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Abstract

In the last decade, 3D modeling techniques enjoyed a booming development in both hardware and 

software. High-end hardware generates high fidelity results, but the cost is prohibitive, whereas 

consumer-level devices generate plausible results for entertainment purposes but are not 

appropriate for medical uses. We present a cost-effective and easy-to-use 3D body reconstruction 

system using consumer-grade depth sensors, which provides reconstructed body shapes with a 

high degree of accuracy and reliability appropriate for medical applications. Our surface 

registration framework integrates the articulated motion assumption, global loop closure 

constraint, and a general as-rigid-as-possible deformation model. To enhance the reconstruction 

quality, we propose a novel approach to accurately infer skeletal joints from anatomical data using 

multimodality registration. We further propose a supervised predictive model to infer the skeletal 

joints for arbitrary subjects independent from anatomical data reference. A rigorous validation test 

has been conducted on real subjects to evaluate the reconstruction accuracy and repeatability. Our 

system has the potential to make accurate body surface scanning systems readily available for 

medical professionals and the general public. The system can be used to obtain additional health 

data derived from 3D body shapes, such as the percentage of body fat.
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1 ∣ INTRODUCTION

The recent explosion of scanning technologies has brought about a variety of 3D 

reconstruction applications. These applications can be as microscopic as the optiogenetic 

study,1 using specially designed high-speed structured light scanner to capture the shape of 

beating mouse hearts, or as large as documenting the nearly 100-year-old and 23-mile-long 

London Post Office Railway in 3D representation.2 The 3D human body modeling has 

become a hot topic in the past few years due to the availability of consumer-level, low-cost 

Red Green Blue & Depth (RGB-D) sensors such as the Microsoft Kinect 360®, before 

which body scanners were only affordable to a few enterprises such as select health clinics, 

research institutions, fashion design industry, and film industry. Along with the availability 

of hardware, a variety of body scanning systems have been proposed3–10 that use single to 

multiple sensors. However, most of these low-cost body reconstruction systems are geared 

toward applications for 3D printing, rigging animation, game, virtual reality, and fashion 

design, rather than clinical or health-related applications with rigorous requirements in 

reconstruction accuracy and reliability. The objective of our study was to develop and 

validate an accurate 3D reconstruction system using commodity RGB-D scanners such as 

the Microsoft Kinect v2®. We emphasize the articulated motion constraint during 

reconstruction because an accurate skeletal estimation is critical for a high-quality nonrigid 

surface reconstruction. However, the Microsoft® skeleton tracking Application 

Programming Interface (API) suffers from low accuracy especially in hips and shoulders 

compared with the anatomical joint locations. Additionally, the joints inference reliability is 

affected highly by camera angles. We propose an innovative skeletal joints inference method 

using multimodality registration to explicitly infer mesh skeletons from anatomical data and 

thus guarantee joint positions accuracy. Moreover, we further propose a predictive model 

based on supervised learning method to infer the skeletal joint positions for arbitrary 

subjects without the need for anatomical data reference.

Our body reconstruction system aims at clinical and health-related applications such as 

estimating body fat percentage (%BF). The dual-energy X-ray absorptiometry (DEXA) 

scanning, a clinical level instrument for %BF estimation, provides one of the most accurate 

results but is expensive (~$100 K), large in size, must be operated by trained professionals, 

and exposes users to radiation.11 Another clinical level instrument, the volumetric air-

displacement plethysmography (e.g., Bod Pod®), in which %BF is calculated by measuring 

body volume, also has a high cost (~$40 K) and similar disadvantages. The limitations of the 

current approaches inspired us to develop a cost- and space-effective system that is 

convenient to use for %BF estimation. In addition to calculating body volume, we can 

automatically extract numerous anthropometric measurements from 3D body shape and 

therefore improve %BF estimation accuracy. The predictive model used to infer skeletal 

joint positions is also capable of accurately predicting body composition, that is, fat, muscle, 

and bone distribution.

Several high-end body scanners (e.g., TC2 NX-16® and Telmat SYMCAD®, structured 

white light body scanners) have also been used for %BF estimation, but they also have the 

disadvantages in cost and space requirements. A large proportion of the commodity sensor-

based body scanners in the market for fitness purpose (e.g., FIT3D® and Skyku®) are based 
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on the KinectFusion algorithm.6 These types of systems treat the human body as an ideal 

rigid object and cannot work without a turntable, an auxiliary equipment used to rotate the 

body during capture. The rigid body assumption potentially lowers the reconstruction 

accuracy due to ignoring the body’s involuntary movement during capture. Instead, our 

reconstruction system is cost and space effective, convenient to use, and has a relatively high 

degree of accuracy and reliability. Hence, our system is appropriate for wide usage in %BF 

estimation or in other health-related applications that require body surface capture. We 

conducted rigorous validation tests on real subjects to evaluate the reconstruction accuracy 

and repeatability.

2 ∣ RELATED WORK

2.1 ∣ The 3D reconstruction system

KinectFusion6 realized real-time surface reconstructions of static objects through highly 

efficient camera pose tracking and volumetric fusion. However, for human body 

reconstruction, subjects are required to hold a static pose for a relatively long time (~30 to 

60 s).

Multicamera systems, containing a large number of cameras that are sufficient to cover the 

object of interest, can reduce the acquisition time to subsecond by simultaneously capturing 

all surfaces. The distinguishing feature of the multicamera systems is the way they create the 

surface from simultaneous partial views. The most intuitive approach is to globally align all 

the partial point clouds with multiview registration.12 Due to the sensor noise, partial meshes 

do not stitch well in areas close to the silhouette, and point clouds after registration can be 

highly noisy. Wang et al. used Poisson reconstruction13 to generate a smooth, noise-free 

surface.14 Collet et al. proposed to iteratively estimate the surface by first creating a 

watertight surface from globally stitched point clouds with screened Poisson surface 

reconstruction15 under the silhouette constraint and then by topologically denoising the 

surface and supersampling the mesh where perceptually important details exist.16 

Volumetric fusion17 was shown to be robust in dealing with sensor noise in the work of 

Newcombe et al.6 Dou et al. extended volumetric fusion to register the deformable object in 

their multicamera system.4 Template fitting (i.e., deforming a high-resolution human body 

template to fit the captured meshes) has also been widely used in multicamera systems to 

create personalized body surface from multiview observations.18–20 However, the 

reconstruction quality of multiview systems relies highly on the accuracy of multiview 

calibration, which requires a great deal of extra work. Moreover, for multi-Kinect systems, 

depth noise tends to increase dramatically due to interference between the cameras.

The single-camera system avoids the redundant calibration work and is more space and cost 

effective compared with the multicamera system. One type of single-camera system 

reconstructs 3D human body from dynamic inputs (e.g., the user rotates in front of the 

sensor continuously during capture).3,21,22 However, reconstruction from continuous 

deforming inputs requires excessive nonrigid registration and data preprocessing such as 

temporal denoising.3 The overprocessing potentially degrades reconstruction accuracy and 

tends to oversmooth the reconstructed surface.21 To avoid excessive data processing, Li et 

al.,5 Wang et al.,8 and Zhang et al.,10 adopted semi-nonrigid pose assumption, in which four 
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to eight (could be more) static poses are captured at different angles to cover the full body, 

and partial scan meshes are then generated. The surface is reconstructed by nonrigidly 

stitching all the partial scan meshes. Our work can be classified into this type of system with 

semi-nonrigid pose assumption, a low number of sensors, and no extra calibration 

requirement.

2.2 ∣ Nonrigid registration

In rigid registration, the transformations of the meshes are parameterized with one 

orthogonal matrix having six degrees of freedom (DoFs), whereas in nonrigid registration, 

higher DoF are allowed, and thus, various deformation models have been proposed.

The most naïve deformation model assigns each vertex on the mesh with three DoFs.23 To 

prevent the deformation folding, that is, adjacent deformation vectors crossing each other, 

Alassaf et al. proposed a Jacobian term to penalize the negative Jacobian determinant of the 

deformation.24

The local affine deformation model assigns each vertex with 12 DoFs, described in a 3 × 4 

transformation matrix.20 Allen et al. proposed enforcing the smoothness of deformation by 

minimizing the differences of the affine transformations between each vertex and its 

connected neighbors. The local affine deformation model was extended into nonrigid 

iterative closest point (ICP) framework by Amberg et al.,25 in which the correspondences are 

updated in each iteration, and vertex transformations are solved by closed-form 

optimization. However, for dense surface registration, per-vertex affine transformations are 

difficult to apply due to the computational workload. Moreover, the per-vertex affine 

transformations do not preserve mesh topology and volume during deformation.

The as-rigid-as-possible deformation model proposed by Sumner et al.26 refined the local 

affine deformation model. The deformation of the dense surface is controlled by the 

transformation parameters of its embedded graph. The number of graph nodes can be far less 

than the number of corresponding mesh vertices, and therefore, the computational workload 

can be reduced. Moreover, Sumner et al. further constrained the optimized affine 

transformation matrix to be as orthogonal as possible, which enforced the deformation of the 

embedded graph and its corresponding mesh to be as rigid as possible. The as-rigid-as-

possible deformation model was extended to nonrigid ICP framework for surface 

registration in the works of Li et al.27,28 A number of 3D human body surface reconstruction 

systems have been developed based on the as-rigid-as-possible deformation model.4,5,7,9,21

The deformation space can be further reduced for a surface with an underlying structure, 

such as a skeleton. In a skeletal structure, the surface is segmented into areas defined by 

links connected by articulated joints. The links are treated as moving rigidly during motion, 

and a joint constraint is imposed to preserve the connectivity of adjacent links.3,29 Our 

nonrigid registration framework integrates the articulated model with the as-rigid-as-possible 

deformation model. Additionally, a segmentwise global loop closure constraint is imposed 

on the articulated motion estimation to prevent the registration from being trapped in local 

minima.
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Cui et al.3 and Chang et al.29 estimated joints and link segments from the input pose 

changes, where significant articulated motions were required to achieve a high degree of 

segmentation accuracy. Wang et al.8 heuristically assigned the body segments, and Zhang et 

al.10 defined the skeletal structure by template fitting, both of which require extra work, and 

the segmentation accuracy cannot be guaranteed. In contrast, our joints and link segments 

are inferred from multimodality mapping, ensuring a high degree of anatomical accuracy.

3 ∣ SYSTEM OVERVIEW

Our system (Figure 1) consists of two parts: the front end and the back end. In the front end, 

our hardware system design aims to maximize the depth map accuracy by analyzing the 

sensor noise pattern. This is done through system calibration, which includes an experiment 

to measure and model the sensor depth bias as a function of distance, and a standard sensor 

intrinsic and extrinsic calibration. In the back end, we propose a nonrigid registration 

framework that is appropriate for the semi-nonrigid pose assumption (i.e., various human 

body poses appear as a high degree of deformations around skeletal joints, whereas modest 

deformations appear around link segments). Partial scan meshes are reconstructed during 

mesh preprocessing. Then, skeletal joint positions are inferred through multimodality 

registration. With partial scan meshes and skeletal data, the body surface is reconstructed 

through our nonrigid registration framework.

4 ∣ SYSTEM HARDWARE

4.1 ∣ Data acquisition

4.1.1 ∣ System setup—Our capture system consists of two Kinect v2 sensors, one 28” 

twin camera slide bar, and a tripod. The sensors are vertically mounted on the two ends of 

the slide bar to reach an optimal accuracy and capture volume. Figure 2 shows our capture 

system.

4.1.2 ∣ Capture—During the scan, the subject stands upright at approximately 125 cm 

from the sensors holding an “A pose” (Figure 2a), that is, arms open roughly 45° and feet 

open roughly 45 cm. The data acquisition takes eight scans (each corresponding to a pose) in 

total with the user rotating roughly 45° between each scan and holding the pose for 

approximately 1 s. Moreover, 30 frames of the depth image and 1 frame of the color image 

are collected for each scan.

4.2 ∣ System calibration

4.2.1 ∣ Depth correction—We designed an experiment to investigate the raw depth bias 

pattern of the Kinect using a 4.2 m × 3.2 m flat wall and high-precision distance-measuring 

instrument. We mounted a laser measure in front of and perpendicular to the sensor’s front 

plate (Figure 2b, left). The wall was perpendicular to the ground and large enough to cover 

the entire capture view at any sample distance. The x-z plane of Kinect Infrared (IR) sensor 

was calibrated to be parallel to the ground. We used laser distance measurements as ground 

truth, and a constant bias coefficient was calculated as the offset of the IR camera optical 

center to the Kinect’s front plate. The bias coefficient was experimentally measured by 
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optimally matching the real and virtual corner-to-corner distance of corners randomly 

selected from a checkerboard. We took 50 uniform distance samples from 0.8 to 1.8 m with 

3 captures for each sample and 30 frames per capture. For each capture, the sensor z-axis 

was adjusted to be perpendicular to the wall, and we repeated the capture process three times 

at each sample distance to mitigate the experimental error.

We modeled the depth bias pattern using quadratic regression and used it to correct the depth 

from the Kinect. As shown in Figure 3, we plotted the bias as a function of depth (Figure 3a) 

and compared three correction setups: global quadratic (Figure 3b), large patch regional 

quadratic with patch size of 48 × 48 pixels (Figure 3c), and small patch regional quadratic 

with patch size of 20 × 20 pixels (Figure 3d). Similar to the work of Dou et al.,30 for each 

patch, we used 16-pixel overlap to increase the smoothness of correction. The majority bias 

(labeled in blue, covering more than 95% of the measure bias) was used for quadratic data 

fitting to rule out the impact of outliers. Our conclusion is that using regional quadratic 

regression to correct the depth bias works well at suppressing outliers, and the small patch 

correction outperforms the large one. In our implementation, we employed the regional 

quadratic regression with 20 × 20 patches for depth correction.

4.2.2 ∣ Intrinsic and extrinsic calibration—We used an 8 × 7 standard checkerboard 

pattern to calibrate the intrinsic parameters of the Kinect IR and RGB cameras and the 

extrinsic parameter from RGB to IR cameras. The multithread asynchronous data 

acquisition front end was developed based on the Libfreenect2 library.31

5. ∣ THE 3D RECONSTRUCTION

Figure 4 shows an overview of our approach, which consists of the following steps: (a) Mesh 

preprocessing (Figure 4a) generates eight high-resolution partial scan meshes from depth 

and color images captured in the front end. (b) Skeleton inference (Figure 4b) infers skeletal 

joint positions by multimodality registration. (c) Registration (Figure 4c-f) reconstructs the 

3D body surface using nonrigid registration. Our nonrigid registration framework has the 

following substeps: First, we initially align partial meshes with rigid ICP and divide each 

partial scan mesh into 15 segments according to the joint positions (Figure 4c). Second, we 

regularize poses by deforming partial scan meshes under the articulated motion constraint 

and the global loop closure constraint (Figure 4d). Third, we perform a global nonrigid 

registration to stitch the meshes further and generate a watertight surface (Figure 4e). Fourth, 

we map high-frequency details and texture to the watertight surface (Figure 4f).

5.1 ∣ Mesh preprocessing

Eight partial scan meshes are generated in this step corresponding to the eight poses. To 

generate the partial scan meshes efficiently and accurately, we first reconstruct low-

resolution meshes from the two cameras to obtain an optimal extrinsic transformation. Then, 

we generate a high-resolution partial mesh by fusing two cameras’ depth images with the 

optimal extrinsic transformation. An adaptive size truncated signed distance function 

(TSDF) volume (i.e., the size of volume fits the bounding box of the scanned subject) is 

employed to optimize the memory and computational efficiency, as well as to average out 

the random sensor noise. The partial meshes are extracted from the TSDF volume using 
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marching cubes.32 To clip the ground, one extra scan without a subject is taken to estimate 

the ground plane parameters during preprocessing.

5.2 ∣ Skeleton inference

Accurate skeletal joints inference is critical, as our reconstruction method relies heavily on 

the articulated motion assumption. Unlike the methods of Wang et al.8 or Cui et al.,3 we 

infer skeletal joints from personalized body composition scans. In our study, we have access 

to the body composition image from DEXA for each tested subject (Figure 5b). We propose 

a novel approach to accurately infer skeletal joint positions from DEXA images through 

multimodality registration. Furthermore, for scans without available DEXA references, we 

present a supervised learning model to predict joint locations. To the best of our knowledge, 

this is the first attempt to utilize registered medical imaging as the reference to infer skeletal 

joints in a 3D body reconstruction system. Using this approach, a high degree of accuracy 

for skeletal joints inference and body segmentation can be achieved. This model is also 

capable of predicting body composition map without the use of subject-specific DEXA 

scans, which is itself a useful tool.

5.2.1 ∣ Shape registration framework—To map the data from one modality to the 

other, the key is to establish correspondences between the shapes. Our registration 

framework consists of two steps: pose regularization and nonrigid registration. Without loss 

of generality, we define the source and target shapes in the form of 2D triangle mesh as 𝒮
and 𝒯, respectively, from which we sample ordered boundary vertex sets 𝒮b and 𝒯b.

Pose regularization.: First, we classify the vertices on source shape 𝒮 into six body 

segments—torso, head, left arm, right arm, left leg, and right leg—as color coded in Figure 

5a. The rotation center of each segment is heuristically defined, represented as gray points in 

Figure 5a. Next, we calculate an affine transformation matrix for each segment on source 

shape 𝒮 to roughly match the pose of target shape 𝒯. Finally, vertices on source shape S are 

transformed as a weighted blend of the segment’s affine transformations. 𝒮 denotes the 

source shape after pose regularization, and its boundary is denoted by 𝒮b.

Nonrigid registration.: To further align source shape 𝒮 to the target, we adopt the method 

of Rouhani et al.,33 a robust shape registration framework that exploits local curvature 

features. The deformation is parameterized by free-form deformation (FFD), where P 
denotes the control lattice.

In shape registration, the goal is to minimize the distance between shape correspondences 

while deforming the source shape as smoothly as possible (1). The smoothness term Esmooth 

encourages the integral of the second-order derivatives of the linear functions to be small. 

The data term Edata (2) interpolates between two types of error metrics: point-to-point and 

point-to-plane. The interpolation weight W (3) is proportional to the local curvature κ. For 

target geometry with salient curvatures, point-to-point error metric dominates the penalty 

term to encourage a localized correspondence search. For target geometry with low 
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curvature, point-to-plane error metric dominates the penalty term to allow the 

correspondence search to “slide over” target 𝒯b to avoid being trapped in local minima.34

P∗ = argmin
P

∑Edata(v ∈ FFD(𝒮b), t ∈ 𝒯b) + λEsmooth(P) (1)

Edata(v , t) = W (v − t) ⋅ Tt 2
2 + (v − t) ⋅ Nt 2

2 (2)

W = 1 + 1
κ ∗ signed_dis(v , t) − 1 . (3)

The shape registration is performed in a nonrigid ICP fashion. For each step, the 

corresponding pairs v ∈ FFD (𝒮b), t ∈ 𝒯b are updated with the latest deformation parameter 

P. The stiffness λ is set to be high at the start of iteration to enforce a global alignment and 

gradually relaxed to encourage local deformation. Rouhani et al.33 formulated an elegant 

quadratic objective function with respect to the deformation parameter P, resulting in a 

closed-form solution for each ICP iteration. Let Pconv denote the final deformation 

parameter and 𝒮b
𝒯 denote the boundary shape at convergence (Figures 5d and 7c). Shape 𝒮

is then deformed to 𝒮𝒯 with deformation parameter Pconv.

5.2.2 ∣ Skeletal joints inference via multimodality registration—We select the 

first and the fifth partial scan meshes for skeletal joints inference, corresponding to poses 

that face forward and backward relative to the cameras. To simplify the notation, we take the 

first partial scan mesh as an example. The process is analogous to the fifth. We define the 

source shape 𝒮 to be the 2D orthogonal projection of the first mesh. The DEXA image is 

converted into 2D mesh labeled with skeletal joints, corresponding to the target shape 𝒯. We 

first regularize the pose of source shape 𝒮 to match the pose of target shape 𝒯, yielding 

regularized shape 𝒮 and its corresponding boundary 𝒮b (Figure 5c). In our experiment, in 

most cases, the source shape 𝒮 is capable of being registered to the target 𝒯 without pose 

regularization. However, with a prior knowledge of the shape’s underlying structure, we 

initially regularize the pose to avoid undesirable distortion and hence to increase the 

registration accuracy and stability. After pose regularization, the source boundary 𝒮b is 

registered to the target boundary 𝒯b by solving the objective function in Equation 1 

iteratively (Figure 5d). Source shape 𝒮 is then deformed via FFD with the optimal 

deformation parameters, resulting in the aligned shape 𝒮𝒯. The skeletal joints labeled on 

target mesh 𝒯 is then mapped to the aligned shape 𝒮𝒯 and thus to the 2D orthogonal 

projection shape 𝒮 (Figure 5e). Finally, the skeletal joints are inferred on the partial scan 

mesh.
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We initially align all the partial scan meshes through global rigid ICP registration. Based on 

mapped joints, we segment the first and the fifth partial scan meshes into 15 segments as 

illustrated in Figure 8 and propagate the joints and segmentations throughout the rest of 

partial scan meshes.

5.2.3 ∣ Skeletal joints inference via supervised learning—We further developed a 

novel predictive model through supervised learning to infer skeletal joints and body 

composition for arbitrary subjects without the need for DEXA scans. Our approach consists 

of a training phase and a predicting phase (Figure 6).

In the training phase, we take various body shapes and corresponding DEXA images as 

input. For each training shape, we infer skeletal joints and body composition map from the 

DEXA image by multimodality registration (Figure 6, Multimodality mapping). Textured 

training shapes are stored in mapping sample database (Figure 6, Mapping samples). A 

uniform template is registered to each of the training shapes via shape registration (Figures 

6, Shape processing, and 7a). Then, we analyze the variation of registered templates using 

principal component analysis (PCA) and extract the top three PCA components as the basis 

for the feature space. Shape features for each training shape are calculated as the projection 

of corresponding registered template on the PCA feature space (Figure 6, PCA feature 

extraction). Shape features are stored in shape parameter database (Figure 6, Shape 

parameters).

In the predicting phase, we adopt a nonparametric regression predictive model to predict 

skeletal joints and body composition map for new shapes (Figure 7b), including but not 

limited to shapes generated from partial scan meshes. First, we register the template shape to 

the new shape via shape registration (Figures 6, Shape processing, and 7c). The PCA 

features are extracted for the new shape by projecting the aligned template onto the PCA 

feature space (Figure 6, PCA feature extraction). One best-matched shape is predicted by 

searching for the training shape whose PCA features have the minimum Euclidean distance 

total the new shape’s features (Figures 6, Shape prediction, and 7d). Finally, we register the 

best-matched shape to the new shape to map the skeletal joints and body composition map 

(Figures 6, Skeletal joints & body composition mapping, and 7e).

5.3 ∣ Surface reconstruction

To reconstruct the 3D human body, our solution integrates the articulation constraint and the 

global loop closure constraint into the as-rigid-as-possible nonrigid registration framework. 

The articulation constraint prevents connected segments from drifting apart during 

registration. The segmentwise global loop closure constraint ensures that the registration 

error distributes evenly throughout the partial scans. This prevents alignments from falling 

into the local minima and hence enhances the registration quality where occlusions exist. 

The as-rigid-as-possible deformation framework models an effective way to simulate the 

skin deformation under articulated motion, preventing mesh near joints from unnatural 

folding or stretching during registration.
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In the rest of the paper, we represent the globally aligned partial scan mesh in pose i as 

Mi = {vi
k ∈ ℝ3, k = 1, … , n}, i = 1, … , 8, where n denotes the number of vertices in the mesh. 

We represent the embedded deformation graph of Mi as EDi = {gi
k ∈ ℝ3, k = 1, …, m}, i = 1, 

… , 8, where m denotes the number of nodes in the graph. Vertices on each partial mesh are 

classified into 15 segments, where Si
k denotes the kth segment of partial mesh Mi. Segments 

of eight partial meshes share one set of joints, whose positions are denoted by 

J = {Jk ∈ ℝ3, k = 1, …, 15}. We assign to each segment Si
k a rigid transformation 

Tri
k = {(Ri

kti
k), ∣ Ri

k ∈ SO(3), ti
k ∈ ℝ3}. Figure 8 lists the joints and segment indices and their 

hierarchy.

The basic deformation model.—Our nonrigid registration framework is based on the 

embedded deformation model of Sumner et al.26 The deformation of the partial mesh Mi is 

abstracted to the deformation of the embedded graph EDi, where the transformation of each 

graph node in EDi is constrained to be as rigid as possible. We propose to generate the 

embedded graph through a multiresolution k-nearest neighbor (k-NN) method to establish 

fast and effective connections between random sample points.

The transformation parameters of graph nodes are calculated by minimizing the energy 

function E described in Equation 4, as follows:

E = wrErigid + wsEsmooth + wcEcorr . (4)

Two constraints are imposed to formulate the properties of deformation. The rigidity term 

Erigid = ∑i = 1
m Rot(Ri) enforces rotation matrix R associated with each graph node to be as 

orthogonal as possible, where the Rot(R) reflects the orthogonality of matrix R. The 

smoothness term Esmooth = ∑i = 1
m ∑k ∈ 𝒩(i)‖Ri ⋅ (gk − gi) + gi + ti − (gk + tk)‖2

2 enforces the 

transformation of each node to be consistent with its neighbors', where 𝒩( ⋅ ) represents 

neighbor nodes that connect to the graph node. The correspondence term Ecorr enforces the 

distance error of correspondences to be small, which will be formulated differently in 

different registration phases.

5.3.1 ∣ Pose regularization—In this phase, we aim to initially align eight partial 

meshes through the as-rigid-as-possible deformation framework under the articulated motion 

constraint and the global loop closure constraint.

Joint constraint.: A joint constraint prevents the common ends of two connected segments 

from drifting apart after the transformation. We adopt the soft ball joint constraint method of 

Knoop et al.35 to proportionally add artificial joint-to-joint correspondences into the 

segmentwise registration. The ratio of artificial to total correspondences is treated as a 

weight of this joint constraint. Figure 9 shows a comparison of segmentwise global rigid 

registration with and without the joint constraint. Segments tend to drift away (Figure 9a,b 

left) without a soft joint constraint.
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Global loop closure constraint.: During pose regularization, we treat segments of partial 

scans as moving rigidly and the shape change as negligible. For each segment S, we globally 

align all eight partial segments Sk, k = 1, … , 8 under the global loop closure constraint and 

the soft joint constraint. In practice, we cannot always guarantee a complete loop (i.e., each 

node connects to its two adjacent nodes in the graph) due to occlusion, especially in areas 

such as inner sides of upper arms or thighs. Therefore, for each of these types of segments, 

we perform the explicit loop closure constraint (Figure 10b). For each of the rest, we 

perform the more flexible implicit loop closure constraint (Figure 10a). The explicit 

constraint predefines which pair of meshes should be aligned. The implicit constraint 

determines whether to align the mesh pair or not based on whether the overlapping area of 

the pair is larger than a certain threshold. After aligning each selected pair of meshes, we 

then globally distribute the alignment error throughout the graph (Figure 10).

The correspondence term.: Eight partial scan meshes are deformed, guided by the outputs 

of the segmentwise articulated global registration under the above two constraints. We 

specify the correspondence term for pose regularization in Equation 5, where T(gi, Tr) 

transforms embedded graph node gi with the transformation matrix Tr of the segment that gi 

belongs to.

Ecorr = ∑
i = 1

m
gi − T ( gi, Tr [segmet_id(gi)]) 2

2 . (5)

Implementation.: First, we perform a segmentwise articulated global registration to align 

all segments. We take segments of partial scans Si
k, i = 1, … , 8, k = 1, … , 15 and the joint 

positions Jk, k = 1,… , 15 as inputs. We initially set the transformation matrix Tr for each 

segment of partial scans to identity. The segmentwise registration is performed in a top-

down fashion from level 1 to 3 (Figure 8). Segments belonging to level l (l = 1, 2, 3) are 

aligned under the constraints. The transformation matrices and joint positions are updated 

accordingly and then propagated to their descendants. The outputs are the rigid 

transformation matrix Tr for each segment and updated joint positions. Second, eight partial 

meshes are deformed nonrigidly, guided by previous outputs. The correspondence is defined 

for each graph node according to the transformation of the segment this node belongs to. 

During the optimization, we minimize Equation 4 with a correspondence term specified in 

Equation 5 to get the deformation parameter for each graph node. The partial scan meshes 

Mi, i = 1,… ,8 are then deformed by their corresponding embedded deformation graphs. We 

represent the pose regularized partial scan meshes as RMi, i = 1, … ,8.

5.3.2 ∣ Global nonrigid registration—After pose regularization, the eight meshes 

RMi, i = 1,… ,8, are close enough to be further registered. We adopt the global nonrigid 

registration framework of Li et al.5 First, each mesh is pairwisely registered to define global 

correspondences. Then, with the correspondences, eight meshes are stitched through global 

nonrigid registration.
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Pairwise nonrigid registration.: To pairwisely align partial scan meshes, the point-to-point 

and point-to-plane error metrics are adopted for the correspondence constraint (6). Our 

pairwise alignment suffers less from local minima due to the pose regularization.

Ecorr = ∑
(v , t ) ∈ Cpairwise

‖v − t ‖2
2 + (v − t ) ⋅ Nt 2

2 . (6)

Global nonrigid registration.: The global alignment aims to stitch the eight meshes 

simultaneously. We predefine global correspondences using pairwise nonrigid registration 

and then solve for deformation parameters of the eight embedded graphs in one 

optimization. The correspondence constraint for global nonrigid registration (7) enforces the 

point-to-point distances of global correspondence pairs (v , t ) ∈ Cglobal to be small.

Ecorr = ∑
(v , t ) ∈ Cglobal

‖v − t ‖2
2 . (7)

Implementation.: The first step is to define global correspondences by pairwisely 

deforming RMi to its next neighbor RMi+1 (the last mesh deforming to RM1). For each pair 

after registration, we uniformly sample the source mesh, and for each sample point, we 

search for its correspondence on the target based on the Euclidean distance and normal 

compatibility. Indexes of sample points and their correspondences are stored in the global 

correspondence table GCi(i = 1, … ,8). The second step is to globally register the eight 

regularized partial meshes RMi (i = 1, … ,8) based on the global correspondences defined in 

the previous step. The global correspondence tables for the eight meshes are merged into one 

table GC so that samples on RMi have bidirectional correspondence on both RMi−1 and 

RMi+1. After optimization, the outputs are the eight globally aligned partial meshes GRMi(i 
= 1,… ,8). In the third step, we merge these eight globally aligned partial meshes to generate 

a watertight surface ℒ through Poisson reconstruction.13

5.3.3 ∣ Detail Mapping and Texture Refinement

Detail mapping.: The Poisson reconstruction13 tends to oversmooth the high-frequency 

details of the original meshes GRMi(i = 1,… ,8). We propose to map high-frequency details 

from the globally aligned partial meshes to surface ℒ. We nonrigidly deform the aligned 

partial meshes toward the watertight surface ℒ and optimize per-vertex correspondence of ℒ
to each mesh. After convergence, we warp the vertices on surface ℒ toward the latest 

correspondences with a Laplacian smoothness constraint. With the correspondences, we also 

preliminarily map the texture onto the watertight surface ℒ.

Texture refinement.: Because our goal is to develop a consumer system for high-quality 3D 

human body modeling, we do not have strict illumination requirements. However, texture 

artifacts occur due to color inconsistencies. We employed a diffusion method to mitigate 
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texture artifacts caused by illumination variance, that is, nonuniform lighting. The diffusivity 

is determined by the color similarity of a given vertex and its k-NN vertices to preserve edge 

details but, at the same time, smooth out color inconsistency artifacts. Additionally, the 

facial detail is enhanced by a geometry and texture supersampling.

6 ∣ EXPERIMENT

6.1 ∣ Data collection

We have conducted a threefold experiment to collect DEXA scan images, to test the 

robustness of our body scan system, and to verify reconstruction accuracy and reliability.

The experiment has a sample size of 28 subjects (14 males and 14 females). This is 

considerably larger than the sample size reported in similar studies.36,37 We consider the 

sample size to be sufficient if the width of the 95% confidence interval is at most 1.5% of 

the value to be estimated. We demonstrate this in the results section. This experiment is the 

first phase accuracy study of a larger experiment consisting of 160 subjects that we are 

conducting to calculate the percentage of body fat using surface scans. The data collection 

involving human subjects was approved by the Institutional Review Board (IRB).

The subjects were recruited from the Washington, DC, metro area, with age of 25.7 ± 5.1 

and BMI of 23.3 ± 3.1. We drew 34 landmarks on each subject corresponding to anatomic 

definitions of chest, waist, abdomen, hip, thigh, calf, shoulder, elbow, wrist, patella, and 

ankle. Two landmarks (for measurements on arms and legs) and four landmarks (for 

measurements on torso) were placed in each location as a reference for the caliper and tape 

measurements. The test took 1 h for each subject, including the DEXA scan, the scan using 

our system, and the caliper and tape measurements.

Scan with the system.—Subjects were asked to change into a tight-fitting uniform 

including sleeveless compression tops (for males), sports bras (for females), swimming 

shorts, and swimming caps. The landmarks were drawn before the scan. Each subject was 

scanned three times. The textured 3D body shapes were reconstructed afterward with all 

landmarks visible on the virtual models. Euclidean distance between markers on 3D virtual 

models was calculated and recorded.

Manual measurements.—We measured the point-to-point linear distance between 

landmarks with a caliper and the length of arms and legs with a tape measure. Two 

measurements were taken to mitigate measurement error. During the measurement, subjects 

held approximately the same pose as they did during the scan. Our accuracy comparison is 

in between the manual caliper/tape measure on real subjects and the vertex-to-vertex 

Euclidean distance measure on reconstructed virtual 3D models.

6.2 ∣ Surface reconstruction

During mesh preprocessing, we reconstructed multiresolution partial scan meshes from 

depth and color images using the TSDF fusion17 and the marching cubes32 algorithms. The 

coarse mesh was reconstructed at a resolution of 192 voxels/m, and the fine mesh was 
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reconstructed at a resolution of 384 voxels/m. The implementations were based on the 

Kangaroo Library.38

In shape nonrigid registration, we set the FFD control lattice to be 30 × 30, covering a unit 

deformation space, that is, [0,1]2. Shapes were rescaled uniformly to fit into the unit square 

before registration. We initialized the stiffness λ to 105, and for each iteration, we reduced λ 
by 25% until convergence.

We implemented the segmentwise articulated global rigid registration based on the VCG 

Library.39 We experimentally set the weight for articulation constraint to 0.1 and the 

overlapping area threshold for the implicit graph to 0.2.

Our surface reconstruction framework is based on the as-rigid-as-possible deformation 

model. The deformation graph node was connected by its k-NN. We set k to 10 for all 

embedded deformation graphs during registration. The optimization function consists of 

three energy terms: the rigid term, the smoothness term, and the correspondence term. The 

corresponding weights are denoted by wr, ws and wc. For pose regularization, we 

experimentally set wr to 100, ws to 10, and wc to 5. For pairwise nonrigid registration and 

detail mapping, we experimentally set wr to 10, ws to 5, and wc to 1. For each iteration, we 

reduced wr by half. For global nonrigid registration, we experimentally set wr to 50, ws to 

2.5, and wc to 1. For each iteration, we solved the nonlinear objective function using the 

Gauss–Newton method, where the Cholesky decomposition was solved with the CUDA 

conjugate gradient solver.40

Our reconstruction system is able to run on average commodity hardware. In our 

experiment, we used Intel® Core i7–4790 CPU with 32GB RAM and an NVIDIA® GeForce 

GTX 750 GPU with 2GB DRAM to process the data. The processing times for each step are 

illustrated in Table 1.

7 ∣ RESULTS

7.1 ∣ Skeleton inference

We conducted a holdout validation test to evaluate the accuracy of our predictive model for 

skeletal joints and body composition inference. The model was trained using body shapes 

with various body sizes (Figure 7a). The validation test consists of new shapes and their 

DEXA images. Five inference results generated via our predictive model are illustrated in 

Figure 11, row 3. In the predictive model, we extracted PCA features of the input shape and 

predicted the best-matched shape from the training shape dataset. Five test shapes and their 

best-matched shapes are illustrated in Figure 11, row 1. Corresponding PCA features are 

visualized in radar plots in Figure 11, row 2. The test ground truth was generated by directly 

mapping the DEXA image to the test shape through multimodality registration (Figure 11, 

row 4). Based on a training sample size of 12, the mean error of skeletal joints prediction is 

1.63 cm and the mean accuracy of body composition prediction is 82.87% (Table 2).
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7.2 ∣ Surface reconstruction

Figure 12 shows our reconstruction results. Our system is also capable of capturing complex 

surfaces for general-purpose 3D scan and reconstruction such as the case in which the 

subjects wear loose clothes. The surface details were reconstructed by mapping high-

frequency geometry details from the deformed partial meshes to the oversmoothed 

watertight surface generated by Poisson reconstruction.13 In Figure 13, details of the T-shirt 

and pants, wrinkles, face, hair, and ears are shown.

7.3 ∣ Accuracy evaluation

We obtained 24 measurements on each of the 28 subjects and summarized them as a mean-

difference plot in Figure 14. The vertical axis is the difference between the value obtained 

from the 3D reconstruction and that obtained by tape measure or caliper. The horizontal axis 

is the average of the virtual and real (caliper or tape) measure. A 95% confidence band (−0.4 

cm to 0.4 cm) is superimposed on the plot for reference. Most (97.4%) measurements are 

within 5 mm of each other, with the largest discrepancies being 0.85 cm and −0.80 cm. Note 

that the caliper and tape measurements also involve some error.

Figure 15 breaks down the discrepancies by location and displays boxplots of the differences 

between 3D reconstructed and manually measured values. As noted above, the reconstructed 

and measured values are, for the most part, within 5 mm of each other. Most discrepancies 

are in the abdomen, calf, and thigh measurements and appear to be due in part to difficulties 

in performing the manual measurements and in part to the registration and sensor intrinsic 

errors. The 95% confidence accuracy interval for each of the 24 measurements was 

calculated. With the sample size of 28, the worst-case interval width was 0.27 cm, and the 

worst-case relative error was 1.5%.

Finally, as a test of the repeatability of the reconstruction, all 24 measurements for the first 

subject were repeated 3 times. The intraclass correlation between measurements was 

0.99990, with a 95% confidence interval of (0.99981, 0.99996). The worst error at each 

location was calculated as the largest of the three values minus the smallest. These worst 

errors are shown in Figure 16. We hypothesize that the errors are mainly due to a 

combination of pose change, shifting clothing, and breathing between data taking.

In Table 3, we compare our body reconstruction geometry accuracy and whole-body volume 

accuracy with state-of-the-art body reconstruction systems that are widely used in academic 

research and commercial applications. Rigorous scientific validations have been conducted 

for 3dMDface® by Aldridge et al.36 with 15 subjects and for Crisalix 3D® by de Heras 

Ciechomski et al.37 with 11 subjects. Li et al.5 validated their algorithm using one rigid 

mannequin and compared their reconstruction result with the ground truth from the laser 

scanner. Zhang et al.10 validated their method with one articulated rigid mannequin, also 

taking laser scan as the ground truth. We do not have the details of the accuracy claims of 

the other systems. The result shows that our reconstruction system geometry accuracy is 

superior to Crisalix 3D® and Styku® for torso region and to methods of Li et al. and Zhang 

et al. for the whole-body areas. The volume accuracy outperforms high-end body scanner 

Telmat SYMCAD®.
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8 ∣ CONCLUSION

In this paper, we present a high-quality and highly accurate 3D human body reconstruction 

system using commodity RGB-D cameras. Our registration framework integrates articulated 

motion assumption and global loop closure constraint to the as-rigid-as-possible deformation 

model to initially regularize partial scan meshes. By regularizing the pose, we achieve a 

relatively good initial condition for global nonrigid registration. Additionally, we 

investigated the depth sensor noise pattern with a rigorous experiment. We analyzed the 

noise pattern to correct the depth bias and to guide our hardware system design.

We designed and conducted a rigorous accuracy validation test for the proposed nonrigid 

human body reconstruction system. Our results show excellent agreement between the 

measurements obtained from the 3D reconstruction and those obtained manually, with a root 

mean square difference of 2.048 mm.

The multimodality skeleton mapping maximizes the segmentation accuracy. To the best of 

our knowledge, this is the first work that attempts to improve the skeletal joints inference 

accuracy for body scanner using multimodality registration. Moreover, the innovative 

supervised predictive model for skeletal joints inference makes it possible to extend the 

high-accuracy segmentation to arbitrary subjects independent from anatomical data, such as 

the DEXA image. Last but not the least, our predictive model is capable of predicting body 

composition map, that is, fat, muscle, and bone distribution, for various body shapes with a 

promising accuracy of 82.87% using a rather small training sample size of 12.

In the future, we are planning to develop the body composition predictive model to 

incorporate features such as weight, height, BMI, ethnicity, and geometric shape descriptors. 

We will develop a more comprehensive training sample set to cover a large variety of body 

shapes and demographic data. We foresee that the sophisticated predictive model will result 

in an enhancement of inference accuracy. The current multimodality registration and skeletal 

joints inference via supervised learning predict projected 2D body composition maps from 

3D surface scans much like the results of DEXA scans. We are working to extend this 

algorithm to predict 3D body composition maps from 3D surface scans, which would have 

far-reaching implications for treating obesity.
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FIGURE 1. 
System overview. TSDF = truncated signed distance function; ICP = iterative closest point
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FIGURE 2. 
System setup. (a) The setup of the two Kinects relative to the subject. The lower camera 

(denoted K1) was mounted at a height of 65 cm from the ground, and the upper camera 

(denoted K0) was mounted at a height of 130 cm from the ground. The distance from 

camera center to the subject is approximately 125 cm, and the camera vertical Field of View 

(FOV) is 70.6°. Using this configuration, the maximum allowable user height is 219 cm. (b) 

Left: hardware setup for depth bias analysis using a laser range instrument (e.g., Bosch® 

laser measure). Right: hardware setup for capture, showing the two Kinects and the 

mounting frame
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FIGURE 3. 
Kinect bias pattern and depth correction. (a) Bias pattern as a function of depth. The 

majority bias distribution is in blue with appearance rate more than 95%. The other colors 

represent the minority bias distribution with appearance rate less than 5% and red one 

representing less than 0.02%. (b) Global quadratic correction. (c) Regional quadratic 

correction with 48 × 48 patch and an overlap of 16 pixels. (d) Regional quadratic correction 

with 20 × 20 patch and an overlap of 16 pixels
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FIGURE 4. 
Reconstruction pipeline. ICP = iterative closest point
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FIGURE 5. 
Multimodality registration for mapping skeletal joints. (a) Input shape with binary classified 

body segments and their rotation center (gray points). (b) Target shape from DEXA scan. (c) 

Silhouette of the source shape after pose regularization (blue) and silhouette of the target 

shape (red). (d) Free-form deformation-based shape registration. (e) Skeletal joints and body 

composition mapping from the target shape to the original source shape
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FIGURE 6. 
Flowchart of skeletal joints and body composition inference via supervised learning showing 

training phase (top) and predicting phase (bottom). PCA = principal component analysis
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FIGURE 7. 
Skeletal joints and body composition inference via supervised learning. (a) Training shapes 

in dashed line, color coded with body mass index (BMI). The average of training shapes 

outlined in black. (b) The shape to be predicted. (c) Shape processing: register the template 

to the predicting shape. (d) Shape prediction: predict the best-matched shape (light blue) for 

the predicting shape (red). (e) Skeletal joints and body composition mapping
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FIGURE 8. 
Skeleton hierarchy. J stands for the joint, and S stands for the segment, followed by the name 

of each joint or segment. The index after a name is the order of this joint or segment in the 

list
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FIGURE 9. 
The joint constraints comparison. (a) Left: without the knee joint constraint. Right: with the 

knee joint constraint. (b) Left: without the shoulder joint constraint. Right: with the shoulder 

joint constraint
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FIGURE 10. 
Examples of implicit graph (a) and explicit graph (b). The red dots represent mesh nodes, 

and the gray lines denote all candidate edges. Mesh nodes connected by lines can be 

registered. In the implicit graph, the green highlight edges represent the predefined baseline 

edges for the loop and, the blue highlight edges are selected from the rest of the edges (gray 

lines) based on an implicit threshold. The implicit threshold is set as the minimum overlap 

area of the mesh pair on baseline edges. In the explicit graph, the brown highlight edges 

represent the explicitly predefined edges, which are mandatorily computed during 

registration. The node covered by the gray square represents missing mesh due to occlusion
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FIGURE 11. 
Holdout validation for skeletal joints inference via supervised learning. (Row 1) Body shape 

prediction. The best-matched shape (light blue) is predicted for each test shape (red). (Row 

2) Radar plots of six PCA features (i.e., PCA1_X, PCA2_X, PCA3_X, PCA1_Y, PCA2_Y, 

and PCA3_Y) for the five test shapes (red) and their corresponding predicted best-matched 

shapes (light blue). (Row 3) Predicted skeletal joints and body composition. (Row 4) Test 

ground truth. Skeletal joints are represented as blue squares. For body composition, white 

denotes bones, red denotes muscles, and yellow denotes fat. Shape boundary is colored in 

green
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FIGURE 12. 
Reconstruction results
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FIGURE 13. 
Comparison of detail mapping. Top: the watertight surface generated by Poisson 

reconstruction. Bottom: the detail refined mesh
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FIGURE 14. 
Mean-different plot of the overall discrepancies
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FIGURE 15. 
Discrepancies by location
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FIGURE 16. 
Maximum difference of repeated reconstructions
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TABLE 1

Processing time for one instance of reconstruction

Meshing Skeleton
mapping

Pose
regularization

Pairwise
nonrigid

Global
nonrigid

Poisson
reconstruction

Texture

Time (s) 391.47 108.37 384.71 210.36 170.22 49.15 224.47

Comput Animat Virtual Worlds. Author manuscript; available in PMC 2019 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 38

TABLE 2

Skeletal joints prediction error and body composition prediction accuracy

Test 1 Test 2 Test 3 Test 4 Test 5 Mean

Skeletal joints error (cm) 1.49 1.41 1.23 2.57 1.45 1.63

Body composition accuracy 82.01% 82.79% 82.69% 84.31% 82.53% 82.87%
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TABLE 3

Comparison of geometry and volume accuracy with state-of-the-art body reconstruction systems

System for body
reconstruction

Techniques Cost Source Experiment
data source

Experiment
details

Region Geometry
error (mm)

Volume
error

3dMDface® Stereo-photogrammetry $$$$$$ 36 Experiment with real 
subjects

N = 15, L = 
20, M = 14

Face 1.263

3dMDbody® Stereo-photogrammetry $$$$$$ 41 No detail Body 0.2–1

TC2 NX-16® Structured white light $$$$$ 42 Factory tech specs Body <1

Telmat SYMCAD® Structured white light $$$$$ 43 No detail Body <1 −8%

Crisalix 3D ® Image-based reconstruction $$$$ 37 Experiment with real 
subjects

N = 11, L = 
14

Torso 2–5

Styku® KinectFusion $$$ 44 Factory tech specs Torso 2.5–5

Li et al. Kinect nonrigid $$$ 5 Rigid mannequin N = 1 Body 3

Zhang et al. Kinect nonrigid $$$ 10 Articulated rigid mannequin N = 1 Body 2.45

Ours Kinect nonrigid $$$ Experiment withreal subjects N = 28, L = 
34, M = 24

Body
Torso

2.048
1.717

3.63%

Note. N denotes the sample size of validation experiment, L denotes the number of landmarks, and M denotes the number of measurements 
collected per trial. The geometry error is compared in root mean square, except for the works of Li et al. and Zhang et al. (mean error). The volume 
error is compared in mean absolute difference.
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