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Abstract

The continuous increase in performance requirements, for both sci-

entific computation and industry, motivates the need of a powerful

computing infrastructure. The Grid appeared as a solution for inex-

pensive execution of heavy applications in a parallel and distributed

manner. It allows combining resources independently of their physical

location and architecture to form a global resource pool available to

all grid users. However, grid environments are highly unstable and

unpredictable. Adaptability is a crucial issue in this context, in order

to guarantee an appropriate quality of service to users.

Migration is a technique frequently used for achieving adaptation.

The objective of this report is to survey the problem of strong migra-

tion in heterogeneous environments like the grids’, the related imple-

mentation issues and the current solutions.
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1 Introduction

Computation Migration can be defined as the transfer of a computation from
one host to another during execution. This includes encapsulating and trans-
miting the computation state (namely, data, code and execution state) and
restoring it at the destination machine. Migration can be done transparently,
so the programmer has no control over the migration process, or the system
may provide some way to control it.

Discussions about advantages and disadvantages of migration can be
found in [1, 2, 3]. Although techniques for process migration have been
studied for several years [4, 5], it has never been extensively adopted. As dis-
cussed in [4] and [3], this may be due to several factors, such as performance
penalties when compared to alternative solutions, security issues and socio-
logical factors. (While sociological factors can be overridden by guaranteeing
higher execution priorities or a pre-defined degree of resources occupation for
the machine owner, they still represent a limitation for the adoption of this
technique, in particular because security is a real issue.) The study of pro-
cess migration was initially strongly motivated by load-balancing concerns in
distributed systems. In this context, migrating a process makes sense only
when its remaining execution time is much larger than migration time. How-
ever, it is in general very hard to predict the remaining execution time for a
running program. This, combined with the relatively high performance costs
generally incurred by migration mechanisms, may have contributed strongly
to the decrease of interest in the technique.

However, the current availability of high speed networks implies in lower
penalties for the technique. Besides, there are other motivations for migra-
tion, in the context of which performance may not be the main issue. For
instance, a computation may be migrated to a node where specific resources,
data, or services are available. Migration may also be used to fulfill require-
ments for fault tolerance and uninterruptible services.

The emergence of new scenarios, such as those of mobile devices and grid
computing, gives rise to new interest in migration [6]. Grid environments are
usually characterized by concurrent execution, domain autonomy, resource
heterogeneity and high failure probability, which imply in unpredictable re-
source utilization. This motivates the use of techniques that provide adap-
tation, reliability and maintenance. In this scenario, the study of migration
seems to acquire new relevance. Furthermore, one important direction of
current work in grid computing is that of opportunistic computing, in which
resources are made available for remote users only when local users do not re-
quire them. Migration is an important mechanism to evict remotely started
computations when the machine owner returns [7]. For this reason, we believe
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it is worthwhile to regain insight into the area by surveying the migration
techniques that have been proposed.

The problem of migration involves several issues. In this survey we con-
centrate on the question of how to move, that is, how to implement the
transfer of an executing computation. This question has very different an-
swers depending on whether we consider that migration will occur among
machines with the same architecture and operating system (homogeneous
migration) or among different platforms (heterogeneous migration). As we
have mentioned, grid environments are naturally heterogeneous, and because
such environments are our motivation, we concentrate, in this study, on het-
erogeneous migration.

This survey is organized as follows. Section 2 provides background on
computation migration, intending to clarify the terms usually employed in the
literature, describing various classifications and the problems related to this
technique. Section 3 surveys work done in the area of strong heterogeneous
migration. Finally, we conclude in Section 4 comparing some of the presented
systems and discussing the approaches they take for the implementation of
this technique.

2 Preliminaries

Computation migration consists in moving the execution of a computation
from one node to another while preserving its state. The composition of the
state depends on the context. For instance, in Unix processes it includes the
address space (heap contents, stack, global variables), the execution state
(processor state) and the environment information (or resource information,
that is, information about open files, but also about messages). As another
example, the state of a thread running on the Java Virtual Machine (JVM)
consists of [8] the method area (the set of Java classes that includes a Java
method currently being executed by the thread), the object heap (objects
accessible from the thread’s execution stack), and the Java stack, organized
in blocks called frames.

In general, migration can be initiated from inside the process (proactive or
subjective migration), or from outside (reactive or objective migration). The
latter case is usually found in load balancing facilities, allowing the controller
engine to command the movement of a computation in response to changes
on the environment (new resources appeared, performance deterioration was
detected, etc).

Migration can be made at process level, usually called process migration,
or at thread level (thread migration). Migration granularity can be finer:
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a single object or a set of objects may move together. Emerald [9], for
instance, is a distributed language and system designed for the support of
object mobility. Mobility is a term commonly used for referring to migration
of objects.

The term mobility can also be found in literature with other meanings.
In this report we will use it as a synonym of migration. Mobile computation,
or computation mobility, is different from mobile computing in that the latter
has to do with physical mobility (related to physical devices), whereas the
first refers to virtual (logic) mobility [10]. Another term that has been used
in literature referring to migration is Dynamic Software Migration [11] or
just Dynamic Migration [12].

It is also important to note the difference between Computation Migration
and Code Migration. While code migration involves sending code to some
location, computation migration requires the computation state to be trans-
ferred as well. That is, computation migration requires support for — but
is not equal to — code migration. Mobile agents, moreover, require support
for computation migration and also for transferring authority to act on the
owner’s behalf.

Mobile agents are code-containing objects that may be transmitted be-
tween communicating participants in a distributed system [13]. While process
migration is typically initiated from outside the process, mobile agents can
determine the moment and destination of the migration (although some agent
platforms allow migration to be also initiated also from outside). A mobile
agent system is the infrastructure that implements a mobile agent paradigm.
The agent server, a protected agent execution environment, is responsible
for executing agent code and provides primitive operations to programmers.
When an agent requests to be transported to another host, the agent server
deactivates the agent, saves its state and sends it to the remote agent server,
which restores and reactivates it. Garbage collection is insured by forcing the
return of the agent to the creator server after termination. Agents are fre-
quently implemented using interpreted languages, because of their features
of platform independence and dynamic code loading. Most agent systems
have been implemented over the Java Virtual Machine (JVM).

The methods used for implementing migration of processes, threads, or
agents are quite similar. However, terms used to describe them are often
different. In this survey, we will employ the term computation migration to
refer indistinctively to the movement of any kind of computation (processes or
threads) from a source machine to a target machine, specifying the kind only
if necessary. The moved computation itself will be referred to as computation,
executing unit (EUs), as in [14] or migration unit, as in [12].

Fugetta et al. proposed in [14] a conceptual framework for understanding

5



code mobility that has been extensively cited in the literature. The authors
assign a slightly broader meaning to mobility than the one used in the present
work: for them, mobility can be achieved either through migration or through
remote cloning mechanisms. Remote cloning basically creates a copy of an
Executing Unit at the destination. Unlike the case of migration, the original
Executing Unit is not destroyed, or detached.

Figure 1 shows the classification of mobility mechanisms proposed in the
work of Fugetta. In this classification, mobility can be either weak or strong.
Weak migration is the simplest and in consequence, most implemented form
of migration. In this case, only the code segment is transferred, option-
ally with some initialization data. An example of weak migration in agent
systems is provided by Aglets [15]. After migration, an Aglet will always
resume execution from the beginning of the program. On the other hand, in
strong migration, the execution state is also transferred, allowing execution
to restart at exactly the instruction at which it was interrupted at the source
host. NOMADS [16] and D’Agents [17] are examples of agent systems with
strong migration. Strong migration can be better for programs performing
intensive computations and/or long executions, but it is harder to implement.
Because weak migration is extensively implemented, it makes sense to use it
as a basis for providing support for strong migration.

In order to achieve total migration transparency, that is, for the effects
of the movement to be hidden from the user and the application, the ref-
erences to objects and resources must also be transferred (open files, etc.).
Some authors classify the case in which this is handled as a third type of
mobility called full migration [18], but most regard it as a special case of
strong migration. The term transparent migration has also been used in lit-
erature as a synonym of strong migration, whether or not the environment
is restored at the target machine [19, 20]. Because of the complexity of this
issue, implementations typically impose restrictions over the reconstruction
of the original environment at the target machine. Another problem with
transparency is that, while hiding the information about the movement of
the computation from the programmer certainly reduces programming com-
plexity, it also disallows the control of errors (maybe caused by network
problems or latency) and possible optimizations based on location.

The data space management mechanisms shown in Figure 1 address this
problem of relocating resources and reconfigurating bindings. The resources
characteristics and the way they are bound to the EU restrict the methods
that can be used by the data space management mechanisms in each case. For
example, a huge database can be considered as a non-transferable resource,
which eliminates copy as a possibility. Data space management is orthogonal
to the mechanisms that suports the mobility of code and execution state.
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Figure 1: Classification of mobility mechanisms [14]

To reduce the initial costs of migration, some of the computation state
can be transferred on demand instead of at migration time. This technique
is called lazy evaluation. Residual dependency is related to the references the
migrated process leaves in the node from where it comes or where it was
created, typically as a consequence of using lazy evaluation techniques or for
providing transparency in communications, by redirecting communications
through the previously established links to the migrated process [4].

Migration can be done at user or kernel level. Kernel level migration mod-
ifies the operating system kernel, which allows accessing directly the whole
state of the process but is complex to implement and makes the mechanism
dependent of the operating system. Implementing migration as a user-level
mechanism allows it to be installed with no modification to the OS kernel.
Besides, typically, user-level implementations are simpler than their kernel-
level counterparts, because of the higher level at which state capture and
serialization are done. On the other hand, operations for manipulating pro-
cess state are generally not freely available at user-level, thus implying in
limitations for this approach, and often higher performance penalties as well.

Given that the motivation of our work is migration in the Grid and similar
environments, which requires independence of the underlying architecture
and the Operating System, in this report we will not focus on migration at
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kernel level, although techniques for process migration in operating systems
have been employed in higher level migration. Methods for implementing
kernel-level migration have extensively studied elsewhere [4, 21].

The concept of handling the state of a process is related to the notion
of reflection in programming languages, which is the capacity of a program
to get and modify information about its own state at runtime. Reflective
mechanisms allow an executing program to access its computation state and
to have knowledge about its structure, and also to adapt its behavior as
a consequence. The implementations of migration can take advantage of
reflection techniques. As an example, Proactive [22] uses reflection to choose
the method to be executed by the agent at arrival. X-Klaim [18] also uses
reflection, in this case to capture the agent code to be sent to the remote
site.

The problem of migration implies in taking policy decisions to solve the
questions of where to move, which (EU) to move and when, and also how
to implement a mechanism to effectively migrate the process. In this report
we examine different techniques for the implementation of mechanisms for
strong heterogeneous migration. Homogeneous migration assumes that data
representation, machine registers, heap, stack, data segments and machine’s
data instruction sets are the same. Except otherwise specified, all reported
proposals refer to strong migration in heterogeneous systems.

In fact, when implementing a migration mechanism one must consider
two layers. The inner layer implements state capture, serialization, deserial-
ization, and restoration. The outer layer manages the problems of mobility
at a linguistic level, which includes the management of locations, etc. Due
to the extent of the problem, this paper studies only the first of these layers.

3 Heterogeneous Strong Computation Migra-

tion

Migration in homogeneous environments implies in suspending the execut-
ing computation, encapsulating its state, transferring the code and the state
information, and restarting the computation at the destination using the
transmitted information. When the source and destination platforms are
different, the problem of migration gets more complicated, because of the
need for translation of the state of the computation to a format that may be
understood at the destination machine. This is called heterogeneous migra-
tion and is the typical case in grids, where no homogeneity assumptions can
be usually made.
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Because of the inherent complexity of heterogeneous migration, a conve-
nient approach is to provide only homogeneous migration even in systems
running on heterogeneous platforms. An example is the widely deployed
Condor system [7]. Migration in Condor is strong but not heterogeneous:
the destination node is chosen among those with the same platform as the
source machine.

For the better understanding of the problem of heterogeneous strong com-
putation migration, we will subdivide the problem of how to migrate into the
problems of the capture/restoration of the state and that of representing the
state to be transmitted. The capturing and restoring problem involves ma-
nipulating information about the internal (local) structure of the execution
state. The problem of transmissible representations [23] is related to deter-
mining an appropriate representation for this information when transferring
it between machines.

3.1 Heterogeneous strong state capture/restore

A basic mechanism for capturing execution state and restoring it later is to
use the memory image of the computation. This works up to a point in
homogeneous enviroments, but heterogeneous migration introduces specific
requirements, because of the need of appropriate translations. It is no longer
possible to transfer memory dumps to the destination with no further modi-
fication. The main issues arise due to differences in instruction sets and data
representations, which will, for instance, invalidate a Program Counter value
from one platform to another. Even solving a simple representation problem
such as endianness involves knowing the type and size of the data to be read.

Data can be translated at the origin, either to a specified architecture or
to an architecture-independent representation, or alternatively can be trans-
lated at the destination. In this last case, information about data types must
be transmitted along with the data itself.

The problem of capturing the structure of data is related to the program-
ming language’s type system. Most compiled languages keep no runtime
information about data types. Besides, some type mechanisms, such as C’s
unions, limit the possibility of obtaining type information. Possible solu-
tions to this issue are to restrict unsafe features of the language or to modify
compilers to deal with these features [24]. Both can result in non-standard
language behaviour.

Much work has been devoted to migrating Java threads [19, 25, 20, 26].
Java restricts the internal and native information made available by the vir-
tual machine [25]. The state of Java threads is internal to the JVM: there
is no standard API allowing access to it. Moreover, the state of the stack
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is also non-portable. The stack is implemented in most JVMs as a native
data structure (a C structure) [26]. This makes the stack information de-
pendent of the underlying architecture. A translation step is required to
represent the stack state in a platform-independent format (a Java Object)
during the marshalling or serialization process, and the reverse is true for
unmarshalling or deserialization. This implies in translating the values of lo-
cal variables and operands to Java values, which requires access to the type
of the values, but Java does not offer this information at runtime. Runtime
type information is embedded in the bytecode of the methods that push the
data on the stack. Techniques commonly used to overcome those problems
either have drawbacks on serialization performance or on portability.

Restoring the computation state consists in creating a new process or
thread, reconstructing the execution state from the transferred state, and
restarting execution. A service must be available to managed the required
actions at the destination. Depending on the implementation platform, the
mechanism to restore the stack, the local variables and the current instruction
pointer in every frame can be more or less complicated. The execution must
resume from the point at which it was suspended at the origin. But not every
language allows jumps to specific points in the code, and even when they do,
translation issues may require the definition of logical points marking the
next command to be executed. Java, for instance, facilitates the execution of
the received code via dynamic class loading, but there is no service allowing
to restart the execution from the last executed instruction. The state can be
restored by the transferred program itself, by detecting at the beginning of
execution that it must reconstruct its state from a predefined data source, or
by an external service that will restore the whole execution state and then
initiate the program. Migration based on threads involves the additional
issue of synchronization.

Performance penalties due to migration can either be distributed over the
execution and the migration procedure itself, or be concentrated on this last
step. The latter is better for programs where migration is not frequent.

A source code or bytecode instruction may be composed of various ma-
chine code instructions, thus, when migration is initiated at machine code
level, it is necessary to define the points at which migration is allowed, to
avoid inconsistencies. The fact that architecture heterogeneity may cause the
program counter location to be different at the destination can also be solved
by placing logical points, acting as labels, to reinitiate the execution at the
right instruction, given that the migration will only hapen at those points.
There is a third application for the placement of logical points in the code,
which is to check for migration requests in the cases in which the system al-
lows for objective migration. Logical points can be found in literature under
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different names, like poll points[27], bus stops[9], preemption points [24] or
safe points [28], and their use was reported in many of the implementations
we studied. The number and location of those points is a compromise be-
tween the performance overhead if they are frequently inserted, and the delay
in responding to a migration request when they are very sparsely distributed.

The problem of migration is closely related to that of computation per-
sistency [29]. Indeed, the persistence of a computation can be seen as the
problem of moving it to the same location, or otherwise, computation mobil-
ity can be achieved through the restauration of a computation persisted in a
different host. Several techniques for capturing and restoring state are based
on checkpointing facilities [30, 28]. Checkpointing an application is the act
of saving the application state in persistent storage in a form from which it
can be restarted later. It is mainly used in fault tolerance to avoid the need
for restarting from the beginning a process formerly running in a faulty host.

3.2 Heterogeneous transmissible representations

After the state is captured, it must be prepared for transmission and then
transferred to its destination. The code and execution state must be trans-
ferred in a format, or representation, that can be understood by a possibly
different architecture.

The application code may be either transmitted along with the execu-
tion state or obtained, on demand, by the destination host (for instance, by
download from a code base). The transmissible representation of the code
can be either an architecture-independent representation (to be compiled or
interpreted), or the machine code for the target architecture.

Recompiling source code at the destination machine guarantees porta-
bility to any platform. Also, the execution performance of the compiled
program will be better than in interpreted schemes. On the other hand,
there is a delay in restarting due to the recompilation process.

The use of interpreted languages is a valid alternative due to their features
of dynamic adaptation and portability. Interpretation allows assuming a
homogeneous execution environment, supposing that there is an interpreter
for every available platform. The program to be migrated can be expressed
in a platform-independent form, as well as the state data, when captured at
this level. While the implementation of migration using interpreted languages
seems to be straightforward (migration would consist on the implementation
of a mechanism to transmit state data and code), common interpreters lack
support for execution state capture/restore.

Besides limitations imposed by runtime environments, there are perfor-
mance losses inherent to the interpretation procedure. Some interpreted
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languages, to improve performance, allow parts of the program to be coded
in a compiled language. This is called dual programming model [31], or in-
terleaving [28]. While it can help on the performance point of view, it also
contributes to the loss of the platform-independence offered by the inter-
preted approach and makes the capture/restoration of the state information
more difficult, as part of it will not be available from the Virtual Machine.
This kind of application is not usually supported in migration systems.

If machine code is to be transmitted, it is necessary to generate as many
versions of the compiled programs as the number of platforms that will be
supported. At migration time, the appropriate program will be selected, if
it is not already available at the destination. This implies in generating a
new pre-compiled program for every new supported platform, and also in the
availability of storage space.

The Tui system [24] is an example of the approach based on the migration
of native code. It was built to provide a migration mechanism of Ansi-C
programs for four architectures within the Unix environment. Capture and
recovery is carried out with full knowledge of the destination platform, and
also of the data types and variables used within the program. The programs
are compiled for each of the four machine types supported by Tui, producing
four different binaries. The compiler detects and avoids migration-unsafe
features, such as Unions, to allow the extraction of typing information. When
the process is selected for migration, a program is called to checkpoint the
process to an intermediate representation that will be sent to the target
machine. This program uses the type information generated by the compiler
to extract correctly the data from the executable file. On the destination,
another program takes the transmitted representation and creates a new
process. After reconstructing all the execution state, the process is restarted
from the point at which it was checkpointed. The system specifies points in
the code where the migration is allowable, called preemption points.

On the other hand, [32] describes an implementation of heterogeneous
process migration based on recompilation. In this case, migration involves
transmitting a machine-independent program that, when started at the des-
tination, reconstructs the process’ state and then continues the normal ex-
ecution of the process. This approach has the advantage that it hides the
details of data translation in the compilers of each machine, but it has the
drawback of the increase in the time caused by the recompilation and relink-
ing of the program. Migration consists of the following steps: suspending
the process to be migrated, translating the machine-dependent state data
to a machine independent representation, creating a machine-independent
program that represents the process state, transferring that program to the
target machine, compiling and linking the transferred program, destroying
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the source program, and loading and running the final program on the target
machine.

The Extended Facile [13, 23] system, although supporting only weak mi-
gration, takes a hybrid approach to marshalling which is worth mentioning.
Extended Facile is an extension of Facile, a strongly typed functional pro-
gramming language based on Standard ML with support for concurrency and
distribution. Extended Facile supports both architecture-independent and
machine code representations, and the joint transmission of several represen-
tations, allowing the programmer to choose the representation best suited
for its agent. It allows the program, for instance, to choose a machine code
implementation when the destination host has the same architecture as the
origin.

4 Classification of heterogeneous strong migra-

tion techniques

Methods for the implementation of strong heterogeneous migration are ba-
sically similar in different environments. They consist in a mechanism for
capturing the execution state information and saving it in stationary or tran-
sient storage, and next, transmitting the saved status and restarting the saved
computation at the remote location.

Regarding their approach to transmissible representations of code, they
can be divided between those which use an architecture-independent rep-
resentation and those which use machine code. Architecture-independent
representations can use either interpretation or recompilation.

On the other hand, a general classification of the methods used to im-
plement state capture and restoration is not quite clear. Bouchenak [26]
proposed a classification for approaches to capturing the execution state of
Java threads. We believe this classification can be applied in the more general
problem of heterogeneous state capture.

The classification originally proposed by Bouchenak identifies an application-
level approach and a JVM-level approach, which we generalize to the follow-
ing:

1. User program pre-processing: Consists of introducing fragments of code
(automatically or not) into the user program, in order to make it ca-
pable of auto-saving/restoring its status. This implies in runtime and
space overhead caused by the inserted code.

2. Platform modification: Consists of modifying the underlying platform
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or virtual machine to make it provide the required data and function-
alities necessary to achieve migration.

In Section 4.3, we will mention another approach, based on languages
which provide some built-in facilities for state capture.

Across the following subsections, we survey systems that were imple-
mented according to each of these approaches.

4.1 Code pre-processing, or application-level approach

In this approach, the user program is modified by inserting fragments of
code that allow the program to save its execution state and restart the com-
putation by itself. Such modifications can be done to source or compiled
code. In the case of interpreted languages, the compiled code would be the
pre-compiled code (hereafter called bytecode).

Ferrari et al. [27], in one of the earliest works discussing heterogeneous
state capture/restoration, propose a mechanism called Process Introspection.
This consists on pre-processing the application source code (written in Ansi-
C) to incorporate autonomous checkpoint and restart facilities. The target
application domain are scientific applications, whose high performance re-
quirements would not allow the use of interpreted languages for generating
platform-independent checkpoints. The implementation consists of a library
(the Process Introspection Library, PIL), and a source-code generator called
APrIL (Automatic application of the PRocess Introspection Library), which
automates the implementation of state capture and recovery. PIL provides
a mechanism for describing, saving and restoring data values, and an event-
based mechanism for coordinating the capture/restore activities. It can be
automatically applied by APrIL to incorporate capture and restore func-
tions for platform-independent modules, that is, those written in a high-level
language, that are type safe, and do not rely on the underlying features of
a particular platform for correctness [27]. The transformation consists in
adding prologues to every function, which include calls to PIL to register all
the local variables or parameter addresses found in the function body in the
local variable table. The compiler inserts poll points followed by code which
checks migration requests. For the cases when automatic transformation is
not possible, the user can make use of the library directly.

The states traversed by a migrated process are:
NormalExecution → StateCapture → StateRecovery → NormalExecution

The capture of stack state is made through a native subroutine return
mechanism (see Figure 2), which consists in saving the state of the current
procedure (including the logical location of the poll point at which the current
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frame was saved and the local variables and parameters of the function) and
returning, and is executed recursively until the base routine is reached.

Figure 2: Native subroutine return mechanism: State Capture

For restart, every subroutine recovers the data for its local frame and
jumps to the poll point at which the stack of the current stack frame was
captured, as shown in Figure 3. For this mechanism to work, there must
be a poll point in the program after each subroutine call. Since this mecha-
nism is specified at a platform-independent level, the captured state is also
valid in any platform, assuming the associated data is stored in a universally
recognizable format for masking issues such as those of data representation.

Figure 3: Native subroutine return mechanism: State Recovery

Fünfrocken proposes a similar approach [19] for saving and restoring the
state of Java programs, using exception handling. A compiler inserts try-
catch statements in the source code to save the state of execution of each
thread in different Java backup objects. On restart, all the threads that were
active at the time of the capture are restarted by creating new threads which
will be initialized with the contents of their respective saved counterparts.
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Synchronization issues emerge here, due to the impredictability of the situa-
tion of each thread at the moment of state capture. The proposal addresses
only subjective migration, and thus the points at which migration is to oc-
cur are explicit in the code. The solution was to provide the programmer
with a method allowGo to signal that the calling thread is ready to save its
state. State saving only occurs if all threads have called this method or have
initiated state saving.

The serialization of Java threads in the Brakes framework [20] is achieved
through the instrumentation of bytecode. The technique employed for thread
stack capture is very similar to the native subroutine return mechanism pro-
posed by [27]. In the state capture state, every method saves the current
frame in the Context object and returns to the previous method recursively
until the end of the stack is reached. Given that the instruction counter is
not available in Java, a counter was created to represent the “last performed
instruction” (LPI). On recovery, the thread restores the first frame from the
context stack, removes it from the context and moves the program counter to
the saved LPI (using the goto instruction, available only at bytecode level),
which could correspond to a method being called at the moment of the check-
point. In this case, the method will be called and it will recover its frame from
the context, in the same way as the previous method did before. State veri-
fication is done by code inserted automatically by the bytecode transformer
at the beginning of every invoked method.

The MAG grid middleware proposal [33], an extension of the Integrade
middleware for the execution of Bag-of-Tasks applications, is built over the
Brakes framework [20] and the JADE framework. Its goal was to provide
for strong migration, thus portability was a major requirement. MAG mo-
bile agents can migrate strongly, objectively and subjectively: the Brakes
framework was modified to allow the migration to be initiated by an exter-
nal entity. The programmer can also insert new points where the checkpoint
may occur. The published implementation didn’t include the migration of
external dependencies or multi-threaded applications.

In JavaGo [34], strong mobility is provided by source code transforma-
tions. An exception mechanism is employed for capturing the execution
state: exceptions are thrown recursively until the whole call stack is saved
as a chain of State objects. Because Java does not include a goto statement,
these transformations must resort to switch-case statements. This requires
some pre-processings (including splitting expressions with side effects) and
unfolding techniques. An undock statement marks the part of the code that
will be migrated. At restart, unfolding techniques must be also used for
loops.

MobileScope [35] is a programming language which supports both weak
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and strong migration. Strong migration is supported by the integration with
the JavaGo framework. MobileScope extended JavaGo to support triggering
the migration externally. One important aspect of MobileScope is the provi-
sion of full mobility, by means of channel mobility, which allows modifying
the resource bindings at runtime.

Bettini and De Nicola [18] propose a technique for implementing strong
mobility through a weak mechanism, adaptable to any language with support
for transmitting data and code. The authors exploit this technique in the
implementation of the X-Klaim programming language.

In Aglets [15], the event model allows the programmer to save the state
before migration. This has been exploited in MobiGrid [36] which focuses on
long sequential applications and opportunistic computation. In MobiGrid,
the support for strong migration is achieved by extending Aglets to allow
the programmer to save the state of execution periodically, allowing it to be
restarted later. Drawbacks of this method are the required programmer effort
and the fact that the execution flow is split into several callback procedures,
making it hard for the compiler to perform optimizations. The fact that the
mobility model in Aglets, and, in general, in weak mobile systems, forces the
programmer to manage the objects to be transferred during migration affects
the transparency of the process.

Bytecode instrumentation offers better portability than the Virtual Ma-
chine modifications techniques and better performance that the source in-
terpreted code approach [26]. A drawback originated by the bytecode-based
implementation is the need of code maintenance. There is no guarantee of
backward bytecode compatibility in Virtual Machine upgrades, so it may be
necessary to modify the implementation after JVM upgrades. Working over
the bytecode (for the case of implementations over Virtual Machines), in-
stead of over the source code, has the advantage of the wider instruction set
and also a better performance. Also, for pre-processing, the source code must
be available, which is not the case with libraries and legacy code. A problem
common to both approaches is that the execution state cannot be captured
in all situations [26]. In general, shortcomings of code pre-processing are that
it implies in changes to program flow and in some time and space penalties
at runtime, caused by the inserted code.

4.2 Modifying/extending the Runtime System

Another alternative for introducing support for state capture and restoration
is to modify or extend existing platforms. In this case, there is no need to
modify the user code eliminating the requirements of code availability and
lowering the execution and space overhead. On the other hand, portability

17



is affected.
Agbaria and Friedman [28] propose a transparent mechanism for check-

point/restart in heterogeneous environments focusing on fault tolerance. Their
approach is to checkpoint the application state at virtual machine level. The
implementation was done over the OCaml virtual machine (OCVM). Since
the systems operates at VM level, the checkpoint is only allowed at points
where the state of the application is consistent, that is, between instruc-
tions or during an instruction which does not modify the state of the system.
Whith that in mind, the interpreter checks for a flag signalling a checkpoint
request before fetching a new instruction. State capture is based on the
tagging of data types and the garbage collection features of OCaml. File-
descriptor checkpointing is based on the OCaml support for I/O interception.
A multi-threaded consistent checkpoint is achieved by taking the checkpoint
only after stopping all threads.

Agbaria and Friedman’s work assumes that failures are rare, and that,
on that account, it is preferrable to penalize restart, maintaining checkpoint-
ing overhead minimal. Thus, data is saved in its native representation and
translated, if necessary, when the application is restarted. In order to avoid
blocking the application during checkpoint, a new process is forked to save
the state and then exits.

D’Agents [17] (formerly called Agent Tcl) is a mobile agent system with
support for subjective strong migration. Initially implemented in Tcl, it
currently allows mobile agents to be written in Tcl, Java, and Scheme, and
supports strong mobility in Tcl and Java with "significant" modifications to
the respective interpreters. Migration in D’Agents is accomplished with the
agent_jmp command. agent_jmp captures the internal state of the Tcl script
and transfers it to the destination machine, where the execution continues
from the next command. The D’Agents server is multi-threaded: every agent
runs in a separate thread.

Bouchenak et al. [26] present a solution for Java thread serialization/deserialization
which intends to build thread mobility or persistence while avoiding the per-
formance overhead incurred by previous approaches. This is achieved through
type inference and dynamic de-optimization techniques. The Java Virtual
Machine is extended to capture the state of a Java thread as an object and
to initialize a thread with a particular state. The Java compiler was not
modified. Thread serialization does not handle problems of object sharing
between threads, distribution, synchronization, or the management of object
dependencies.

The authors compare two prototypes, based on Interpreter-based serial-
ization (ITS) and on capture time-based thread serialization (CTS). The first
was based on the modification of the interpreter to capture the data type ev-
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ery time a bytecode instruction saved data on the stack. For CTS, the type
inference was done by analyzing the bytecode only at thread serialization
time. The work concluded that given that the serialization of the interpreter
(ITS) is not compliant with JIT compilation, it would not be a realistic so-
lution. It also introduces an execution performance overhead. On the other
hand, CTS avoids any execution performance overhead, but the cost is trans-
ferred to the serialization latency and thus it is not advisable for applications
with a high serialization frequency, such as mobile agents. Application-level
Java thread serialization would probably be the best solution for those cases.

Illman and others [25] propose the use of the Java Platform debugging
interface to achieve transparent migration in the context of the CIA project
(Collaboration and Coordination Infrastructure for Personal Agents), which
deals with the development of an infrastructure for software agents. The
Java debugging architecture provides access to runtime information like stack
frames, local variables and the program counter. It is possible to stop and
resume execution, execute single bytecode instructions and set/unset break-
points. A problem in this proposal is how to reestablish the program counter
after the whole state has been transferred. Given that the Java debugging
architecture does not include this feature, the solutions proposed are the
modification of the JVM, or else, the instrumentation of the byte code, and
take us back to the previous approaches.

4.3 Migration with Language Support

Functional languages facilitate the manipulation of functions, allowing their
transfer to remote hosts for execution. Heterogeneous strong migration can
be implemented in those systems by means of continuations, if those are
offered as transmissible structures. Tarau and Dahl[37], for instance, use
this strategy to implement strong heterogeneous migration in BinProlog.

Other authors have dealt with the problem of migration using functional
languages. An implementation for strong mobility over mHaskell [38] is re-
ported in [39]. It is based on weak mobility, higher-order channels, and first-
class continuations, without the need for changes to the run-time system or
built-in support for continuations. Unlike other proposals, the implementa-
tion is based on Monads, available in Haskell and in other purely functional
languages.

Systems like ARA, NOMADS and Telescript implement support for strong
migration by creating new platforms that offer all the required information
to execute the procedure. A comparison among those systems is presented
in [17].
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5 Discussion and Conclusions

Cardelli in Mobile Computation [40], commenting the fact that traditional
languages and traditional compilers are not well suited for network comput-
ing, asserts that languages that are not portable on-line will be abandoned
because they don’t provide mobility. But what support should a run-time
engine provide for heterogeneous strong migration?

We have identified two layers for the implementation of migration mech-
anisms. The inner layer implements state capture, serialization, and restora-
tion. The outer layer manages the problems of mobility at a linguistic level.
At the inner layer, we believe the following items should be considered.

• A mechanism to capture and serialize the state of the execution (in-
cluding data types, program counter);

• A mechanism for transferring a computation (data, code and state of
execution);

• Support for deserializing and restoring the computation (it means, a
way to transform back the captured values from the independent rep-
resentation, and also a way to restart execution from the point where
it stopped);

• The performance offered by these mechanism must satisfy the applica-
tion goals.

Generalizing from the surveyed work, the mechanisms for capture and
restore can be grouped in two major categories, according to the support
provided by the programming language. In the case when there is no language
support for state capture/restoration, the problem can be solved in two ways,
which are based on:

1. User program pre-processing: Consists in introducing fragments of code
(automatically or not) into the user program in order to make it capable
of auto-saving/restoring its status. This implies in runtime and space
overhead caused by the injected code.

2. RTS modification (or extension): Consists in modifying or extending
the underlying platform or virtual machine, seeking to provide the re-
quired data and functionalities necessary to achieve migration. This
usually results in better performance but implies in less portability
and maintanability.
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Language support for state capture/restoration can be expressed either
by means of mechanisms such as first-class continuations, typically offered
by functional languages, or by explicit primitives for state manipulation.

The use of continuations has the advantage of enabling strong migration
to be implemented using weak mobility. Nevertheless, continuations are al-
most exclusively supported by functional languages, which have well known
performance limitations. In general, features commonly present in the so
called dynamic programming languages like introspection, continuations, and
the possibility of modifying programs at runtime make them interesting vehi-
cles for the implementation of migration. On the other hand, languages and
systems that do not offer enough support for state capture and restoration
force the implementor to choose between preprocessing techniques or mod-
ifying the platform. This implies in a compromise between portability and
performance.

The issue of transferring the computation involves the transmitting the
code and captured state in a way that is understandable at the target node.
The code can be transferred either as an architecture-independent repre-
sentation (to be compiled or interpreted), or as machine code for the target
architecture. The transmission of the captured data seems to be well handled
by current solutions such as Java’s RMI.

Table 1 shows the classification we propose for the case of the surveyed
works.

Name Capture/Recovery Method Code Representation
Tui RTS modification Native Code
Recompilation RTS modification Source Code
Process Introspection Program Transformation Native Code
JavaGo Program pre-processing Interpreted
Brakes Program pre-processing Interpreted
Bouchenak RTS modification Interpreted
CIA project Debugger Platform Interpreted
D’Agents RTS modification Interpreted
DTL06 Language Supported Interpreted

Table 1: Evaluation according to classification

Performance is still a issue in the implementation of migration. However,
as we mentioned in the introduction, current motivations for migration, such
as evicting processes in opportunistic computing systems, make us evaluate
migration performance from a new perspective.

Is migration a good idea? It certainly is, for a number of applications
and in specific conditions. Is strong migration a good idea? Actually, given
the costs implied in the mechanisms for adapting it to a heterogeneous envi-
ronment, it seems that a combination between weak and strong migration (if
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possible using weak migration) would be the best answer for systems requir-
ing to use this technology. It will depend strongly on the focus of the appli-
cation: if it is a long lasting and high performance application it will require
a fault tolerance service, thus the need for checkpointing, and high migration
performance. It is probably not the case for an agent sniffing for information
on the internet. Further work must be done to evaluate the advantages of
the implementation of migration for the current potential applications. New
solutions for security are currently being investigated, like the possibility of
code signing mobile agents. Error management issues should also be better
studied.
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