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SUMMARY

The use of accelerators, with compute architectures different and distinct from the CPU, has become
a new research frontier in high-performance computing over the past five years. This paper is a case
study on how the instruction-level parallelism offered by three accelerator technologies, FPGA, GPU and
ClearSpeed, can be exploited in atomic physics. The algorithm studied is the evaluation of two electron
integrals, using direct numerical quadrature, a task that arises in the study of intermediate energy electron
scattering by hydrogen atoms. The results of our ‘productivity’ study show that while each accelerator is
viable, there are considerable differences in the implementation strategies that must be followed on each.
Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The need for heterogeneous chips in high-performance numerical computing was identified by
Chillemi et al. in 2001 [1]. The application of performance accelerators is not actually a new
concept. In the 1980s the Intel 8087 was a co-processor for the x86 CPU line while matrix
modules were available on IBMmainframes. Heterogeneous accelerator technologies for numerical
computation became widely available as CPU peripherals approximately around 2006. At the
software level, these represent a suitable abstraction, notwithstanding the inherent data bus latencies,
as a precursor to the fully integrated single chip solutions. The future trend is towards heterogeneous
instruction set processors with multi-core CPUs as one component but with custom data paths
intermixed. For example, the AMD Fusion program [2] aims to deliver CPU and GPU capabilities
integrated into a single-die processor. Reconfigurable hardware also plays a role in such systems.
The Intel-Xilinx-Nallatech Slipstream module [3] is one example which is plug compatible with
Xeon slots on a motherboard. The viability of reconfigurable computing as a co-processor for
a CPU was considered nearly 50 years ago at UCLA [4, 5], but the technology to implement it
was not then available [6]. Recently, Convey have reported [7] on substantial performance gains
with their hybrid architecture HC-1, which is composed of an Intel Xeon processor and multiple
accelerator engines based on Xilinx Field Programmable Gate Arrays (FPGAs).
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We focus on three accelerator technologies in this paper: the Virtex-4 FPGA-based RC-100
product from Silicon Graphics, several of the CUDA-enabled NVidia GPU products and the
Advance 620e accelerator card from ClearSpeed. All of these architectures offer instruction-level
parallelism and this has to be exploited to realize performance gains with respect to any CPU
implementation.

From the perspective of an application scientist the key metric against which any new compute
technology will be judged is the ease with which it can be programmed (productivity). The ideal
would be to take existing legacy code, mostly written in a high-level language such as Fortran and
most likely developed over generations, and compile it unmodified to run on the combined CPU-
accelerator environment. Put simply, this is not yet possible so that the programming languages,
compiler tools and system components for accelerators represent a significant barrier to entry for
many. One reason for this is that creating an automatically parallelizing compiler is a staggeringly
difficult task, as seen by the intractability of the problem in the face of the huge resources that
have been targeted at it [8, 9]. The European Network of Excellence HiPEAC have listed in some
detail the challenges facing the field [10].

By the time an algorithm is expressed in, for example Fortran or C, it involves programming
features such as indirect addressing, pointers, recursion, indirect function calls and possibly accesses
to global resources. It then becomes essentially impossible for an automated tool to unravel the
true nature of the algorithm. It follows that when a piece of legacy code is to be implemented to
run on a heterogeneous accelerator platform, it is generally necessary for a human to perform the
process of reverse engineering the algorithm and reformulating it for the new environment. We
have sought to evaluate this process in this paper in respect of one algorithm. We chose to look
at a computational hotspot in 2DRMP [11] which is a variant of the R-matrix method [12, 13], a
HPC application that has been developed for over 30 years in the Fortran language.

The paper begins by defining the integrals to be evaluated. These are an essential initial step
in the computational modeling of the electron scattering process. Subsequent steps in the compu-
tational model use these integrals to construct, for example, matrices representing the interaction
between incident particle and the target atom. The section following that briefly presents the
programming environment which is used on each accelerator system. Ultimately, this paper is
about the application of those environments to derive performance from an initial Fortran source.
The common theme is the porting of this Fortran source, but in different ways each time, to each
of the three distinct accelerator platforms and programming environments. This means that we
treat the accelerators independently in this paper; there is currently no one-size-fits-all solution
to our porting problem. For example, the FPGA system offers the flexibility of selecting arbi-
trary bitwidths for floating point representations, whereas the ClearSpeed card is IEEE single
and double precision and the GPU, at least for one of the cards used here, offers only single
precision floating point operations in hardware. Details of the accelerator hardware for each
system are presented later in the paper. We have included a section on the use of Posix threads
on the CPU for the purpose of completeness. Subsequent sections of the paper report on the
implementation of the algorithm on each accelerator and present execution time results. The
paper closes with come conclusions and looks forward to the new generations of accelerator
hardware.

Our work on integration is similar in nature to the evaluation of two electron integrals for
molecular scattering [13] and structure computations [14], a topic that has been addressed on
the both GPU [15] and FPGA [16] and ClearSpeed systems [17]. The single center expansion
technique, an alternative to the R-matrix approach to solving the scattering problem for molecular
targets, has also been recently upgraded to use GPUs [18].

2. THEORETICAL BACKGROUND

The background to R-matrix theory [12, 13] is not presented here, but may be found in the work
by other authors [11] and in the references therein. A rate-limiting step in 2DRMP is found to be
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NUMERICAL QUADRATURE ON ACCELERATORS

the evaluation of two electron integrals of the form

I (n1, l1,n2, l2,n3, l3,n4, l4,�)=
∫ a

0
un1l1 (r )un3l3 (r )

[
I1

r�+1
+r� I2

]
dr (1)

where the inner integrals, I1 and I2, are defined by

I1 =
∫ r

0
t�un2l2 (t)un4l4 (t)dt and I2 =

∫ r

a

1

t�+1
un2l2 (t)un4l4 (t)dt (2)

The list of tuples (n1, l1,n2, l2,n3, l3,n4, l4,�) depend on the overall symmetry quantum numbers,
both spatial and spin, of the system but can be computed in seconds using integer arithmetic.
The functions unl are precomputed on a fixed spaced grid in [0,a] by solving a classical Sturm–
Liouville type eigenvalue equation, which represents a one-electron model scattering problem.
These functions are oscillatory, reflecting the continuum wave nature of the scattering problem.
Performing the large number of numerical integrals required by the physics of the problem is a
challenging numerical and computational task in part due to the oscillatory nature of the functions.
Computation of the integrals for one scattering symmetry may require many hours computing on a
single CPU core. The R-matrix boundary, a, is typically taken to be 15 Bohr radii. Analysis using
a dynamical error estimation method [19] implemented in the CADNA toolset [20] has shown
that in this case the grid must have 1191 points in order to generate sufficient numerical accuracy
[11].

From a data-driven perspective, the computational task defined by Equation (1) consists of
processing data from two lists to produce a further list:

1. The set of functions u can be arranged in memory as a list with each member composed of
1191 floating point numbers. For a typical case, there are 160 functions thereby requiring
0.73MB of storage if held in the IEEE 754 single precision format.

2. The list of all tuples can be generated and stored in memory and then each member of this
list is processed independently. The tuple can be stored as a set of eight bit integers. In
essence each tuple contains four pointers into the list of functions u because each n, l can
be compressed into a single index. In a calculation where the tuple list has 108 entries then
0.5GB of storage is needed to hold it.

3. The computation for each tuple consists of performing sum reductions that eventually produce
just one value. Thus, the end product of the complete calculation is a further list, with one
value per integral.

The I1 and I2 are computed for every point in the mesh using the Simpson three-point rule, that is
using a three-point stencil as we move along the mesh. This is an inherently sequential process as
we require to add the previous integrals as we move through the mesh. Also, it is more stable to
compute I2 by integration from the boundary a inwards to r [11]. This has a significant impact on
the FPGA design as explained below. Once the vectors I1 and I2 are computed, the outer integral
is evaluated using an 1191 point Simpson rule; this final step is a sum reduction over all points
of the computed integrand, where the computation at each point requires several multiplication
operations.

3. ACCELERATOR PROGRAMMING ENVIRONMENTS USED IN THE COMPUTATIONS

The R-matrix program that we started with was written in Fortran. This is the programming language
that is used to benchmark the fastest supercomputers and with over 50 years of development
having taken place in the language, we recognize that the task of porting Fortran to new accelerator
technology will be faced by many programmers.

All accelerators at present operate symbiotically with a CPU-based host. This means that the key
to using accelerators for performance gains is to identify hotspots in the CPU code and to move
those hotspots into kernels running on the accelerators, but only those kernels that are suitable for
execution on the accelerator. A code that involves nested and complicated if-then-else blocks, that
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is to say a code dominated by logical operations and therefore branching, is not well suited for
execution on the current generation of accelerators.

When profiled with gprof on Linux, the routine that performs the integrals discussed earlier
in this paper accounted for over 90% of the execution time. We therefore rewrote the integration
routine in ANSI C. This was done manually because it was found to be the best way to generate
an efficient code. We then tested the ANSI C program on various CPU systems to ensure that the
results generated were indeed the same as those obtained from the Fortran version. Thereafter,
the C procedure which computed the integrals, became the base code which was migrated to each
accelerator architecture.

Dialects of the C programming language are available for all three accelerators. Each is unique
and employs new concepts as explained in the following list:

1. CUDA is a function-pointer-free and recursion-free subset of the C language with additional
syntax expressions and attributes for expressing the memory hierarchy. It is developed by
NVidia for use with their GPUs.

2. Cn is a data-parallel extension to the C language created by ClearSpeed for programming their
equipment. Parallelism is most often expressed by using the qualifier poly when declaring the
data type and not by specific code instructions.

3. Mitrion-C is a data-parallel language, employing the C syntax, but with entirely different
semantics to ANSI-C. It is available on Cray, Nallatech and Silicon Graphics FPGA-based
systems. Mitrion-C code is transformed into a custom processor, the Mitrion Virtual Processor,
matching the algorithm as specified in the code.

While an expert C programmer can become active with these new programming environments
within a day, we found that there is a significant learning curve, in our experience of several
weeks duration, to be traversed in order to be able to write highly optimized code with any of the
language extensions.

We considered the possibility of using Fortran to CUDA translators such as f2c-acc [21]
and the CUDA Fortran extension to the Portland Group compiler. However, insofar as we are
aware no similar translators exist for FPGA or ClearSpeed systems, so we do not report on this
approach.

For all three accelerators, the technique that we adopted was to package up the lists of infor-
mation to be processed and to copy these to the accelerator device in batches then launching the
computations. This model is illustrated schematically in Figure 1.

The ClearSpeed Advance accelerators are designed specifically as high-performance engines for
floating point numerical work (at the time of their market introduction) and were shipped with a
customized implementation of several linear algebra routines, in particular DGEMM. We attempted
to exploit this by recasting the CPU code in terms of DGEMM. The use of the ClearSpeed card
then becomes just a matter of linking against the ClearSpeed-Math-Library CSXL. A side effect
of this is that we can do exactly the same for CUBLAS, NVidia’s version of BLAS albeit that this
is only available in single precision for the GeForce 8800.

3.1. GPU systems

We used two different types of NVidia GPU systems. Early work was performed on a quad-core
Dell Workstation, which had two NVidia GeForce 8800 GTX GPUs located on the PCI Express
bus. The 8800 GTX has 16 multi-processors and each multi-processor in turn is a cluster of eight
processing elements (PEs), giving a total of 128 processors on the card. Only single precision
floating point arithmetic is available. There is a memory hierarchy on the GPU cards:

• Each PE also has its own local memory. In fact these are 32 bit registers that are used in
the arithmetic operations. A 32 kB register file is evenly distributed across all active threads
within a multi-processor.

• Each multi-processor (8 PEs) has its own 16 kB shared memory that can be accessed by all
its PEs.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
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Parameters for integrals Parameters for integrals

Results
Results

Host GPU

Orbitals Orbitals

GPU Threads

retrieve results

invoke kernel

send to GPU

if (batch ready)

store parameters

if (i % nThreads == threadId)

Figure 1. A schematic illustration of the mechanism for managing the computation process on the GPU
accelerators. In the FPGA case, the GPU threads are replaced by a network of processing elements.

• There is a 768 MB memory available to all PEs in all multi-processors; that is an on-card
global memory. The bandwidth to this memory is specified as 86GB s−1, but it carries a
penalty of a 400–600 clock cycle delay.

Later work employed an NVidia S1070 system attached to a Dell cluster. The S1070 has 4 Tesla
GPUs in a 1U rack mount each with 240 processor cores. A distinction from the GTX 8800
processors is that a double precision arithmetic unit is included in each multi-processor. The S1070
is also attached to the cluster by PCI Express x16 cables which allow an aggregate data transfer rate
of 8GB s−1 bi-directionally. The memory hierarchy is identical but different in size. For example
each of the GPUs has 4GB DRAM for its global memory.

3.2. FPGA system

Field programmable gate arrays (FPGAs) are composed of fixed numbers of configurable logic
blocks (CLBs) in a spatial mesh, attached to which are also higher logic such as 18×18bit
multipliers and block RAMs. The logic blocks can be configured to implement boolean functions
and these can be connected with each other and with the other components in a network to create
a customized processor. In essence, a network of arithmetical–logical units is created with data
flowing from element to element under the control of clock signal.

Our FPGA platform was an SGI Altix system with two RC-100 blades. The RC-100 blades are
attached to the host through the proprietary SGI NUMAlink interconnect. Each RC-100 contains
two user programmable Xilinx Virtex-4 LX200 FPGAs. The LX200 has 200 448 CLBs, 96 18×18
bit mulipliers and 6048 kbits of ECC block RAM. Each LX200 on the RC-100 blade has an
attached 40 MB SRAM arranged as 128 bit cells and this is analogous to the global memory on
each GPU card. The SRAM is connected to the Altix fabric by the proprietary SGI NUMAlink 4
protocol offering a single link aggregate transfer rate of 3.2 GB s−1 in each direction.

We expressed our algorithm in Mitrion-C, which is a compiler technology, designed for the HPC
market. The semantics of Mitrion-C reflect the both the spatial and temporal nature of the FPGA.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
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The Mitrion compiler works with the Xilinx ISE toolset to create a bitstream, at a fixed clock rate of
100MHz, which is then loaded onto one or both FPGAs on the RC-100 for execution. In this work
we use Mitrion-C release 1.5.1. Our strategy is similar to the work of other authors with the RC-
100 [22].

We used the two FPGAs on the blade in a similar fashion to the four GPUs within the S1070
dedicating a CPU thread to handle each. On the host side, we have used the MITHAL library from
Mitrionics to control the FPGA and the transfer of data via NUMALink.

3.3. ClearSpeed system

The ClearSpeed Advance is a 620e card is connected via PCI Express (x8) and is equipped with two
CSX600 processor. Each CSX600 contains a mono execution unit (Mono-Unit) and 96 processing
cores that are aggregated into a multi-threaded array processor (MTAP). Each of the 96 cores is
referred to as a PE. Each MTAP contains 128 kB ESRAM, which can be set up to hold code and
data. The poly extension to the data type declaration in the Cn language, as mentioned above,
is used by the compiler to map execution onto the PEs. Scalar data type are processed in the
Mono-Unit. The clock speed of the MTAP on the CSX600 is 210MHz. This low clock speed
correlates with the reported peak power consumption of 33W for the card.

The PEs each contain a 32/64-bit floating point multiplier unit and adder unit and each has 6 kB
of local SRAM. There are 512MB of RAM per MTAP (or 1GB in total) on the ClearSpeed e620
card serving as a global memory for all its PEs and this memory is ECC protected. The 620e, which
we used, was installed in a Sun 4600 M2 workstation with eight dual-core Opteron 8220 CPUs.

4. POSIX THREADS IMPLEMENTATION ON THE CPU

The integrals computation that is addressed in this paper is embarrassingly parallel and therefore
likely to be a good candidate for the application of thread parallelism. This means the use of the
Single Program Multiple Data paradigm (SPMD) or more specifically the Work Crew paradigm
as defined by Butenhof [23]. We implemented this using the Posix thread library functions and
not OpenMP. This was because we wanted to have a fine-grain control for thread management. In
the case of the integrals, individual threads are not synchronized at the instruction level and this
permits a simple load balancing strategy to be followed in order to distribute integrals among the
threads. In pseudo-code this is:

for ( i t u p =1 , num_tup l e s )
i f ( modulus ( i t u p , max_ th reads ) == t h i s _ t h r e a d _ i n d e x )

e v a l u a t e i n t e g r a l for i t u p

We executed the code for several different lengths of the tuple list (i.e. differing numbers of
integrals) and used the timing data for statistical analysis. The mean time to compute one integral
in a single threaded implementation was 1.83×10−5 s. In the case of multiple threads (>8) on 16
CPU system, we found that the elapsed execution time can be fitted to the form

T =1.16×10−6×Number of integrals (3)

This linear scaling reflects, in our opinion, the embarrassingly parallel nature of the problem. The
expression for T does not extend towards smaller numbers of threads and this is why the mean
time per integral in a single threaded implementation, that is a sequential implementation, is much
larger. The housekeeping work needed to set up the data for the integral computations is being
amortized over the larger numbers of threads.

5. DGEMM FORMULATION

We investigated an alternative approach in which we reordered the list of tuples into blocks labeled
by the � parameter [24]. With respect to each batch, the radial powers are now fixed qualities.
Each batch of outer integrals, Equation (1), can then be expressed as a matrix multiply, UV where
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the matrix U is of dimension n×1191 and the matrix V is of dimension 1191×m. n is the number
of distinct u1u3 products in the batch and correspondingly m for u2u4.

The matrix product can be computed by a library call to DGEMM. The ClearSpeed accelerator
ships with a customized DGEMM implementation which also performs work on the CPU concur-
rently with the CSX600. We linked an optimized version of the Atlas library into the executable
to handle the CPU side of this DGEMM work. The load split factor is tunable and we optimized
it on our system so that about 10% of the DGEMM load was CPU side. Essentially the same
CPU code could be recompiled and linked against the NVidia CUBLAS implementation for the
GeForce 8800s, in this case using SGEMM. Insofar as we are aware there is no CPU computing
concurrently with the GPU in CUBLAS.

While this strategy required minimal understanding of the 620e system, and no programming
in Cn, unfortunately we found that the performance of the overall program was reduced relatively
to the single threaded version. This is due to two features:

• There is a substantial amount of data movement activity on the CPU to prepare the U and V
in the format needed leading to wasted CPU cycles.

• The n, m values, even for higher �, are too small to leverage the performance of the optimized
DGEMM, SGEMM implementations. Moving to smaller grid point spacing or extending the
upper limit for � may serve to improve this situation, although it would mitigate the previous
point too.

6. IMPLEMENTATION ON NVIDIA GPU SYSTEMS

The threading model used on NVidia GPUs is significantly different from that available with Posix
on the CPU: the distinction lying in the hardware. One key distinction is that all threads in a
thread block being executed on a multi-processor operate in the SIMD fashion and another key
point is the number of threads launched is significantly larger than on a CPU. Consideration of the
architecture of NVidia GPUs leads to several observations for the implementation of our algorithm,
as follows:

1. We cannot store the I1 and I2 results, for each integral, in vectors. Doing so, when summed
over all threads in a block, creates an unsustainable register pressure on each multi-processor
and indeed is also not viable in the shared memory available. The amount of on-chip memory
available to each thread within the block is therefore a limiting factor. Simply storing these in
global memory, assuming enough is available, is not a solution either because of the atency
of access.

2. The Single Instruction Multiple Data model of parallelism means we cannot use the if
statement approach to distinguish threads as we have done on the CPU because it is not an
optimum construction in that environment.

3. The unl functions are used repeatedly in different integrals but are read-only data. Additionally,
the functions are accessed element by element in the integral computation. This permits the
use of texture memory, as a specific feature of global memory. Texture memory, in the context
of numerical computation, essentially offers an optimized path to a region of global memory
which is being used as read-only. A substantial performance benefit can be gained from
texture memory by having all the threads in a warp access nearby locations in the texture.

4. For the GTX 8800, only IEEE 754 single precision floating point arithmetic is available.
On the Tesla system there is one IEEE 754 double precision unit on each multi-processor,
whereas there are eight single precision units. The radial powers and inverse powers in the
integrals require careful handling in single precision as they generate over and under flow.

5. On the S1070 Tesla system, we need to employ all four GPUs concurrently from the CPU, if
we are to derive maximum performance. The best way to do this is to employ Posix threads
on the CPU, each independently controlling one GPU within the S1070 box. In addition, we
have executed the code in a similar way on the system with two GTX 8800 cards.
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The consequence of the above points is that we had to substantially rewrite the procedure that
performs the integration to gain performance on the GPUs processing elements.

6.1. Results

Modification and testing of the code required a few weeks effort once a basic understanding of the
GPU hardware and the CUDA language was acquired. In IEEE754 single precision execution of the
code equated to a mean time per integral evaluation of 1.25×10−7 s on the 2x GTX 8800 system.
The numerical accuracy of the results was in error by 0.0001% with respect to the computed
IEEE754 double precision values corresponding to an absolute error of 1×10−7.

Executing the code in double precision on the S1070, that is with four Tesla GPUs, we found
that the speed is about half the single precision speed of using two GTX 8800s. This reflects the
fact that Tesla GPUs have 16 double precision units, whereas two GTX 8800s have 256 single
precision units. An additional factor which explains this difference in timings is that the clock
speed of the Tesla GPUs in the S1070 is reported to be double that of the GTX 8800 GPUs.

7. IMPLEMENTATION ON AN FPGA

Equation (1) defines the arithmetical units that are required for the computation so the main
challenge of implementing this on the FPGA is designing the network of elements using the syntax
of Mitrion-C. The two mechanisms that we can use to leverage instruction-level parallelism are
pipelines and wide parallelism. Each involves consuming space on the FPGA and each has different
latency associated with it.

The design is bounded not only by the resources consumed but also by the capacity of the Xilinx
tools to connect these together within the constraint of a 100-MHz clock signal. By exploiting the
binary representation format of floating point numbers, the multiplication by 2 and by 4 that arise
in Simpson’s rule are implemented in minimal resources by using only bit masks and shifts.

In Mitrion-C we read the data from global SRAM subject to the limitation that we can read
only one SRAM location per clock cycle. The data is then fed through the network of compute
elements. Figure 2 is a schematic illustration of the implementation. In the left-hand model (F1),
I1 and I2 are computed in parallel and their contributions to (1) are also computed in parallel.
This requires arithmetical-logical units for the Simpson rule to be created for both cases. For the
right-hand model (F2), we create just one instance of the arithmetical-logical units, but twice as
much data has to pass through each and this can be processed in a pipelined fashion.

The FPGA gives the user the ability to control the number of bits used for floating point numbers.
We are no longer restricted to only IEEE 754 single and double precision data formats. In our
code all data read from (and written to) the SRAM banks is converted to (from) the type used in

Figure 2. This illustrates schematically the arrangement of a network for computation of the integrals in
terms of pipelining and wide parallelism on FPGA. The design on the left-hand side uses five blocks to
deliver two parallel pipelines. The right-hand side option is less parallel but has a longer pipeline structure.
As reflected by the picture, the consumption of spatial resources on the device is significantly different.
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Table I. The resources consumed on the Virtex-4 LX200 and mean compute time per integral for the two
models presented in Figure 2.

Resources used on the FPGA
Execution

Model Precision Flip-flops (%) BlockRAM (%) Multipliers (%) time (s)

F1 Double 61 61 69 N/A
F1 Half-double 32 61 65 4.45×10−5

F2 Double 45 52 69 12×10−5

F1 was investigated for two bitwidths, but the Xilinx tools could not synthesize a bitstream for IEEE 754
double precision and hence no execution time is reported. The time per integral incorporates the concurrent
use of the two FPGAs on the RC-100 board.

our code for computation in order to be compatible with the fixed sizes offered by the CPU. This
variability further influences the spatial resource consumption aspect.

7.1. Results

We experimented with many combinations of bitwidth selections for each of the models F1 and
F2 discussed above. In each case we checked the numerical accuracy relative to the results on the
CPU. We found that IEEE754 half-double precision was sufficient for eight significant figures of
accuracy. This is adequate for the scattering problem. This uses 43 bits total with 11 dedicated to
the exponent. Although defined as a standard, it has never been implemented in a CPU as far as
we are aware.

The execution times are lower than obtained on the GPU system. It is not surprising that model
F1, which has wide parallelism therefore uses more FPGA resource and executes more quickly.
The smaller the bitwidth, the fewer the number of barrel shifters required in a floating point unit
and this leading lower latency in the circuit. This effect contributes to the timing reported in Table I
for model F1.

It is well known that FPGAs are well suited to fixed point computations [25]. In the integrals
problem studied here, the orbitals unl are computed to be orthonormal and are normalized to unity
and this is ideal for a fixed point implementation. The presence of radial powers and inverse powers
in Equations (2), (1) complicates the formulation of the current problem in fixed point format.
As we have indicated, they cause arithmetic overflow and underflow in single precision floating
point arithmetic. We have derived a 40 bit fixed point version of the algorithm but have not as yet
implemented it.

8. IMPLEMENTATION ON CLEARSPEED

The similarity of the memory hierarchy between ClearSpeed and the GPU systems means that
similar strategies can be followed to gain performance from the e620 card. One difference is that
the MTAP processor has only two levels of memory whereas the GPU has several.

The numerical orbitals and list of tuples are initially stored in global memory after being
downloaded from the host system. Each PE performs the integration for one member of the list
of tuples. Because there is not enough memory at the PEs, we are processing 48 grid points at a
time, repeating the process until all points in the integration grid have been handled.

We experimented with three models differing in how we loaded the data onto the PEs. In model
C1 three of the orbitals in each integral were moved from ESRAM of the Mono-Unit into SRAM
for each PE as required. Then in model C2, all four were moved from ESRAM to SRAM of each
PE, while in model C3 the orbitals were simply left in the global memory of the attached to the
MTAP. We should point out that no vector extensions were used in our Cn code and this is clearly
an area for future study.
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Table II. Mean compute time per
integral on ClearSpeed system.

Model Mean time per
integral (s)

C1 1.32×10−5

C2 1.76×10−5

C3 2.38×10−5

8.1. Results

Table II reports the mean time to compute one integral for each of the three models defined in the
previous section. The ClearSpeed software development environment includes a comprehensive
profiler tool and we were able to use this to visualize the performance of the system. We noted
the following behavior during execution of the integrals code written in Cn:

• If we have four different indexes (C2 orbitals in ESRAM and C3 orbitals in DRAM) most
of the time we are not calculating integrals, but waiting for copy operations to finish. This
shows that memory layout is very important. However there is not enough ESRAM on the
MTAP to hold the whole orbital array, so when possible one should prefetch required data
from DRAM to ESRAM (and then copy to SRAM of the PEs).

• If we have only three different indexes (C1), then all 96 PEs use another static index, so that
the fourth index is fetched from ESRAM of the Mono-Unit of the Clearspeed MTAP and not
from the PE-SRAM, so we have one copy operation less.

Our analysis led to the conclusion that it would be better to presort the tuples, an approach that is
similar in concept but different in implementation to the one that we had tried for the DGEMM
implementation on the CPU. Using an appropriate sorting algorithm, the calculation of the integrals
can then be performed using the most efficient memory access pattern for the orbitals.

9. CONCLUDING REMARKS

With over 50 years development in the language and with its widespread use in high-performance
numerical computing and therefore in supercomputing, a great deal of software has been written
in the Fortran language. For the new field of accelerator technology this presents a problem in the
sense that C dialects are the preferred implementation language for accelerators. This may be a
transient problem as the Fortran language evolves but it exists at the time of writing this paper.
So, we have studied the translation of one hotspot in a Fortran program into three different kernels
for use on three different accelerators.

We started by translating the Fortran program into ANSI-C thereby enabling direct use of Posix
threads for the single computational hotspot, an integration routine, in the implementation. We
explored the possibility of rewriting the algorithm to use linear algebra libraries for the accelerators
but found this to be unsuitable. We have hand coded the floating point integration kernel onto an
FPGA using the Mitrion-C language, onto a pair of NVidia GPUs in CUDA C and also in Cn for
the ClearSpeed chip. We found that we needed to rewrite the mathematical equations to achieve
adequate performance in each case and needed to pay particular attention to the memory hierarchy
in the GPU and ClearSpeed cases to achieve optimal performance.

The S1070 proved to be the fastest accelerator of the three for this problem. Numerical integration
is inherently a sum reduction activity and this translates to a low ratio of compute to load/store
operations. The very large number of threads used in the CUDA implementation is capable of
masking the latency of reading the orbitals from texture memory. The execution times for each
integral on the FPGA and ClearSpeed were slower than the CPU; however, we suggest that these
are still viable co-processors with the CPU. The flexibility of using different word lengths on the
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FPGA in any case forces one to think again about the numerical characteristics really needed for
any implementation. It is also worth remembering the next generation of FPGAs, such as the Altera
Stratix-III, will have substantially more components than the Virtex 4 components on the RC-100
that we have used in this work. For example the Altera Stratix-III E260, which is a key component
in the Novo-G machine being commissioned at CHREC [26], has 768 18x18 multipliers compared
to the 96 available in the Virtex-4 LX200 used in this work. Put simply, these extra resources mean
that multiple integrals could be computed simultaneously.

A distinct difference between the three technologies studied is the reported power consumption
metrics. However, this relates to the clock speed of the processors in each case. The compute
performance of the RC-100, at 100MHz and the e620 at 210MHz is similar. The RC-100 blade
is reported by the manufacturers to consume about 150W and each MTAP on the ClearSpeed
e620 about 10W peak per MTAP. Both are significantly lower than the GPU systems where the
shader clocks run at speeds in the region of 1.3GHz. The manufacturer’s specification for the
S1070 indicates a maximum typical power consumption figure of around 800W [27]. The overall
relationship between power and performance has been studied with Tesla systems for various
applications [28]. It should be remembered that the power consumption of any accelerator is
additional to the host computer to which it is attached.

Our algorithm suited the NVidia GPU architecture very well because we had multiple indepen-
dent threads sharing only memory read operations. More generally, GPU programming requires
careful consideration of whether the algorithm can be implemented in an SIMD environment.

There are clearly a number of ways in which the research we have reported can be extended. It
is only limitations of time that has prevented us from following some of the strategies mentioned
above in more detail. There are several high-level language (C to gates) technologies available other
than Mitrion-C . We chose the latter however because it is customized for the HPC applications.
Even within this choice one could study the impact of using other synthesis tools. In any case,
the HPC market continues to evolve and with the imminent availability of newer processor chips,
such as the Tilera Gx and Fujitsu Venus chip, we plan to revisit this work in the near future.
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