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ABSTRACT

Consistently growing architectural complexity and machine scales make creating ac-

curate performance models for large-scale applications increasingly challenging. Tra-

ditional analytic models are difficult and time-consuming to construct, and are often

unable to capture full system and application complexity. To address these challenges,

we automatically build models based on execution samples. We use multilayer neural

networks, since they can represent arbitrary functions and handle noisy inputs robustly.

In this thesis, we focus on two well known parallel applications whose variations in ex-

ecution times are not well understood: SMG2000, a semicoarsening multigrid solver,

and HPL, an open source implementation of LINPACK. We sparsely sample perfor-

mance data on two radically different platforms across large, multi-dimensional param-

eter spaces and show that our models based on this data can predict performance within

2% to 7% of actual application runtimes.
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Chapter 1

Introduction
Both architecture and software complexity are rising dramatically, and their interactions

are often unclear to both developers and users. Furthermore, parameter spaces of interest

are growing for most high-end applications. As a consequence, creating accurate models

for modern systems and applications becomes increasingly difficult and time consum-

ing. Under these circumstances, the traditional approach to analytical modeling often

fails. Construction of the models is a long and error-prone process requiring detailed

understanding of target systems and applications (knowledge that is increasingly diffi-

cult to acquire). Further, analytical models necessarily make simplifying assumptions

about both the target system and the input space, often leading to loss in accuracy and

generality, and failure to capture subtle interactions between architecture and software.

Instead, we leverage machine learning, using results from a subset of executions

from the full application parameter spaces as samples from which to construct models

for the remaining parameter spaces. Several techniques exist for this kind of approach,

including various regression methods and Support Vector Machines. We choose neural

networks because they are a well studied and robust technique, and they allow the repre-

sentation of any functional model without a priori specifications. Neural networks have

been shown to work well even when the samples contain noise (a particular problem in

our chosen arena of application), and they generally require small training sets to con-

struct the models. The latter translates to smaller numbers of samples and hence—in

our case—fewer application executions. Chapter 3 explains network training in detail.

In this thesis, we demonstrate how we construct and use our neural network models

for two well known numerical benchmark codes, SMG2000 [6] from the ASCI Purple
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benchmark suite [14] and the High Performance LINPACK (HPL) [17] implementa-

tion from the University of Tennessee, and study their performance across a range of

input parameters. The resulting models can predict performance across large, multi-

dimensional parameter spaces on two large-scale parallel platforms within 2% to 7%

error. We find our approach to be useful for many application performance prediction

problems [8], and our techniques are particularly well suited to mining performance

databases or to extending fast, parameter-specific models.



Chapter 2

Related Work
Many prior studies address performance prediction for parallel programs. Most per-

formance modeling techniques require either in-depth knowledge of the applications to

build analytical models or special tools to gather such information from parallel codes.

Often such approaches are application specific, restricted to a given language, or based

on simulation. Nonetheless, with careful modeling of applications and platforms, these

approaches can deliver high prediction accuracy. We discuss these approaches in Sec-

tion 2.1, but find it difficult to do an apples to apples comparison because there are few

such models freely available to the research community. Proprietary models exist, but

are not available for comparisons within the context of the work presented here. In Sec-

tion 2.2, we compare our approach to a similar sample-based approach using regression.

2.1 Models for Parallel Applications

Marin and Mellor-Crummey [15] semi-automatically measure and model program char-

acteristics, using properties of the architecture, properties of the binary, and application

inputs to predict application behavior. Their toolkit predefines a set of functions, and

the user may add customized functions to this library. They vary the input size in only

one dimension (in contrast to our studies), and they cannot account for some important

architectural parameters (e.g., cache associativity in their memory reuse modeling).

Carrington et al. [3] demonstrate a framework for predicting performance of scien-

tific applications on LINPACK and an ocean modeling application. Their automated

approach relies on a convolution method representing a computational mapping of an

application signature onto a machine profile. Simple benchmark probes create machine

3
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profiles, and a separate tool generates application signatures. Extending the convolution

method allows them to model full-scale HPC applications [4]. They require generating

several traces, but deliver predictions with error rates between 4.6% and 8.4%, depend-

ing on the sampling rates of the underlying traces. Using full traces obviously performs

best, but such trace generation can slow application execution by almost three orders

of magnitude. Some applications demonstrate better predictability than others, and for

these, trace reduction techniques work well: prediction errors range from 0.1 to 8.7%

on different platforms. This work complements ours, and the two approaches may work

well in combination. Their analytic models could provide bootstrap data, and our mod-

els could give them full application input parameter generality.

Kerbyson et al. [13] present an accurate, predictive analytical model that encom-

passes the performance and scaling characteristics of SAGE, a multidimensional hydro-

dynamics code with adaptive mesh refinement. Inputs to their parametric model come

from machine performance information, such as latency and bandwidth, along with ap-

plication characteristics, such as problem size and decomposition (as in our models).

They validate prediction accuracy of the model against measurements on two large-scale

ASCI systems. In addition to predicting performance, their model can yield insight into

performance bottlenecks, but the application-centric approach requires that the code be

statically analyzed, and a separate, detailed model must be developed for each target

application. In contrast, our approach is application agnostic and easily automated.

Yang et al. [20] develop cross-platform performance translation based on relative

performance between the target platforms, and they do so without program modeling,

code analysis, or architectural simulation. Like ours, their method targets performance

prediction for resource usage estimation. They observe relative performance through

partial execution of two ASCI Purple applications [14]; the approach works well for
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iterative parallel codes that behave predictably (achieving prediction errors of 2% or

lower) and enjoys low overhead costs. Prediction error varies much more widely (from

5% to 37%) for applications with variable overhead per timestep. Likewise, reusing par-

tial execution results for different problem sizes and degrees of parallelization renders

their models less accurate.

2.2 Neural Networks and Regression

In joint work with Lee et al., we compare our neural network approach with piecewise

polynomial regression [10]. We construct neural network and piecewise polynomial re-

gression models to prediction application performance for SMG2000 and HPL as a func-

tion of the application input parameters. Both approaches predict with similar median

and outlier error rates ranging from 2.2% to 10.5%. Given the similarities in prediction

results for applications studied, the interesting differences between the approaches lie in

the trade-offs that come with using them. Neural networks offer an automated approach

and do not require the form of the target function to be known. However, they tend

to be treated as a black-box approach because of the difficulty in mapping the learned

network as a function of the applied inputs. On the other hand, regression requires sta-

tistical techniques such as clustering, association, and correlation analyses to identify

relevant predictors and interactions. In addition, one needs to input domain-specific

knowledge to guide model construction. Finally, there may be need for additional sta-

tistical tests after model construction to ensure model fit and a lack of systematic bias.

This requires a background in statistics and work on the part of the modeler since the

required steps cannot be automated. Consequently, this may offer a better understanding

of the parameter space due to the heavy analysis done beforehand.



Chapter 3

Neural Networks
Machine learning studies algorithms that learn automatically through experience. For

our problem, we focus on a particular class of machine learning algorithms called artifi-

cial neural networks (ANNs). They have been used for microarchitectural design space

exploration [8], workload characterization [21], and compiler optimization [22]. ANNs

automatically learn to predict one or more targets for a given set of inputs. We choose

ANNs because they are flexible and well suited for generalized nonlinear regression,

and their representational power is rich enough to express complex interactions between

variables: any function can be approximated to arbitrary precision by a three-layer arti-

ficial neural network [16]. They require no knowledge of the target function, take real

or discrete inputs and outputs, and deal well with noisy data.

3.1 Theory

A neural network consists of layers of neurons, or switching units: typically, an input

layer, one or more hidden layers, and an output layer. Input values are presented at

the input layer and predictions are obtained from the output layer. Figure 3.1 shows

an example of a fully connected feed-forward neural network. Every unit in each layer

is connected to all units in the next layer by weighted edges. Each unit applies an

activation function to the weighted sum of its inputs and passes the result to the next

layer. One can use any nonlinear, monotonic, and differentiable activation function. We

use the sigmoid activation function for our models (Figure 3.2 [16]).

Training the network involves tuning edge weights via backpropagation, using gra-

dient descent to minimize error between predicted and actual results. In this iterative

6
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Figure 3.2: Example of a hidden unit with a sigmoid activation function

process, the training samples are repeatedly presented at the input layer, and the error is

calculated between the prediction and the actual target. The weights are initialized near

zero and are updated using an update rule (similar to the one shown in Equation 3.1)

in the direction of steepest decrease in error. As weights grow, the network becomes

increasingly nonlinear.

wi,j ← wi,j − η
∂E

∂wi,j

(3.1)

We use a three-layer neural network with a single hidden layer of 16 units, initial

weights drawn uniformly at random from [-0.01,+0.01], and the Rprop learning algo-

rithm, a variant of standard backpropagation. Rprop is a locally adaptive training algo-

rithm that only propagates the sign of the error such that a unique update rule evolves

for each weight [19].

Neural network models have a tendency to overfit on training data, leading to models

that generalize poorly to new data despite their high accuracy on the training data. This
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is countered by using early stopping [5], where we keep aside a validation set from the

training data and halt training as accuracy begins to decrease on this set. However, this

means we lose some of our training data to the validation set. To address this, we use an

ensemble method called cross validation to help improve accuracy and mitigate the risk

of overfitting the neural network models. This technique consists of splitting the training

set into n equal-sized folds. Taking n=10, for example, we use folds 1-8 for training,

fold 9 for early stopping to avoid overfitting, and fold 10 to estimate performance of the

trained model. We train a second model on folds 2-9, use fold 10 for early stopping, and

estimate performance on fold 1, and so on. This generates 10 neural networks, and we

average their outputs for the final prediction. Each neural network in the ensemble sees

a subset of training data, but the group as a whole tends to perform better than a single

network because all data has been used to train portions of it. Cross validation reduces

error variance and improves accuracy at the expense of training multiple models.

We apply stratification to reduce percentage error by replicating each point in the

dataset by a factor proportional to the inverse of its target value. As a consequence, the

network is trained more on points with small target values, which have large relative but

low absolute errors. The absolute error is reduced for these samples to the point that the

relative errors across the whole model no longer show large divergences. Prior work [7]

finds that stratification significantly improves the performance of backpropagation.

3.2 Approach

We generate models to predict application performance across a large, multidimensional

parameter space defined by program inputs. To capture all complex interactions between

the target architecture and software, we create a sample set of this parameter space by ex-

ecuting the target application on real hardware and gathering the resulting performance
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data. We then use machine learning techniques to automatically train corresponding

models to cover the complete input space [11].

For all experiments, we first select a representative dataset by choosing a collection

of points spread across the complete parameter space; we then obtain performance re-

sults for these on actual hardware. We reserve a portion of this data as a test set against

which to report the final accuracy of our models, and never train on this test data. From

the remaining sampled data, we choose a subset of points and use these data to build our

models. During this process, we split the data into separate training and validation sets,

where the former is used to actually train the neural network model, and the latter is

used to assess the error of the current model at each step during training. After training,

we query the final model to obtain predictions for points in the full parameter space, and

report the accuracy of our model on points included in the test set.

For this work, we present results for cross validation combined with stratification

since it provides the most robust performance, delivering comparable results to other

neural network optimization techniques at large training set sizes, and outperforming

them at smaller training set sizes [9].



Chapter 4

Experiments
Our goal is to predict application runtimes to assist in resource usage estimation, to

contribute to understanding of application behavior, and to aid in tuning input and al-

gorithm parameters. However, for both SMG2000 and HPL, the performance variations

for different input parameters and the interactions with a given target system are not well

understood. We develop application-specific performance models for these applications

on two significantly different architectures. This enables predicting runtime or other

important characteristics across large input parameter spaces with high dimensionality.

4.1 Target Applications and Their Characteristics

We study two well known numerical applications: SMG2000, a semicoarsening multi-

grid solver based on the hypre library [6]; and HPL, a portable implementation of High

Performance LINPACK [17] used to solve (random) dense linear systems on distributed

memory computers.

SMG2000 has a six-dimensional parameter space that describes both the shape of

the workload per processor and the logical processor topology. These parameters have

substantial impact on runtime, as shown in Figure 4.1. For a fixed working set size—a

fixed subvolume size per CPU—runtime varies by up to a factor of five. This applica-

tion employs a complex, recursive algorithm to decompose its three dimensional grid,

which makes predicting performance difficult. Consequently, only a rough analytical

model approximating the communication volume for cubic working set sizes has been

built to date [2]. While it would be possible to extend this model for arbitrarily shaped

working sets, doing so would be extremely complex, and the result would likely be in-

10
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tractable. Worse, modeling architectural features in addition to overall performance is

infeasible. Our automatic, empirical modeling approach overcomes these limitations

without knowledge of the application or its algorithms.

The HPL solver uses a two-dimensional, block-cyclic data distribution and LU fac-

torization with row partial pivoting featuring multiple look-ahead depths. Recursive

panel factorization with pivot search and column broadcast via MPI combined with a

bandwidth-reducing swap broadcast approach make the package scalable with respect

to parallel efficiency for a given per-processor memory utilization. Details of the algo-

rithm can be fine-tuned with many parameters. However, only rough guidelines exist

on how to choose the best settings for a given target architecture [17], forcing the user

to rely on hand-tuning for each platform. We choose five parameters that are generally

known to be most significant [18], and we vary processor topology in tandem. Again, we

observe that application execution times change dramatically with varying parameters,

as shown in Figure 4.2.

4.2 Results

We present performance prediction results for SMG2000 and HPL on two large-scale

machines at the Lawrence Livermore National Laboratory: Thunder, a 1024 node Linux

cluster with Itanium-2 processors, and Blue Gene/L, a tightly integrated system with

65536 compute nodes. Table 4.1 gives details of these platforms. Nodes on Thunder

are four-way SMPs, and as noted above, we run only three tasks per node to reduce

noise caused by OS interference. Nodes on Blue Gene/L have a single compute ASIC

with two embedded Power 440 cores. We use one task per node in “communication

coprocessor” mode: one core performs main computation, while the other is dedicated

to networking operations [1].
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Table 4.1: Platform parameters

Blue Gene/L Thunder

Processor PowerPC 440 Intel Itanium 2

Frequency 700MHz 1.4GHz

L1 ICache 32KB 32KB

L1 DCache 32KB 32KB

L2 Cache 2KB (Prefetch Buffer) 256KB

L3 Cache 4MB 4MB

SDRAM 512MB DDR 350 8GB DDR 266

3D Torus + Fat Tree

Network Global Combine/Broadcast Tree Network (Quadrics QsNet)

Tasks/Processors per node 1/2 3/4

Number of Nodes Used 512 64
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Table 4.2: SMG2000 application parameters and constraints: Nx, Ny, Nz describe the

size of the three dimensional volume used as the working set per processor; Px, Py, Pz

describe the processor topology in all three dimensions; the problem size for a particular

run is a volume of size Nx ∗ Py ×Ny ∗ Py ×Nz ∗ Pz.

Parameter Blue Gene/L Thunder

Nx 10-510 in steps of 20 10-250 in steps of 30

Ny 10-510 in steps of 20 10-250 in steps of 30

Nz 10-510 in steps of 20 10-250 in steps of 30

Px 1,8,64,512 1,3,4,12,16,48,64,192

Py 1,8,64,512 1,3,4,12,16,48,64,192

Pz 1,8,64,512 1,3,4,12,16,48,64,192

Constraints Blue Gene/L Thunder

Px ∗ Py ∗ Pz 512 192

Nx ∗Ny ∗Nz 1000 ≤ Nx ∗Ny ∗Nz ≤ 343000 216000 ≤ Nx ∗Ny ∗Nz ≤ 9261000
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Table 4.3: HPL application parameters: the total problem size N is kept constant, and

we only vary the processor grid topology P × Q as well as algorithm parameters; NB

controls the blocking size and PFACT , NBMIN , NDIV , and RFACT control the

recursion depth and data granularity of the solver (for details see [17])

Parameter Values

N (problem size) 10000

NB (block size) 10-80, stepped by 10

P ×Q (processor grid) P = 2
n, Q = 2

9−n, 0 ≤ n ≤ 9

PFACT R, C, L

NBMIN 1, 2, 4, 8

NDIV 2, 3

RFACT R, C, L

For both SMG2000 and HPL we explore a six-dimensional parameter space. Ta-

ble 4.2 and Table 4.3 show the parameters and their possible values for the SMG2000

and HPL codes, respectively. For both applications we choose the default values for

all other parameters. Note that for SMG N describes the size of a processor’s local

working set, whereas for HPL N describes the global problem size. The total dataset

for SMG2000 on Thunder consists of 6170 points, and on Blue Gene/L 3358 points.

The HPL dataset on Blue Gene/L consists of 5760 points. Table 4.4 characterizes the

performance of each of the datasets, and again shows the wide spread of possible perfor-

mance results. Note that these datasets are already sparse, since we only sample linear

values at regular intervals. This is especially true for SMG2000: Nx, Ny, and Nz are

taken in large steps to reduce the number of experiments. The total size of the parameter

space is significantly larger. We report sample size percentages in relation to our sparse
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Table 4.4: Runtime statistics for each dataset

dataset minimum maximum mean stdev

HPL BG/L 4.8097 165.234 24.2629 28.4625

SMG2000 BG/L 1.3527 70.0639 23.6603 13.1221

SMG2000 Thunder 11.1222 5474.5500 81.5215 119.6170

representation of the full parameter space, but our models can interpolate to predict per-

formance for intermediate values. We iteratively train and test our models, incrementing

the sample dataset by 50 points at each round. We randomly select a test set of 1K points

from remaining data and report model accuracy on this set.

Figure 4.3 shows learning curves for mean prediction error (left column), and stan-

dard deviations for those prediction errors (right column). All graphs show results when

we use Rprop with 10-fold cross validation for training, and stratification to select sam-

ple points. The top graphs show results for HPL on Blue Gene/L, and the middle and

bottom graphs show results for SMG2000 on Blue Gene/L and Thunder respectively.

Predicted values for mean error and standard deviation are derived from the multiple

models in our ensemble method, and actual values show comparisons of model predic-

tions against the full dataset.

Table 4.5 gives prediction error and standard deviation for training sets constituting

5%, 10%, and 20% of their respective datasets. The learning curves and the table show

how model accuracy improves as training set size increases. For instance, at a training

set size of 350 points (approximately 5% of the entire dataset) for SMG2000 running

on Thunder, the average prediction error on the test set and corresponding standard de-

viation are 9.24% and 38.37%. The data taken on Blue Gene/L are less noisy than those

from Thunder, and hence prediction accuracies are generally higher. As training set size
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Table 4.5: Mean errors and standard deviations as training set size increases

training set size error stdev

SMG2000 5% 9.24 38.37

on 10% 9.01 27.58

Thunder 20% 5.66 6.23

SMG2000 5% 8.12 6.78

on 10% 6.70 5.99

BG/L 20% 6.22 6.47

HPL 5% 4.68 5.23

on 10% 2.86 3.31

BGL 20% 2.09 2.46

increases, error decreases, showing that the model benefits from the additional infor-

mation included in the dataset at each round of training. Eventually, the curves begin

to flatten, since additional data presented to the models contain little new information.

Similarly, the standard deviation of the error decreases with increasing training set size.

The HPL dataset is the most predictable: our models predict performance with only

2-3% error and similar standard deviations.

These results indicate that the accuracy of our approach can be high given enough

training points. Our parameter spaces are much larger than the total number of points

we collect. When training on only 20% of our datasets, our models achieve accuracies

of about 93-94% on SMG2000 and 98% on HPL. Our approach can thus easily be used

to learn from performance databases of results for sparse samplings of parameters. In

addition, the amount of time required to fully train a model ranges from 1-10 minutes

on a typical workstation with a 3.0GHz Pentium 4 processor and 1GB of main memory,

making it easy to build parameterized performance models efficiently.



Chapter 5

Conclusions
We have presented a machine learning approach to application performance prediction

using multilayer neural networks. We use performance data gathered from real applica-

tion executions on a small subset of our parameter spaces to train performance models

covering the complete parameter spaces. We predict application runtimes to assist in

resource usage estimation, to contribute to understanding of application behavior, and

to aid in tuning input and algorithm parameters. We develop application-specific per-

formance models to enable predicting runtime or other important characteristics across

large input parameter spaces with high dimensionality. Our techniques yield highly

accurate results for two parallel applications—SMG2000 and HPL—on two different

high-performance platforms, delivering prediction error rates of 2% to 7%.

We find our approach to be robust, even in the face of rapidly increasing machine

and system complexity and scale. The modeling is easily automated and application

agnostic: users need only state relevant input and output parameters and provide access

to performance samples, either by executing the target code or using precomputed val-

ues. This makes the approach more attractive for our purposes than traditional analytic

modeling techniques: we trade the depth of application understanding users gain in de-

veloping analytic models for speed, accuracy, and ease of use. Improving our ability

to configure these kinds of applications to run most effectively enables the faster solu-

tion of much larger problems in scientific computing. Future work will mine existing

(and growing) performance databases for training sample points from which to build our

models, thereby expanding the scope of our usability beyond just those applications that

we study ourselves.
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