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Abstract
The Pareto model, first used in socioeconomic problems, has successfully been
applied in many other areas such as astronomy, biology, bibliometrics, demog-
raphy, insurance, or risk management. Although there are several variants of
this distribution, the current study focuses on the classic Pareto distribution,
also known as the Pareto type I distribution. We propose a new class of esti-
mators for the Pareto shape parameter, obtained through a modification of the
probability weighted moment method, called the log generalized probability
weighted moments method. In addition to the asymptotic distribution, Monte
Carlo simulations were performed to analyze the finite sample behavior of the
proposed new estimators. A comparison with the most used estimators, such
as the moment, the maximum likelihood, the least squares, and the probability
weighted moments estimators was also performed. In addition, the estimators
were used to construct asymptotic confidence intervals. To illustrate an appli-
cation of the different estimation methods to a real data set from a clinical trial
complete the article. Results indicate an overall good performance of the new
proposed class.
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1 INTRODUCTION

The Pareto distribution was initially introduced by Vilfredo Pareto in 18971 to describe the income distribution among
individuals, showing that the number of taxpayers with an income greater than x could be approximated by b/xa, for
some vector of positive components (a, b). More recently, this distribution has been extensively used in many other areas
such as astronomy,2 bibliometrics,3 biology,4 demography,5 insurance,6 and risk management.7 Although there are sev-
eral variants of this model, the current study applies the classic Pareto distribution, also known as Pareto type I8-11 or
Power-Law,12,13 with distribution function (d.f.) given by

F(x) = 1 −
(x

c

)−a
, x > c, c > 0, a > 0, (1)

and with a quantile function

Q(p) = F←(p) = c(1 − p)−1∕a, 0 < p < 1, c > 0, a > 0, (2)
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where c and a are the scale and shape parameters respectively, and p denotes the lower tail probability. In the following we
consider both parameters a and c unknown and the notation X ∼P(a, c) whenever X has the d.f. in (1). The a parameter,
also known as the tail index or Pareto index, measures the heaviness of the right tail. Smaller values of the tail index
corresponds to heavier tails. The scale parameter corresponds to the left endpoint of the support of X . This distribution is
of great importance since in many models the upper tail is asymptotically Paretian. More precisely, the following relation
holds

F(x) = 1 − x−aL(x), x → ∞, (3)

for some slowly variation function L,14 that is, a function L which satisfies

lim
t→∞

L(tx)
L(t)

= 1, ∀x > 0.

Distributions such as the generalized Pareto, Student’s t or the Burr (type XII) are examples of models with a Pareto-type
tail. Thus

lim
t→∞

1 − F(tx)
1 − F(t)

= x−a, ∀x > 0,

and this class of Pareto-type models are in the maximum domain of attraction of the Fréchet distribution. Under the
semiparametric framework in (3) the so-called extreme value index parameter, 𝜉 = 1∕a, is commonly used. Details on the
estimation of 𝜉 for models with a Pareto-type tail can be found in References 15-18, among others. Also, notice that the
Pareto distribution is a special case of the generalized Pareto distribution (GPD), with d.f.

F(x) = 1 −
(

1 + 𝜉

(x − 𝜇

𝜎

))−1∕𝜉
, x > 𝜇, 𝜎 > 0, 𝜉 ∈ R.

Estimation of shape and scale parameters in (1) has already been extensively addressed in the literature: Quandt19 com-
pared the maximum likelihood estimator with the moments estimator, a least squares estimator, and four percentile
estimators. Lu and Tau, Caeiro et al.,20 and Kim et al.21 studied several least squares estimators and Brazauskas and
Serfling22 and Vandewalle et al.23 introduced robust estimators of the shape parameter. Bayesian estimators can be found
in Arnold and Press,24 Rasheed and Al-Gazi,25 and Han26. Caeiro and Gomes27 and Munir et al.28 considered probability
weighted moment estimators. Dalpatadu and Singh29 proposed estimators based on minimization of a distance function.
Modified percentile and maximum likelihood estimators were studied in Bhatti et al..30,31 The estimation of a parametric
function of the scale and shape parameters was studied in Barranco-Chamorro and Jiménez-Gamero5.

The maximum likelihood estimators have a simple closed form and are often used in applications. However, their
optimal efficiency is only valid asymptotically, meaning that for a small or moderate sample size other estimation methods
could be more efficient in terms of bias or mean squared error. In this article we introduce a new class of estimators for the
shape parameter a. These new estimators, called log generalized probability weighted moment estimators, are obtained
through a modification of the probability weighted moments method.

The present article is organized as follows. In Section 2, we briefly describe the most used estimation methods for the
parameters of a Pareto distribution, namely the moment, the maximum likelihood, the least squares, and the probability
weighted moments. Next, we introduce a new class of estimators and derive the asymptotic nondegenerated distribution
of all estimators under study. In Section 3 we have performed a Monte Carlo simulation study to compare the finite sam-
ple behavior of the new class of estimators with the most used estimators. In Section 4, we derive asymptotic confidence
intervals for the shape parameter based on the different methods of estimation considered in this study and compare
their performance via their coverage probabilities. To illustrate the applicability of our results a real data application
is provided in Section 5. Section 6 concludes our article with some conclusions about the performance of the different
estimation methods.

2 ESTIMATORS UNDER STUDY

In this section we review the most common estimation methods and introduce the new method of estimation. In the
following, we shall assume that X1, X2, … , Xn is a sample of size n of independent and identically distributed random
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variables, with a common Pareto distribution, given in (1). The corresponding sample of nondecreasing order statistics is
denoted by X1 : n, X2 : n, … , Xn : n.

2.1 Maximum likelihood estimators

The density function of a P(a, c) random variable X is

f (x) = aca

xa+1 , x > c > 0, a > 0. (4)

Hence, the likelihood function is given by

L(a, c|X1, … ,Xn) =
n∏

i=1

aca

Xa+1
i

. (5)

The maximum likelihood (ML) estimators of the parameters a and c are obtained by maximization of the log-likelihood
function, in (5), and are given by,

âML = 1
1
n

∑n
i=1 ln Xi − ln X1∶n

, and ĉML = X1∶n. (6)

The ML estimators are consistent and are asymptotically the most efficient estimators. However, for small sam-
ple sizes, they can be outperformed by other estimators in terms of bias or root mean squared error. Quandt19

concluded that for small sample sizes the ML estimators and quantile-type estimators were reported to be the best
compared with the moment and least squares estimators. In 2007, Lu and Tao32 proposed a weighted least square
estimator and found its performance to be better or close to the ML estimators when the sample size is smaller
than 100.

2.2 Least squares estimators

There are several estimators based on a regression framework (see References 19,21,32). We shall consider the estimators
obtained through a regression approach based on the quantile function. By taking the natural logarithm of the quantile
function in (2), we have a linear relation between the ln Q(p) and the parameters 𝛽0 and 𝛽1,

ln Q(p) = 𝛽0 − 𝛽1 ln(1 − p), with 𝛽0 = ln c and 𝛽1 = a−1. (7)

The quantile function can be easily estimated through the empirical estimator defined by Q̂(p) = Xi∶n, for p ∈
] i−1

n
,

i
n
] and the least squares estimators (LS) of the parameters 𝛽0 and 𝛽1 are obtained by the minimization of the sum

of squares,

n∑
i=1

{
ln Xi∶n − 𝛽0 − 𝛽1

(
− ln

(
1 − i

n + 1

))}2

and are given by

𝛽
LS
1 =

∑n
i=1 − ln

(
1 − i

n+1

){
n ln Xi∶n −

∑n
j=1 ln Xj∶n

}
n
∑n

i=1

(
ln

(
1 − i

n+1

))2
−
(∑n

i=1 − ln
(

1 − i
n+1

))2 and 𝛽
LS
0 = 1

n

n∑
i=1

ln Xi∶n +
𝛽

LS
1

n

n∑
i=1

− ln
(

1 − i
n + 1

)
. (8)

The estimators of a and c follows straightforwardly from the relation in (7).
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2.3 Moment estimators

The noncentral moments of order k of the Pareto distribution are given by

E(Xk) = ack

a − k
, if a > k. (9)

The method of moments based on the two first moments is not very popular in applications. This is because the second
moment only exist for a> 2 and because other moment-based estimators have appeared in the literature. The most used
moment estimators are the ones proposed by Quandt.19 By equating the first noncentral moment, given in (9), to the
sample mean it follows that

â = X
X − ĉ

,

where ĉ is the estimator for c and X denotes the arithmetic sample mean. To extend the interval of values where the
estimators based on moments are valid, Quandt proposed the use of the sample minimum which has a Pareto distribution
with shape and scale parameters given by (an, c), respectively. By equating the moment of the sample minimum,

E(X1∶n) =
anc

an − 1

to the minimum sample value, Quandt derived the moments (M) estimators

âM = nX − X1∶n

n(X − X1∶n)
, and ĉM =

(
1 − 1

nâM

)
X1∶n. (10)

Remark 1. Since the first noncentral moment only exists for a> 1, the moment estimators in (10) are only consistent for
a> 1.

2.4 Probability weighted moment estimators

The method of probability weighted moment (PWM) was introduced in Greenwood et al.33 as a useful tool to estimate
distribution parameters from models that have a well-defined quantile function. It is nowadays a well-established esti-
mation method in the field of hydrology.34 The PWMs of a continuous random variable X with distribution function F
are defined as

Mk,r,s = E(Xk(F(X))r(1 − F(X))s), (11)

where k, r, and s are real numbers. The PWM estimators are obtained by equating Mk, r, s with their corresponding sample
moments, and then by solving those equations for the unknown parameters. This method is a generalization of the classic
method of moments. Indeed, when r = s= 0, Mk, 0, 0 are the usual noncentral moments of order k.

Greenwood et al.33 and Hosking et al.35 advise the use of M1, r, s =E(X(F (X))r(1−F (X))s), because the relations
between parameters and moments have usually a much simpler form. Another advantage is that if the mean value,
E(X)=M1, 0, 0 exists, then M1, r, s exists for any real r > 0 and s> 0. It is also known that the empirical estimate of M1, r, s is
usually less sensitive to outliers and has good properties when the sample size is small. Although the constants k, r, and
s in (11) can take any real value, for convenience, many authors have considered k= 1 and the first nonnegative integer
values for r and s. We shall refer to this approach as the classic PWM method. Also, when r and s are nonnegative integers
it is more convenient to work with the PWMs

𝛼r = M1,0,r = E(X(1 − F(X))r), r = 0, 1, … , (12)

or

𝛽r = M1,r,0 = E(X(F(X))r) r = 0, 1, … . (13)
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Notice that for nonnegative integers r and s, F(X)r(1−F (X))s can be written as a linear combination of powers of
F(X) or 1−F(X). As a consequence we can relate 𝛼r and 𝛽r through the equations

𝛼r =
r∑

j=0
(−1)j

(
r
j

)
𝛽j and 𝛽r =

r∑
j=0

(−1)j
(

r
j

)
𝛼j,

where
(

r
j

)
denotes the binomial coefficient. Therefore, it is equivalent to work with 𝛼r or 𝛽r given that the values for r are

chosen as small as possible. For nonnegative integer values of r, the unbiased estimators of the PWMs 𝛼r and 𝛽r in (12)
and (13) are respectively,36

𝛼̂r =
1
n

n−r∑
i=1

(
n−i

r

)
(

n−1
r

)Xi∶n and 𝛽r =
1
n

n∑
i=r+1

(
i−1

r

)
(

n−1
r

)Xi∶n. (14)

Landwehr et al.37 noticed empirically that moderated biased estimators of the PWMs could provide more efficient
estimates of upper quantiles. The biased estimators of the PWMs 𝛼r and 𝛽r are respectively,

𝛼̃r =
1
n

n∑
i=1

(1 − pi∶n)rXi∶n and 𝛽r =
1
n

n∑
i=1

pr
i∶nXi∶n, (15)

where pi : n are the so-called plotting positions, that is, empirical estimates of F(Xi : n). The most common choices for the
plotting positions are

pi∶n = i − b
n

, 0 ≤ b ≤ 1 (16)

and

pi∶n = i − b
n + 1 − 2b

, −0.5 ≤ b ≤ 0.5, (17)

where b is a continuity correction factor.
Landwehr et al.37 confirmed with a Monte Carlo simulation study that, for small sample sizes, the PWM estimators

compare favorably to other estimation methods.
For the Pareto distribution under study, the PWMs in (11) have the following analytical expression

Mk,r,s = ck B
(

s + 1 − k
a
, r + 1

)
, s − k

a
> −1, r > −1,

where B stands for the complete beta function.
Caeiro and Gomes27 and Caeiro et al.38 considered the PWMs, 𝛼s in (12) and obtained the correspondents PWMs for

the Pareto distribution:

𝛼s = M1,0,s =
c(

s + 1 − 1
a

) , a >
1

1 + s
.

By considering the two PWMs 𝛼0 = c
1−1∕a

and 𝛼1 = c
2−1∕a

and equating them with their corresponding sample moments,

𝛼̂0 = X and 𝛼̂1 = 1
n

n∑
i=1

n − i
n − 1

Xi∶n, (18)

the corresponding PWM estimators for the shape and scale parameters of the Pareto distribution are given by

âPWM = 𝛼̂0 − 𝛼̂1

𝛼̂0 − 2𝛼̂1
and ĉPWM = 𝛼̂0𝛼̂1

𝛼̂0 − 𝛼̂1
a > 1. (19)

A comparison of the PWM estimators in (19) with other estimation methods can be found in Reference 28.
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2.5 The new class of extended PWM estimators

Although the theoretical PWMs in (11) is defined for any real exponents k, r, and s, first applications have considered
nonnegative integers exponents. Rasmussen39 studied PWMs with real exponents and called the method generalized
PWM (GPWM) to distinguish them from the classic PWM method. He concluded that in most cases the GPWM method
outperforms the classic PWM method. For the sake of simplicity it is advisable to restrict the class of GPWMs by set-
ting (k, r, s)= (1, 0, s), s∈R or (k, r, s)= (1, r, 0), r ∈R. Such restriction allows us to work with much simpler analytical
formulas for the GPWMs. The GPWM estimators are thus the ones in (15) for any real value of r.

Another modification of the PWM method was introduced by Caeiro and Prata Gomes.40 The authors worked under
a framework of Pareto-type tails and considered a different class of PWMs, given by

M′
g,r,s = E(g(X)(F(X))r(1 − F(X))s) (20)

with g(x) = ln(x). Such class of PWMs was called Log PWM (LPWM) and, for the Pareto model, has the advantage of
extending the domain of validity of the estimators to the complete parameter space. Caeiro and Mateus41 considered the
LPWMs in (20) with r = 0 and derived the corresponding LPWMs for the Pareto model,

l′s = M′
ln,0,s =

ln(c)
1 + s

+ 1
a(1 + s)2 , s > −1. (21)

If we consider the LPWMs l′0 and l1
′ , the corresponding LPWM estimators of the shape and scale parameters of the

Pareto distribution in (1) are respectively

âLPWM = 1
2l̂0 − 4l̂1

and ĉLPWM = exp(4l̂1 − l̂0), (22)

where l̂s, s= 0, 1 are the unbiased empirical estimator of ls given by

l̂
′
s =

1
n

n−s∑
i=1

(
n−i

s

)
(

n−1
s

) ln Xi∶n. (23)

Recently, Chen et al.42 proposed a wider class of GPWM (called extended version of GPWM) by considering the PWMs
in (20) with g(⋅) a suitable measurable function and r and s being real values.

In the following we propose a new class of estimators for the shape parameter of a Pareto model based on a trivial
characterization of this distribution. This characterization will allow the estimation of the shape parameter a, separately
of c, rather than estimating simultaneous both parameters (a, c). Since this approach only provides an estimator for the a
parameter, we consider the scale parameter c estimated by maximum likelihood. It is know that left truncation in a Pareto
distribution is equivalent to a rescaling (see section 3.9.2 of Arnold11). More precisely,

P(X ≤ x|X > t) = 1 −
(x

t

)−a
, x > t ≥ c.

As a consequence, the relative excess X/t given X > t has a Pareto distribution with the same shape parameter as X and
scale parameter equal to 1 (X/t|X > t)∼P(a, 1). To use all values from the random sample, we choose t =X1 : n. Notice
that the sample minimum is consistent for c (X1∶n

P
→ c, where

P
→ represents the convergence in probability). Next we

explain how one can base the estimation of the shape parameter on the sample values of X∗ = X
X1∶n

|(X > X1∶n) ∼ P(a, 1),
which are independent of the scale parameter c. We shall assume without loss of generality that the random sample
(X1, X2, … , Xn) has n− 1 values greater than X1 : n, that is, we assume X1 : n <X2 : n. Then for a real value s, we shall define
the log generalized probability weighted moment (LGPWM) as

l∗s = E(ln(X∗)(1 − F(X∗)s)) = 1
a(1 + s)2 , s > −1. (24)
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The corresponding (biased) estimator of the moment in (24) is,

𝛼̃∗
s = 1

n − 1

n∑
i=2

(1 − pi−1∶n−1)s ln X∗
i−1∶n−1, s > −1,

where pi : n is the aforementioned empirical estimate of F(Xi : n).
Solving the equation ls = 𝛼̃∗

s in order of the parameter a, we obtain the class of log generalized probability weighted
moment estimator for the shape parameter of the Pareto distribution,

âLGPWM = 1
(1 + s)2𝛼̃∗

s
= 1

(1+s)2
n−1

∑n
i=2

(
1 − i−1

n−1

)s
ln X∗

i−1∶n−1

, s > −1. (25)

This class of estimators depends on a tuning parameter s>−1. When s= 0 we obtain an estimator asymptotically
equivalent to the ML estimator for the shape parameter. For the estimation of the scale parameter we can consider the
maximum likelihood estimator in (6) or the bias corrected estimator

ĉLGPWM =
(

1 − 1
nâLGPWM

)
X1∶n. (26)

2.6 Limiting distribution of the shape parameter estimators

To understand the behavior of the estimators of the shape parameter and to compare the new class of the LGPWM estima-
tors with other estimators for the same parameter, it is important to know their sampling distribution. Since it is difficult
to obtain the finite sample distribution of several of the estimators here considered, we shall derive their asymptotic or
limiting nondegenerate distribution. For small sample sizes, the asymptotic results must be used carefully because they
may be inaccurate.43 The ML, LS, M, and PWM estimators of the parameter a in (6), (8), (10), and (19), respectively, are
already studied in the literature and their corresponding limit behavior are presented without proof.

Proposition 1. Suppose that (X1, X2, … , Xn) is an i.i.d. sample from Pareto population with d.f. in (1). Then√
n(âML − a)

d
→

n→∞
N(0, a2), (27)√

n(âLS − a)
d
→

n→∞
N(0, 2a2), (28)√

n(âM − a)
d
→

n→∞
N
(

0, a(a − 1)2

a − 2

)
, if a > 2, (29)

and √
n(âPWM − a)

d
→

n→∞
N
(

0, a(a − 1)(2a − 1)2

(a − 2)(3a − 2)

)
, if a > 2, (30)

where N(𝜇, 𝜎2) denotes a normal random variable with mean value 𝜇 and variance 𝜎2 and
d
→ means convergence in

distribution.

Remark 2. Since the M and the PWM estimators are based on moments of the random variable X , the asymptotic
distribution is only valid if a> 2.

Before providing the main result related to the asymptotic behavior of the LGPWM shape estimator in (25) we first
need to establish a few lemmas.

Lemma 1 (Kleiber and Kotz,9 section 3). Let X ∼P(a, c). Then

a ln
(X

c

) d
= E,

where E denotes a standard exponential random variable with d.f. FE(x)= 1− e−x, x > 0 and
d
= stands for equally distributed.
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Lemma 2. Let (Y 1 : n, Y 2 : n, … , Y n : n) denote the ascending order statistics from an i.i.d. sample drawn from a population
distributed as Y ∼P(1, 1). Then, the following result holds

Yj∶n

Yi∶n

d
= Yj−i∶n−i, 1 ≤ i < j ≤ n. (31)

Proof. Note that (31) can be rewritten as ln Yj∶n − ln Yi∶n
d
= ln Yj−i∶n−i 1≤ i< j≤n. Using Lemma 1, we obtain E

d
= ln(Y ).

Then, since ln is an increasing continuous function on the interval (0,∞), we have Ei∶n
d
= ln(Yi∶n), 1≤ i≤n, where Ei : n

denotes the ith ascending order statistic from a sample of size n from the standard exponential distribution. From the
properties of the spacings of the exponential order statistics (see Reference [44, section 3]) we know that Ej∶n − Ei∶n

d
=

Ej−i∶n−i and the remaining of the proof follows straightforwardly. ▪

Lemma 3. Let (X1 : n, X2 : n, … , Xn : n) denote the ascending order statistics from a sample of size n from a Pareto distribution
in (1). Then,

ln Xi∶n

X1∶n

d
= 1

a
Ei−1∶n−1.

Proof. The quotient ln Xi∶n
X1∶n

can be rewritten as a quotient of two standard Pareto and using Lemmas 1 and 2, we have

ln Xi∶n

X1∶n
= ln

(
(Xi∶n∕c)a

(X1∶n∕c)a

) 1
a d
= ln (Yi−1∶n−1)

1
a

d
= 1

a
Ei−1∶n−1.

▪

Next, we derive the main result, the asymptotic nondegenerate limit behavior of the LGPWM shape estimator in (25).

Proposition 2. For a sample of size n, from a Pareto distribution in (1) and for âLGPWM defined in (25), we have,

√
n(âLGPWM − a)

d
→

n→∞
N
(

0, (1 + s)2a2

1 + 2s

)
, s > −0.5. (32)

Proof. Let us first consider the linear function of X∗
1∶n−1,X∗

2∶n−1, … ,X∗
n−1∶n−1

T = 1
n − 1

n∑
i=2

(
1 − i − 1

n − 1

)s
ln Xi∶n

X1∶n
= 1

n − 1

n−1∑
i=1

(
1 − i

n − 1

)s
ln X∗

i∶n−1,

with X∗
i∶n−1 = Xi+1∶n

X1∶n
, i= 1, … , n− 1. Consequently, using the result in Lemma 3, we can assure that T has the same

distribution of

1
n − 1

n−1∑
i=1

1
a

(
1 − i

n − 1

)s
Ei∶n−1.

Using the asymptotic results for linear function of order statistics,45 we get,

√
n (T − 𝜇T)

d
→

n→∞
N(0, 𝜎2

T),

where

𝜇T = 1
a ∫

1

0
(1 − x)s ln(1 − x)dx = 1

a(1 + s)2 and 𝜎2
T = 2

a2 ∫
1

0

(
∫

1

x
x(1 − x)s−1(1 − y)sdy

)
dx = 1

a2(1 + s)2(1 + 2s)
.

Applying the delta method to 1
(1+s)2T

, the result in (32) follows straightforwardly. ▪

Remark 3. All estimators of the shape parameter studied in this article are asymptotically unbiased and normally dis-
tributed. In Figure 1 we plot the asymptotic standard deviation of the estimators under consideration. As expected, âML
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F I G U R E 1 Asymptotic standard deviation of the
estimators of the shape parameter
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has the smallest asymptotic standard deviation. Furthermore, the asymptotic standard deviation of âLGPWM takes the
minimum value a when s= 0.

3 FINITE SAMPLE BEHAVIOR OF THE ESTIMATORS

In this section, we have implemented a Monte Carlo simulation experiment in R software environment,46 with 50,000
samples of sizes n= 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, and 500 from the Pareto distribution with param-
eters (a, c)= (0.5, 1), (a, c)= (1, 1) and (a, c)= (2, 1). The simulation was designed to evaluate the performance of the
estimators for the shape parameter, a. The shape parameter was estimated by the PWM, M, ML, LS, and LGPWM
methods presented in Section 2. Note that the M and PWM estimators are not consistent when a= 0.5. In the
LGPWM method, we have considered for the parameter s values between −0.4 and 0.3, discretized in small steps
of length 0.1 and the plotting positions in (16), pi : n = (i− 0.5)/n. All simulated estimates obtained by the LGPWM
method using s negative values as input, result in larger (positive) bias and root mean squared error as opposed to
results with s= 0. This can be confirmed in Figures 2–5 where we present the simulated mean values and the root
mean square error (RMSE) of the LGPWM shape estimator with s=−0.4,− 0.3,− 0.2,− 0.1, and 0. Due to this fact
we did not consider negative values for the parameter s in the comparison. In Tables 1,2, and 3 we present the
simulated mean values and the RMSE, up to four decimal places, of the estimators under study. In the LGPWM
estimator we have considered s= 0.1, 0.2, 0.3. The “best” mean value and RMSE, for each sample size, are written
in bold.

Based on the simulation results, we have reached the following conclusions:

• The M and PWM estimators must be used with care since they always provide a numerical estimate, even when they
are not consistent (see Table 1).

• The simulated bias is usually positive. Almost all estimators, except the LS, overestimate the true value of the shape
parameter. Also, as expected, the simulated bias falls to zero, as the sample size increases (except when the estimators
are inconsistent).

• LS estimator proved to be the best estimator for small sample sizes with regard to the minimum absolute bias.
• Regarding minimum absolute bias for the three Pareto models here used, the LGPWM shape estimator, with s= 0.2,

was always the best estimator for moderate and large sample sizes.
• The LS shape estimator achieves a minimum RMSE for small sample sizes. For moderate sample sizes the best results

are achieved with s= 0.1 and for large sample sizes the best results are achieved with the ML.
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F I G U R E 5 Simulated RMSE of the LGPWM
estimator for with s=−0.4,− 0.3,− 0.2,− 0.1, and 0 from
a P(2, 1) model

0
.5

1
1

.5

S
im

u
la

te
d

 R
M

S
E

0 50 100 150 200 250 300 350 400 450 500

Sample size

0.0 −0.1 −0.2 −0.3 −0.4

T A B L E 1 Simulated mean value/RMSE
of the shape estimators, for the Pareto model
with (a, c)= (0.5, 1)

â (a = 0.5)

n PWM M ML LS

10 1.1614/0.6903 1.0774/0.5899 0.6243/0.2660 0.4893/0.2219

15 1.1126/0.6266 1.0479/0.5527 0.5762/0.1829 0.4788/0.1717

20 1.0887/0.5974 1.0348/0.5373 0.5550/0.1450 0.4761/0.1467

30 1.0633/0.5677 1.0223/0.5233 0.5351/0.1088 0.4753/0.1190

40 1.0499/0.5527 1.0164/0.5170 0.5257/0.0900 0.4761/0.1035

50 1.0417/0.5436 1.0130/0.5133 0.5204/0.0785 0.4776/0.0928

75 1.0302/0.5312 1.0086/0.5087 0.5134/0.0621 0.4805/0.0769

100 1.0240/0.5247 1.0064/0.5065 0.5100/0.0527 0.4827/0.0673

150 1.0173/0.5177 1.0042/0.5043 0.5067/0.0421 0.4859/0.0554

200 1.0138/0.5140 1.0032/0.5032 0.5051/0.0363 0.4879/0.0486

300 1.0099/0.5100 1.0021/0.5021 0.5034/0.0293 0.4904/0.0400

500 1.0065/0.5066 1.0013/0.5013 0.5021/0.0227 0.4930/0.0313

n LGPWM(0.1) LGPWM(0.2) LGPWM(0.3)

10 0.6139/0.2582 0.6089/0.2553 0.6077/0.2559

15 0.5691/0.1785 0.5660/0.1773 0.5656/0.1783

20 0.5496/0.1420 0.5473/0.1415 0.5472/0.1427

30 0.5314/0.1073 0.5300/0.1074 0.5300/0.1086

40 0.5227/0.0891 0.5217/0.0894 0.5218/0.0904

50 0.5180/0.0779 0.5172/0.0782 0.5173/0.0792

75 0.5118/0.0618 0.5113/0.0622 0.5114/0.0630

100 0.5087/0.0525 0.5084/0.0529 0.5085/0.0536

150 0.5058/0.0420 0.5055/0.0424 0.5056/0.0430

200 0.5044/0.0363 0.5042/0.0366 0.5043/0.0371

300 0.5029/0.0294 0.5028/0.0297 0.5029/0.0301

500 0.5018/0.0227 0.5018/0.0230 0.5018/0.0233



12 of 17 MATEUS and CAEIRO

â (a = 1)

n PWM M ML LS

10 1.5693/0.7456 1.4326/0.5710 1.2485/0.5320 0.9786/0.4439

15 1.4655/0.5848 1.3532/0.4442 1.1524/0.3658 0.9576/0.3433

20 1.4115/0.5059 1.3132/0.3833 1.1100/0.2900 0.9522/0.2935

30 1.3508/0.4204 1.2697/0.3209 1.0702/0.2177 0.9505/0.2380

40 1.3164/0.3743 1.2455/0.2875 1.0513/0.1801 0.9522/0.2070

50 1.2944/0.3446 1.2301/0.2664 1.0407/0.1570 0.9553/0.1857

75 1.2604/0.3004 1.2064/0.2352 1.0269/0.1241 0.9610/0.1538

100 1.2405/0.2751 1.1926/0.2173 1.0200/0.1053 0.9654/0.1347

150 1.2172/0.2454 1.1763/0.1965 1.0134/0.0841 0.9718/0.1108

200 1.2033/0.2281 1.1666/0.1844 1.0101/0.0725 0.9758/0.0972

300 1.1859/0.2068 1.1543/0.1694 1.0068/0.0587 0.9809/0.0799

500 1.1677/0.1847 1.1414/0.1537 1.0043/0.0454 0.9860/0.0626

n LGPWM(0.1) LGPWM(0.2) LGPWM(0.3)

10 1.2278/0.5163 1.2178/0.5105 1.2154/0.5118

15 1.1383/0.3569 1.1321/0.3546 1.1311/0.3567

20 1.0992/0.2841 1.0947/0.2831 1.0943/0.2853

30 1.0627/0.2146 1.0599/0.2149 1.0600/0.2172

40 1.0455/0.1782 1.0435/0.1788 1.0437/0.1809

50 1.0359/0.1557 1.0343/0.1565 1.0346/0.1584

75 1.0236/0.1236 1.0226/0.1244 1.0229/0.1261

100 1.0175/0.1050 1.0168/0.1058 1.0171/0.1073

150 1.0115/0.0841 1.0111/0.0848 1.0113/0.0860

200 1.0087/0.0725 1.0084/0.0732 1.0086/0.0741

300 1.0058/0.0588 1.0056/0.0593 1.0057/0.0601

500 1.0037/0.0455 1.0035/0.0459 1.0036/0.0465

T A B L E 2 Simulated mean value/RMSE
of the shape estimators, for the Pareto model
with (a, c)= (1, 1)

• Regarding the different estimation methods, we conclude that there is no overall winner. But the results presented here
allow us to conclude that the LGPWM estimators provide a consistently better fit than those from other considered
estimation methods.

• A data-driven heuristic for the choice of s would help practitioners to use the new LGPWM estimator. One possibility
is to consider a goodness of fit statistic such as the one suggested in Reference 19. However, this topic is outside the
scope of the current article and should be addressed in future research.

4 CONFIDENCE INTERVALS

Asymptotic confidence intervals (CI) for the shape parameter a can be obtained from the asymptotic distribution theory
of Section 2.6. In the construction of the CI based on the M and PWM estimators we replaced the unknown asymptotic
variance by its estimate. One advantage of this procedure is that the expressions of the extremes of the CI can be obtained
with less tedious algebra. Based on the result in Propositions 1 and 2, we have the following two sided (1 − 𝛼) × 100%
asymptotic confidence interval for the a parameter:
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T A B L E 3 Simulated mean value/RMSE
of the shape estimators, for the Pareto model
with (a, c)= (2, 1)

â (a = 2)

n PWM M ML LS

10 2.6152/1.1825 2.4360/0.9408 2.4971/1.0641 1.9572/0.8877

15 2.4397/0.8751 2.2991/0.6874 2.3048/0.7316 1.9151/0.6867

20 2.3513/0.7266 2.2331/0.5659 2.2200/0.5799 1.9045/0.5870

30 2.2563/0.5697 2.1653/0.4439 2.1405/0.4354 1.9011/0.4761

40 2.2052/0.4868 2.1299/0.3787 2.1026/0.3602 1.9044/0.4140

50 2.1745/0.4336 2.1091/0.3372 2.0815/0.3140 1.9106/0.3713

75 2.1288/0.3569 2.0789/0.2776 2.0538/0.2482 1.9220/0.3076

100 2.1043/0.3133 2.0630/0.2429 2.0401/0.2107 1.9308/0.2693

150 2.0780/0.2619 2.0463/0.2025 2.0267/0.1683 1.9436/0.2215

200 2.0634/0.2330 2.0373/0.1799 2.0203/0.1451 1.9516/0.1944

300 2.0472/0.1971 2.0273/0.1516 2.0136/0.1174 1.9617/0.1599

500 2.0322/0.1609 2.0185/0.1233 2.0086/0.0908 1.9719/0.1252

n LGPWM(0.1) LGPWM(0.2) LGPWM(0.3)

10 2.4555/1.0326 2.4356/1.0210 2.4308/1.0235

15 2.2766/0.7139 2.2641/0.7092 2.2623/0.7134

20 2.1983/0.5681 2.1894/0.5662 2.1886/0.5707

30 2.1254/0.4293 2.1198/0.4297 2.1200/0.4343

40 2.0910/0.3564 2.0870/0.3575 2.0874/0.3617

50 2.0719/0.3115 2.0687/0.3129 2.0692/0.3169

75 2.0471/0.2471 2.0452/0.2488 2.0458/0.2521

100 2.0349/0.2101 2.0336/0.2117 2.0341/0.2145

150 2.0231/0.1682 2.0222/0.1697 2.0226/0.1720

200 2.0174/0.1451 2.0168/0.1463 2.0172/0.1483

300 2.0116/0.1176 2.0112/0.1187 2.0114/0.1203

500 2.0073/0.0910 2.0071/0.0918 2.0073/0.0930

• Asymptotic CI based on the ML estimator (
âML√n√
n + z1−𝛼∕2

,
âML√n√
n − z1−𝛼∕2

)
. (33)

• Asymptotic CI based on the LS estimator(
âLS√

n + z1−𝛼∕2
√

2∕
√

n
,

âLS√n√
n − z1−𝛼∕2

√
2

)
. (34)

• Asymptotic CI based on the M estimator

⎛⎜⎜⎝âM − z1−𝛼∕2

√
âM(âM − 1)√
n
√

âM − 2
, âM + z1−𝛼∕2

√
âM(âM − 1)√
n
√

âM − 2

⎞⎟⎟⎠ , âM > 2. (35)
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T A B L E 4 Simulated coverage probabilities for the asymptotic confidence intervals

ML LS M PWM LGPWM(0.1) LGPWM(0.2) LGPWM(0.3)

10 0.829 0.957 0.945 0.940 0.841 0.848 0.851

15 0.869 0.968 0.959 0.953 0.879 0.884 0.885

20 0.888 0.972 0.968 0.960 0.897 0.901 0.902

30 0.908 0.974 0.976 0.970 0.913 0.916 0.917

40 0.920 0.974 0.979 0.975 0.925 0.926 0.927

50 0.925 0.973 0.980 0.978 0.929 0.931 0.931

75 0.933 0.969 0.982 0.983 0.935 0.936 0.936

100 0.938 0.967 0.977 0.984 0.940 0.941 0.941

150 0.942 0.964 0.968 0.984 0.943 0.944 0.944

200 0.944 0.960 0.964 0.982 0.944 0.944 0.945

300 0.946 0.957 0.962 0.971 0.947 0.946 0.946

500 0.946 0.953 0.958 0.965 0.947 0.947 0.947

• Asymptotic CI based on the PWM estimator

(
âPWM − z1−𝛼∕2𝛿n, âPWM + z1−𝛼∕2𝛿n

)
, 𝛿n =

√
âPWM(âPWM − 1)(2âPWM − 1)√
n
√
(âPWM − 2)(3âPWM − 2)

, âPWM > 2. (36)

• Asymptotic CI based on the LGPWM estimator(
âLGPWM√

n√
n + z1−𝛼∕2(1 + s)∕

√
1 + 2s

,
âLGPWM√

n√
n − z1−𝛼∕2(1 + s)∕

√
1 + 2s

)
, (37)

where z𝛼 denotes the 𝛼 quantile from the standard normal distribution.
Next we compare the performance of the previous asymptotic CIs via their coverage probabilities. Since CIs based on

the M and PWM estimators are only valid if a> 2, we conducted a Monte Carlo simulation study with 50,000 samples
from the P(3,1) model. We considered the same set of sample sizes as in the previous section and the values s= 0.1, 0.2,
and 0.3 for the CI in (37). The simulated coverage probabilities are presented in Table 4. We conclude that the CIs based
on the LS, M, and PWM estimators are conservative. The largest coverage probability is provided by the interval in (36),
except when n< 50. The CIs based on the remaining estimation methods fail to reach a desired 95% coverage probability
for sample sizes smaller than 300 although their coverage probability converges to the 95% nominal level as the sample
size increases. Since the associated pointwise estimators do not provide a substantial bias, the behavior for n< 300 can be
explained by the poor normal approximation based on the results in (27) and (32). Therefore, to have a coverage probability
close to the nominal level, we advise the use of the CIs based on the LS method if n< 300 and on the ML or LGPWM
methods if n≥ 300.

5 REAL DATA ANALYSIS

To illustrate the use of the different estimation methods, presented in Section 2, we now analyze the fit of a Pareto model
to a real data set. The data used for the empirical analysis come from a clinical trial on endogenous creatinine clearance
of 34 male patients. The data set also includes three covariates: body weight in kilograms, serum creatinine concentration
in milligrams/deciliter, and age in years and is available in Reference 47 and in R package heavy.48 We shall consider only
the sample of body weights. The data are the following: 71, 69, 85, 100, 59, 73, 63, 81, 74, 87, 79, 93, 60, 70, 83, 70, 73, 85,
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T A B L E 5 Estimates of the shape and scale parameters and value of the Cramér–von Mises criterion

PWM M LS ML LGPWM(0.1) LGPWM(0.2) LGPWM(0.3)

â 7.289 6.855 6.526 6.972 6.540 6.436 6.359

ĉ 67.270 66.593 66.998 67.000 67.000 67.000 67.000

W2
n 0.057 0.404 0.024 0.066 0.021 0.056 0.094

68, 65, 53, 50, 74, 67, 80, 67, 68, 72.2, NA, NA, 107, 75, 62, 52 (NA means not available). Notice that two male patients had
no weight recorded and were excluded from the sample.

In order to analyze the fit of the Pareto model to the data we used the Cramér–von Mises criterion

W2
n =

n∑
i=1

(
F(xi∶n|â, ĉ) − 2i − 1

2n

)2
+ 1

2n
,

where F(⋅|â, ĉ) is the Pareto distribution function, in (1), with scale and shape parameters estimated by â, and ĉ,
respectively. Smaller values of W2

n corresponds to a better fit of the Pareto model.
The histogram and the Pareto quantile-quantile (Q-Q) plot of these observations, in Figure 6, indicate that the under-

lying distribution has a Pareto tail. For Pareto-type models, the Pareto Q-Q Plot should be linear above a certain threshold,
which in this case appears to be close to the value 65 kg. Thus, to model the tail, we shall only consider the 24 largest
values, above the threshold 65. Recent overviews of data-driven heuristic choices of the tail threshold can be found in
References 49,50. The parameter estimates of the Pareto model and the empirical value of the Cramér–von Mises crite-
rion are shown in Table 5. It is evident that the Pareto model with parameters estimated by LGPWM method with s= 0.1
provides the best fit. Overall, the LS ML, and LGPWM methods, with s= 0.1 and 0.2 provides a good fit. Also, notice that
the scale PWM estimate is invalid, since it is greater than the sample minimum.

6 CONCLUSION

In this article, we propose a new class of estimators for the shape parameter of a Pareto model, called the log generalized
probability weighted moments estimator and present some of its asymptotic properties. A finite sample comparison with
other estimation methods showed that the new class of estimators is very competitive for pointwise estimation. The
confidence interval provided by the LGPWM method evidence a coverage probability very close to the nominal level when
n> 300. The usefulness of the new estimation method was illustrated with a real data application. Regarding the different
estimation methods, we find the LGPWM estimator has an overall good performance and is also able to outperform the
remaining estimation methods.
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