
Efficient Truthful Mechanisms for the
Single-Source Shortest Paths Tree Problem�

Luciano Gualà1 and Guido Proietti1,2

1 Dipartimento di Informatica, Università di L’Aquila, Italy
{guala,proietti}@di.univaq.it

2 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy

Abstract. Let a communication network be modelled by an undirected
graph G = (V, E) of n nodes and m edges, and assume that each edge is
controlled by a selfish agent. In this paper we analyze the problem of de-
signing a truthful mechanism for computing one of the most used struc-
tures in communication networks, i.e., the single-source shortest paths
tree. More precisely, we will show that under various realistic agents’ be-
havior scenarios, it can be guaranteed not only the existence, but also
the efficiency (in terms of running time complexity) of such mechanisms.
In particular, for the fundamental case in which the problem is util-
itarian, we will show that a truthful mechanism can be computed in
O(mn log α(m,n)) time, where α(m, n) is the classic inverse of the Ack-
ermann’s function.

Keywords: Equilibria in Distributed Systems, Single-Source Shortest
Paths Tree, Selfish Agents, Algorithmic Mechanism Design, Truthful
Mechanisms.

1 Introduction

Mechanisms are a classical concept of the theory of non-cooperative games [16].
In these games there are several independent agents that have to work together
in order to optimize a global objective function. However, each agent has her own
valuation function and may lie in hope of getting a higher profit. This leads to
economically suboptimal resource allocation and is therefore undesirable. The
main objective of mechanism design theory is to study how to incentive the
agents in order to cooperate with the solving algorithm. A mechanism is a pair
M = 〈g(·), p(·)〉, where g(·) is an algorithm computing a solution, and p(·)
specifies the payments provided to the agents. Informally, a mechanism is truthful
if its payments guarantee that agents are not stimulated to lie. Then, the problem
of combining the game theoretic concept of designing a truthful mechanism, with
the computational complexity requirement of designing an efficient algorithm, is
exactly the topic of the algorithmic mechanism design (AMD) for selfish agents.

� Work partially supported by the Research Project GRID.IT, funded by the Italian
Ministry of Education, University and Research.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 941–951, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

942 Luciano Gualà and Guido Proietti

In their seminal paper concerned with AMD [15], Nisan and Ronen addressed
the classic shortest path problem. This problem enjoys the property of being
utilitarian. For utilitarian problems, there exists a well-known class of truthful
mechanisms, i.e., the Vickrey-Clarke-Groves (VCG) mechanisms [4, 6, 21], and
therefore the shortest path problem can be solved optimally. Afterwards, in a
sequel of papers, efficient truthful mechanism have been designed for solving
several other network design problems [8, 9, 12, 14, 15, 19].

In this paper, we focus on one of the most popular network topologies, that
is the single-source shortest paths tree (SPT). What is interesting here is that an
SPT naturally admits both utilitarian and non-utilitarian formulations. Indeed,
as we will discuss later in the paper, it can well happen that an agent gives an
evaluation of her contribution which is simply proportional to her private type,
and this unavoidably makes the problem non-utilitarian. Therefore, we analyze
both the scenarios, and we provide the following main results:

– In the utilitarian case, we provide a VCG-mechanism which can be imple-
mented in O(mn log α(m, n)) time on a RAM, and in O(mn α(m, n)) time on
a pointer machine, where α(m, n) is the inverse of the Ackermann’s function
defined in [20];

– In the non-utilitarian case, we provide: (i) an n-approximate VCG-mech-
anism which can be implemented in almost optimal O(m α(m, n)) time, and
(ii) a mechanism guaranteeing both truthfulness and positive utilities for the
agents which can be implemented in O(m + n log n) time.

The paper is organized as follows: In Section 2 we recall some basic definitions
from both graph theory and algorithmic mechanism design; in Section 3 we deal
with the utilitarian version of our problem, while in Section 4 we analyze the
different solutions for the non-utilitarian case.

2 Basic Definitions

Let G = (V, E) be an undirected graph, with |V | = n nodes and |E| = m edges,
and with a positive real weight associated with each edge e ∈ E. Given a source
node s and a destination node z in G, a path in G between s and z is a shortest
path, say PG(s, z), if the sum of its edge weights (called distance in G between
s and z, and denoted by dG(s, z)) is minimum. Given a source node s ∈ V , we
denote by SG(s) a single-source shortest paths tree (SPT) of G rooted in s, i.e,
the union of all the shortest paths from s to every v ∈ V \ {s}. Given u, v ∈ V ,
we denote by LCA(u, v) the least common ancestor of u and v in SG(s), i.e, the
ancestor of both u and v in SG(s) which is farthest from s.

Let e = (u, v) ∈ SG(s) be a tree edge, with u closer to s than v. Let M(e)
denote the set of nodes in SG(s) reachable from s without passing through edge
e, and let N(e) = V \M(e) be the remaining nodes. Sets M(e) and N(e) define
a cut in G, and C(e) = {(x, y) ∈ E\{e} | (x ∈ M(e)) ∧ (y ∈ N(e))} is the set of
the edges crossing the cut. Moreover, we denote by ||e|| the cardinality of N(e).

Efficient Truthful Mechanisms for the SPT Problem 943

Let a communication network be modelled by a 2-edge-connected graph G,
and assume that each edge is owned by a selfish agent Ae, which holds a private
information te. We call this value input type of the agent Ae. This value depends
on various factors (e.g., bandwidth, reliability, etc.). Only agent Ae knows te,
while everything else is public knowledge. Each agent has to declare a public
reported type re to the mechanism. We will denote by t the vector of input
types, and by r the vector of bids.

For a given optimization problem defined on G, there exists some set of
feasible solutions F that the mechanism is allowed to choose. For each feasible
solution x ∈ F , some measure function µ(x, t) is defined, which depends on the
true types. The mechanism tries to optimize µ(x, t), but of course it does not
know t directly.

For every agent Ae, a function ve(te, x) expresses Ae’s valuation with respect
to an output x ∈ F : this is a quantification of the service carried on by Ae into x.
While te is known only by the agent Ae, the valuation function is public. In order
to offset the costs deriving from these services, the mechanism provides some
reward to agents participating to the computed solution, i.e., the mechanism
makes a payment pe(r) to the agent Ae for the service provided in a solution
which is computed as a function of the reported vector r.

A mechanism is a pair M = 〈g(r), p(r)〉, where g(r) is an algorithm that,
given agents’ bids, computes a feasible solution in F , and p(b) is a scheme which
describes the payments provided to the agents.

For each agent Ae and for each solution g(r) computed by the mechanism,
the utility function of Ae is defined as ue(te, r) = pe(r)−ve(te, g(r)). We assume
that each agent is selfish, i.e., she always attempts to maximize her utility. Let
r−e denote the vector of all bids besides re; the pair (r−e, re) will denote the
vector r. We say that truth-telling is a dominant strategy for agent Ae if bidding
te always maximizes her utility, regardless of what the other agents bid, i.e.,
ue(te, (r−e, te)) ≥ ue(te, (r−e, re)), for all r−e and re. A mechanism is said truth-
ful if, for every agent, truth-telling is a dominant strategy. Moreover, let ε(σ)
denote a positive real function of the input size σ. Then, an ε(σ)-approximation
mechanism is a mechanism which returns a solution g(r) which comes within a
factor ε(σ) from the optimum, i.e., µ(g(r), t) ≤ ε(σ) ·µ(x∗, t), where x∗ is an op-
timal solution with respect to the vector t. We say that a mechanism is poly-time
computable if g(·) and p(·) are computable in polynomial time and that satisfies
the voluntary participation condition if agents never incur in a net loss.

One of the most important results in mechanism design theory are the well-
know Vickrey-Clarke-Groves (VCG) mechanisms. A VCG-mechanism applies
to mechanism design problems called utilitarians and enjoys the fundamental
property of being truthful. A mechanism design problem is called utilitarian if
its measure function satisfies µ(x, t) =

∑
e∈E ve(te, x).

Definition 1 (VCG-mechanisms). A mechanism is of the VCG-family if:

1. g(r) ∈ argminx∈F

{∑
e∈E ve(re, x)

}
.

2. pe(r) =
∑

e′ �=e ve′(re′ , g(r))+he(r−e), where he(r−e) is an arbitrary function
independent of re.

944 Luciano Gualà and Guido Proietti

3 The Utilitarian Case

Let be given a communication network modelled by an undirected graph G =
(V, E) in which each edge e ∈ E is owned by a selfish agent. In the following, we
will denote by G and G̃ the input graph as weighted with respect to the reported
values and the input types, respectively.

Suppose that Ae holds, as the private type te for the owned edge e, the length
of the communication link, and thus the time needed to cross it, and assume that
the system-wide goal is to minimize the completion time for delivering a message
from a distinguished node s ∈ V to every node v ∈ V \{s}. This means that the
system looks for an SPT rooted in s of G̃.

3.1 A (Truthful) VCG-Mechanism

By using the notation introduced in the previous section, the problem can be
formalized as follows. The set of feasible solutions F is the set of all the spanning
trees (considered in the following as rooted in s) of G̃, and a measure of a solution
T ∈ F is

µ(T, t) =
∑

v∈V

dT (s, v). (1)

To complete the description of the problem, we have to define the agents’
valuation. It is clear that, if an agent Ae participates to the output with her
edge e, she will incur in a transmission cost (i.e., the cost for forwarding a
message through that edge). In our scenario it is reasonable to assume that the
transmission cost is proportional to the length of the edge, i.e., proportional to
the value te. Notice that the TCP/IP protocol used in Internet for broadcasting
a message is the so-called unicast. In this protocol, if a source wants to send
a message to a set of recipients, it must send a copy of the message for each
destination. Therefore, if any solution T ∈ F is used for broadcasting a message
from s to all the other nodes, then the cost for the agent Ae can be expressed
as follows:

ve(te, T) =
{

te||e|| if e ∈ E(T);
0 otherwise.

Indeed, if an agent Ae participates to the output T , she will incur a transmission
cost of te for each message which passes through e, and the number of these
messages is exactly ||e||.

From the above assumptions, it immediately follows that the problem is
utilitarian. Indeed, the measure function (1) can be rewritten as

µ(T, t) =
∑

v∈V

dT (s, v) =
∑

e∈E(T)

te||e|| =
∑

e∈E

ve(te, T).

This means that we can use a VCG-mechanism to solve the problem. There-
fore, let M1 be a mechanism defined as follows:

Efficient Truthful Mechanisms for the SPT Problem 945

1. The algorithmic output specification selects an SPT SG(s) of G;
2. Let G − e = (V, E\{e}). Then, the payment function for Ae is defined as

pe(r) =
{∑

v∈V dG−e(s, v) − (
µ(SG(s), r) − re||e||

)
if e ∈ E(SG(s));

0 otherwise.

It is clear that the above payments obey to Definition 1 and then the mech-
anism is a (truthful) VCG-mechanism. Furthermore, this is a payment scheme
inducing a so-called pivotal mechanism, which can be shown to satisfy the vol-
untary participation [4].

3.2 Mechanism Time Complexity

The algorithmic question is now the following: how fast can the above mechanism
be computed? We start analyzing the cost for computing the payment scheme.

To compute pe(r) for each e ∈ E(SG(s)), the bottle-neck is to find all the
distances dG−e(s, v), for every v ∈ V . Indeed, it is not hard to see that the term
µ(r, SG(s)) − re||e|| can be found, for all the edges e ∈ E(SG(s)), in O(n) time.
A trivial solution consists in computing a new SPT of the graph G − e from
scratch, once for each edge e ∈ E(SG(s)). This solution clearly takes O(mn +
n2 log n) time. We now show how to improve (on a RAM) the above bound to
O(mn log α(m, n)) time.

We start by computing, for all the pairs u, v ∈ V , the distance dG(u, v). This
can be done in O(mn log α(m, n)) time [17]. Then, we solve n − 1 subproblems.
Each subproblem is identified by a distinct destination node z ∈ V , and asks for
computing the distance dG−e(s, z) for each edge e of the path in SG(s) between s
and z. We have to solve exactly n−1 subproblems, one for each z ∈ V \{s}, since
the distance from s to z may increase – as a consequence of deleting the edge e –
only if e belongs to PG(s, z). We will solve each subproblem in O(m log α(m, n))
time, by achieving a bound of O(mn log α(m, n)) time for the original problem.

Let PG−e(s, z) be a replacement shortest path for the edge e, i.e., a path from
s to z in G − e of (minimum) length dG−e(s, z). The problem of finding all the
replacement shortest paths, one for each edge of PG(s, z), has been efficiently
solved in O(m + n log n) time on a pointer machine [10], and O(m α(m, n))
time on a word RAM [11], respectively. Both algorithms are based on a pre-
computation of the SPTs SG(s) and SG(z). We now show how to improve the
above results to O(m log α(m, n)) time, by using a powerful structure called
Split-Findmin [17].

Let e = (u, v) be an edge on PG(s, z), with u closer to s than v. Since a
replacement shortest path PG−e(s, z) joining s and z must contain an edge in
C(e), it follows that it corresponds to a path of length

dG−e(s, z) = min
f=(x,y)∈C(e)

{
k(f) := dG−e(s, x) + rf + dG−e(y, z)

}
,

which can be shown [10] to be equivalent to

dG−e(s, z) = min
f∈C(e)

{
dSG(s)(s, x)+rf+dSG(z)(y, z)

}
= min

f∈C(e)

{
dG(s, x)+rf+dG(y, z)

}
. (2)

946 Luciano Gualà and Guido Proietti

Hence, since we have pre-computed the all-pairs distances in G, k(f) is available
in O(1) time for fixed f . It then remains to select the minimum over C(e). To do
this efficiently, we use a Split-Findmin structure. This is a structure operating
on a collection of disjoint sequences of n elements. Initially, there is only one
sequence containing all the elements, and each element u has a key k(u) := +∞.
Then, the structure supports the following operations:

split(u): Split the sequence containing u into two sequences of elements: one
up to and including u, the other sequence taking the rest;

findmin(u): Return the element (and the associated key) in u’s sequence with
minimum key;

decrease-key(u, k′): Set k(u) := min{k(u), k′}.
We find all the distance dG−e(s, z) as follows. First, we label each non-tree

edge f with the value (2). Then, we initialize a Split-Findmin structure, where
the initial n-elements sequence consists of the vertices of SG(s) as sorted in any
arbitrary post-order. We maintain two invariants: (1) every sequence in the Split-
Findmin structure corresponds to some rooted subtree of SG(s), and (2) k(u)
corresponds to the label of a min-label edge connecting u to a vertex outside u’s
sequence (i.e., outside the subtree of SG(s) currently containing u).

Let now e = (u, v) ∈ PG(s, z). By invariants (1) and (2), if S is a sequence in
the Split-Findmin structure and v is the root of the subtree corresponding to S,
then findmin(v) will return a key k(fe), where fe is a non-tree edge belonging to
PG−e(s, z) and k(fe) is exactly the distance dG−e(s, z). Once fe is determined,
we proceed to solve the problem for the children of v along the path PG(s, z).
Because of the post-order arrangement of the nodes, v is the rightmost element
in its sequence. Then, we perform one split centered at the element preceding
v in the sequence (this will sever v), and one additional split (in any arbitrary
order) for each of the children of v in SG(s), to reestablish invariant (1). After,
we focus on the sequence associated with the children of v in PG(s, z), say w,
and we restore invariant (2) by performing a number of decrease-key operations.
More precisely, for each edge f = (w′, y) such that LCA(w′, y) = v and w′ is a
descendant of w in SG(s), we issue the operation decrease-key(w′, k(f)) (see
Figure 1). Concerning the time complexity, the following lemma holds:

Lemma 1. Let PG(s, z) be a shortest path joining s and z. Given all the dis-
tances dG(s, x) and dG(z, x) for each x ∈ V , all the distances dG−e(s, z) for each
e ∈ PG(s, z) can be determined in O(m log α(m, n)) time.

Proof. Since k(f) is available in O(1) time for a fixed non-tree edge f , labelling all
the non-tree edges takes O(m) time. Concerning the Split-Findmin operations,
in total there are O(m) operations: O(n) splits (one for each subtree whose
root is adjacent to some node of PG(s, z)), O(n) findmins (one for each node of
PG(s, z)), and O(m) decrease-keys (at most one for each non-tree edge). This
takes O(m log α(m, n)) time [17]. Other costs, such as the post-order traversal
and finding least common ancestors, are linear [2]. �	

Efficient Truthful Mechanisms for the SPT Problem 947

y′′

s

v

e

z

w

v′ v′′

SG(s)

u

w′

y′

S · · · w′ · · · w′′ · · · w· · · v′ · · · v′′ v

w′′

Fig. 1. The sequence S corresponding to the subtree of SG(s) rooted at v is split after
the findmin(v) operation. Dashed edges are those for which a decrease-key operation
is performed.

We are now ready to prove the main result:

Theorem 1. The mechanism M1 is a truthful mechanism for the utilitarian
SPT problem, and can be computed on a RAM in O(mn log α(m, n)) time.

Proof. The mechanism belongs to the VCG-family, and therefore it is truthful.
Concerning the output specification, the fastest solution for computing an SPT
is the classic Dijkstra’s algorithm implemented with Fibonacci heaps, which runs
in O(m + n logn) time [5]. On the other hand, as far as the payment scheme is
concerned, we proceed as follows. First, we find the all-pairs distances in G in
O(mn log α(m, n)) time [17], and we solve each of the above described subprob-
lems in O(m log α(m, n)) time. Then, for each edge e = (u, v) ∈ E(SG(s)), we
extract from the solutions of the subproblems all the distances dG−e(s, x), for
every x in the subtree of SG(s) rooted at v (all the other nodes clearly maintain
their distance from s in G− e). Thus, we can easily compute pe(r) in O(n) time,
since µ(r, SG(s)) and re||e|| can be obtained in O(n) time by a trivial modified
post-order visit of SG(s). Since we have to compute exactly n−1 payment func-
tions, one for each tree edge, the claim follows. �	

Notice that on a pure pointer machine model, the mechanism M1 can be com-
puted in O(mn α(m, n)) time, since in this case the Split-Findmin data structure
requires O(m α(m, n)) time for solving any given subproblem [17].

4 The Non-utilitarian Case

The utilitarian scenario assumes that each agent, in doing her valuation, starts
from the assumption that each atomic operation will involve a traffic load on the

948 Luciano Gualà and Guido Proietti

owned edge which is proportional to the edge length times the size of the corre-
sponding appended subtree of SG(s). However, in another reasonable scenario,
an agent might evaluate her participation to an output T ∈ F simply as follows:

ve(te, T) =
{

te if e ∈ E(T);
0 otherwise. (3)

This scenario is realistic whenever the agent starts from the assumption that
each atomic operation will involve a traffic load on the owned edge which is
proportional only to the edge length (this can happen, for instance, when the
transmission protocol replicates at each node a given message once for each
descending node, like in the Internet Protocol multicast [3], so that each tree
edge will simply afford the cost of forwarding a single message).

This setting makes the problem non-utilitarian, since the measure function
associated with the SPT problem does not equal the sum of the agents’ valua-
tions. In the following, we show how to approach the problem from two different
perspectives. In both cases, we make use of the pointer machine computational
model, since we cannot take advantage of the addressing capabilities of a RAM,
as we did for the utilitarian case.

4.1 An Approximate VCG-Mechanism

A brute-force solution consists in designing a mechanism from the VCG-family.
Since the algorithmic output specification has to minimize the sum of the agents’
valuations, this will clearly return an MST of G̃. More formally, let M2 be the
mechanism defined as follows:

1. The algorithmic output specification computes an MST of G;
2. Let w(TG) =

∑
e∈E(TG) re denote the total weight of the solution TG, as

computed in G. Then, the payment function for Ae is defined as

pe(r) =
{

w(TG−e) −
(
w(TG) − re

)
if e ∈ E(TG);

0 otherwise.

Theorem 2. The mechanism M2 is a truthful n-approximation mechanism for
the non-utilitarian SPT problem, and is computable on a pointer machine in
O(t∗(TG)) = O(m α(m, n)) time, where t∗(TG) is the time needed to solve opti-
mally the MST problem.

Proof. It is easy to see that g(·) minimizes the sum of the agents’ valuations and
that the mechanism belongs to the VCG-family. Indeed, the above payments
obey to Definition 1 and then the mechanism is truthful (and consequently TG

is an MST of G̃). Concerning the approximation ratio, let SG̃(s) be an optimal
solution for the SPT problem. We now show that the solution returned by the
VCG-mechanism is a factor-n approximation. Indeed, if we consider TG̃ as rooted
in s, we have

µ
(
t, T

G̃

)
=

∑

e∈E(T
G̃
)

te||e|| ≤ n
∑

e∈E(T
G̃
)

te = n w
(
T

G̃

) ≤ n w
(
S

G̃
(s)

) ≤ n µ
(
t, S

G̃
(s)

)
.

Efficient Truthful Mechanisms for the SPT Problem 949

Concerning the time complexity, observe that the mechanism essentially re-
quires the computation on a pointer machine of an MST of G (which can be done
optimally through the algorithm presented in [18], which has an O(m α(m, n))
runtime, but for which a tighter analysis is not known), and the solution of a sen-
sitivity analysis problem on TG. As showed in [7], such a problem can be solved
in optimal time as well, but still a tight analysis cannot be provided, thought it
is known that such a problem is not harder than the MST one. Summarizing,
the time complexity is O(t∗(TG)) = O(m α(m, n)). �	

Notice that the above approximation ratio is tight, since it is easy to exhibit
an example in which an MST is an n-approximation of an SPT. This means
that we cannot hope to get a better approximate result by means of VCG-
mechanisms.

4.2 An Exact Truthful Mechanism Satisfying
the Voluntary Participation

The alternative solution we propose is inspired to the results in [1], where the
authors show how to design truthful mechanisms for those problems in which
each agent’s valuation has the form ve(te, x) = te we(r), where we(r) is called
work curve for agent Ae and it is some amount of work that depends on the
algorithmic output specification, which in its turn is a function of the reported
types vector r. We say the output algorithm g(r) is decreasing if each of the
associated work curves is decreasing (i.e., we(r−e, re) is a decreasing function of
re, for all Ae and fixed r−e).

In [1] it is shown that a mechanism is truthful for a problem where each
agent’s valuation has the above form if and only if the output algorithm g(r)
is decreasing, and the payments are given by an explicit formula involving an
integral of the the work curve. In particular, if

∫ +∞
0

we(r−e, z) dz is bounded for
all Ae and r−e, the mechanism satisfies also the voluntary participation and the
payment function is of the form

pe(r−e, re) = re we(r−e, re) +
∫ +∞

re

we(r−e, z) dz. (4)

As far as the SPT problem is concerned, let now g(r) denote the output
specification of an algorithm computing an SPT of G. Then, for each agent Ae,
we can rewrite the valuation (3) as ve(te, g(r)) = te we(r), where

we(r) =
{

1 if e ∈ E(g(r));
0 otherwise. (5)

Then, we can formally define the following mechanism M3:

1. The algorithmic output specification selects an SPT SG(s) of G;
2. The payment function for Ae is defined as (4)1.
1 From the assumption that the graph G is 2-edge-connected, it follows that (5) sat-

isfies
∫ +∞
0

we(r−e, z) dz < +∞, thus implying that we can apply (4), which satisfies
voluntary participation.

950 Luciano Gualà and Guido Proietti

We can now prove the following result:

Theorem 3. The mechanism M3 is a truthful mechanism for the non-utili-
tarian SPT problem, and is computable on a pointer machine in O(m + n log n)
time.

Proof. The truthfulness follows from the fact that the output function is decreas-
ing. Indeed, for each agent Ae, if we denote by r̂e the maximum reported type
for e such that e belongs to the computed solution, then the function we(r−e, re)
is equal to 1 for 0 ≤ re ≤ r̂e, and is equal to 0 for any re > r̂e. Thus, this is a
mechanism in the class defined in [1].

From the time complexity point of view, once again the output specification
can be computed in O(m + n log n) time. Concerning the payments, we have to
compute all the integrals

∫ +∞
re

we(r−e, z) dz, one for each e ∈ E(SG(s)) (for all
other edges, the payment (4) is obviously equal to 0). By definition, we have

∫ +∞

re

we(r−e, z) dz = r̂e − re,

from which it follows that for a tree edge, we have that pe = r̂e. Let now e =
(u, v) ∈ E(SG(s)), with u closer to s that v. Then, e remains in SG(s) as long as
dG(s, u)+ re ≤ dG−e(s, v), from which it follows that r̂e = dG−e(s, v)− dG(s, u).
As shown in [12], computing dG−e(s, v) is equivalent to select a non-tree edge
such that

dG−e(s, v) = min
f=(x,y)∈C(e)

{
dG−e(s, x) + rf + dG−e(y, v)

}
. (6)

The selection of all the non-tree edges (one for each tree edge) satisfying (6)
costs O(m α(m, n)) time [12]. This means that we can compute all the payments
in O(m α(m, n)) = O(m + n logn) time, from which the claim follows. �	

References

1. A. Archer and É. Tardos, Truthful mechanisms for one-parameter agents, Proc.
42nd IEEE Symp. on Foundations of Computer Science (FOCS’01), 482–491, 2001.

2. A.L. Buchsbaum, H. Kaplan, A. Rogers, and J. Westbrook, Linear-time pointer-
machine algorithms for least common ancestors, MST verification, and dominators,
Proc. 30th ACM Symp. on Theory of Computing (STOC’98), 279–288, 1998.

3. Cisco Systems Inc. c©, Internetworking Technologies Handbook, Cisco Press, 2004.

4. E. Clarke, Multipart pricing of public goods, Public Choice, 8:17–33, 1971.

5. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved net-
work optimization algorithms, J. of the ACM, 34(3):596–615, 1987.

6. T. Groves, Incentives in teams, Econometrica, 41(4):617–631, 1973.

7. L. Gualà and G. Proietti, Optimal MST sensitivity analysis on a pointer machine,
manuscript submitted for publication, 2005.

Efficient Truthful Mechanisms for the SPT Problem 951

8. L. Gualà and G. Proietti, A truthful (2-2/k)-approximation mechanism for the
Steiner tree problem with k terminals, 11th Int. Computing and Combinatorics
Conference (COCOON’05), to appear.

9. J. Hershberger and S. Suri, Vickrey prices and shortest paths: what is an edge
worth?, Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS
2001), 252–259.

10. K. Malik, A.K. Mittal, and S.K. Gupta, The k most vital arcs in the shortest path
problem, Oper. Res. Letters, 8:223–227, 1989.

11. E. Nardelli, G. Proietti, and P. Widmayer, A faster computation of the most vital
edge of a shortest path, Info. Proc. Letters, 79(2):81–85, 2001.

12. E. Nardelli, G. Proietti, and P. Widmayer, Swapping a failing edge of a single
source shortest paths tree is good and fast, Algorithmica, 36(4):361–374, 2003.

13. E. Nardelli, G. Proietti, and P. Widmayer, Finding the most vital node of a shortest
path, Theoretical Computer Science, 296(1) (2003) 167–177.

14. E. Nardelli, G. Proietti, and P. Widmayer, Nearly linear time minimum spanning
tree maintenance for transient node failures, Algorithmica, 40(2):119–132, 2004.

15. N. Nisan and A. Ronen, Algorithmic mechanism design, Games and Economic
Behaviour, 35:166–196, 2001.

16. M.J. Osborne and A. Rubinstein, A course in Game Theory, MIT Press, 1994.
17. S. Pettie and V. Ramachandran, Computing shortest paths with comparisons and

additions, Proc. 13th ACM Symp. on Discrete Algorithms (SODA’02), 267–276,
2002.

18. S. Pettie and V. Ramachandran, An optimal minimum spanning tree algorithm,
J. of the ACM, 49(1):16–34, 2002.

19. G. Proietti and P. Widmayer, A truthful mechanism for the non-utilitarian mini-
mum radius spanning tree problem, 17th ACM Symp. on Parallelism in Algorithms
and Architectures (SPAA’05), to appear.

20. R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. of the
ACM, 22(2):215–225, 1975.

21. W. Vickrey, Counterspeculation, auctions and competitive sealed tenders, J. of
Finance, 16:8–37, 1961.

	Efficient Truthful Mechanisms for the Single-Source Shortest Paths Tree Problem
	1 Introduction
	2 Basic Definitions
	3 The Utilitarian Case
	3.1 A (Truthful) VCG-Mechanism
	3.2 Mechanism Time Complexity

	4 The Non-utilitarian Case
	4.1 An Approximate VCG-Mechanism
	4.2 An Exact Truthful Mechanism Satisfying the Voluntary Participation

	References

