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Abstract
This paper presents a gaze behavior model for an interactive virtual character situated

in the real world. We are interested in estimating which user has an intention to

interact, in other words which user is engaged with the virtual character. The model

takes into account behavioral cues such as proximity, velocity, posture, and sound;

estimates an engagement score; and drives the gaze behavior of the virtual character.

Initially, we assign equal weights to these features. Using data collected in a real

setting, we analyze which features have higher importance. We found that the model

with weighted features correlates better with the ground-truth data.
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1 INTRODUCTION

Gaze movement is important for modeling realistic social

interactions with virtual humans. Although gaze animation

based on low-level kinematics is well studied, autonomous

generation of gaze at the high-level during social interac-

tions and in real settings still remains as a challenge.1 One

of the open problems is how to drive the gaze behavior of

an interactive virtual character situated in a real environment,

that is, a virtual receptionist. It requires understanding which

user has an intention to interact with the virtual character,

in other words which user is more engaged. The users might

be approaching the virtual character alone, in groups or they

might just be passing by.

Recognition of goals, intentions, and emotions of other

people is important for a fluent communication. If one has

to give humanlike capabilities to artificial characters, they

should also be able to predict the intentions of others. In this

paper, we focus on the engagement detection problem as a

prerequisite to initiating a conversation with a user and pro-

pose a model to autonomously drive the gaze behavior of the

virtual character. Figure 1 shows our Virtual Character Sara

interacting with a group of users.

Previous work modeled engagement based on heuristic

rules.2,3 It has been shown that machine learning

approaches4,5 outperform the basic heuristics. Both

approaches have advantages and disadvantages. Although the

former does not involve extensive validations of their model,

the latter depends on huge data collection and analysis efforts.

An overview of multiparty interactions and a discussion on

open research challenges can be found in our previous work.6

In this paper, our contribution is twofold: (a) We present a

practical and general engagement model combining multiple

behavioral cues to drive the gaze of an interactive virtual

character. (b) We find the importance of these behavioral

cues based on data collected in a real environment.

In Section 2, we mention the related work and

present our contributions. In Section 3, we explain our

engagement-driven gaze model for a 3D virtual character.

Section 4 describes an experiment we conducted using our

system and provides an analysis and discussion of the results.

Section 5 concludes the paper and points out the future work.

2 RELATED WORK

The analysis of group interaction dynamics in human–human

interactions has been subject to attention in the area of social

psychology and non-verbal communication.7 The study of

engagement has been mainly done in these communities and
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FIGURE 1 Interactive virtual human Sara

less in the field of human–computer interaction.2 Developing

a model of engagement or any other high-level social behav-

ior is first based on understanding the human behavior. Then,

the model can be developed based on insights derived from

human–human interactions.

The term engagement was first coined by Sidner et al2

during their experiment with the penguin robot Merl in Mit-

subishi Electric Research Labs. They defined engagement

as “the process by which individuals in an interaction start,

maintain and end their perceived connection to one another”.

Peters et al.8 mentioned that engagement is often related to

interest, which is an emotional state linked to the partici-

pant’s goal of receiving and elaborating new and potentially

useful knowledge. They defined engagement as “the value

that a participant in an interaction attributes to the goal of

being together with the other participants and of continu-

ing the interaction.” According to Peter et al,8 engagement

is related to the two stages of interaction: (a) before the

interaction—The participant decides whether it is worth to

start the interaction or (b) during the interaction—to moni-

tor the continuous level of engagement. Michalowski et al 3

developed a receptionist robot and defined engagement based

on proximity. They defined four states: present, attending,

engaged, and interacting. They observed that the robot greeted

late (meaning earlier anticipation is needed) and greeted peo-

ple who did not intend to engage (meaning more accurate

anticipation is needed).

Recent research focused on estimating engagement using

data-driven approaches.4 It has been found that machine

learning approaches outperform the basic heuristics due to

two reasons: (a) Fusion of various features help to make more

accurate decisions. For example, a user might be close to the

artificial agent but his or her posture might show that he or

she is not really interested in engaging. (b) Machine learning

is based on large data sets covering various cases, and these

options might not be covered well by the heuristic methods.

In Bohus and Horvitz,4 Bohus et al. describe an engagement

model that senses the engagement state of multiple users and

that makes high-level engagement control decisions to decide

whom to engage. They first applied a heuristic engagement

estimation method assuming a person is engaged if there is a

frontal face in front of the camera. Then, the moments before

engagement is labeled automatically to train the system with-

out hand labeling. They applied a maximum entropy model to

detect engagement combining several features such as loca-

tion of the face, width and height, confidence score of the face,

trajectory of location features, and attention. They took into

account both the domain-dependent and domain-independent

aspects of engagement. However, they do not mention which

features among others are more important for engagement.

In Foster et al,5 a data-driven engagement estimation

method is described in a bar set-up where the robot serves

drinks to multiple customers. Engagement state of the user

involves whether the user comes close to the bar and makes

eye contact with the bartender. Using the first prototype of

the system developed based on rules, the authors collected

interaction data, which were later annotated for data-driven

engagement estimation. They trained the system using a set

of classifiers using face and head coordinates, orientation,

and sound as features. They found that face, right hand, and

sound had higher importance in the model. Xu et al9 devel-

oped an engagement-aware agent in multiparty conversations

using a data-driven approach. They detected both engagement

and disengagement intentions of users using support vector

machines based on features such as direction of attention,

change of speaking status, change of emotions, and distance.

They also do not report which features are more important in

engagement detection, although they mention the important

features for attention.

Engagement and attention are terms often used in a similar

context. Although research work on attention and engage-

ment are related, these two concepts are different. Although

attention is bottom-up and biology-driven, engagement is

top-down and focuses on high-level social situations. Atten-

tion can be on various things such as objects, people, and

actions, that is, attention to a fast moving object passing on the

street. Engagement is the willingness to socially interact. In

other words, higher attention is given to the person who is try-

ing to engage in a reciprocal social interaction. Zaraki et al,10

Kokkinara et al,11 Xu et al,9 and Grillon et al,12 developed

attention models for virtual humans and robots using multiple

features such as proximity and velocity.

In this paper, we present a practical and general engage-

ment model to drive the gaze behavior of an interactive virtual

human during group interactions. We take into account mul-

tiple features for the computational model of engagement and

initially assign equal weights to these features. Using data col-

lected in a real setting, we find which features have higher

importance in our engagement model. To our knowledge, that

is the first study to take into account multiple people inter-

acting in a truly open space considering the importance of a

wide range of features for engagement detection.
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FIGURE 2 Examples of engaged and not-engaged situations

FIGURE 3 Overall architecture

3 ENGAGEMENT-DRIVEN GAZE
MODEL

People often group themselves into clusters, lines or circles,

or various other kind of patterns.7 Group members come

together in a way that the space between them is shared to

allow their equal contribution. It happens many times in daily

life when people form a conversational group for casual talk.

Participants stand so that they face inwards to a small space,

which they cooperate together. People outside the circle are

the bystanders or passer-by people, and they are not engaged.

Figure 2 shows various interaction configurations with an

artificial agent and the engagement state of the participants.

In this section, we explain our engagement-driven social

gaze model. First, we describe the overall architecture of our

system. Then, we describe our engagement model and the

features that are taken into account in our model.

3.1 Overall architecture
Figure 3 shows the overall architecture of our system. The vir-

tual human controller receives the information about where

to look at from the engagement detection component and

controls the gaze behavior of the character. The dialogue of

the character is based on AIML Pandorabots*. For speech

recognition, we use Google Speech Recognition.

We developed the virtual character in Unity 3D game

engine. The 3D model is created in Daz3D†. The character has

the capability of speaking, gazing, displaying facial expres-

sions, conversational gestures, and idle animations. Lip synch

and the low-level gaze movement are based on third-party

assets from the Unity Asset Store‡§. Gestures are recorded

*http://www.pandorabots.com/
†http://www.daz3d.com/
‡http://lipsync.rogodigital.com/
§http://tore-knabe.com/unity-asset-realistic-eye-movements
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FIGURE 4 Virtual human Sara doing a waving hand gesture

TABLE 1 Features for engagement detection

Feature Explanation
Distance Whether the user is close

to the virtual human

Velocity Whether the user is

staying still or moving

Body Whether the user configures his or her

Rot. body towards the virtual human

Head Rot. Whether the user turns his or her

(Horizontal) face towards the virtual human (horizon.)

Head Rot. Whether the user turns his or her face

(Vertical) towards the virtual human (vertical.)

Field of view Whether the user is close to the center

of field of view of the virtual human

Speaking Whether the user is speaking

(sound) based on sound localization

Speaking Whether the user is speaking

(mouth) based on mouth movement

with a Vicon Motion Capture system and applied to our char-

acter. Facial expression and visemes are exported as blend

shapes from Daz3D. The synchronization between speech,

gaze, facial expressions, and gestures is realized using the

Behavior Mark-up Language (BML).13 For this, we devel-

oped a BML Realizer for Unity¶. Figure 4 shows the virtual

character performing a waving hand gesture.

3.2 Engagement detection
Engagement of the users might depend on various features

such as the distance of the users to the virtual character, their

posture, or velocity. Previous work considered different com-

binations of features. In our work, we use a wide range of

features and analyze which features have higher importance

for engagement detection. We calculate engagement on the

basis of a contribution of multiple features derived from a

Kinect depth camera. Table 1 shows the list of features that

we find most important based on the social sciences literature

and previous work.

¶https://www.staff.science.uu.nl/ yumak001/UUVHC/index.html

FIGURE 5 Features and engagement score shown on the Kinect

stream

Given k ∈ [1, n], i ∈ [0, 5], f i
k(t) ∈ [0, 1], wk ∈ [0, 1], and n

being the number of features, engagement Ei(t) is calculated

as below:

Ei(t) = w1f i
1
(t) + w2 f i

2
(t) + … + wn f i

n(t).

f i
k(t) is the normalized value of feature k at time t for per-

son i. wk is the weight (importance) of the feature. Figure 5

shows the features calculated based on the Kinect stream. In

the following sections, we describe in detail how each feature

is calculated.

3.2.1 Distance (proxemics)
Research in social sciences investigated how people manage

distance during social interactions.14 It is considered along

four zones: intimate zone (0 to 0.15 m), close intimate zone

(0.15 to 0.45 m), personal zone (0.45 m to 1.2 m), social

zone (1.2 to 3.6 m), and public zone (more than 3.6 m).

Depending on the relationship and the context, people dynam-

ically adjust their distances. In the context of engagement,

distance is a major signal for conversation initiation. Most of

the previous work assumed that engagement is higher when

the user is closer to the virtual human or robot. We also started

with that assumption and also included the effect of other

modalities. For example, a person standing far away might

also be engaged if there are other signs of engagement (e.g.,

greeting from far away). However, our observations show

that in most cases, engaged users have a tendency to come

closer.

In our system, the closer the user is to the virtual character,

the more engaged he or she is. Given i ∈ [0, 5] as the user

id, Xi,Zi as the user’s coordinates in the Kinect space, Di =√
X2

i + Z2
i , Dmax = 4.5 m and Dmin = 0.5 m, the feature is

calculated as f i
dis = 1 − (Di − Dmin)∕(Dmax − Dmin). Figure 6

shows Dmin, Dmax and distances for two users, where D1 > D2.

Therefore, the user on the right who is closer to the virtual

character is expected to have higher engagement.
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FIGURE 6 Distance to the virtual human

FIGURE 7 Velocity

3.2.2 Velocity
Velocity is also an important measure in engagement. Even

though the user is close to the virtual character for some

frames, he or she might be a passer-by and not really trying

to initiate a conversation. If the user is standing still, he or

she is more likely to engage with the virtual character. We

calculate the velocity over a running window of N frames.

Figure 7 shows the window with N frames where the velocity

is calculated for the frame at time t.

f i
vel = 1 −

(
1

N

( j=N∑
j=t−N

= Di
j − Di

j−1

)
× 30

)
∕2.5.

We assume that maximum walking speed of a person is

2.5 m/s. Given N is the length of the window, Di
t the distance

in the current frame, and Di
t−N the distance at the first frame

in the window, f i
vel is calculated as below, given the frame rate

is 30 frames/s.

3.2.3 Body rotation
If the user configures his or her body towards the virtual

human, the user is considered more engaged. We calculate

the posture direction of a user by finding the normal of the

FIGURE 8 Body rotation

plane passing from the two shoulder joints and the spine joint.

We also calculate the directional vector from the user’s head

towards the Kinect. The angle between these two vectors is

called “body orientation deviation,” represented as 𝜃. The

user is most engaged when 𝜃 is 0◦ and when f i
brot takes its

maximum value 1. As the user turns to the left/right, 𝜃 gets

larger. We set the limitations of body rotation to ±45◦. There-

fore, the body orientation feature f i
brot becomes 0 when 𝜃 is

45◦. Figure 8 shows the angles between the posture vectors

P⃗1, P⃗2 and the directional vector from the users to the Kinect.

Because 𝜃1 < 𝜃2, the user on the left is considered more

engaged.

3.2.4 Head rotation (horizontal)
Head orientation on the horizontal plane is calculated sim-

ilar to the body orientation. We call the angle between the

head rotation vector and the identity vector “head rotation

deviation in the horizontal plane,” which is represented as 𝛼.

The feature takes its maximum value 1, when 𝛼 is 0◦. If the

user turns to the left or right, the angle increases and engage-

ment decreases. Setting the limits of head tracking to ±45◦,

the horizontal head orientation feature f i
hroth becomes 0, when

𝛼 is 45o.

3.2.5 Head rotation (vertical)
If the user is facing the virtual character, head rotation verti-

cal feature takes its maximum value. The angle between the

head vector up or down and the identity vector, in other words

“head rotation deviation in the vertical plane” is defined as 𝛽,

which takes its minimum value 0◦ when the user is facing the

virtual character. It gets higher as the user moves his or her

head up or down. Thus, the vertical head orientation feature

f i
hrotv is 1, when 𝛽 is 0◦, and it becomes 0, when 𝛽 is 45◦.

3.2.6 Closeness to the center of field of view
(FoV)
Apart from the orientation of the user, we look at whether

the user is close to the center of FoV of Kinect. That is
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FIGURE 9 Closeness to the center of field of view

calculated based on the directional vector from the Kinect

towards the user. We call the angle between the identity vector

and the directional vector “field of view deviation,” which is

represented as 𝛾 . The more the user is at the center, the more

engaged the user is considered. When the user is at the center,

𝛾 is equal to 0◦. When the user is at the borders of Kinect’s

FoV (70◦), it becomes 35◦. Therefore, the feature f i
FoV takes

the value 1 when the user is at the center, and it becomes 0

when he or she is on the sides. Figure 9 shows the FoV devi-

ation for three users, where 𝛾3 > 𝛾1 > 𝛾2. Therefore, the user

in the center is considered to be the most engaged.

3.2.7 Speaking (from sound localization)
On the basis of the sound angle beam returned from Kinect,

we find the user that is estimated to be speaking based on

the location of the user. To do this, we take into account

the Kinect’s visual FoV (±35◦) and the Kinect’s audio beam

range (±50◦). The angle 𝜔 between the directional vector of

the audio source and the directional vector from the Kinect

to the user is calculated. The user that has the smaller angle

is chosen as the speaking user. In case of silence, the speak-

ing value is set back to nonspeaking after 1 s. When a user

is labeled as speaking, we calculate the feature value f i
speak as

1, otherwise 0. Figure 10 shows the directional vector for the

sound source with red and the directional vector to the users

with blue. Because 𝜔1 < 𝜔2, the user on the left is considered

as the speaking user and more engaged.

3.2.8 Speaking (from mouth movement)
In addition to the sound angle, we look at whether the user

is speaking based on the mouth movement. It takes three

values {yes,maybe, no}. We map them to numeric values

accordingly: f i
mouth = {1.0, 0.5, 0.0}.

FIGURE 10 Speaking user

4 EXPERIMENT

We conducted an experiment with the engagement model

described above. We had two goals in mind: (a) finding out

whether the model behaves well based on the data collected

in the real environment and (b) finding an improved model

based on weights learned from the data. Therefore, we have

two models as described below:

• Base model: The feature weights are all equal.

• Improved model: The features weights are different and

learned from data.

4.1 Data collection and analysis
We installed the system at the entrance of our building next

to the reception desk. The virtual character was rendered on

a 46 in. screen to keep the virtual character close to life size.

The set-up included a Kinect v2 for tracking the users and

detecting the sound source. We also had a noise-cancellation

microphone for speech recognition.

Table 2 shows the summary of collected data in each ses-

sion. We collected data in five sessions. In total, there were

18 different subjects. Each session had three to seven users,

where a few users appeared in multiple sessions. The amount

of data collected was 31 min. The Kinect stream was recorded

for further analysis and annotation of user behavior. In addi-

tion, we recorded the interaction with two video cameras from

different angles. The final engagement score was calculated

based on assigning equal weights to each of the features,

TABLE 2 Summary of collected data

No. of Total Annotated
Session users data (minutes) data (minutes)

1 7 7 6

2 3 8 2

3 3 7.5 2

4 3 4.5 1.5

5 5 4 2

Total 21 31 13.5
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TABLE 3 Summary of coefficients and significance for the runs in the leave-one-out cross validation

Features
Body Head Head Mouth

Test Training Speaker Rotation Distance FoV Rot. H Rot. V Movement Velocity

1 2,3,4,5 Coeff. 0.487 2.692 4.449 −1.195 0.746 1.065 −0.186 1.057
Signi. 0.196 0.000 0.102 0.313 0.019 0.107 0.007 0.017

2 1,3,4,5 Coeff. 0.150 3.096 9.103 −1.517 0.929 1.025 −0.209 3.523
Signi. 0.621 0.000 0.000 0.018 0.007 0.096 0.044 0.002

3 1,2,4,5 Coeff. 0.192 2.924 6.558 −0.047 1.251 1.415 −0.260 2.176
Signi. 0.558 0.000 0.000 0.952 0.000 0.084 0.000 0.009

4 1,2,3,5 Coeff 0.023 2.527 6.116 −0.308 1.674 1.038 −0.282 5.228
Signif. 0.92 0.000 0.004 0.724 0.000 0.304 0.068 0.001

5 1,2,3,4 Coeff. 0.198 2.078 5.377 0.517 0.912 0.671 −0.235 2.793
Signi. 0.207 0.000 0.000 0.382 0.000 0.070 0.002 0.005

Note. FoV= field of view.

which we call the “Base model.” The engagement score and

the values of the features are stored for each frame.

We annotated the data using ELAN Video Annotation

Tool‖. For each user ID assigned by the Kinect, an annota-

tion track is created. The moments when a user is engaged

with the virtual character is labeled as engaged, while the rest

are labeled as not-engaged. In total, we annotated 13.5 min

of data.

Because our goal is to find the importance of the features,

we run a regression analysis on the data. The data from the

computational model and the annotated data is synchronized

and sampled every 250 ms. The data is organized per session

and per subject in order to take into account the correlations

with-in subjects. Because our annotated data (dependent vari-

able) was binary (engaged or not-engaged), we used logistic

regression instead of linear regression. Therefore, we used

the generalized estimating equations (GEEs) to analyze our

data, which is a logistic regression model for correlated

data. We selected the AR(1) autoregression as the correlation

structure.

In order to find the correlations between engagement pre-

dictions and the annotated data, we calculate the predictions

based on GEE coefficients. Although in linear regression,

coefficients and predictions have a linear relationship, in

logistic regression, coefficients have a linear relationship with

the log odds of the prediction. Therefore, we calculate the pre-

dictions based on the following formula, where B0, … ,Bn

are the coefficients and X0, … ,Xn are the independent vari-

ables (or features). P is the probability of the engagement

predictions.

P = eB0+B1X1+…+BnXn

1 + eB0+B1X1+…+BnXn
.

‖https://tla.mpi.nl/tools/tla-tools/elan/

4.2 Results and discussion
We run a leave-one-out-cross validation. At each run, one ses-

sion was used as the test data and the remaining data was

used for training. Table 3 shows the summary of coefficients

and significance values for each feature. The values that are

significant are marked as bold (p < .05).

The predictions from each run were used to find out

whether the GEE model (coefficients-based model) is bet-

ter in comparison to the base model (equal weights model).

We found that both models correlates significantly with the

ground-truth data, and the GEE-based model had a better cor-

relation (r = 0.437, p < .05) in comparison to the base model

(r = 0.389, p < .05)

This shows that assigning importance weights to the fea-

tures gives a more accurate calculation for the final engage-

ment score. In order to find the final set of coefficients, we

run GEE on the whole data set including five sessions. We

found that body rotation, distance, horizontal head rotation,

mouth movement, and velocity have significant effects on

the model (B2 = 2.604, p < .05, B3 = 6.033, p < .05,

B5 = 1.115, p < .05, B7 = −0.259, p < .05), B8 =
3.148, p < .05, respectively). Speaking, FoV and verti-

cal head orientation features were found to be insignificant

(B1 = 0.224, p > .05, B4 = −0.312, p < .05, B6 = 1.125,

p > .05). Table 4 shows the coefficients and significance of

the features found after running GEE analysis on the whole

data set.

Vertical head orientation has a positive coefficient, but it

did not have a significant effect on the model. This might be

due to the fact that the data did not contain too many up or

down head movements. Initially, we added this parameter to

consider the cases where users look down, that is, to look at

their phone while they are staying idle. However, in our data,

these cases were not observed frequently and users mostly had

their face oriented towards the virtual human.
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TABLE 4 Coefficients and significance values based on all data

Feature Coefficient Significance

Speaking 0.224 0.408

Body Rotation 2.604 0.000
Distance 6.033 0.000
FoV −0.312 0.638

Head rotation horizontal 1.115 0.001
Head rotation vertical 1.125 0.076

Mouth movement −0.259 0.003
Velocity 3.148 0.001

Note. FoV= field of view.

Speaking and FoV features had the least significance. The

reason that the speaking feature is insignificant might be due

to the Kinect sensor. Sound beam angle returned by the Kinect

API is not only based on human speech but also based on

other sources of sound in the environment. Regarding the FoV

feature, when the users were interacting in groups, they were

marked as engaged regardless of whether they were away from

the center. Because the number of cases where the users were

both on the sides and engaged were higher, that might express

this effect.

In order to see the effect of our final model, we com-

pared the predictions from the Base model with the GEE

model. Both models correlated significantly with the anno-

tated ground truth data. The GEE model has a higher corre-

lation value (r = 0.522, p < .05). We found that the final

model is an improved model with respect to the base model

(r = 0.389, p < .05).

5 CONCLUSION AND FUTURE
WORK

In this paper, we described an engagement-driven gaze model

for an interactive virtual character. We tested our model in a

real environment and found that our initial model performs

well when feature weights are all equal to each other. Our

findings show that distance, velocity, body, horizontal head

rotation, and mouth movement have significant effects on the

model. Sound, vertical head orientation, and FoV parameters

did not behave as we initially expected.

There are also limitations of our work. In order to improve

the reliability of the annotations, multiple annotators can be

employed by looking at the correlations among the annota-

tors. Instead of using binary engagement labels, annotations

can also be done over a range. It will also be interesting to

apply and compare other machine learning models. Finally,

further data collection and analysis can be done to capture

various combinations of user behaviors. Although our results

provide useful insights in terms of the importance of fea-

ture weights, a validation experiment should be run in order

to see whether the new model is more socially adept. This

paper is a first attempt to collect and analyze real-life data for

engagement detection in a truly open space.
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