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SUMMARY

In this paper, we present a formal model and analysis of the AMBA Advanced High-
performance Bus. The model is given in CSP‖B—an integration of the process algebra
CSP and the state-based formalism B. We describe the theory behind the integration
of CSP and B, and present the model in this theory. Analysis is performed using the
model-checker ProB. The contribution of this paper may be summarized as follows:
presentation of a formal model of the AMBA AHB protocol such that it may be used
for analysis of co-design systems incorporating the bus, an evaluation of the integration
of CSP and B in the production of such a model, and a demonstration and evaluation of
ProB in performing this analysis.
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1. INTRODUCTION

In this paper we present a model of the AMBA Advanced High-performance Bus (AHB)
in the formalism CSP‖B, and investigate this model using the model-checker and animator
ProB. The AMBA bus, produced by ARM, is a freely available standard for on-chip busses
in embedded systems. Implementations are available, and tools are available for the testing of
components. We show that CSP‖B can be used to model the bus, and that models such as this
can be used in the design, development, and formal analysis of hardware/software co-design
systems. One goal of this work is to demonstrate how CSP‖B may be used in development, in
a similar manner to that presented in [10]. It is our belief that the combination of the state
based formalism B-Method, and the process algebra CSP permits accurate descriptions of the
implementation of such systems that can be refined both to hardware and software; and the
necessary potential for more abstract models for development and analysis purposes. The work
in this paper was initiated under the AWE project “Future technologies for systems design”.
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2 A. A. MCEWAN AND S. SCHNEIDER

The paper begins in Section 2 by presenting background information on CSP‖B and ProB.
Background on the AMBA bus, and the protocol of interest to this paper follows in Section 3.
Section 4 presents the CSP‖B/ProB model. A discussion about the types of analysis that can
be done on this model is presented in Section 5. The model, and the results of the analysis
are different to our previous work, and the reasons for this are discussed in Section 6. Some
conclusions are drawn in Section 7. The contribution of this paper can be summarized as
follows: a demonstration of modeling components used in a typical co-design environment
using CSP‖B, an evaluation of ProB in the development and analysis of CSP‖B modeling,
and the presentation of an AMBA AHB model that can be used for the formal analysis and
development of components to be attached to an implementation of the bus.

2. COMBINING CSP AND B

CSP‖B [20, 16] is a combination of the process algebra CSP [6, 13, 15] and the language
of abstract machines supported by the B-Method [1, 14]. A controlled component consists
of a B machine in parallel with a CSP controller process. Their interaction consists of
synchronisations of B operations with corresponding events in the CSP controller. Consistency
of the combination requires that operations are called only within their preconditions. Other
properties of the combination may also be considered, such as deadlock-freedom, or various
safety or liveness properties. Previous work has developed theory to verify controllers[17], and
to combine them into larger systems[18]. The approach taken in this paper differs in that it
applies a model-checker to the CSP‖B in order to achieve verification.

2.1. B Machines

The B-Method develops systems in terms of machines, which are components containing state
and supporting operations on that state, described in a language called Abstract Machine
Notation (AMN). An important aspect of B for this paper is that operations are associated with
preconditions, and if called outside their preconditions then they diverge. A full description of
the B-Method can be found in [1, 14], and tool support is provided by [4, 5].

A machine is defined using a number of clauses which each describe a different aspect of
the machine. The machine clause declares the abstract machine and gives its name. The
variables clause declares the state variables used to carry the state information within the
machine. The invariant clause gives the type of the state variables, and more generally it
also contains any other constraints on the allowable machine states. The initialisation clause
determines the initial state of the machine. The operations clause contains the operations
that the machine provides: these include query and update operations on the state.

2.2. CSP

CSP processes are defined in terms of the events that they can and cannot do. Processes
interact by synchronising on events, and the occurrence of events is atomic. The set of all
events is denoted by Σ. Events may be compound in structure, consisting of a channel name
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MODELLING AND ANALYSIS OF THE AMBA BUS 3

and some (possibly none) data values. Thus, events have the form c.v1...vn , where c is the
channel name associated with the event, and the vi are data values. The type of the channel
c is the set of values that can be associated with c to produce events. For instance, if trans is
a channel name, and N × Z is its type, then events associated with trans will be of the form
trans .n.z , where n ∈ N and z ∈ Z. Therefore trans .3.8 would be one such event.

CSP has a number of semantic models associated with it. The most commonly used are the
Traces model, and the Failures/Divergences model. Full details can be found in [13, 15]. A
trace is a finite sequence of events. A sequence tr is a trace of a process P if there is some
execution of P in which exactly that sequence of events is performed. The set traces(P) is the
set of all possible traces of process P . The traces model for CSP associates a set of traces with
every CSP process. If traces(P) = traces(Q) then P and Q are equivalent in the traces model,
and we write P =T Q . A divergence is a finite sequence of events tr . Such a sequence is a
divergence of a process P if it is possible for P to perform an infinite sequence of internal events
on some prefix of tr . The set of divergences of a process P is written div(P). A failure is a pair
(tr ,X ) consisting of a trace tr and a set of events X . It is a failure of a process P if either tr is
a divergence of P (in which case X can be any set), or (tr ,X ) is a stable failure of P : a trace
tr leading to a stable state in which no events of X are possible. The set of all possible failures
of a process P is written failures(P). If div(P) = div(Q) and failures(P) = failures(Q) then
P and Q are equivalent in the failures-divergences model, written P =FD Q .

Verification of CSP processes typically takes the form of refinement checking: where the
behaviour of one process is entirely contained within the behaviour of another within a given
semantic model. Tool support for this is offered by the model-checker FDR[9].

2.3. CSP semantics for B machines

Morgan’s CSP-style semantics [12] for event systems enables the definition of such semantics
for B machines. A machine M has a set of traces traces(M ), a set of failures failures(M ), and
a set of divergences div(M ). A sequence of operations 〈e1, e2 . . . en〉 is a trace of M if it can
possibly occur. This is true precisely when it is not guaranteed to be blocked, in other words it
is not guaranteed to achieve false. In the wp notation of [12] this is ¬wp(e1; e2; . . . ; en , false),
or in AMN ¬([e1; e2; . . . ; en ]false). (The empty trace is treated as skip). A sequence does not
diverge if it is guaranteed to terminate (i.e. establish true). Thus, a sequence is a divergence
if it is not guaranteed to establish true, i.e. ¬([e1; e2; . . . ; en ]true). Finally, given a set of
events X , each event e ∈ X is associated with a guard ge . A sequence with a set of events is a
failure of M if the sequence is not guaranteed to establish the disjunction of the guards. Thus,
(e1; e2; . . . ; en ,X ) is a failure of M if ¬[e1; e2; . . . ; en ](

∨
e∈X

ge). More details appear in
[20]. The CSP semantics for B machines enables the combination of a B machine and a CSP
process to be formally defined in terms of CSP semantics.

A CSP controller P is a process which has a given set of control channels (events) C .
The controlled B machine will have a subset of {| C |} as its alphabet, corresponding to the
operations of the machine. Some of the controller events may not correspond to B operations.
For each operation w ←− e(v) of a controlled machine with v of type T1 and w of type T2

there will be a channel e of type T1 × T2, so communications on e are of the form e.v .w .
The operation call e!v?x → P is an interaction with an underlying B machine: the value v is
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4 A. A. MCEWAN AND S. SCHNEIDER

passed from the process as input to the B operation, and the value x is accepted as output
from the B operation.

In previous work, controllers were generated from a sequential subset of CSP syntax[16],
including prefixing, input, output, choice, and recursion. The motivation for this restriction
was verification. Various consistency results were possible for combinations of B machines
with such controllers by identifying control loop invariants which held at recursive calls. In
this paper there is no need for such restrictions as we do not applying those techniques. Instead
we use the ProB model-checker to establish results. This means that the full range of CSP
syntax supported by ProB is available for expressing the CSP controllers.

2.4. ProB tool support

ProB [8] is an animator and model-checker for the B-Method. A B machine can be model-
checked against its invariants, with counter-examples given when an invariant is violated. The
latest version of ProB also includes support for a model incorporating a B machine and a CSP
controller. The result is a combination of the two formalisms that is very similar in approach
to CSP‖B. Although there are some differences to the way CSP‖B combines CSP and B, it
is still a useful tool for developing, investigating, and animating CSP‖B models. In this paper
we regard the combination of CSP and B as supported by ProB as the same as CSP‖B.

In [11], the version of CSP supported by ProB was not CSPM and was therefore not FDR
compatible. The latest version of ProB supports CSPM , and therefore the controllers presented
in this paper are compatible with FDR analysis.

3. THE AMBA BUS

The Advanced Microcontroller Bus Architecture (AMBA) is an on-chip communication
standard for embedded micro controllers[3]. The standard is presented in an informal manner;
and is intended to assist engineers connecting components to, or designing components for, the
bus; and to support the modular development of complex systems on a chip. Freely available
implementations of the bus are available. The three protocols described in [3] are:

• Advanced High Performance Bus (AHB) is a system backbone bus, intended for the
connection of devices such as processors and on-chip memory caches.

• Advanced System Bus (ASB) is similar to AHB, but is not specifically targeted at high
performance systems.

• Advanced Peripheral Bus (APB) is designed for low power peripherals; and has a
correspondingly simpler functionality.

High level comparisons of these protocols can be found in [11]. In this paper we model AHB.
This is because, unlike APB, it is intended for on-chip components as a system backbone, is
therefore more fundamental to co-design systems; and is a more advanced protocol than ASB.

An AHB bus is essentially a central multiplexor and controller. Components connected to
the bus request transfers and the bus arbitrates to whom, when, and under what conditions
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MODELLING AND ANALYSIS OF THE AMBA BUS 5

the bus is granted. It is also responsible for multiplexing data, address, and control signals to
the correct destinations. A typical AHB system contains the following components:

• AHB master : A master initiates read and write operations by providing address and
control information. Only one master may actively use the bus at a time.

• AHB slave: A slave responds to a read or write operation within a given address-space.
The slave signals back to the master the success, failure, or waiting of the transfer.

• AHB arbiter : The arbiter ensures only one master at a time initiates data transfers.
Even though the arbitration protocol is fixed, any arbitration algorithm, such as highest
priority or fair access can be implemented depending on application requirements.

• AHB decoder : The decoder is used to decode the address of each transfer and provide
a select signal for the slave that is involved in the transfer. It may be thought of as
multiplexing shared lines of communication.

An AHB system consists of a collection of masters, slaves, a single arbiter, and a decoder
managing accesses to the communication interconnect lines. A component which has a master
interface may also have a slave interface.

A transaction starts with a master requesting the bus. When appropriate, the arbiter grants
a master control of the bus. The master then drives control and address information and
handshakes this with the destination slave, before driving the actual transaction data—which
may be from the master to the slave (a write transaction) or from a slave to a master (a read
transaction). The transaction completes either when the slave has transferred all of the data
that the master required, or when the arbiter has called it to a halt for some overriding reason.

3.1. An example AHB system

Figure 1 shows the structure of an AHB system. The master and slave are identified
by individual x tags—a more complex system would have more tagged lines unique to
given masters and slaves. The diagram shows the various signals communicating between
components. Where a line connects exactly two components (in this case because only one
master and slave have been included) a simple arrow is used; where a signal is common to more
than two components the lines fan out with a solid dot. Dashed lines are used in the diagram
where lines cross solely to avoid confusion. The signals hclk and hreset , which are common
to all components are listed in the box for each component. Arrows connecting components
in this diagram are implemented as synchronizations in the CSP. Care must be taken with
arrows parameterized with master and slave numbers though, as these are implemented as
interleavings unique to each master as per the previous comments. The model of the bus can
be seen to emerge from this diagram as a CSP process with an alphabet corresponding to the
interface of the arbiter and decoder, controlling a B machine which captures the internal state.

3.2. Related work

There has been a lot of interest in understanding, and verifying the AMBA bus. Some of this
interest is in the bus itself, and other interest is in general approaches to verifying System on
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6 A. A. MCEWAN AND S. SCHNEIDER

Figure 1. An example AHB system with one master and one slave

Chip architectures and implementations. For instance, [19] presents a platform incorporating
the AMBA bus and ARM7 processor. Standard behavioural properties are then verified, and
the resulting specification is used to develop specifications of other components for a given
System on Chip platform. Verification uses a number of tools, but is centered around the
HOL98 theorem prover. This work differs to ours in several respects. Firstly, it aims to provide
a platform for an entire System on Chip application, whereas we are concerned specifically
with the bus protocols. Secondly, there is no direct route to an implementation language, and
we are interested in relating our specifications directly to Handel-C code. Thirdly, it uses a
theorem prover to verify properties, and we are interested in automating our verification by
using a model-checker.

Other works include [2]. This work also uses HOL for verification purposes. The goals are
similar to ours in that it aims to build a formal model from the English language specification
document, and investigate whether or not the English language specification is unambiguous
and error-free. It has similar limitations in that it does not prove the system correct for
arbitrary numbers of components, only for specific instances, and similar successes in that it
models both control and data properties; however our work goes further in the attempt to
build a model from which an implementation may be (automatically) derived.

Commercial tools are available. For instance SolidAHB [7] checks to ensure that components
connected to the bus correctly adhere to the bus protocols. This aim is replicated in our work:
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MODELLING AND ANALYSIS OF THE AMBA BUS 7

we wish to construct a model against which component specifications may be checked for
compliance. The difference with our work is in the way the models are checked: SolidAHB tests
a component against a set of test vectors, whereas our model-checking approach exhaustively
tests the system for rogue states. When a rogue state is detected, a counter-example is given
and the model must be amended to remove the possibility. Other versions of the tool include
SolidPC, which is intended to check newer versions of the AHB protocol; and both Cadence
and Synopsis incorporate testing and checking tools in their product suites.

4. A MODEL OF THE AHB ARBITER

In this section, we develop the model of the bus. The B machine is given in Section 4.1, and
the CSP controller in Section 4.2. For each, the syntax used is as accepted by ProB. For the
B, this is valid input to the B-Toolkit, and for CSP, this is valid input to FDR[9].

4.1. A B machine describing internal state

Definition 1. Local variables (registers) and types

SETS BurstType = { SINGLE, WRAP4 }

CONSTANTS MaxMaster
PROPERTIES MaxMaster = 3

DEFINITIONS MASTER == 0..MaxMaster

VARIABLES XX,
YY,
ZZ,
YYlatched,
ZZlatched,
Burst,
Burstlatched,
BurstCount,
BurstCountlatched

INVARIANT XX <: MASTER &
YY <: MASTER &
ZZ <: MASTER &
YYlatched <: MASTER &
ZZlatched <: MASTER &
Burst : BurstType &
Burstlatched : BurstType &
BurstCount : 0..4 &
BurstCountlatched : 0..4 &
((BurstCountlatched > 1) => (Burst = Burstlatched))

Local state is modelled in terms of clocked, synchronous registers. That is, each register (or
variable) has a value on a given clock cycle which does not alter on that clock cycle. If written
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8 A. A. MCEWAN AND S. SCHNEIDER

to on a clock cycle, it takes on the new value only when the clock ticks. If it is not written
to, the value does not change on the next cycle. Every register updates simultaneously. The
invariant given in Definition 1 contains the type declarations for each local piece of state; and
a further conjunct that is used (in Section 5) for verification purposes.†

A master lodges a request by setting its request line high, and the arbiter chooses from all
masters requesting the bus on a given cycle. A request is current only when the request line is
high. Requests may be for either a locked, or an unlocked transaction. The set YY records all
the masters that have set their request line on the current cycle. In this clocked synchronous
model, this request is not stored in the arbiter until the clock ticks. YYlatched represents all
those masters who lodged a request for the bus on the previous cycle, but did not ask for the
bus to be locked. The set ZZ represents all those masters who lodged a request to lock the
bus, and ZZlatched represents those who lodged a request to lock the bus on the previous cycle
and also backed this up with a request for the bus. XX records which masters have not lodged
a request on the current cycle allowing us to ensure that multiple requests cannot be made;
while Burst and BurstCount relate to control for the current transaction.

Initially, no masters have lodged a request on the current cycle, and no masters could have
lodged a request on the previous cycle. YYlatched is non-empty: this corresponds to a default
master (0) always being assumed to have requested the bus. This feature captures the AMBA
requirement that there should always be a default master to allocate the bus to—even when
no requests have been made.

Definition 2. Initialisation

INITIALISATION XX := MASTER ||
YY := {} ||
ZZ := {} ||
YYlatched := {0} ||
ZZlatched := {} ||
BurstCount := 0 ||
BurstCountlatched := 1 ||
Burst := SINGLE ||
Burstlatched := SINGLE

When a master requests the bus (Request), it is recorded by moving its index from XX to
YY . It may request that a transaction is locked (LockedRequest): this is recorded by placing
its index in ZZ . Variables recording requests on the previous cycle remain unchanged.

Definition 3. Recording requests and locks for the bus

Request(xx) =
PRE xx : MASTER THEN

XX := XX - {xx} ||
YY := YY \/ {xx}

END;

†We restrict the transaction types to SINGLE and WRAP4 in this paper for two reasons: firstly to simplify
the presentation and secondly to reduce the state space required in the model-checker.
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MODELLING AND ANALYSIS OF THE AMBA BUS 9

LockedRequest(xx) =
PRE xx : MASTER THEN

ZZ := ZZ \/ {xx}
END;

YYlatched records all masters on the previous clock cycle who requested an unlocked
transaction, and ZZlatched records all of those requesting a locked transaction. When the
arbiter chooses which master is to be granted the bus on the next cycle, it non-deterministically
selects an element from the union of these two sets.

Definition 4. Choosing a master to which to grant the bus

xx <-- Choose =
BEGIN

xx :: YYlatched \/ ZZlatched
END;

A feature of the CSP‖B approach that is maintained in ProB is the requirement that state in
the B machine is not accessed directly—a query operation should be provided in the machine
instead. GetBurstCount is one such operation, and returns the number of ticks the current
transaction has remaining.

Definition 5. Testing for burst sizes

xx <-- GetBurstCount =
BEGIN

xx := BurstCountlatched
END;

When the type of burst is specified, a fixed length is assumed, and recorded by the operation
SetBurst . A variable length transaction—given by the type SINGLE—is assumed to be a
fixed length of one burst, and the controlling master is responsible for retaining the bus by
continually re-asserting the request.

Definition 6. Setting the burst type

SetBurst(xx) =
PRE xx : BurstType THEN

Burst := xx ||
IF xx = WRAP4 THEN BurstCount := 4
ELSIF xx = SINGLE THEN BurstCount := 1

END
END;

SetTrans(xx) = PRE xx : BurstType THEN skip END;

The operation tock is carried out exactly when the clock ticks, and implements the clocked
synchronous behaviour. When the clock ticks, a new cycle begins. No masters may have
requested the bus yet on this new cycle, so XX is maximal, and YY and ZZ are emptied.
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10 A. A. MCEWAN AND S. SCHNEIDER

YYlatched takes on the value that YY held, ignoring all those who had also set the lock line
high. It therefore holds all of those masters who requested an unlocked transaction on the
clock cycle just ending. ZZlatched takes on all those masters who set the lock line high and
requested the bus: the effect being that if a master erroneously set the lock line high but did
not request the bus, it will be ignored. In case there were no requests lodged, it is assumed
that the default master (0) must have lodged a request for an unlocked transaction. Finally,
the type of the bus on the current cycle is stored, along with a note about any new burst type
that may have been input.

Definition 7. Synchronous clocked updates

tock =
BEGIN

XX := MASTER ||
YY := {} ||
ZZ := {} ||
IF YY={} THEN YYlatched:= {0} ELSE YYlatched := YY - ZZ END ||
ZZlatched := YY /\ ZZ ||
IF BurstCount > 0 THEN BurstCount := BurstCount - 1 END ||
BurstCountlatched := BurstCount ||
Burstlatched := Burst

END;

4.2. The CSP controller

The process LOCKED TRANS listens on the request lines. When one goes high (req) it calls
a B operation that records this. The same is true of the lock line hlock . When the current burst
is in its last cycle (BC == 1) the highest priority master is chosen (Choose) and indicated
(hgrant); and when the current burst has finished, the incoming burst indicates its type (hburst
and htrans). The arbiter indicates it is ready for the incoming burst to begin (hready). When
the current burst is in any cycle other than the final tocks, these signals are ignored. The
model monitors, but does not interfere with the data and address lines. ‡

Definition 8.

LOCKED_TRANS =
GetBurstCount?BC -> (

BC==1 & Choose?Highest -> hgrant!Highest -> LOCKED_TRANS’(BC)
[]
BC != 1 & LOCKED_TRANS’(BC) )

LOCKED_TRANS’(BC) =
tock ->
GetBurstCount?BC -> (

BC==1 & Choose?Highest -> hgrant!Highest -> LOCKED_TRANS’(BC)
[]

‡We use the event tock to denote a clock tick as “tick” ‘(X) is commonly used in CSP to denote termination.
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MODELLING AND ANALYSIS OF THE AMBA BUS 11

BC != 1 & LOCKED_TRANS’(BC) )
[]
([] m : Masters @ req.m -> Request!m -> LOCKED_TRANS’(BC))
[]
([] m : Masters @ hlock.m -> LockedRequest!m -> LOCKED_TRANS’(BC))
[]
BC==0 & ( htrans?xx -> SetTrans!xx -> LOCKED_TRANS’(BC)

[]
hburst?xx -> SetBurst!xx -> LOCKED_TRANS’(BC)
[]
hready -> LOCKED_TRANS’(BC) )

[]
BC>=1 & ( htrans?xx-> LOCKED_TRANS’(BC)

[]
hburst?xx -> LOCKED_TRANS’(BC) )

[]
([] x : {hmaster,hmastlock,hrdata,haddr} @ x -> LOCKED_TRANS’(BC))

Definition 8 does not constrain how many times on each clock cycle an event may occur, but
the B machine assumes a master may only record one request per cycle. This constraint is
captured in the CSP by placing Definition 8 in parallel with processes describing this constraint
(Definition 9—although we omit the definitions of some constraints as they may be easily
reconstructed). This process insists that when a request is lodged, the clock must tick before
it may be lodged again; however the clock may tick an indeterminate number of times without
a request being lodged. Other constraints are that hready may go high at most once per cycle,
and that the arbiter must choose and grant the highest priority master on each cycle.

Writing the behavioural constraints in separate parallel processes in this way is a stylistic
choice: they could have been added in a more implicit manner. However, in adopting this style
the behavioural constraints are up-front: readily identifiable and easily changed should the
model require adaptation or further development.

Definition 9. Constraining requests

REG_REQ(x) = req.x -> tock -> REG_REQ(x) [] tock -> REG_REQ(x)
REG_REQS = [|{| tock |}|] x : Masters @ REG_REQ(x)

REG_CHOOSE =
Choose?Highest ->

hgrant!Highest ->
tock ->

(hburst?any -> SKIP ||| htrans?any -> SKIP);
tock -> REG_CHOOSE

[]
tock -> REG_CHOOSE
[]
hburst?any -> REG_CHOOSE
[]
htrans?any -> REG_CHOOSE
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12 A. A. MCEWAN AND S. SCHNEIDER

REGULATE =
( ( REG_HREADY [|{| tock |}|] REG_CHOOSE )

[|{| tock |}|]
( REG_REQS [|{| tock |}|] REG_LOCKS ) )

[|{| tock |}|]
( (REG_HMASTLOCK[|{| tock |}|]REG_HMASTER)

[|{| tock |}|]
REG_TRANSFER )

The main process is simply the unconstrained model of locked transactions, running in parallel
with the constraints that are appropriate for this model. In this paper, we omit unlocked
requests to simplify the model.

Definition 10. The main controller

ORIG_MAIN =
LOCKED_TRANS
[|{| hready,hgrant,req,hlock, hmastlock,hmaster,haddr,

hrdata, Choose,hgrant, hburst, htrans, tock |}|]
REGULATE

5. ANALYSIS OF THE MODEL

In this section, we discuss some analysis that can be done on this model using ProB, and
show how ProB can be used to check properties either of the B machine in isolation, or of the
combination with CSP. [11] demonstrates the use of ProB in developing the model.

Although ProB supports animation, much of its power derives from its ability to perform
model-checking, either on a stand-alone B machine, or on a CSP and B combination. Various
properties can be checked through model-checking. The property we focus on here is invariant
checking: that the machine can never reach a state in which its invariant is false. Properties
are expressed as clauses in the invariant, and then investigated through the model-checker.

As an example, we have considered the property that the burst variable should not be reset
while a burst is in progress. Recall that a burst value is set when a master obtains a lock
on the bus. It will then have control of the bus, and will not release it, until the burst has
completed. The value corresponding to the time remaining for the burst is tracked in the
variable BurstCount within the B machine: this is set at the same time as Burst .

We wish to express this property as a requirement that Burst should not change while an
existing burst is underway. To express this, we make use of the variables Burstlatched and
BurstCountlatched which track the values of Burst and BurstCount from the previous clock
cycle. The property is captured as the requirement that if the burst is not about to complete—
i.e. is not on the last clock tick—then a new burst type should not be set: Burst should be
the same as Burstlatched . Formally, this is given as ((BurstCountlatched > 1) ⇒ (Burst =
Burstlatched)) and incorporated into the invariant of the B machine.

Model-checking the stand-alone B machine with this assertion finds that the invariant is
not always true. A trace given by ProB which leads to the violation of the invariant is
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given in Example 1. This trace brings us to a state where BurstCountlatched = 2, and yet
Burst = INCR and Burstlatched = SINGLE are different, indicating that Burst has just
changed.

Example 1. A counter-example produced by ProB

〈 initialise machine,LockedRequest(2), LockedRequest(3),
SetBurst(SINGLE ), Request(2), tock , SetBurst(INCR)〉

2

This violation is expected: the AHB state machine in isolation will not ensure that the desired
assertion is met. It is able to accept updates to the burst type at any stage, and this capability
is what allows the invariant to be violated.

However, we expect the assertion to be true when the AHBstate machine is controlled by
the CSP controller: the aim is that the controller ensures that updates to the burst type
cannot occur in the middle of a burst. ProB is also able to model-check the AHBstate when
it is under the control of the CSP controller. In this case it turns out that ProB does not
find any invariant violations, confirming that the assertion is indeed valid for AHBstate in the
appropriate context. This is what we had aimed for in the combined design.

5.1. Checking traces properties

Definition 11. Observable good behaviours

CheckAllocation =
GetBurstCount.1 -> Choose?any -> hgrant!any -> tock -> CheckAllocation
[]
([] x : union({0},{2..16}) @ GetBurstCount.x -> tock -> CheckAllocation)

NEW_MAIN = MAIN [|{| GetBurstCount,Choose, hgrant, tock |}|] CheckAllocation

Other properties of the model are worth checking: in particular, properties of observable
behaviours. For instance, we would expect that the bus will always allocate a new master
on the penultimate cycle of a current transaction. A property such as this is not immediately
expressible in terms of a state invariant in the B machine, but can be expressed as a predicate
over the traces of the CSP controller. Definition 11 presents a process that contains only the
good behaviour that we would expect: that an hgrant may be observed if, and only if, the
current burst count is 1.

FDR can be used to check that the controller will only engage in these good behaviours
by performing a refinement check such as that in Definition 12, which is shown to hold. The
ability to check this offers a significant benefit over previous versions of ProB, which were not
CSPM compatible.

Definition 12. A refinement check

MostEvents = {| hready,hmaster,hmastlock,hrdata,haddr,req,Request,hlock,
LockedRequest,hburst,SetBurst,htrans,SetTrans|}

assert CheckAllocation [T= ORIG_MAIN \ MostEvents
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14 A. A. MCEWAN AND S. SCHNEIDER

However, ProB can also check a simple traces property such as this. Using temporal logic,
one can check to see when an operation is enabled in the B machine. However, here, we are
concernced with an event in the CSP controller. We therefore create a dummy operation in
the B machine, given in Definition 13. As the B machine and the CSP controller syncronise on
common events, this operation will only be enabled when the CSP controller is not refusing
it.

Definition 13. A dummy operation

hgrant(mm) = PRE mm : MASTER THEN skip END

Definition 14. A temporal logic formula

G( e(hgrant) => {BurstCountlatched=1})

The CSP traces specification stated that the bus would only be re-allocated when in the
penultimate cycle of a transaction—that it can only occur between returning the result that
BurstCountlatched == 1 and the clock next ticking. The formula given in Definition 14 states
that if the B operation hgrant is enabled, then the value of BurstCountlatched must be 1. The
relationship between the CSP controller and the B machine ensures that the model will refuse
hgrant in any state where either the controller or the B machine refuse it. As it is always
enabled in the B machine, a refusal can only come from the CSP. This LTL formula therefore
captures the same predicate on the model as that expressed in the FDR refinement check: that
the model will only ever not be refusing hgrant when BurstCountlatched == 1. This formula
can be checked in ProB, and is found to be true of the combination of CSP controller and B
machine.

6. COMPARISON WITH PREVIOUS RESULTS

In [11], an AHB model was described with an invariant similar to that given in this paper.
However, our recent work has shown that the invariant is not true of the evolution of the model
presented in this paper. When the search space checked by ProB was expanded to several
million states, a counter-example was produced that proved the controller could permit the
transaction type to change while the bus was engaged in a current transaction. If the proposed
invariant had held, this would not have been the case.

Several lessons can be learned from this. The most important concerns the non-exhaustive
nature of model-checking in ProB. When launching a temporal model-check, the user is
required to state the number of nodes that the model-checker should visit. A positive result
only guarantees that the invariant held for those nodes visited. This is in contrast to a model-
checker such as FDR, that performs an exhaustive search of all states. Currently, we know of
no technique that allows us, in general, to calculate a threshold of states for a given model in
ProB necessary to prove a given invariant holds. If anything other than an exhaustive search
is to be carried out, a threshold, with a supporting argument, would be necessary to give
confidence in the result. The only reliable current technique of which we are aware is to ensure
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that the model-checker is given a limit of the number of states to visit that exceeds the number
of states in the model—and this can only be achieved by trial and error.

In addition to this, the incompatibility with CSPM did not allow us to investigate the
behavioural (traces based) properties of the previous model using FDR. The ability to use
FDR to reason about the CSP controller, in addition to using ProB to reason about state
invariants in conjunction with the CSP controller, is a very powerful feature. For instance, we
were previously unable to prove the traces property discussed in Section 5 using ProB alone.

7. CONCLUSION AND DISCUSSION

In this paper we presented a case study where we modelled an existing on-chip bus protocol
using a combination of CSP and B, and performed some analysis of the model using ProB
and FDR. A driving aim of the paper was to investigate how CSP‖B, and ProB, may be
used in a typical co-design development and verification. An interesting aspect of this case
study is that it models an existing implementation, with the aim of providing a platform for
formal analysis against components with which it is to be used. Thus in places, the model
follows closely the behaviour described in the specification document, rather than some more
abstract mathematical model. This has both benefits and drawbacks. Benefits include an easier
discussion about the correctness of the model relative to the rather informal specification; while
drawbacks include the constraints that this places on the construction of the model.

The AMBA bus is commonly used in co-design systems. Components on the bus may be
processors, memory, or bespoke components. In building a model of the bus interacting via a
CSP interface with bus components, we have found the combination of CSP and B sufficient to
model signals, communications, and registers. The model in this paper is restricted to clocked
synchronous hardware; an item of future work is to investigate the combination of CSP and B
for asynchronous co-design systems.

We have attempted to remain faithful to the AMBA specification in the construction of our
model, but as yet have not cross-checked it with an implementation. In fact, we believe that
in doing so, we will discover behaviours that need revision. An item of future work would be
to check this model relative to an existing implementation that is trusted and believed to be
correct. Another item of future work would be to develop a master (or slave) component using
CSP‖B and ProB, verify the correctness with respect to our model, derive an implementation
and connect it to an implementation of the AMBA bus. Although subsequent testing of this
implementation would not guarantee the correctness of the model, it would provide enough
feedback to guide its evolution.

Another aim of this paper was to investigate the usage of ProB in a modeling and
development exercise such as this, and to build on our existing work. In summary the existence
of tool support proved useful in the development and prototyping phase although there are
limitations in what can be achieved; and care must be taken with the size of models put
through the model-checker.

One of the most interesting results to come out of ProB usage concerns the verification
techniques that may be used. ProB produces counter-examples when a machine invariant is
violated. Using machine invariants to capture safety properties is well understood in (amongst
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16 A. A. MCEWAN AND S. SCHNEIDER

others) the B community; using invariants over traces to capture safety properties proved
by refinement checking is well understood in the CSP community. In this paper however, we
augmented the B machine with extra information, designed to capture extra interactions with
the CSP, such that the machine invariant could capture safe states. An uncontrolled B machine
was shown to violate the invariant, whilst the B machine in parallel with the CSP controller
was shown to respect the safety invariant. Although this example was simple, the important
detail is the technique for lifting information into B. Further understanding and evolution of
this technique of capturing traces invariants as properties of the B machine is an important
item that we leave for future work; however the ability to use FDR to reason about trace
invariants of the controller offers significant promise here.
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