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We present a novel measure for compression of time-variant geometry. Compression of time-
variant geometry has become increasingly relevant as transmission of high quality geometry streams
is severely limited by network bandwidth. Some work has been done on such compression schemes,
but none of them give a measure for prioritizing the loss of information from the geometry stream
while doing a lossy compression. In this paper we introduce a cost function which assigns a cost to
the removal of particular geometric primitives during compression, based upon their importance in
preserving the complete animation. We demonstrate that the use of this measure visibly enhances the
performance of existing compression schemes.

Keywords: Time-Dependent Geometry Compression, Computer Animation

Introduction
Complex static meshes impose large demands on any visualization system in terms of rendering time and storage
space. Compression of static geometry has been widely studied as means of overcoming these restrictions. How-
ever, complex time-dependent meshes are becoming more frequent in animation sequences. Animation modeling
programs, computer vision and scanning techniques, finite element simulations are all rich sources of moving ge-
ometry. Real time visualization of such geometry demands the compression of these time-dependent geometry
streams. Some compression schemes do address the case of time-dependent geometry. All these schemes try to
exploit the temporal coherence of the geometry stream to achieve compression.

The compression of geometry data can be achieved by quantizing the information contained in the mesh. This
can further be combined with prediction techniques and entropy encoding of the prediction errors. Another way is
to actually remove or delete information contained in the mesh. This is usually a decimation step whereby some
mesh primitive i.e. a vertex, an edge or a face is deleted. The selection of which information (or primitive) in the
geometry is to be quantized or removed is usually done by taking into consideration its effect on the static mesh
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shape only. Applying such static compression techniques to the meshes at every time step may cause simplification
of areas or regions of the mesh which are essential to preserving the animation sequence.

We propose a novel cost function which assigns a cost to the removal/quantization of every primitive in the
geometry depending on its importance in preserving the animation sequence. This allows a compression algorithm
to decide which primitive it can safely discard or approximate coarsely without destroying the animation. We
demonstrate that the use of this measure enhances the performance of existing compression schemes and actually
helps preserve the characteristics of an animation during compression.

Background
It is beyond the scope of this paper to describe the many approaches that have been developed for compression of
static geometric data. We describe in brief some of the approaches.

Earliest attempts at geometry compression are made by Deering [1]. Hoppe [2] defines progressive meshes.
A progressive vertex insertion strategy permits the user to transfer a 3D mesh progressively, starting from a
coarse mesh and then inserting vertices one by one. The topological surgery method developed by Taubin and
Rossignac [3] encode both a vertex spanning tree and its triangle spanning tree. Together, these two provide
enough information to recover connectivity of the original mesh. In another approach, Bajaj et. al. [4] propose an
algorithm based on vertex-layering and triangle-layering schemes. They break down the mesh into simple geo-
metric primitives which results in approximately concentric layers of vertices and triangles. Data is compressed
locally within each layer. Lee et. al. [5] provide a way of adaptively parameterizing irregular connectivity trian-
gulations of arbitrary genus 2-manifolds using a technique called Multi-resolution Adaptive Parameterization of
Surfaces (MAPS). MAPS constructs a multi-resolution representation of the given mesh using geometry simplifi-
cation techniques.

The first work to consider geometry as a first-class media stream is given by Lengyel [6]. It offers a technique
for compression of time-dependent geometry. The approach used was to encode gross movement of the mesh with
a small set of controls, while the residual differences are quantized and coded at a low bit rate. Shamir et. al. [7]
present an adaptive multi-resolution representation for dynamic meshes with arbitrary deformations including
attribute, position, connectivity and topology changes called the T-DAG. They also provide an online algorithm
for constructing the T-DAG, enabling the traversal and use of the multi-resolution model for partial playback
while still constructing it. Ibarria and Rossignac [8] propose the Dynapack algorithm which exploits space-time
coherence to compress consecutive frames of the 3D animation of triangle meshes of constant connectivity. Instead
of compressing each frame independently or compressing the trajectory of each vertex independently, Dynapack
predicts the position of each vertex v of frame f from 3 of its neighbors in frame f and the positions of v and
of these neighbors in the previous frame. Briceño et. al. [9] propose Geometry Videos, a new data structure to
encode animated meshes. The main idea behind their work is that Geometry Videos re-sample and re-organize
the geometry information in such a way, that it becomes very compressible. Another approach to animation
compression compression is given by Alexa and Müller [10]. They determine the principle animation components
based on a PCA analysis of the space of the animation frames. The principal component analysis brings out the
principal components of the deformation. Compression is achieved by quantization of the PCA components.



By using more coefficients, a progressively refined animation can be obtained. In another work Kwatra and
Rossignac [11] give a scheme for compression of 2D cel animations. They treat the stack of frames as a 3D volume,
and then simplify the bounding surface of the volume and then encode it using the Edgebreaker compression
scheme.

None of the above techniques suggest a way of assigning a priority based on a criteria or measure, which is
then applied for the purpose of either decimating the mesh or quantizing the vertex information. We propose a
novel cost function which assigns a cost to the removal/quantization of every primitive in the geometry depending
on its importance in preserving the animation sequence.

Defining a Measure

Definitions
Let us begin by fixing a terminology and some definitions which we use while developing our measure.

We represent a triangular mesh as a pair (P,K), where P is a set of N point positions pi = (xi,yi,zi) ∈ RN with
1≤ i≤ N, and K is an abstract simplicial complex which contains all the topological, i.e., adjacency information.
The complex K is a set of subsets of {1, . . . ,N}. These subsets are called simplices and are of three types: vertices
v = {i} ∈ K, edges e = {i, j} ∈ K, and faces f = {i, j,k} ∈ K.

For a vertex pi ∈ P, we consider its one ring neighborhood and denote its area as ai and its curvature as κi. We
define curvature in the following manner.

Let there be n faces in one ring neighbourhood of the vertex pi. We define κi as

κi =
∑n

l=1 a fl ·κ fl

∑n
l=1 a fl

(1)

where a fl is the area of the lth face fl and κ fl =
1−(npi ·n fl )

2 , with npi and n fl being the unit normals at the vertex
pi and face fl respectively. An alternate definition of curvature is given by [12]. We have experimented with
both the definitions and found that they give equivalent results. We have used the definition of curvature given in
Equation 1 to generate our results.

All the above definitions are for a static mesh. We consider an animation as a time sequence of meshes
Mt0 ,Mt1 , . . . ,Mtm where to < t1 < .. . < tm. So all the mesh attributes become a function of time i.e. Mt j = (Pt j ,Kt j).
The actual time step values are irrelevant, so we normalize the time-steps to unitary intervals {t j} ← j. Since
there are m frames in the animation we have 0≤ j ≤ m. Let ai j be the area associated with the vertex pi ∈ Pj and
similarly, let κi j be the curvature associated with it.

The cost function
Now we will actually define the measure. The measure is best defined as a cost function:

c( f1, f2, . . . , fr) = w1 · f1 +w2 · f2 + · · ·+wn · fr (2)



where the fi are various criteria describing the animation sequence. The value of this function for a particular mesh
primitive is its importance value i.e. the value of the function is a measure of the importance of the information
carried by that geometry primitive to the animation sequence. The weights wi denote the relative importance of the
various criteria used to compute the cost function to the animation. The primitives for which the function returns
a high value are more likely to be preserved than primitives for which the functions returns a low value during a
geometry compression step.

We develop two such criteria - a change in curvature criterion, and a dynamic joint criterion.

Change in curvature criterion - CURV

Every vertex has associated with it a curvature as defined by Equation 1. The change in curvature criterion is meant
to capture the deformable regions of the time-dependent dynamic mesh. It is based on an assumption that groups
of vertices in the mesh whose curvature undergoes substantial change during the animation are more important to
preserving the animation than vertices whose curvature does not change much. The basis of this assumption is that
animation is primarily composition of various movements, and preserving vertices where curvature changes helps
preserve the geometry essential to describing the movement. We define this criteria in the following manner. We
define the average curvature of each vertex pi, with m and κi j as defined earlier, as κ̄i =

∑m
j=0 κi j

m . If the deviation in
curvature at any frame j for a vertex pi be δκi j = abs(κ̄i−κi j) then the average deviation in curvature is defined

as ¯δκi =
∑m

j=0 δκi j
m . Now, we define the change in curvature criterion function as

fcurv(pi,α) = α · ¯δκi +(1−α) · κ̄i (3)

This criterion function would give higher values for those vertices who’s curvature changes more during an
animation sequence. This function also captures rate of change of curvature at a vertex. For example, a curvature
change spread over a 100 frame animation will be given less importance than the the same curvature change spread
over 25 frames, repeated 4 times. Note that only including ¯δκi in the criteria is not sufficient in itself, because we
want to preserve all vertices which have a high curvature even if it does not change during the animation. This is
based on the assumption that high curvature areas define important shape features of the mesh and hence must be
preserved. This is achieved by including the κ̄i term in the criteria.

Dynamic joint criterion - SKEL

Animations that are generated by embedding an articulated skeleton in a mesh are better described by this criterion.
In the animation some joints of the embedded articulated structure can be static while others may be dynamic. The
dynamic joints move and so the mesh vertices influenced by the joint move with it. This criterion tends to give
more importance to those vertices which are associated with a dynamic joint than a static joint. The basis for
this argument also lies in preserving the moving elements in an animation as was the case in defining the CURV
criteria.

We first figure out which joints of the skeleton are dynamic joints, i.e., which joints move the most over time.
For every joint, we find out the absolute sum of the change in angle at the joint. The angle change is computed
for all the segments of the skeleton incident on the joint. The joints for which this sum is more than a specified
threshold are labeled as dynamic.



In order to find out the region of influence of a dynamic joint, we construct a kd-tree [13] for the mesh and
select the vertices of the mesh in the nearest neighborhood of the dynamic joint. Now we define the dynamic joint
criteria in the following manner.

Let

dyn( jt,α) =

{

α if jt is a dynamic joint
(1−α) if jt is not a dynamic joint

(4)

and

joint(pi) = { jt| jt is the joint in whose region of

influence the vertex pi lies} (5)

Then we define the dynamic joint criteria function as

fskel(pi,α) = dyn( joint(pi),α) (6)

The complete measure : CURV+SKEL

The complete measure is defined as a linear combination of the criterion functions defined previously and is given
by c = w1 · fcurv +w2 · fskel .

Here w1 and w2 are the relative weights given to the two above defined criterion. It can be seen here that the
cost function is very flexible. More criteria can be very easily added to it to better describe the animation sequence,
which would help preserve to a larger extent the primitives of interest during simplification. For example, a criteria
can be defined based on the distance of the animated mesh from the rendering viewpoint i.e. what level of detail
is sufficient to describe the object at the distance in question. We can also define a criteria based on the velocity of
movement of the dynamic mesh in the animation.

It is interesting to note that criteria based on velocity and distance from viewpoint can give rise negative
weights in the cost function i.e. according to these criteria a primitive may be suitable for deletion while as per the
curvature/dynamic joint criteria it may be worth preserving. The cost function is flexible enough to handle such
conflicting criteria responses by suitably modulating the weights associated with each criteria. The criteria with
higher weight will dominate the outcome of the cost function more than other criteria.

Now we describe how we have incorporated our measure into existing compression schemes.

Our measure and MAPS
We have incorporated our measure in the MAPS [5] algorithm for mesh simplification. First we give a brief
description of MAPS.

MAPS : A static geometry simplification algorithm
MAPS first constructs a hierarchy of meshes. The original mesh (P,K) = (PL,KL) is successively simplified into
a series of homeomorphic meshes (Pl,Kl) with 0≤ l ≤ L, where (P0,K0) is the coarsest or base mesh.



At a level l (of the mesh hierarchy), for a vertex pi ∈ Pl , we again consider its one ring neighborhood and
compute its area a(i) and estimate its curvature κ(i). MAPS assigns a priority {i} inversely proportional to a
convex combination of relative area and curvature.

w(λ, i) = λ
a(i)

maxpi∈Pl a(i)
+(1−λ)

κ(i)
maxpi∈Pl κ(i)

(7)

This priority is used to maintain a priority queue of vertices (simplification primitives) which are then subjected
to a vertex remove step during mesh simplification. The hole that left is then re-triangulated.

The mesh simplification reduces the mesh to a base domain which is the mesh represented by (P0,K0). A
vertex i in the original mesh is parameterized over the base domain as αpi + βp j + γpk, where {i, j,k} ∈ K0 is a
face of the base domain and α, β and γ are barycentric coordinates. This mapping can be computed concurrently
with the hierarchy construction during the simplification process.

Using this parameterization, MAPS does an adaptive, hierarchical remeshing of arbitrary meshes into subdivi-
sion connectivity meshes. The remeshed manifold meets conservative approximation bounds.

During the implementation of MAPS we came across a problem in the down-sampling stage of the algorithm
whereby intersection of edges can occur during downsampling. We take care of this fact by not deleting a vertex
if the deletion causes the new triangles created to intersect with any existing mesh edge.

Incorporating the measure into MAPS
To incorporate our measure into MAPS we replace the MAPS weighing function given in Equation 7 by our cost
function as a method of prioritizing the vertices for simplification.

Quantitative error analysis
In order to evaluate the quality of animation obtained, we need some notion of an error associated with each level
of mesh simplification. We characterize the error introduced by successive removal of vertices using the approach
given in [14]. For every vertex being removed we calculate the error due to addition of new planes. This error
gives the sum of distances of the vertex from the planes in its one ring neighborhood. Note that for any vertex
which is not removed this error is zero since the vertex passes through all the planes. Since the new planes do
not necessarily pass through the vertex, we get a non-zero value of this error. We add the error for all the vertices
removed at each compression level. The error metric for deleting a vertex v is given by

4(v) = vT ( ∑
p∈planes(v)

Kp)v (8)

where p = [abcd]T represents the plane defined by the equation ax + by + cz + d = 0, with a2 + b2 + c2 = 1 and
Kp is the matrix:

Kp = ppT =













a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2















The largest dimension of the mesh along the X, Y, or Z axes is scaled to the range 0 to 1, and the other
dimensions are scaled proportionately. We do this to be able to compare the errors with respect to a normalized
mesh dimension. In the following section we give the results we obtained by incorporating our measure into
MAPS.

Results
We have implemented the original MAPS algorithm for mesh simplification. We have then included our measure
into MAPS and performed two sets of experiments. We apply MAPS to the static mesh in every keyframe of the
animation. We then show that MAPS preserves the animation characteristics of the animation better when it uses
our measure to govern its mesh simplification step.

For the first experiment, we use a facial animation of a monkey’s face. Here we have used only the CURV
criteria to construct our cost function and then included it into MAPS. Top row of Figure 1(a) gives the original
uncompressed frames form the facial animation. The middle row of Figure 1(a) gives the frames from the MAPS
compressed version while the bottom row gives the frames from the MAPS+CURV compressed version (i.e. when
MAPS uses our CURV criteria to govern its simplification step). In both cases, the amount of compression was
the same (compression ratio 2.5), but it is clearly observed that applying just MAPS does not preserve the moving
lips of the face, while MAPS+CURV does a much better job. Further quantitative validation of our observations
can be seen in the quadric error graph given in Figure 1(b) which compares the error when just MAPS is applied
with the error when MAPS+CURV is applied. It is clearly seen that use of MAPS+CURV results in a lower error
during compression.
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Figure 1: Frames from the Face Animation - uncompressed and compressed, and variation of Quadric Error during
compression.

For the second experiment we consider an animation of an articulated hand. The hand has an inbuilt skeletal
rig which allows us to detect dynamic joints. We compressed the animation using only MAPS, MAPS+CURV,



(a) Uncompressed Hand Animation (b) Compressed with MAPS

(c) Compressed with
MAPS+CURV+SKEL

Figure 2: Various compression schemes applied to the hand animation

MAPS+SKEL and MAPS+CURV+SKEL. We found that MAPS+CURV+SKEL gives the best results in this case.
We can clearly observe that use of our complete measure into MAPS (shown in Figure 2(c)) preserves the animation
characteristics better than using only MAPS (shown in Figure 2(b) middle row). In all the cases the compression
ratio was 6.0.

Our measure and Dynapack

Dynapack : Space-Time compression of meshes
We have incorporated our measure in Dynapack [8]. The Dynapack algorithm helps reduce storage and transmis-
sion costs of 3D animations. Due to the simplicity of this algorithm, it can be considered as a possible extension of
the graphics hardware capabilities for real-time decompression of streamed animations. Dynapack uses extrapo-
lating predictors for compression. For the typical 3D animations that we have compressed, the corrections between
the actual and predicted value of the vertex coordinates may be compressed using entropy encoding. Dynapack
uses three types of extrapolating predictors, Space-only predictors, Time-only predictors and Space-time Extended
Lorenzo predictor(ELP). In our experiments, we have used the ELP. It is of the form

predict(c, f ) = c.n.v.g( f )+c.p.v.g( f )−c.o.v.g( f )+c.v.g( f−1)−c.n.v.g( f −1)−c.p.v.g( f −1)+c.o.v.g( f −1)

(9)



Incorporating the measure into Dynapack
In an animation different vertices can be quantized to different bits depending upon their importance in preserving
the shape features. We propose a way to prioritize the vertices according to their importance. Thereby, vertices
which have higher priority can be quantized to more number of bits as compared to vertices with lesser priority.
This way, we can achieve more compression while still preserving the quality of the animation.

We use our measure as the criteria to select the quantization level of each vertex in the animation. It is logical
that vertices which are “important” in an animation (as selected by our measure) need to be quantized with more
bits. Vertices which are not marked as “important” (by our measure) can be quantized to fewer number of bits.
The algorithm is as given in Algorithm 1.

Algorithm 1 Marking and Quantization Algorithm
1: Run CURV (or SKEL-CURV as may be applicable) on the animation.
2: Obtain an array of flags. A vertex is flagged 1 when the vertex is “important” and flagged 0 otherwise.
3: Quantize the animation using B1 bits (for vertices with flag 0)
4: Quantize the animation using B2 bits (for vertices with flag 1) with B2 > B1

The quantization measure for say, the x coordinate is defined by a given accuracy e, which transforms x into an
integer i where, i = INT ((x−xmin)/(e∗ (xmax−xmin))). This integer lies between 0 and 2B, where B is the desired
quantization level. We choose accuracy e as max3

i=1(X
i
max−X i

min)/2B.
Prediction schemes used in Dynapack require at most 3 neighboring vertices (of current and/or previous frame).

Prediction is done as given in Algorithm 2. After Dynapack, we do entropy encoding. These encoded files are
passed to the decompressor. The decompressor decodes the files and the vertex information is recovered using
Dynaunpack in Algorithm 2.

Algorithm 2 Prediction Algorithm
Require: a vertex v to be predicted while traversing through Dynapack

1: if v is flagged 1 then
2: Pad neighbouring vertices of v to B2 bits if any of them was quantized to B1 bits.
3: else if v is flagged 0 then
4: Shift out zeroes from the neighbouring vertices of v to make them temporarily to B1 bits if any of them was

quantized to B2 bits.
5: end if

Results
We implemented Dynapack and applied our method for quantization of vertices into two different bits (we will
call our method as Hybrid Method). We compared our Hybrid Method with Dynapack and found that visually,
the quality of the Hybrid (B2-B1, B2 > B1) Method is better than B1 bits Dynapack, but not as good as the B2 bits
Dynapack (See Figure 3). Quantitatively, the compressed size of the hybrid lies between the compressed B1 bit
animation and B2 bit animation (See Table 1).



The Signal to Noise Ratio (SNR) is computed as SNR = Error
Range . where Error is the average error per coordinate,

and Range is 2B, B being bits used. The quality of the hybrid animation is contingent on the difference between
the bit values B1 and B2, and the number of vertices marked as ”important” by CURV. The results in Table 1 have
been generated for 50 frames, 3030 vertices and 41 connected components.

Quantization Bits Filesize (Kb) Bits per coordinate SNR

13 182.040 3.8758 71.1201

13 - 11 154.750 3.3312 61.8477

11 140.615 3.0309 59.0969

11 - 9 121.142 2.6319 49.788

9 109.316 2.3734 47.0451

9 - 7 91.080 1.9988 37.7463

7 76.699 1.6928 35.0165

Table 1: This shows ELP compression results for the Chicken Run animation. The results have been generated for
50 frames, 3030 vertices and 41 connected components.

Figure 3: Frames from the Chicken Run animation. We show the frames encoded using 11-9, 9, 9-7, 7 bits respec-
tively in left to right order, from top to bottom.

Conclusions
We propose a new measure for compression of time-variant geometry. The overall cost function accounts for
the cost of removing or quantizing vertices (primitives) depending on its importance in preserving the quality
of animation. We demonstrate that the use of this measure enhances the performance of existing compression
schemes and actually helps preserve the characteristics of an animation during compression.
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