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SUMMARY

The problem of Grid-middleware interoperability is addressed by the design and analysis of a feature-
rich, standards-based framework for all-to-all cross-middleware job submission. The service implements a
decentralized brokering policy, striving to optimize the performance for an individual user by minimizing
the response time for each job submitted. The architectures designed with focus on generality and
flexibility and builds on extensive use, internally and extenally, of (proposed) Web and Grid services
standards such as WSRF, JSDL, GLUE and WS-Agreement. The estnal use provides the foundation
for easy integration into specific middlewares, which is pedbrmed by the design of a small set of plugins for
each middleware. Currently, plugins are provided for integration into Globus Toolkit 4, NorduGrid/ARC,
and LCG2. The internal use of standard formats facilitates cistomization of the job submission service
by replacement of custom components for performing specifievell-defined tasks. Most importantly, this
enables the easy replacement of resource selection algbiis by algorithms that addresses the specific needs
for a particular Grid environment and job submission scenaiio. The algorithms in our implementation
perform resource selection based on performance predictits, and provide support for advance reservations
as well as coallocation of multiple resources for simultangus job start. The performance of the system is
analyzed with focus on overall job service throughput (up toover 250 jobs/minute) and individual job
response time (down to under one second).
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1. INTRODUCTION

Following the recent development of Grid infrastructurkattfacilitates interoperability between
heterogeneous resources, there is a somewhat contrgdiottsequence that a new level of portability
problems have been introduced, namely between differeidt i@iddlewares. Although the reasons
are obvious, expected, and almost impossible to circumg@ntthe task of defining appropriate
standards, models, and best practices must be precededibydxearch and real-world experiments),
it makes development of portable Grid applications harcpractice, the usage of largely different
tools and interfaces for basic job management in differadtitawares forces application developers
to implement custom solutions for each and every middlewByecontinued or increased focus on
standardization issues, we expect this problem to decmasdime, but we also foresee that it will
take long time before the problem can be considered solivatall. Hence, we see both a need to more
rapidly improve the conditions for Grid application dev@ieent, and for gaining further experience in
building general and standards-based Grid computing.tools

We argue that the conditions for developing portable Grigliaptions can be drastically improved
already by providing unified interfaces and robust impletagons for a small set of basic job
management tools. As a contribution to such a set of job mamagt tools, we here focus on the
design, implementation, and analysis of a feature-ridmdards-based tool for resource brokering
and cross-middleware job submission. This job submisssovice, designed with focus on generality
and flexibility, relies heavily on emerging Grid and Web seeg standards both for the various formats
used to specify resources, jobs, requirements, agreepeéntand for the implementation of the service
itself.

The service is designed for all-to-all cross-middlewate gobmission, which means that it takes
the input format of any supported middleware and (indepethigl®f which input format) submits
the jobs to resources running any supported middlewarere@Gily supported middlewares are the
Globus Toolkit 4 (GT4) [25], NorduGrid/ARC [14], and LCG2Q]L The service itself is designed in
compliance with the Web Services Resource Framework (WERFand its implementation is based
on GT4.

The architecture of this service includes a set of generapoments, each designed to perform one
specific task. The inter-component interaction is supjaldsiethe use of (proposed) standard formats,
which increases the flexibility by facilitating the replacent of individual components. The service
can be integrated for use with a specific middleware by thdempntation of a few minor custom
components at well-defined integration points.

The service implements a decentralized brokering polioykimg on behalf of the user [34, 17]. The
resource selection algorithms strive to optimize the pentmce for an individual user by minimizing
the response time for each job submitted. The selectionsedan resource information as opposed
to resource control, and this is done regardless of the ibgathe overall (Grid-wide) scheduling
performance. The resource selection algorithms includ®peing time predictions for file transfers
and a benchmarks-based procedure for predicting the ézadime on each resource considered.
For enhanced quality-of-service, the broker also inclugesures for performing advance resource
reservations and simultaneous coallocation of multipdeueces.

The job submission service presented here represents Hie/dirsion of a second generation job
submission tool. For resource allocation algorithms, itlpa&xtends on the algorithms for single job
submissions in the NorduGrid/ARC-specific resource brpkesented in [17]. With the development
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of the second generation tools, a transition was made taceebased architectures. Early work on
this WSRF-based job submission tool is presented in [16§ @irrent contribution completes that
work and extends it in a number of ways. Hence, one major reguthe current article is the
completion of the WSRF-based tool into a production qugbty submission software. Extensions
and other new major contributions include algorithms arftiveye for simultaneous coallocation of
multiple resources, support for interoperability with tiple Grid middlewares, as well as a thorough
performance analysis of the system. Moreover, this cautioh clearly illustrates why and how to
use a number of different (proposed) Grid standards in jpeethen developing an advanced job
submission service.

The outline of the rest of the paper is the following. The allesystem architecture is presented in
Section 2. The resource brokering algorithms used in thidémentation are presented in Section 3,
including some further discussions on the intricate issoesesource coallocation and advance
reservations. Section 4 illustrates how to design the customponents required to allow job
submission to and from additional middlewares, by sumnragithe steps required for integration
with GT4, LCG2, and NorduGrid/ARC. The performance of thetey is analyzed in Section 5,
followed by a brief presentation of related work in Sectican® some concluding remarks in Section 7.
Information about how to retrieve the software presentejilvisn in Section 8.

2. A STANDARDS-BASED GRID BROKERING ARCHITECTURE

The overall architecture of the job submission and resobro&ering service is developed with
focus on flexibility and generality at multiple levels. Therdgce itself is made independent of any
particular middleware and uses (proposed) standard ferimatll interactions with clients, resources,
and information systems. It is composed of seven comportleatperform well-defined tasks in the
overall job submission process. Also in the interactiomeen these components, (proposed) standard
formats are used whenever available and appropriate. Timsiple increases the overall flexibility
and facilitates replacement of individual components bgrahtive implementations. Moreover, some
of these components are themselves designed in a similarengaymaking it possible to replace the
resource selection algorithm inside the component thdbpas the brokering task.

The service is implemented using the GT4 (Java WS Core) Weliceedevelopment framework
[20]. This framework combines WSRF primitives with the AXMeb service engine [7] in order to
facilitate the development of OGSA-compliant Web serviéesthe service itself is made independent
of any particular middleware, all middleware-specific ssware handled by a few, well-defined,
plugins. Currently such plugins are available for the GTR®Gand LCG2 middlewares. A typical
set of middleware plugins constitutes less than ten pemfktite general code. Descriptions of the
middleware-specific components, including a short disonsabout their differences, are found in
Section 4.

The service supports job submission to and from any middiefest which plugins are implemented,
including cross-middleware job submission, as illusttate Figure 1. The figure illustrates that job
requests formulated in any of the job description languaf&sT4, ARC, and LCG2 can be sent to the
job submission service (denoted JSS in the figure), whichdégpatch the job to a resource that runs
any (supported) middleware.
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Figure 1. Logical view of interoperability in the job subrsiisn service.

ARC Resource

LCG2 Resource

In addition to the main job submission and resource brokgesarvice, the framework includes user
clients, and an advance reservation componentto be ediati the Grid resources. Figure 2 illustrates
all component interactions, and all components are brigéigented in sections 2.1-2.3.

2.1. Job submission clients

The client module contains two user clients for standardjdimission and for submission of jobs that
require coallocation, respectively. The module also idekia plugin for job description translations.
An implementation of this plugin converts a job descriptfioom the native format specified as input

by the user to the Job Submission Description Language (JfPla proposed job description format

standard developed by the Open Grid Forum (OGF) [45]. Tlemtdican also be configured to transfer
job input files stored locally at the client host. This filegitey is required if the local files cannot be

accessed directly by the job submission service or the @sdurce.

2.2. Job submission service

The clients send the translated job descriptions toJtiteSubmissionServicehich exposes a Web
service interface to the functionality offered by the bmokeamely submission of a single job and
coallocation of a set of jobs. The JobSubmissionServiceestinformation about submitted (or
coallocated) jobs as WS-Resources, with state informatiqosed as WS-ResourceProperties. This
mechanism for storing state information in Web Servicepéxgied by the WSRF [21]. Before storing
the state information, the JobSubmissionService forwiamsming requests either to tisaibmitteror
theCoallocator, depending on the type of the request.

The Submitter (or the Coallocator) coordinates the job sabion process, a task which includes to
discover the available Grid resources, gather detaileaures information, select the most suitable
resource(s) for the job, and to send the job request to theetsel resource. The main difference
between the two components is that the Coallocator perfarmsre complex resource selection and
reservation procedure in order to simultaneously allooatétiple resources. The algorithms used by
these two components are presented in sections 3.1 an@&8p2atively.
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Figure 2. Architecture overview showing components, hastd information flow. The boxes show the modules
and the dashed lines denote the different hosts.

The resource discovery and information gathering is hahble the InformationFinder Due to
differences in the both communication protocols and Gridrimation formats used by the various
Grid middlewares, the InformationFinder consists of thpeets each having a middleware-specific
plugin. TheResourceFindecontacts a higher level index service to retrieve a list cilable Grid
resources. Its plugin determines which protocol to use ahat\guery to send to the index service.
ThelInformationFetchequeries a single Grid resource for detailed informatiochsas hardware and
software configuration and current load. TihéormationConverteconverts the information retrieved
from a Grid resource from the native information format te trmat specified by the Grid Laboratory
Uniform Environment (GLUE) [3]. The GLUE format defines aridrmation model for describing
computational and storage resources in a Grid. To impray@énformance of the InformationFinder,
a threadpool is used for each of the three tasks describe ainother performance improvement is
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that retrieved resource information is cached for a shaibgef time, which significantly decreases
the number of information queries sent to Grid resourcemdureavy broker load.

The Broker module initially validates incoming job requests, to erstirat a request includes all
attributes required, such as what executable to run. Latéiheé submission process, the Broker is
used by the Submitter/Coallocator to rank the resourcesdidny the InformationFinder. The Broker
first filters out resources that fail to fulfill the hardwaredasoftware requirements specified in the
job description, then it ranks the remaining resources dffteir suitability to execute the job. The
resource ranking algorithms may include requesting advaeservations using thieeserverwhich
can create, modify, cancel and confirm advance reservatisimg a protocol based on the WS-
Agreement standard [4]. The details of the advance reservatotocol and the resource ranking
algorithms are given in sections 2.3 and 3.1, respectiVéhen the ranking is done, the Broker returns
a list of the approved resources, ordered by their rank.

The Broker may also use thgataManagerduring resource ranking, a module that performs data
management tasks related to job submission. This modulida® the Broker with estimates of
file transfer times, which are predicted from the size andtioo of each job input and output file.
Alternatively, if the Grid middleware supports data reption and/or network performance predictions,
the DataManager can use these capabilities to providerbedtenates of file transfer time. The
DataManager can also stage job input files, unless this sakkndled either by the client or by the
Grid middleware.

The last module used by the Submitter (or Coallocator) isDipatcher which sends the job
request to the selected resource. As part of this proces®iipatcher translates the job description
from JSDL to a format understood by the Grid middleware ofréurce and selects the appropriate
mechanism to use to contact the resource. A plugin struetiales the Dispatcher to perform these
tasks without any a prior knowledge of the middleware usethbyesource.

2.3. Broker components deployed at the Grid resource

As one part of the job submission framework, we have made pfemmentation of the WS-Agreement
specification [4], to be used for negotiating and agreeingesource reservation contracts. The module
includes an implementation of the AgreementFactory andAifpeeement porttypes. However, the
Agreement state porttype (which is also part of the WS-Agrest specification) has been left out
from the implementation since monitoring the state is nointérest for this type of agreements. It
should be remarked that the WS-Agreement implementatsatf iis completely independent of the
service domain (resource reservations) for which it is tased. We refer to [16] for further details.
The WS-Agreement services are the only components thattodssl installed on the Grid resource.
They enable a client, e.g., the Reserver in the job subnnissaule, to request an advance reservation
for a job at the resource.

It should be stressed that it is a priori not known if a resgéovecan be created on a resource at a
given time. The reservation request sent by the client té&\tfreementFactory specifies the number of
requested CPUs, the requested reservation duration arehthest and latest acceptable reservation
start times, the latter two forming a window of acceptabéetdimes. Three replies are possible:

1. <gr ant ed> - request granted.
2. <r ej ect ed> - request rejected and never possible.
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3. <r ej ect ed, T_next > - request rejected, but may be granted at a later fimeext .

Reply number 1 confirms that a reservation has been suctigssfeated according to the request.

Reply number 2 typically indicates that the requested nesodoes not meet the requirements of the
request, or that the resource rejects the request due toypelasons. Reply number 3 indicates a
failure, but suggests that a new reservation request,icénd the rejected one but specifying a later
reservation start timel(next or later) may be granted.

The client can include an optional flafiexible in the reservation request to specify that the local
scheduler may alter the reservation start time within tlaet sime window after the reservation is
created. By allowing this, the local scheduler is given ddal possibilities to improve the resource
utilization and somewhat compensate for the performannalpeimposed by the usage of advance
reservations [19].

Two plugins are required for the advance reservations. ©fwe interacting with the local scheduler,
currently implemented for the Maui scheduler [40], the othree is for admission control of a job that
requests to make use of a previously created advance réearva

Notably, the job submission service can also handle ressuhat do not have the WS-Agreement
services installed, but then, of course, without poss$ibiido make use of the advance reservation
feature.

2.4. The optional job preferences document

In addition to the job descriptions given in the native fotmmfany supported middleware, the job
submission framework allows for an optional job preferendecument. For example, this document
can be used to choose between different brokering objectilee user can, e.g., choose between
optimizing for an early job start or an early job completiand can also specify absolute or relative
times for the earliest or latest acceptable job start.

The job preferences document may also include informati@t tan improve the brokering
decisions, e.g., specification of benchmarks relevant fer &pplication. By specifying such
benchmarks and an expected job completion time on a resaiticea specified benchmark result,
the resource broker has better support for selecting thé appsopriate resources. Notably, the results
do not necessarily have to be for standard computer benélsraty. On the contrary, performance
results for real application codes for some test problenftédo recommend.

Just as it is optional to provide the document itself, algpagters in the document are optional.

3. ALGORITHMS FOR RESOURCE (CO)ALLOCATION

The general problem of resource brokering is rather compaled the design of algorithms is highly
dependent on the scheduling objectives, the type of jobsidered, the users’ understanding of the
application needs, etc. For a general introduction to tiessees, see e.g., [61, 49].

In order to facilitate the use of custom brokering algorighthe job submission service architecture
presented in Section 2 is designed for easy maodification placement of brokering algorithms.
The algorithms provided for single job submission and fdbmission of jobs requiring resource
coallocation are presented below in sections 3.1 and 3pectively.
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3.1. Resource ranking algorithms

The algorithm for submitting single jobs, implemented ia Bubmitter module, strives to identify the
resource that best fulfills the brokering objective sele@dig the user. The two alternative brokering
objectives are to find the resource that gives the earlibstganpletion time or the one the gives the
earliest job start time.

In order to identify the most suitable resource, the Brokakes a prediction of either thi®tal Time
to Delivery(TTD) or theTotal Time to Star{TTS), respectively, using two differe®electorsThese
predictions are based on time estimation algorithms oaifjirpresented in [17]. In order to estimate
the TTS, the broker needs to predict the time that will be ireglfor staging of the executable and
the input files, and the time that will be spent on batch queaiéinvg, on all resources considered. In
addition, the estimation of the TTD also requires preditiof the job execution time and of the time
required for staging the output files. The time predictiomsthese four tasks are performed by four
differentPredictors with basic functionality as follows.

Time predictions for file stagindf the DataManager provides support for predicting network
bandwidth, for resolving physical locations of replicafibes, or for determining file sizes (see Section
2), these features are used by the stage in predictor fonatitig file transfer times. If no such support
is available, e.g., depending on the information providedhe Grid middleware used, the predictor
makes use of the file transfer times optionally provided lewtber. Notably, the time estimate for stage
in is important not only for predicting the TTD but also forardinating the start of the execution with
the arrival of the executable and the input files if an advaeservation is performed. The stage out
predictor only considers the optional input provided bytker, as it without user input is impossible
to predict the size of the job output and hence also the staginee.

Time predictions for batch queue waitinfhe most accurate prediction of the batch queue waiting
time is obtained by using advance reservations, which givgsaranteed job start time. If the resource
does not support advance reservations or the user choosé&s activate this feature, less accurate
estimates are made from the information provided by theuresoabout current load. This coarse
estimation does however not take into account the actuadsdimg algorithm used by the batch
system.

Time predictions for program executiofihe prediction of the time required for the actual job
execution is performed through a benchmark-based estimdliat takes into account both the
performance of the resources and the characteristics apblecation. This estimation requires that the
user provides the following information for one or more bemarks with performance characteristics
similar to that of the application: the name of the benchmtr& benchmark performance for some
system; and the application’s (predicted) execution timehat system. Using this information, the
application’s execution time is estimated on other resesii@ssuming that the performance of the
application is proportional to that of the benchmark. If tipié benchmarks are specified by the user,
this procedure is repeated for all benchmarks and then #r@age result is used as a prediction of the
execution time. In order to handle situations where ressido not provide all requested benchmarks,
the prediction algorithm includes a customizable procedar making conservative predictions. We
remark that a benchmark not at all need to be formal or wedlkdished. It may equally well be a
performance number of the actual application code for samégfined problem. The requirement for
an (estimate of the) application execution time shouldiemnore be easy to fulfill as users typically
submit the same application multiple times.
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Notably, by redefining the selectors and/or predictors yatdfining new ones, the customization of
the brokering algorithm is rather straightforward.

3.2. Coallocation

In order to start a Grid job that simultaneously needs a numtre@sources, a coallocation mechanism
is required to make coordinated resource allocations. Tdwrithm used for performing coallocation
is implemented in the Coallocator module (see Section 2jchvimakes use of the same underlying
components as the Selector that allocates resources fpe §irbs.

The main algorithm for identifying and allocating suitabésources for a simultaneous job start is
described in Section 3.2.3. The presentation of the ovahadirithm is preceded by a more precise
definition of the coallocation problem in Section 3.2.1, amdoverview of the main ideas used in the
algorithm in Section 3.2.2. In Section 3.2.4, the algoriikriflustrated by a coallocation scenario that
highlights some of its key features. This is followed by acd&sion of some of the more intricate parts
of the algorithm.

3.2.1. Problem definition

The input to the coallocation problem is the following:

1. Asetofn > 2 resource requests (job requests): Jebs/1, Ja, ..., Jn}-
2. A set ofn resource sets, where each of theets include the resources that are identified to have
the capabilities required for one of the jobs:
Resources: {Ry, Rz, ..., R,} whereRy = {Ry1, Ri2, ..., Rim, }, Re = {Ra21, Ra2, ... Rom, }»
...Rn = {Rn1,Rn2,...,Rnum, } are the resources that can be used hy.Js,...,J,,
respectively. Notably, the same resource may appear in thareonek,.

A coallocated job requires a matchifgy — Rij,,Jo — Raj,, ..., Jn — Rnj, },Ji € JODSR;;, €
R;,1 < i < n,1 < j < m,; such that/; has a reservation at resourg;,, with all reservations
starting simultaneously.

The jobs and resources forming the input to the coallocatioblem can be expressed as a bipartite
graph as illustrated by Figure 3. An edge between a job anglauree in the graph represents that the
resource has the capabilities required to execute the job.

The problem of pairing jobs with resources (by reservingrdsources for the jobs) can be viewed
as a bipartite graph matching problem. A matched edge inridughgof jobs and resources represents
that a reservation for the job is created at the resourcéisrcontext, a coallocated job is a complete
matching of the jobs to some set of resources. We note thaé sesources can execute (or hold
reservations for) multiple jobs concurrently, and can ledmematched with more than one job.

3.2.2. Algorithm overview

In overview, the coallocation algorithm strives to find therlest common start time for all jobs
within the job start windowT, T;], whereT, andT; are the earliest and latest job start time the user
accepts. The earliest common job start time is achievedégrimation a set of simultaneously starting
reservations, one for each job. For practical reasons, @wsbat relaxed notion of simultaneous job
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Figure 3. Subjobs and their possible resources viewed gsaatité graph.

start is used, reducing this constraint to that all jobs rstast within the same (short) period of time,
expressed as a short time wind@w; ¢;].

The algorithm operates in iterations. Before the first tiera the|t., ;] window is aligned at the
start of the largef7,, T;] window. In each iteration, reservations starting simuwétausly, i.e., within
the start time windowt., ¢;], are created for each job. Alternatively, previously ceeateservations
are modified (moved to a new start time window), or reserwatiare exchanged between jobs, all to
ensure that each job gets a reservation starting withiftth&] window. The exchange of reservations
is performed to improve the matching when a critical reseusclready reserved for a job that may
use alternative resources. If no reservation can be créatestdme job during thé., t;] window, the
window is moved to a later time and the algorithm starts a nexation. This sliding-window process
is repeated with additional iterations either until each f@s a reservation (success) or thet;]
window has been moved too far ahdexceedd; (failure).

3.2.3. Coallocation algorithms

The main coallocation algorithm is given in Algorithm 1 arme tprocedure for updating augmenting
paths is described in Algorithm 2. Further motivation foe tmost important steps of the algorithms
and a discussion of their more intricate details are foursdation 3.3.

The input to Algorithm 1 are the set of jobs and the sets ofurss capable of executing the jobs
as defined in Section 3.2.1. Additional inputs are [thie 7;] window specifying the acceptable start
time interval and;, the maximum allowed job start time deviation.

In Step 1 of the algorithm, the currently considered staretivindow([t., ¢;] is set to the start of the
acceptable start time interval. THis, ¢;] window is moved in each iteration of the algorithm, but its
size is always. The main loop, starting at Step 2 is repeated until eithgobs have a reservation
within the [t., ¢;] window or the[t., ;] window is moved outsidéT., 7;]. In Step 3 of the algorithm,
an initially empty setA is created for jobs for which it is neither possible to cremteew reservation
starting within[t., ¢;], nor to modify an existing reservation to start within thimdow. Step 4 of the
algorithm definedhes; Where to move thét., ;] window if an additional iteration of the main loop
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Algorithm 1 Coallocation

Require: A set ofn > 2 resource requests (job requests) Jebs/1, Ja, ..., J,}.

Require: A set of resources with the capabilities required to fulfilese requests. Resources
{Rl, Ry, ..., Rn} whereR; = {Rn, Rio, ..., R1m1}a Ry = {Rgl, Roo, .. .R2m2}, ...R, =
{Rn1, Rn2, ..., Rnm, } are the resources that can be usedhyls, . . ., J,, respectively.

Require: A start time window7,, 7;] specifying earliest and latest acceptable job start.

Require: A maximum allowed start time deviatian

Ensure: A setn of simultaneously starting reservations, one for eachijalobs.

1. Lett, «— T, andt; « T, + €.

2: repeat
3 Let A «— ( be the set of jobs for which path augmentation should be paed.
4: Let Thest<— oo be the earliest time later than,, ¢;] that some reservation can start.
5 for each johJ; € Jobs,1 < i < n, that does not have a reservation starting withint;] do
6: if J already has a reservation starting outside (befere);] then
7 Modify the existing reservation to start withjty, ¢;].
8: if Step 7 fails, or ifJ; had no reservatiothen
9: Create a new reservation starting witlip, ¢;] for J; at somer € R;.
10: if Step 9 failshen
11: Add J; to A.
12: Let Thest — min{Thes; the earliesfT_next value returned from Step}9
13: if each jobJ € A may be augmentetthen
14 for each jobJ € A do
15: Find an augmenting path starting at/ using breadth-first search.
16: Update reservations along the p&tusing Algorithm 2.
17: if Step 16 failghen
18: Let Thest — min{Thes; the earliesf_next value returned from Step }6
19: if some job inJ has no reservation starting withjif, ¢;] then
20: Lett; « Thestandt, «— (t; — ¢).
21: if t. > T; then
22: The algorithm fails.

23: until all jobs have a reservation starting within, ¢;
24: Return current set of reservations.

is required. To ensure termination of the main loop in theeaglsen all reservation requests fail, and
no reservation ever will be possible (reply number 2 in ttsereation protocol)ThestiS set to infinity.
This variable is assigned a finite value in steps 12 and 18yifaited reservation request returns a next
possible start time (reply number 3 in the reservation maijo

Step 5 is performed for all jobs that have no reservationiwithe [t., ¢;] window. This applies to
all jobs unless the window has been moved less thaimce the last iteration, in which case some
previously created reservations still may be valid. In Sefi is tested whether the job already has
a reservation from a previous iteration, that starts totydar the currentt., ¢;] window. If so, this
reservation is modified in Step 7 by requesting a later stag {within the new(t., ¢;] window). The
condition in Step 8 ensures that Step 9 is only executed bsrfjoat have no reservation, either because
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no reservation could be created in the previous iteratioth@falgorithm or because the job has lost
its reservation due to a reservation modification failuneStep 9, a new reservation is created for the
job by first trying to reserve the resource highest rankedbybroker, and upon failure retry with the
second highest ranked resource etc., until either a rasmmia created or all requests have failed. In
case one or more reservation requests in Step 9 receivermeplper 3 (<r ej ect ed, T_next >")

the earliest of thes€_next values is stored for usage in Step 12.

Step 10 tests if all reservation requests have failed foba/jpand if so,J; is included inA in Step
11 to be considered for path augmentation later. Step 12tepfias;with the earliesiT_next value
returned during Step 9, if such a value exists. In Step 18 tésted whether augmentation can be used
for each job inA. This test is done for a jold by ensuring that some other job holds a reservation
for a resource thaf can use. If no such other joB exists, there is no reservation to modify to suit job
J and no augmenting path can hence be found. As the goal ofgbethim is to match all jobs, Step
13 ensures that all jobs iA are eligible for augmentation. It is of no use if the curremitching can
be extended with some, but not all, unmatched jobs.

If augmentation techniques can be used according to thenedtep 13, the loop in Step 14 is
executed for each job idl. In Step 15, an augmenting path of alternating unmatchechzatdhed
edges, starting and ending in an unmatched edge, is found betadth-first search. In Step 16, the
reservations (matchings) along this augmented path argegdsing Algorithm 2. The path updating
algorithm includes both modifications of existing reseioms and creation of new ones. If any of these
operations fail and return reservation request reply nurpthe earliesT_next value is, analogous
with Step 9, stored for usage in Step 18. Step 17 tests if thatepalgorithm failed, and if so, Step
18 update§ies: Step 19 tests whether the algorithm will terminate, or ibtwer iteration is required.
In the latter case, thg,,t;] window is updated in Step 20. In order to move the window de las
possibleg; is set toThestandt,. is updated accordingly. Step 21 ensures thaftthe;] window is still
within the [T, T;] window. Unless this is the case, the algorithm fails (Step@fce the loop in Step 2
terminates without failure, the coallocation algorithnsigcessful and the current set of reservations
is returned (Step 24).

Algorithm 2 Update augmenting path
Require: An augmenting pat® = {J1, Ry, ..., Jn, Rn},n > 2 whereR; is reserved forJ; ;1.
Ensure: An augmenting patt® = {J1, R1,..., Jn, Rn},n > 2 whereR; is reserved fot;.

1: Create a new reservation fdy, at R,,.

2: if Step 1 failsthen

3 The algorithm fails.
: for i — (n — 1) downto 1do
Modify the existing reservation at resourBgfor job .J;;; to suit job.J;.
if the modification in Step 5 failthen

The algorithm fails.

N o gk

Algorithm 2 is used by Step 16 of Algorithm 1 to modify the reggions along an augmented path.
In Step 1 of Algorithm 2, a new reservation is created for jb as the existing reservation for this
job will be used by jobJ,,_;. If the creation of the new reservation fails, it is of no usenodify
the existing reservations, and the algorithm fails (StepT8k loop in Step 4 is performed for all
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(a) After the first iteration. (b) After the second iteration.

J2 J3 Ji

(c) After the third and final iteration.

Figure 4. Example execution of the coallocation algorithm.

previously existing reservations. In Step 5, the resesuatiirrently created for jold; ., is modified to
suit the requirements of jols;. This modification typically includes changing the numbgraserved
CPUs and the duration of the reservation, but the reservatart time is never changed. Step 6 tests
if the modification fails. If so, it is not meaningful to contie the execution and Step 7 terminates the
algorithm (with failure).

3.2.4. Example execution

The following example illustrates the execution of the tmdtion algorithm. Let the input to the
algorithm be Jobs= {Ji, J2, J3} and Resources {{R1, R3}, {R2, R4}, {R3, R4}}. This scenario
corresponds to the bipartite graph shown in Figure 3. Lesthe time window T, 7;] be[0900, 0920]
(20 minutes) and let the maximum allowed start time devigtipbe 5 minutes. Notably, we have for
clarity kept[T., T;] rather small. In practice, its size may vary from a few misuteseveral hours or
even days. The sizeof the small start time windo¢., ¢;] is however typically only a few minutes.

In the first iteration of the algorithm, a reservation is teekfor.J; at R, and one fot); at R,. These
reservations are shown as solid triangles in Figure 4(ajdder, no reservation starting early enough
can be created fof;. The earliest possible reservation {&f), which would start a few minutes too
late, is shown as a dashed triangle in Figure 4(a) . Path auigiien techniques cannot be used fer
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as there is no other job holding a reservation for a resolna®/t can use, i.e., neithef, nor J, has
a reservation aR3 or R4, which are the only two resources meeting the requireménis.o

In next iteration, thét., ¢;] window is moved and aligned with the earliest possible regem start
for Js. A reservation forJs is created afR,. The reservation for, at R, is modified to start within
the newlt., ;] window. These two reservations are represented by the s@ithles in Figure 4(b).
The reservation for/; at R; cannot be moved to withif., ¢;], and is hence implicitly cancelled.
Furthermore, no new reservation can be created/fowithin [t., ;]. Path augmentation techniques
cannot be used to create an additional reservation as néiflm®r J; has reserved one @&; andRs.
The earliest possible reservation far (at R,) is shown as a dashed triangle in Figure 4(b).

In the next iteration{; is set to the earliest possible start ff and¢. is adjusted accordingly.
The reservation that in the previous iteration was posdinie/; at R, is created, illustrated by a
solid triangle in Figure 4(c). The reservation fd§ at R, already starts withirit., t;] and requires
no modification. For jobJ; the existing reservation cannot be moved to witftint;] and is hence
cancelled. It is furthermore not possible to create a nearvasion. The path augmentation algorithm
can however be applied. Starting frafa in the bipartite graph in Figure 3, a breadth-first search is
performed according to Step 15 of Algorithm 1. This searchdia resource thaf, can use R4),
which is currently reserved by another jofs;), which in term can use another resourég). The
resulting augmenting path isle, R4, J3, R3}. Next, Algorithm 2 is invoked with this path as input.
The algorithm creates a new reservation fgrat R3, and modifies the existing reservation féy (at
R4) to suitJ,. The resulting reservations (fok and.Js) are shown as solid triangles in Figure 4(c).
Since each job has a reservation starting withint;] (and insiddT,, 7;]), the coallocation algorithm
terminates and the coallocation request is successful.

3.3. Discussion of Quality of Service issues

We now discuss advance reservations and the propertieg diipartite matching algorithm in more
detail, including motivating the usage of path augmentetgchniques.

3.3.1. Regarding the use of advance reservations and axzitm

It should be remarked that how and to what extent advancevatgns should be used, partly depends
on the Grid environment. The current algorithms are desigoe use in medium-sized Grids, and
with usage patterns where the majority of the jobs do notesgadvance reservations. In Grids
where hundreds or even thousands of resources are suitatdélates for a user’s job requests, the
algorithms requesting advance reservations should befimddd first select a subset of the resources
before requesting the reservations. In order to allow a ritgjof the Grid jobs to make use of advance
reservations, itis probably necessary to have suppodriarmake effective usage of, the flag “flexible”
in all local schedulers, in order to maintain an efficienlization of the resources.

3.3.2. Modifying Advance Reservations
The coallocation algorithm modifies existing reservatiansf the modify operation is atomic, even

though the current implementation actually first releabesexisting reservation and then creates a
new one. The reason is that the Maui scheduler [40], one ofelebatch system schedulers that
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support advance reservations, has no mechanism to modixiating reservation. This means that
the modification operation, in unfortunate situations, e@ge the original reservation even if the new
one could not be created. This occurs when the scheduletetetti use the released capacity for some
other job before it can be reclaimed. However, failuresmyreservation modifications are non-fatal in
our coallocation algorithm, as the path updating algorifimgorithm 2) creates the new reservations
before modifying the existing ones.

We also remark that the WS-Agreement specification [4] doats specify an operation for
renegotiation of an existing agreement (reservation). étqmol for managing advance reservations,
including atomic modifications of existing reservationsdiscussed in [48]. To the best of our
knowledge, there exists neither an implementation of thatgzol nor a local scheduler with the
reservation mechanisms required to implement it. Atomgereation modifications may very well
be included in future versions of the WS-Agreement stan@ardiefined by a higher level service,
such as the currently immature WS-AgreementNegotiatirajtd supported by new releases of batch
system schedulers. If so, then the coallocation algoriteetfineeds no modification, and it furthermore
becomes more efficient, as failed reservation modificatiauses extra iterations of the algorithm to
be executed.

3.3.3. Properties of the bipartite matching algorithm.

In the bipartite graph representing jobs and resourcesgge etween a job and a resource denotes
that the resource has the capabilities required to exebat@b. We can however not know a priori
that the resource actually can be reserved for the job airtteerequested. Seen from a graph theoretic
perspective, it is not certain that the edges in the bigagtiaph actually exist (e.g., at a particular time)
before we try to use them in a matching. Given the above faigctsiot possible to completely solve the
coallocation problem using a bipartite matching algoritiuat precalculates the matching. Therefore,
we use a matching algorithm that gradually increases the aizthe current matching (initially
containing no matched edges at all), and use path augn@antatihniques to resolve conflicts.

3.3.4. Path augmentation considerations.

Path augmentation techniques are used when the coalloedgjorithm fails to reserve a resource for
ajob, but it is possible that this situation can be solved byimy some other reservation (for the same
coallocated job) to another resource. In order to reducaéeel for path augmentation, we strive to
allocate resources in decreasing order of the “size” of tlegjuirements, even though it is in the general
case not possible to perfectly define such an ordering. Fonple, one job may require two CPUs with
one GB memory and another job only one CPU but with two GBs nmgnio improve the order of
the reservation requests, the jobs are sorted based orgirested number of CPUs, required memory,
and the requested job runtime before the coallocation #fgoiis invoked. Hence, the number of times
path augmentation is used is reduced. The usage of breasiteefarch when finding augmented paths
guarantees that the shortest possible augmented pathig.fBath the initial sorting of the job list and
the usage of breadth-first search reduces the number ofatiser modifications. This both improves
the performance of the algorithm as the updating of an autgdqrath is time-consuming (see Section
5 for more details), and reduces the risk of failures thatiodue to the non-atomicity of the update
operation as described in Section 3.3.2.
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It should also be remarked that the test performed in Stepf1@gorithm 1 may cause false
positives, since the assumption that there is a possiliditpath augmentation is done before actually
performing the advance reservations required to augmenpalth. However, no false negatives are
possible, i.e., if the test fails to find a joB with a reservation that can be used to by jblithen there
exist no augmenting paths.

4. CONFIGURATION AND MIDDLEWARE INTEGRATION

This section discusses how to configure the job submissioncse with focus on the middleware
integration points. Also, the configuration of the WS-Agremt services is briefly covered. We
illustrate the middleware integration by describing thetom components required for using the job
submission service with three Grid middlewares, GT4, LCG6@ ARC.

Integration of a Grid middleware in the job submission sevis handled through the service
configuration. This configuration determines which plug)rt6 use for each middleware integration
point. Note that the job submission service can have maltpugins for the same task, enabling
it to simultaneously communicate with resources runnirffedint Grid middlewares. Using the
chain-of-responsibility design pattern, the plugins aiedt one after another, until one plugin
succeeds in performing the current task. The configuratiersfiecifies which plugins to use in the
InformationFinder and the Dispatcher. This file also spesiftonnection timeouts, the number of
threads to use in the thread pools, and default index sexvides client is configured in a separate file,
allowing multiple users to share a job submission servic#anustomizing their personal clients. The
client configuration file determines which job descripticanslator plugins to use, and also specifies
some settings related to client-side file staging.

The configuration of the WS-Agreement services determin@shwDecisionMaker(s}o use. A
DecisionMaker is a plugin that grants (or denies) agreeméets of a certain agreement type.
A DecisionMaker uses two plugin scripts to perform the adigequired to create and destroy
agreements. For the advance reservation scenario, thege ptripts interacts with the local scheduler
in order to request and release reservations.

4.1. Integration with Globus Toolkit 4

The GT4 middleware does, among other things, provide Webi&einterfaces for fundamental Grid
tasks such as job submission (WS-GRAM), monitoring andadisry (WS-MDS), and, data transfer
(RFT) [20]. The job submission client plugin for GT4 job deption translation is straightforward.
The only issue encountered is that job input and output filespecified using the same attribute in
JSDL, whereas the GT4 job description format uses two diffeattributes for this.

There is no fixed information hierarchy in GT4, any type obimhation can be propagated between
a pair of WS-MDSindex servicesA basic setup (also used in our test environment) is to haree o
index service per cluster, publishing information abowt thuster, and one additional index service
that aggregates information from the other index servitless, the typical GT4 information hierarchy
does not really fit the infrastructure envisioned by the jobrsission service, with one or more
index servers storing (only) contact information to clostéHowever, by using an XPath query in
the GT4 ResourceFinder plugin, it is possible to limit théoimation returned from the top level
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GT4 index service to only cluster contact information. Thes$ of cluster addresses is sent to the
GT4 InformationFetcher plugin, that (also using XPath)ripgeeach resource in more detail. Both
these plugins communicate with the Grid resource using Welice calls. The InformationConverter
plugin for GT4 is trivial as GT4 resource information is delsed using the GLUE format.

The GT4 Dispatcher plugin converts the job description fid@B®DL to the job description format
used in GT4 and next sends the job request to the GT4 WS-GRANtseunning on the resource by
invoking the job request operation of the service. This pdure becomes more complicated if the Grid
resource is to stage (non-local) job input files, in whichect® user’s credentials must be delegated
from the GT4 Dispatcher plugin to the resource.

The WS-Agreement services themself require no middlewpesific configuration. However, job
reguests that claim a reservation must be authorizedtineust be established that the user requesting
the job is the same as the one that previously created thevagies, e.g., by comparing the distinguish
names of the proxies used for the two tasks. In GT4, an Axisesiflow chain that intercepts the job
request performs this test. Due to current limitations in-GSAM, the Globus built-in authorization
framework could not be used for the task.

4.2. Integration with LCG2

The LCG2 middleware is based on Globus Toolkit 2 (GT2), aresuslditional components, e.g., for
resource brokering (Condor-G) and top level index seriB&xl).

The integration of our job submission service with LCG2 uds a client plugin for translating the
Condor-styleclassadaused as job description language in LCG2 to JSDL. This tediosl is rather
tedious as classads use a format where any value-pair sigmés a valid part of a job description.
Furthermore, classads allow a user not only to specify resoequirements (hardware etc.), but also
to express a resource ranking function, i.e., an arithmetpression over the attributes specified in
the job description or gathered from the Grid resource. ISarispecifies such a resource ranking
expression in a classad, the expression is ignored as theujmiission service uses other resource
ranking algorithms (described in Section 3.1).

Similarly to GT4, LCG2 uses a centralized information stowe where each resource registers all
available information in a BDII server. This server storesailed information about the (thousands
of) resources available in the LCG2 Grid. In order to avoicervading the BDII server, the
LCG2 ResourceFinder plugin does, similar to its GT4 coy#dr query only for resource contact
information. The LCG2 InformationFetcher contacts the GIRIS running on each resource and
sends a query asking for detailed resource informatiorh Base plugins use LDAP to communicate
with the LCG2 resources. Although LCG2 uses the GLUE infdiomamodel to describe resources,
the retrieved information must be translated as it is repreesd in LDAP-specific data structures, which
does not correspond to the GLUE XML schema used by the job Bsin service. This translation is
however straightforward as no mapping of attribute nameénaifar has to be performed.

LCG2 uses the GT2 GRAM on it€omputing ElementdJpon submission to an LCG2 resource,
the LCG2 Dispatcher plugin translates the JSDL documenhéoGT2 RSL format and sends it
to the GRAM Gatekeeper. There is currently no support in tegubmission service for advance
reservations (or coallocation) of LCG2 resources.
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4.3. Integration with ARC

The ARC middleware is based on GT2, but replaces some GT2 @oemts, including the GRAM
which is replaced by &ridFTP serverthat accepts job requests an@Gead Managerwhich manages
the accepted Grid jobs through their execution.

The information system in ARC is based on GT2, and uses arblgravhere a GIIS server keeps a
list of available GRIS (and GIIS) servers, which periodicahnounce themselves to the GIIS. Another
configuration, used in some ARC installations, is to aggeegh GRIS information in the GIIS. The
ARC ResourceFinder and InformationFetcher plugins use RBAretrieve lists of available resources
and detailed resource information, from the GIIS and GREpeetively. The resource information is
described using an ARC-specific schema, and must hencerisatied to the GLUE format by the
ARC InformationConverter plugin. The ARC and GLUE inforie&tmodels are not fully compatible,
but most attributes relevant to resource brokering, eargwiare configuration and current load, can
be translated between the two models.

The ARC Dispatcher plugins converts the JSDL job descripgiidhe GT2 RSL-style format (called
XRSL) used by ARC and sends the resulting job descriptiom&ARC GridFTP server, i.e., the
Dispatcher plugin is a GridFTP client.

Authorization of job requests claiming a reservation is @lsimilarly as in GT4 (by comparing
distinguished names). A plugin structure in the ARC Grid lbiger enables interception of the job
request at a few predefined steps. One such plugin perfoen®#ervation authorization before the
job is submitted to the local scheduler.

5. PERFORMANCE EVALUATION

There are several factors that affect the performance ofabesubmission service, including the

Grid middleware deployed on the resources, the number ofiress, the local scheduler used by the
resources, and whether advance reservations are used br aater to evaluate this, the performance
analysis include measuring, for varying load, (1) the respdime, i.e., the time required for a client
to submit a job, and (2) the service throughput, i.e., the memof jobs submitted per minute by the

service. Performance results are presented for tests egihurces running both GT4 and ARC. In

addition, some observations on the performance of theazatibn algorithm are made.

5.1. Background and test setup

The performance of the job submission service is evaluaggdjuhe DiPerF framework [13]. DiPerF
can be used to test various aspects of service performamteding throughput, load and response
time. A DiPerF test environment consists of azentroller host, coordinating and collecting output
from a set ofesterqclients). All testers send requests to the service to edesd report the measured
response times back to the controller. Each tester runsffeiperiod of time, and invokes the service
as many times it can (submits as many jobs as possible) dilvénigst period.

The response time measured in the client includes the tinestablish secure connections to the
job submission service, to delegate the user’s credentitle service, and to submit the job. On the
service side, the time required for the broker’s job proicgsand time required to interact with index
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servers and resources are also included in the responseltiméhroughput is computed in DiPerF by
counting the number of requests served during each minbte.clculation is done off-line when all
testers have finished executing.

GT4 clients developed using Java have an initial overhedlddrorder of seconds due to the large
number of libraries loaded upon start up, affecting theqremfince of the first job submitted by each
client. As a result, a simple request-response Web seraitéakes approximately five seconds using
a Java client (subsequent calls from the same client arevesweuch faster), although a similar call
takes less than half a second for a corresponding C clienbv&come this obstacle, a basic C job
submission client is used for performance testing.

The performance measurements has been performed in agtestiironment with four small
clusters, each equipped with a 2 GHz AMD Opteron CPU and 2 GBiong Ubuntu Linux 2.6,
Maui 3.2.6 and Torque 2.1.2. Each cluster is configured witiual) backend nodes used by the
Torque batch system. The clusters use GT 4.0.3, ARC 0.5c%@itb of these as Grid middleware. For
both middleware configurations, one of the clusters alseesas index server for itself and the other
clusters. To enable advance reservations, the WS-Agrdeseriices are deployed on each of the four
clusters.

Two sets of campus computer laboratories were used as tretBsters (clients), all computers
running Debian Linux 3.1 with kernel 2.6. Sixteen of thesmpaters are equipped with AMD Athlon
64 2000 MHz dual core CPUs and 2 GB memory, the other sixteea B8 GHz Pentium 4 CPUs
with 1 GB memory each. The job submission service itself wgsa/ed on a computer with a 2 GHz
AMD Opteron CPU and 2 GB memory, running Debian Linux 3.1 vifita 2.6 kernel. All machines in
the test environment are interconnected with a 100 Mbitta/auek.

The job submission service was configured with a timeout ofdd&onds for all interactions with
the information systems of the resources. The Grid middies/aere configured to generate updated
resource information every 60 seconds and the informataheged by the broker was hence cached
for this amount of time. Queries about resource informagind negotiations of advance reservations
were both performed using four parallel threads.

The use of a relatively small but controlled environmenttésts, have the advantage that we have
full control over the load on the clusters. Hence, the penorce of the job submission service can
be significantly more accurately analyzed than it could Haaen on a large production Grid (e.g, as
performed in [16]).

5.2. Performance results

Tests have been performed with the number of resourcegwgogitween one and four, and the number
of clients being(3, 5,7, 10, 15}. Each test starts with one client, and then another clieadded every
30th second until the selected number of clients is readBach client executes for 15 minutes and
submits trivial jobs that each outputs a single messagexnhdience, also tests with large number of
clients include time periods where smaller number of cieme used. The reason for this strategy is to
better identify the relation between service load and thhput or response time.

In the following presentation, the performance resultgaoeiped by the Grid middleware used, i.e.,
GT4 och ARC. For each middleware, results are presenteddts tising the Torque “PBS” scheduler
and POSIX “Fork”.
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Our results show that the performance varies very littlhwhite number of Grid resources used.
Resource discovery takes longer when more resources adelugethe load distribution of the jobs
across more machines does, on the other hand, give fagpensestime in the dispatch step. These two
factors seem to compensate each other rather well for ormutadésources. Because of this, we here
only present results obtained using four resources. ¢ Fuoriests, we also find it sufficient to present
results for tests using 3, 7, and 15 clients.

For tests using the GT4 middleware, Figure 5 shows how thécsethroughput (lines marked with
“x") and response time for the job requests (lines withoul)‘vary during the tests. The three figures
present, from top to bottom, the results obtained using 8nd,15 clients. Solid and dashed lines are
used to represent results obtained using Fork and PBS ategdg Notably, the scale for the response
times is on the left-hand side of the figures and the scaléhftttroughput is found on the right-hand
side.

In the results obtained using three clients (the topmogirdia in Figure 5), we do not see any
particular trend in the results as the number of clients acesased from one to three (recall that in
each test, a new client is started every 30 seconds), whititaites that the service has no problem at
all to handle this load. Notably, the response time for iitiial jobs is as low as down to under one
second at best.

As the number of clients increases to seven in the middlehgrap observe that both the response
time and the throughput increase as more clients are beantgdt until it reaches a maximum and
then starts to decrease as the clients finish executing.rithedse in response time indicate that some
bottleneck has been found. As the throughput still increaser interpretation is that the increase in
response time is due to increased waiting for resourcespmral, and not due to too high load for the
job submission service itself.

We remark, that this is the test for which we see the highesttthput for GT4, with a maximum
of just over 250 jobs per minute for Fork and only slightly Ewwith PBS. Response times for Fork
vary between one and two seconds, whereas they fluctuatethugseconds for PBS. In comparison
to the results for three clients, we see that the throughpubles for Fork, whereas the increase in
throughput for PBS is somewhat lower. When further incregasiie load to 15 clients, we see that the
throughput from the tests with seven clients is maintairisd for heavy load, even though we do not
reach the same peak result.

In summary, the tests with GT4 resources show that the jolm=gion service is capable of handling
throughput up to just over 250 jobs per minute and to giveviddial job response times down to under
one second.

For tests using the ARC middleware, Figure 6 shows the pmdoce using four resources and
three, seven and fifteen clients, respectively. Here, trmutfhput increases from 60-70 jobs/minute
with three clients (the top diagram in Figure 6) to approxihal70 jobs per minute with seven
clients (the middle plot in Figure 6), while keeping respotimes between two and three seconds per
submitted job.

When further increasing the load to 15 clients, we see in titoln diagram in Figure 6 a slight
increase in throughput, to approximately 200 jobs per neipwhereas the response time increases as
well, to approximately four seconds. This suggests thatrtagimum throughput is around 200 jobs
per minute.

Notably, in our tests PBS and Fork perform reasonably eqoialbbth middlewares and for
all combinations of different numbers of clients and resesr even though we see slightly more
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Figure 6. Performance results for ARC using 4 resources.
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fluctuating response times using PBS than with Fork. Howef/ezsts are done with jobs requiring
substantial computational capacity, the performanceiddausing Fork will substantially decrease.
For PBS, we expect the results to be similar also for more deling jobs, if the clusters make use of
real (and not virtual) back-end nodes.

The slightly more fluctuating response times obtained u$iB§ are explained by the fact that
the information systems used by ARC and GT4 both performnsite parsing of PBS log files to
determine the current load on the resource. During sigmificead, this may occasionally lead to slow
response times for resource information queries. This oloesm result in slower response times for
jobs for which the broker can not use cached resource infiloma

During the period of constant load (while all clients exeduive see a slight decrease in throughput
for both ARC and GT4. This decrease, which is most clearliplesn the tests using 7 and 15 clients,
can partly be explained by limitations in handling large mmemof delegated credentials in the GT4
delegation service, a topic further investigated in [24jeTdelegation service is for each job invoked
by the job submission client to delegate the user’s credktotihe job submission service.

5.2.1. Advance reservations

In order to evaluate the performance impact of advancevatiens on the job submission service, tests
with jobs requesting reservations are compared to the sporaling tests performed without use of
reservations. The performance of the job submission sefeigobs using reservations are, of course,
expected to be lower. A job submitted requesting an advassgvation requires two additional round
trips (get agreement template, create agreement) durgigting and one more round trip during job
dispatch (confirm temporary reservation). When each jolmisdion request takes longer to serve,
fewer jobs can utilize cached resource information befoeecache expires, which further decreases
performance.

As previous research have demonstrated [19, 52], the ushgelvance reservation inflict a
performance penalty, and does typically reduce batch syst#ization dramatically already when
only 20 percent of all jobs use advance reservations. Ooures brokering algorithms described in
Section 3.1, are able to create reservations for all reeswtinterest (or a subset thereof), and upon
job submission release all reservations but the one fordleeted resource. However, as long as the
batch systems do not provide a lightweight reservation meisim, we think that this feature should
be used only when needed.

In order to investigate the performance impact of the adeaaservation mechanism, we consider
a scenario where exactly one reservation is created forsdwhitted job.

The performance results for GT4 with reservations (dashe) is compared to corresponding
results without reservations (solid lines) in Figure 7. Vgenthat the throughput (marked) with
reservations is about 40 submitted jobs per minute for adldhests. In these tests, the response time
increases from about five seconds (three clients), to tesnsis(seven clients), and finally to around
twenty seconds (fifteen clients). In comparison, for jobisnsiited without reservations, throughput
increases from around 100 jobs per minute (three cliemtsydund 210 jobs per minute (seven clients),
and finally increases a bit more to around 220 jobs per minitenvfifteen clients are used. The
response times for these jobs are around two seconds (lvethdhd seven clients) and three seconds
for fifteen clients.
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The performance results for tests of jobs with advance vatens submitted to ARC are very
similar to the corresponding tests using GT4, so therefodaveot include the corresponding graphs
for these tests. For jobs submitted with reservations to ARE throughput is around 30 jobs per
minute for three clients, and 40 jobs per minute for sevenfandifteen clients. The response time
varies from around six seconds for three clients, to tenrsgfor seven clients and twenty seconds
for fifteen clients. In the reference tests where no jobs uesérvations, the throughput is around 55
jobs per minute for three clients, 140 jobs per minute witregeclients and 160 jobs per minute with
fifteen clients. In these tests, the response time is arows&t8nds for both three and seven clients,
and around 4 seconds for fifteen clients.

From the results for GT4 and ARC, we conclude that for jobsrttbd with advance reservations,
the job submission service and the WSAG services can seouad”0 submitted jobs per minute and
that the average response time for these jobs is (at bestyffigk seconds.

5.2.2. Coallocation

The performance of the coallocation algorithm depends ertinrent status of the batch system queues
of the considered Grid resources, which directly affects hwany iterations of the main loop in the
coallocation algorithm that have to be executed.

The job request validation, resource discovery and inféionaretrieval performed by the
Coallocator are similar to the initial steps executed durgnbmission of ordinary jobs and takes
approximately 1-3 seconds to execute if new Grid resourimgrimation must be retrieved and a less
than a tenth of that time if cached resource information &lakle. We note that for a coallocated job
request with three jobs that each can use (the same) fournesg each iteration of the coallocation
algorithm, including creation of new reservations and rfiodiion of existing ones, takes around 3.5
seconds to execute. To find an augmenting path of length #me:éo update the reservations along the
path takes around two seconds, almost entirely spent inegervation update procedure. Moreover,
it follows from the design of the algorithm that the executiime of the path updating algorithm
increases linearly with the length of the path.

6. RELATED WORK

We have identified a number of contributions related to ourkwon Grid resource brokering,
including performance prediction for Grid jobs, the usafygdvance reservations in Grids and resource
coallocation. In the following, we make a brief review of skee

6.1. General resource brokering

The compositionable ICENI Grid scheduling architecturepigsented in [62], together with a
performance comparison between four Grid scheduling @lgos; random, simulated annealing, best
of n random, and a game theoretic approach.

The eNANOS Grid resource broker [47] supports submissiahnaonitoring of Grid jobs. Features
include usage of the GLUE information model [3] and a mectmnwhere users can control the
resource selection by weighting the importance of atteébsiuch as CPU speed and RAM size.
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There are a number of projects that investigate marketeh@s®urce brokering approaches. These
approaches may typically have a starting point in bartesigigements, in pre-allocations of artificial
“Grid credits” or be based on real economical compensatiosuch a Grid marketplace, resources
can be sold either at fixed or dynamic prices, e.g., in a sfave supply and demand equilibrium
[60]. Claimed advantages of the economic scheduling pgnadiclude load balancing and increased
resource utilization, both a result of good balance betwaeply and demand for resources [60].
Examples of work on economic brokering include [44, 9, 18, B alternative to market-based
economies is the Grid-wide fairshare scheduling appro&bh which can be viewed as a planned
economy.

6.2. Performance prediction

One method for determining which resource to submit a coatjmrtal job to is to predict the
performance of the job if executing on each resource of @stefThese predictions can include the
job start time as well as the job execution time. Techniqoestich predictions include (i) applying
statistical models to previous executions [51, 1, 54, 3Ba8H (ii), heuristics based on job and resource
characteristics [59, 29, 36].

In our previous work [17], we use a hybrid approach. The perémce characteristics of an
application is classified using computer benchmarks ralef@ the application, as in method (ii).
When predicting the performance for a Grid resource, thechaark results for this machine is
compared with those of a reference machine where the afiplichas executed previously. This
comparison with earlier execution of the application reusehniques from method (i).

6.3. Interoperability efforts

There are several resource brokering projects which targsburces running different Grid
middlewares, e.g., Gridbus [57], which can schedule jobsesources running, e.g., Globus [25],
Unicore [55] and Condor [37]. The GridWay project [31] taigeesources running both protocol
oriented (GT2) and service-based versions (GT4) of the @ldbolkit as well as LCG [10]. One
difference between our contribution and these projectsabwe target the use of any Grid middleware
both on the resource and client side by allowing clients fress their jobs in the native job description
language of their middleware, whereas the job descriptiogliage of Gridbus and GridWay is fixed
on the client side.

The UniGrids project [56] specially targets interoperipibetween the Globus [25] and Unicore
[55] middlewares. The Grid Interoperability Now (GIN) [2@ftiative focuses on establishing islands
of interoperation between existing Grid resources, andigygthose islands to achieve an increasing
set of interoperable Grid middlewares.

There are a few projects that have adopted JSDL to desciilsegog., [27] and [42].

6.4. Advance Reservations
Several projects conclude that an advance reservatiomré&igtrequired to meet QoS guarantees in a

Grid environment [22, 50, 30]. However, the support for reggons in the underlying infrastructure
is currently limited [38]. The performance penalty impodsdthe usage of advance reservations
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(typically decreased resource utilization) has been sthdi [52, 53]. The work in [19] investigates
how performance improvements can be can be achieved byiatjdaxity (flexibility) in advance
reservation start times.

Standardization attempts include [48], which defines a qualt for management of advance
reservations. The more recent WS-Agreement [4] standasdosal defines a general architecture
that enables two parties, the agreement provider and tleeagmt consumer, to enter an agreement.
Although not specifically targeting advance reservatidiS-Agreement can be used to implement
these, demonstrated by e.g., [41, 58, 16].

6.5. Coallocation

The work by Czajkowski et.al. [11] describes a library foitiating and controlling coallocation
requests and an application library for synchronizatiog. @mpiling an application requiring
coallocation with the application library, the subjob Brstes can wait for each other at a barrier prior
to commencing execution. This is typically required whettisg up an MPI environment distributed
across several machines. The work in [11] does not contairagorithm for the actual coallocation
of the subjobs.

The Globus Architecture for Reservation and Allocation (&4 [22] provides a programming
interface to simplify the construction of application-4deoallocators. GARA supports both immediate
reservations (allocations) and advance reservationssyi$tem furthermore supports several resource
types, including networks, computers and storage. GARAISes on the development of a library
for coallocation agents and only outlines one possiblelaoation agent [22], targeting the allocation
of two computer systems and an interconnection network atedl fiime. The focus of our work is
the implementation of a more general coallocation servide to allocate an arbitrary number of
computational resources. Our coallocation algorithme differs from GARA as they allow for a
flexible reservation start within a given interval of time.

The authors of the KOALA system [43] propose a mechanismrfgriémenting coallocation that
does not use advance reservations. Their approach is teselpumger execution times than required
by the jobs, and delay the start of the each job until all @lled jobs are ready to start executing.

The work by Matescuu [39] defines an architecture for coalion based on GT2. The described
coallocation algorithm shares some concepts with our #@hgor including the use of a window
of acceptable job start times and iterations in which rest@ws for all job requests are created.
Differences include that the algorithm by Matescuu onlemafts to reserve resources at a few
predefined positions in the start time window, whereas ogorghm uses information included
in rejection messages to dynamically determine where insthg time window to retry to create
reservations. Our algorithm also tries to modify existiegarvations when considering a new start
time window. Furthermore, our algorithm uses a mechanisexthange reservations between jobs in
the coallocated job, which can resolve conflicts if more tbae job requests the same resource(s).

The coallocation algorithm developed by Waldrich et al][B8es the concept of coallocation
iterations, and models reservations using the WS-Agreerfneamework. In each iteration of the
algorithm by Waldrich et al, a list of free time slots is regted from each local scheduler. Then,
an off-line matching of the time slots with the coallocatreqguest is performed. If the request can be
mapped onto some set of resources, reservations are redf@sthe selected slots.
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Although being similar at first glance, our coallocation@ithm has some fundamental differences
from the one described by Waldrich et al. Our algorithm &slavhich resources to coallocate
incrementally by matching one resource at the time, wheteaalgorithm by Waldrich et al is based
on an off-line calculation of which resources to use. We arguSection 3.3.3 that, due to incomplete
information and lack of central control, selection of whiglsources to use should be performed in an
on-line manner. Further differences include that our cmaltion algorithm allows a user-specified
fluctuation in reservation start times, while the algoritdescribed in [58] uses a fixed notion of
reservation start time. If allowing fluctuations in reseiwa start times, our algorithm is more likely to
succeed in coallocating a suitable set of resources thaaldgbethm by Waldrich et al. Our algorithm
is also more efficient, as existing reservations may be tkimsgsubsequent iterations.

The work described in [2] reuses the concept of barriers fidath In [2], the coallocator architecture
consisting of a selection agent, a request agent and a tageeat. A model for multistage coallocation
is developed, where one coallocation service passes atsfbtfe coallocation request to another
coallocation service, thus forming hierarchy of coallacat The barrier functionality developed in [2]
also supports the synchronization of hierarchically azated jobs. Our work differs from [2], e.g., by
using a flat model where a broker negotiates directly withréiseurces.

Deadlocks and deadlock prevention techniques in a coaitocaontext are described by Park et
al. [46] whereas other work [8] suggests performance imgmunts for these deadlock prevention
techniques. We however argue that the coallocation algoridescribed in this paper does not cause
deadlocks. Deadlocks can only occur [32] when the followfimgr conditions hold simultaneously:
(i) mutual exclusion, (ii), hold and wait, (iii) no preemeti, and (iv), circular wait. Our algorithm
modifies (or releases) reservations for resources whettevedgorithm fails to acquire an additional
required resource. Condition (ii) does hence not hold andieaallock can occur.

7. CONCLUSIONS

We have demonstrated how a general Grid job submissionceecan be designed to enable all-to-
all cross-middleware job submission, by leveraging enmegrgérid and Web services standards and
technology. The architecture’s ability to manage diffénemddlewares have been demonstrated by
providing plugins for GT4, LCG2, and NorduGrid/ARC. Henge) and resource requests can be
specified in any of these three input formats, and indepehylére jobs can be submitted to resources
running any of these three middlewares.

A modular design facilitates the customizability of the harecture, e.g., for tuning the resource
selection process to a particular set of Grid resourcesra $pecific resource brokering scenario. The
currentimplementation includes resource selection dlgos that can make use of, but do not depend
on, rather sophisticated features for predicting indiaidab performance on individual resources. It
also provides support for advance resource reservatiahsaailocation of multiple resources.

Even though the design of the job submission service is foeulgalized use, i.e., typically to be
used by a single user or a small group of users, the perforeremalysis give at hand that it can handle
a quite significant load. In fact, the job submission seritself appears not to be the bottleneck as
times waiting for resources becomes dominating. At bestjdab submission service is able to give
individual job response times below one second and to peoaitbtal throughput of up to over 250
jobs per minute.
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Future directions in this work include adaptation of therent architecture and interfaces to follow
more recent emerging standards such as the Basic Execuioit&[28] and the OGSA Execution
Management Services [23]. We also plan to develop a libi@rjob coordination for coallocated jobs,
allowing the jobs to coordinate themselves prior to execuLait their respective cluster. This is required,
e.g., for setting up MPI environments for jobs using crdsster communication. This work will build
on our experiences from job coallocation and previous waukh as [11].

The current coallocation algorithm reserves jobs for siemdous job start. The algorithm can be
extended to allow arbitrary coordination of the jobs, whiabuld be useful e.g., for workflow purposes
where there is a specific order in which jobs are to be execiiieel current algorithm would only
require minor modifications to allow a per job offset from msltaneous start time.

8. SOFTWARE AVAILABILITY

The software described in this paper is availablemat. cs. urmu. se/ research/ gri d/j ss.This
web page contains the job submission service softwaralliasbn instructions and a user’s guide.
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