This defines
the angle between the forward vectors of the characters.

• The severity S of the (near) collision labeled as LOW,
MODEST, CONSIDERABLE or HIGH, and expressed
either as intersection volume integrated over time (IV )
when colliding, or as the minimum mesh distance (Dm)
otherwise. See Table 1 for the values used; each sce-
nario used one of the displayed values, precise up to
one decimal.

• Collision duration 𝜏 is derived from the animation created
to obtain the first two parameters. This variable is only
defined for colliding videos.

TABLE 1 Severity labels for the colliding and non-colliding cases, based
on a small pilot experiment

Label Colliding: IV Label Non-colliding: Dm

LOW 0.5 cm3s LOW 0.5 cm

MODEST 12.5 cm3s MODEST 1.0 cm

CONSIDERABLE 67.2 cm3s CONSIDERABLE 3.0 cm

HIGH 132.0 cm3s HIGH 5.0 cm

• Average intersection volume IA = IV /𝜏. This variable is
defined only for colliding videos.

The severity labels have different meaning for colliding and
non-colliding cases. In the colliding cases, there is a tempo-
rary overlap between the two characters. This is expressed
in the size of the intersecting volume (in cm3) integrated
over time (in seconds), giving us the integral IV in cm3s.
Both aspects (size and duration) are important to quantify
the potential recognizability of the collision, as even a small
intersection will be seen when existing for a long enough
time. In the non-colliding cases, the severity was defined
as the minimum distance between the meshes Dm, which
is identical to the Dm parameter as defined in Section 4.1,
except that now this minimum is taken over the entire
spatio-temporal domain.

To find a suitable range for the collision severity, we have
conducted a small pilot experiment with three participants. It
took the same form as the actual experiment, and used the
following values for the variables:

• 𝛼∈{45,90,135,180} degrees
• IV∈{0.5,30,150,300}cm3s
• Dm∈{0.00,±0.05,±0.10,±0.20} meters

This small pilot showed that for the larger values of the
collision severities IV and Dm, in respectively the collid-
ing and non-colliding cases, it was very easy to recognize a
(non-)collision. Removing these values allows us to have a
finer granularity in the lower, more interesting range, without
increasing the number of required videos. As stated before,
the values used for the final experiment are shown in Table 1.
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5.2 Image generation and questionnaire

This section describes the details of the main user experi-
ment. Two textured character models were selected for the
experiment; every image uses the same two models with
the same textures to prevent dependence on the appearance.
We ensured a high contrast between arms and legs of both
characters, to make distinguishing the two characters as easy
as possible.

We used four slightly different walking motions to reduce
the learning effect and ensured that the two characters never
used the same motion in the same video. For each combi-
nation of variables, and for both colliding and non-colliding,
we generated a video at a standard resolution of 1280 ×
720 pixels at 30 frames per second. Each video was 2.5s
long. The time of the (near) collision was randomly cho-
sen between the 50% and 75% mark, to prevent a learn-
ing effect. The starting position of the character and the
offset into the walking animation were chosen manually,
in order to be able to ensure a (near) collision of the
intended severity.

Participants are presented with an online web-based ques-
tionnaire (see Section 3 and Figure 1). Each participant is
shown all 32 video clips in random order. Each clip is played
once, advancing to the next video after the question “Do these
characters collide?” is answered.

5.3 Results

The data of the animated experiment is based on the answers
of 164 participants, each providing exactly 32 answers. In
total, 195 people participated; 30 did not complete the sur-
vey, and one participant completed the survey on a mobile
device. That mobile user’s data was not considered, as the
small size of the screen makes recognizing collisions harder.
The accuracy over all participants was 68% for this animated
experiment. Note that the difference between this result and
the 72% accuracy observed in the pilot experiment does not
imply that people are better at recognizing static scenarios,
because there are more differences between the experiments
than just being static or animated. The hardest to recognize
collision is shown in Figure 5.

For the colliding cases, that is, the scenarios in which
FP = TN = 0, the accuracy is 58%. For the non-colliding
cases, that is, in which TP = FN = 0, the accuracy is 79%.

In order to understand the relation of our variables 𝛼 and S,
and the expected accuracy E[A], we apply linear regression
analysis.10

The analysis is performed on all answers, and not just on the
averages per bin; this implicitly takes variance of the answers
into account. Firstly, we linearize our input by finding as sim-
ple as possible functions f 1(𝛼) and f 2(S). Secondly, we use a
statistical software package to find the best-fitting B0, B1, B2,

FIGURE 6 Plots of the contribution of 𝛼 to the results of the animated experiment. The blue line shows the accuracy of each bin, with red error bars

denoting the standard deviation. The dashed red line indicates the linear fit. Note that the R2 numbers relate only to a single parameter of our model with

respect to the entire variance in the observations
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TABLE 2 Linear regression model for the colliding cases; R2 = 78%

Coefficients Standardized Significance
B Std. Err. coefficients t p

(Constant) B0 = 0.89 0.10 8.98 0.000

sin(𝛼) B1 = −0.73 0.13 𝛽1 = −0.77 −5.54 0.000

IV B2 = 0.01 0.00 𝛽2 = 0.02 3.21 0.008

sin(𝛼) × IV B3 = 0.00 0.00 𝛽3 = 0.52 −1.95 0.074

TABLE 3 Linear regression model for the colliding cases; R2= 80%.
Interaction between the variables is insignificant (p > 0.7) and not included
in this table

Coefficients Standardized Significance
B Std. Err. coefficients t p

(Constant) B0 = 0.72 0.10 7.58 0.000

sin(𝛼) B1 = −0.63 0.11 𝛽1 = −0.77 5.88 0.000

IA B2 = 0.00 0.00 𝛽2 = 0.02 0.16 0.879

𝜏 B3 = 1.47 0.45 𝛽3 = 0.52 3.29 0.007

and B3 such that

E[A] = B0 + B1f1(𝛼) + B2f2(S) + B3f1(𝛼)f2(S) (1)

Because S is expressed differently for colliding and
non-colliding scenarios, we perform the linear regression
method for each separately.

Before applying the linear regression analysis, we need
to find suitable functions f 1(𝛼) and f 2(S). The 𝛼 graph in
Figure 6 shows a more or less sine-like shape, which could
indicate a relation between E[A] and the size of the pro-
jection of one of the trajectories onto the other. We choose
f1(𝛼) = sin(𝛼); as rotations are periodic, we expect the influ-
ence of 𝛼 on E[A] to be periodic as well, supporting the choice
for a periodic linearization.†

The IV graph is fairly linear, except for the data point at
LOW. We use f 2(IV ) = IV , but we may consider a differ-
ent linearization in the future; we will get back to this in
Section 6. We feel that the accuracy distribution curve of Dm
is sufficiently linear, resulting in f 2(Dm) = Dm.

Results of the linear regression are shown in Tables 2–5,
with the Bi coefficients in the second column. The R2 value
mentioned in each caption denotes the percentage of the vari-
ance explained by these models. Any row with p < 0.05 is
considered significant, and with p < 0.01 considered strongly
significant.

When the characters are colliding, a linear combination of
sin(𝛼) and IV predicts 78% of the variance in A (see Table 2).
The interaction between the two variables is not significant
(p = 0.07). Because IV is the volume of the intersection inte-
grated over time, we can split its value into average volume
IA and duration 𝜏, to investigate which aspect is more impor-
tant to the correct classification of the video by observers.
This results in the model shown in Table 3, with R2 = 80%.

†We also investigated f 1(𝛼) = 𝛼, f 1(𝛼) = 𝛼2, f1(𝛼) = cos(𝛼), and f1(𝛼) =
sin(𝛼+𝜋∕4), but all these variants resulted in a lower R2 than f1(𝛼) = sin(𝛼).

TABLE 4 Linear regression model based on sin(𝛼) and Dmfor the
non-colliding cases; R2 = 47%

Coefficients Standardized Significance
B Std. Err. coefficients t p

(Constant) B0 = 0.59 0.11 5.32 0.000

sin(𝛼) B1 = 0.12 0.16 𝛽1 = 0.28 0.79 0.446

Dm B2 = 0.10 0.04 𝛽2 = 1.12 2.78 0.017

sin(𝛼) × Dm B3 = −0.08 0.05 𝛽3 = −0.76 −1.54 0.148

TABLE 5 Linear regression model based on Dmfor the non-colliding
cases; R2= 34%

Coefficients Standardized Significance
B Std. Err. coefficients t p

(Constant) B0 = 0.66 0.06 11.08 0.000

Dm B1 = 0.05 0.02 𝛽1 = 0.59 2.70 0.017

FIGURE 7 Plot of the results of the animated experiment. The blue line

shows the accuracy of each bin, with red error bars denoting the standard

deviation. The dashed red line indicates the linear fit. Note that the R2

number relate only to a single parameter of our model with respect to the

entire variance in the observations

Even though there is variation in A that we did not capture in
our model, such as the characters’ exact poses at the moment
of collision, our model is significant to A. The interaction
between IA and 𝜏 is expressed as IV , and is not included in
this analysis due to its insignificance.

Interestingly, with 𝛽1 = −0.77, the angle between the char-
acters is the most important factor. The sign of 𝛽1 indicates a
negative correlation, as the minimum accuracy was measured
at 𝛼 = 90o. The duration of the collision is slightly less impor-
tant, with 𝛽3 = 0.52. The average volume of the collision is
insignificant (p = 0.879).

In the non-colliding cases, the model based on sin(𝛼), Dm,
and their interaction seems to predict 47% of the variance in
A (see Table 4). However, because a linear model always pro-
duces a better fit when there are more parameters, we have to
remove the non-significant parameters from the analysis.‡

‡This was not necessary for the analysis shown in Table 3; due to the very
small 𝛽2, the outcome would not change significantly.
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This is also reflected in Figure 6, which shows how sin(𝛼)
alone explains 52% of the variance of the colliding cases,
but only 2% of the non-colliding cases. The model based
on only Dm, shown in Table 5 and Figure 7 results in
R2 = 34%. Even though this R2 is moderate, the results are
significant.

Computing the average over all participants, we see that
60% of the answers was “not colliding” and 40% “colliding.”
To obtain more detail of the nature of this apparent bias, we
investigate the ratio of false positives and false negatives for
each participant. A two-tailed binomial test using a 95% con-
fidence interval (as described in Section 4.3) showed that 72
of the participants did not have a bias, and no participants had
a bias towards false positives. The remaining 92 participants
had a bias towards false negatives; in other words, the major-
ity of the participants significantly erred towards answering
“not colliding.”

6 DISCUSSION

Looking at our findings, we can conclude that in general
the subjects were better at recognizing non-collisions than
collisions.

The results from both experiments show the same trends,
and although they cannot directly be mapped onto each other,

this could indicate that trends observed in static situations
may be applicable to animated scenarios as well.

In our main experiment, an intersection volume integral of
0.5cm3s resulted in an accuracy of only 33%. Apparently, for
the average observer, it is the most difficult to classify a sce-
nario as “colliding” or “not colliding” when there is a small
amount of interpenetration. This is also observed in the pilot
experiment, where we see a remarkable dip in accuracy in the
interval Dm∈[−0.03,0.00). The bias towards answering “not
colliding,” observed in both experiments, corroborates these
observations. This knowledge may be used to speed up col-
lision detection algorithms. A simplified version of the mesh
could be created, taking care that it is an “inner approxima-
tion” bounded by the original mesh. By ensuring a Hausdorff
distance22 of at most 1.5 cm the total penetration of two such
meshes would be at most 3.0 cm and fall within the interval of
minimal accuracy. The algorithm to create a simple mesh that
meets those requirements, and the effect on both the percep-
tion of collisions and the performance of collision detection,
is an interesting open problem. These observations also seem
to indicate that, for collision detection between humanoid
shapes, a bounding volume collision detection scheme may
not be the best choice. Employing a bounded volume method
representing an inner approximation could be more efficient,
and a better match for our perception.

Intersections are allowed in certain commercial crowd
simulation systems, such as the implementation in IO

FIGURE 8 Plots of the contribution of IV , IA, and 𝜏 to the results of the animated experiment. The blue line shows the accuracy of each bin, with red error

bars denoting the standard deviation. The dashed red line indicates the linear fit. The graph of log2(IV ) is discussed in Section 6. Note that the R2 numbers

relate only to a single parameter of our model with respect to the entire variance in the observations
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Interactive’s Hitman: Absolution; apparently large game
companies assume that people do not mind such partial
intersections.23 Such an approach also allows for denser
crowds, simply by decreasing the personal radius of the char-
acters, without sacrificing too much believability. The low
importance of the intersection volume IV (see Table 2), cou-
pled with the high importance of the angle 𝛼, also suggests
varying the effective personal radius for collision checking
based on the angle between the paths of the checked charac-
ters.

From the 𝜆 accuracy graph, it is clear that the more visi-
ble the gap between the characters, the easier it is to see that
they do not collide. Note that this metric does not denote the
gap between the silhouettes of the characters – there are many
cases in which the visible part of L lies in front of the rear
character.

Alternate linearizations for 𝛼, IV , and Dm might produce a
better fitting model. The IV accuracy graph resembles a loga-
rithmic curve, so we have also investigated f2(IV ) = log2(IV ),
resulting in the curve shown in the top left of Figure 8. This
model is a tighter fit for the data (R2 = 82% for the entire
model, instead of 80%). However, even though visually a log-
arithm may fit the graph well, this does not imply that it is the
best model to use. For this reason, we have kept the lineariza-
tion simple, and leave more complex linearizations to future
research.

We would have liked to apply the upper body and lower
body analysis we performed in the pilot experiment to the
results of the main experiment. However, for every pair of
parameters (𝛼, S), there was only one sample, that is, only
an upper or a lower body collision. Furthermore, there is an
imbalance between the number of colliding and non-colliding
cases for each body half. It would be interesting to study
these differences between perception of upper and lower body
collisions, along with possible influential factors, such as tim-
ing and volume of the collision. We leave such a study to
future work.

7 CONCLUSION

In this paper, we have conducted a perceptual experiment to
determine the accuracy of human observers in determining
whether two virtual characters collide. We have identified an
asymmetry in the recognition of collisions, a critical pen-
etration depth interval where the accuracy is minimal, and
proposed a level of detail technique that utilizes this knowl-
edge to speed up collision detection. New collision response
criteria that increase performance and allow denser crowds by
focusing on pairs of characters have been introduced.

Care should be taken in those cases where crowd behav-
ior is changed based on any camera-related metric. When
crowd simulation is used to mimic real humans, for example,
to evaluate evacuation scenarios, such view-dependent behav-
ior will change the outcome of the simulation. When crowd

simulation is used in games, view-dependent behavior could
be exploited to gain unfair advantage over other players. For
example, one could turn off collision detection of crowd
agents when they are not in view of the player; this would
make traversing a crowd easier when walking backward than
when walking forward.

Simplified shapes are often used in physics simulation soft-
ware. Future research could investigate whether the results
in this paper are applicable only to humanoid shapes or
generalize to other objects or even abstract geometric shapes.

In our surveys, we have not rendered crisp shadows and
ambient occlusion. This simplifies rendering; shadowless ren-
dering is also used in commercial applications23 to enable
real-time rendering of crowds. It would be interesting to see
the effect of different types of shading and lighting on the
perception of the crowd in general and collisions in particular.

The backgrounds were rendered as simple as possible, to
ensure our results depend only on the two virtual characters
and the camera position. The effects of the background behind
the characters, especially when visible in the space between
the characters, is still an open research question.

We observed an asymmetry in the recognition of collisions,
and a bias towards answering “not colliding.” These effects
could have several causes.

Firstly, the characters did not employ a collision response
animation. Because of this, and because real humans do not
intersect each other when colliding, the non-colliding and col-
liding scenarios could be classified as respectively realistic
and unrealistic, causing this bias towards realistic scenarios.

Secondly, participants may have focused on the spot where
they anticipated a collision. In cases where they anticipated
incorrectly, such focus may have caused them to miss the col-
lision. Because the other way around cannot occur, this likely
contributed to the observed bias.

Thirdly, we also observed that most of the collisions
occurred between the hands or the feet. This was likely caused
by the use of a simple walk animation that was not adapting
to the proximity of the other character. Real humans would
probably be able to slightly change their hand or foot posi-
tion to avoid a collision without changing their own global
position or trajectory. Expecting such behavior may have also
accounted for the bias towards answering “not colliding.”
This bias could be used by choosing a representation that
allows for some undetected collisions.

In future work, it would also be interesting to see how col-
lision avoidance and response animations influence this bias
specifically, and the perception of collisions in general.
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