
ar
X

iv
:1

10
1.

32
28

v1
 [

q-
fi

n.
C

P]
 1

7
Ja

n
20

11

GPGPUs in computational finance: Massive

parallel computing for American style options

Gilles Pagès∗ Benedikt Wilbertz†

October 8, 2018

Abstract

The pricing of American style and multiple exercise options is a very
challenging problem in mathematical finance. One usually employs a
Least-Square Monte Carlo approach (Longstaff-Schwartz method) for the
evaluation of conditional expectations which arise in the Backward Dy-
namic Programming principle for such optimal stopping or stochastic con-
trol problems in a Markovian framework. Unfortunately, these Least-
Square Monte Carlo approaches are rather slow and allow, due to the
dependency structure in the Backward Dynamic Programming principle,
no parallel implementation; whether on the Monte Carlo level nor on the
time layer level of this problem.

We therefore present in this paper a quantization method for the com-
putation of the conditional expectations, that allows a straightforward
parallelization on the Monte Carlo level. Moreover, we are able to de-
velop for AR(1)-processes a further parallelization in the time domain,
which makes use of faster memory structures and therefore maximizes
parallel execution.

Finally, we present numerical results for a CUDA implementation of
this methods. It will turn out that such an implementation leads to an
impressive speed-up compared to a serial CPU implementation.

Keywords: Voronoi Quantization, Markov chain approximation, CUDA, Paral-
lel computing for financial models, Stochastic control.

1 Introduction

The pricing of American style and multiple exercise options consists of solving
the optimal stopping problem

V = esssup
{
E
(
ϕτ (Xτ)

∣∣F0

)
: τ is a (Fk)-stopping time

}

∗Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6, case

188, 4, pl. Jussieu, F-75252 Paris Cedex 05. E-mail: gilles.pages@upmc.fr
†Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6, case

188, 4, pl. Jussieu, F-75252 Paris Cedex 05. E-mail: benedikt.wilbertz@upmc.fr

1

http://arxiv.org/abs/1101.3228v1

for an adapted stochastic process (Xk)0≤k≤n on a filtered probability space
(Ω, (Fk)0≤k≤n,P) and obstacle functionals ϕk, 0 ≤ k ≤ n.

It is well known (see e.g. [14]) that V is given by the solution V0 to the
Backward Dynamic Programming (BDP) Principle

Vn = ϕtn(Xn)

Vk = max
(
ϕtk(Xk); E

(
Vk+1

∣∣Fk

))
, 0 ≤ k ≤ n− 1.

(1)

We focus here on the case of an adapted Markov chain (Xk), so that it holds
E(Vk+1|Fk) = E(Vk+1|Xk). Then the main difficulty of solving (1) by means of
Monte Carlo methods lies in the approximation of the conditional expectations
E(Vk+1|Xk). This is usually accomplished by a Least Squares regression as
proposed by the Longstaff-Schwartz method. Following [6, 11] and [15] the
main steps of this procedure consists of

• Simulating M paths of (Xk) (forward step)

• Starting at k = n − 1, approximate fk(x) = E(Vk+1|Xk = x) by a Least
Squares regression and proceed backwards to 0. (backward step)

From a practical point of view, the most expensive tasks are clearly the
repeated Least Square regressions on the huge number of Monte Carlo paths.
Due to the sequential dependency structure of the Backward Dynamic Program-
ming formula, the collection of the Least Squares problems as a whole cannot
be solved in parallel, but has to be processed in strict sequence. Moreover, it is
not an easy task to solve the single Least Square problems efficiently in parallel.

We therefore present in this paper a Quantization Tree algorithm, which
handles the most part of the work in a forward step which can be easily paral-
lelized on the Monte Carlo level (pathwise) as well as on the time layer level.
Therefore, this approach is well suited for the use of massive parallel computing
devices like GPGPUs. Using this approach, the subsequent backward process-
ing of the BDP principle becomes straightforward and negligible in terms of
computational costs when compared to the Least Squares backward step.

2 The Quantization Tree Algorithm

The Quantization Tree algorithm is an efficient tool to establish a pathwise
discretization of a discrete-time Markov chain (see e.g. [1, 2, 3] or [5]). Such a
discretization can be used to solve optimal stopping or control problems, as they
occur in the evaluation of financial derivatives with non-vanilla exercise rights.
In this paper, we focus on a fast computation of the transition probabilities
in a Quantization Tree by means of GPGPU-devices, which make this approach
suitable for time-critical online computations.

Therefore, let (Xk)0≤k≤n be a discrete-time L2-Markov chain on a filtered
probability space (Ω, (Fk)0≤k≤n,P) with values in the vector space (Rd,Bd).
This vector space shall be endowed with an appropriated norm (often Euclidean

2

norm). For each time-step k we furthermore assume to a have a quantization
grid

Γk = (xk
1 , . . . , x

k
Nk

)

of size Nk.
This means that Γk provides a discretization of the state space of the r.v.

Xk, which is supposed to minimize the quadratic quantization error

E min
1≤i≤Nk

‖Xk − xk
i ‖

2 (2)

over all possible grids Γk ⊂ R
d with size |Γk| ≤ Nk. (See [8] for a comprehensive

introduction to quantization of probability distributions.)
For a grid Γk, let

(
Ci(Γk)

)
1≤i≤Nk

be a Voronoi Partition of Rd induced by

the points in Γk, i.e.

Ci(Γk) ⊂
{
y ∈ R

d : ‖y − xk
i ‖ ≤ min

1≤j≤Nk

‖y − xk
j ‖
}
.

We then call the mapping

z 7→

Nk∑

i=1

xi1Ci(Γk)(z)

the Nearest Neighbor projection of z onto Γk.
This Nearest Neighbor projection defines in a natural way the Voronoi Quan-

tization

X̂Γk
k =

Nk∑

i=1

xi1Ci(Γk)(Xk),

which obviously provides a discrete r.v. with not more than Nk states and

E‖Xk − X̂Γk
k ‖

2 = E min
1≤i≤Nk

‖Xk − xk
i ‖

2.

Defining the cartesian product quantizer

Γ =
n∏

k=0

Γk

we arrive at a path discretization of the Markov chain (Xk) with |Γ| ≤
∏n

k=0 Nk

paths, which we will call the Quantization Tree (see Figure 1).
To equip Γ with a probability distribution, we introduce the transition prob-

abilities

πk
ij = P

(
X̂Γk

k = xk
j | X̂

Γk−1

k−1 = xk−1
i

)

= P
(
Xk ∈ Cj(Γk) |Xk−1 ∈ Ci(Γk−1)

)
.

(3)

If the marginal distributions of (Xk) are Gaussian and the norm is the canon-
ical Euclidean norm, grids which minimize (2) are precomputed and available

3

π1
1,1

π1
1,2

x32

x33

x34

x01

x31

2k = 0 31

Figure 1: A Quantization Tree Γ

at [13]. Otherwise, some sub-optimal grids, matching the first two moments of
Xk, can be employed at the price of not achieving the full optimal convergence
rate.

Nevertheless, the true difficulties of this approach actually consist in the
computations of the transition probabilities πk

ij . These probabilities are usually
so strongly connected to the individual choice of the Markov chain (Xk) that
they cannot be precomputed like the above quantization grids or approximated
by simple means.

We therefore have to perform a Monte-Carlo (MC) simulation of the Markov
chain (Xk) in order to estimate the transition probabilities πk

ij . Since these MC
simulations can be quite time consuming, we will take advantage of the massive
parallel computing capabilities of nowadays GPGPU-devices and reduce the com-
putational time for the estimation of the transition probabilities to a level that
actually is acceptable for time-critical applications in financial practice.

As the Quantization Tree Γ exhibits a pathwise approximation of the Markov
chain (Xk), we may numerically solve on Γ stochastic control or optimal stopping
problems like they occur e.g. in the valuation of options with non-vanilla right
exercises.

In [2], the optimal stopping problem

V = esssup
{
E
(
ϕτ (Xτ)

∣∣F0

)
: τ a (Fk)-stopping time

}
(4)

with a payoff function ϕt(x) =
(
s0 exp

(
(r − σ2/2)t + σx

)
− K

)+
and (Xk) a

d-dimensional time-discretized Brownian motion is solved to approximate Amer-
ican option prices.

In [3], the authors employ the Quantization Tree to solve the stochastic

4

control problem

P (Q) = esssup

{
E

(n−1∑

k=0

qkvk(Xk)
∣∣∣F0

)
: ∀k = 0, . . . , n−1 :

qk : (Ω,Fk)→ [0, 1],

n−1∑

k=0

qk ∈ [Qmin, Qmax]

}
,

(5)

where vk can be interpreted as a payoff function and the coupleQ = (Qmin, Qmax)

provides some global constraints on the cumulated consumption
∑n−1

k=0 qk, so
that (5) yields the fair value of a swing option, which is an important derivative
in energy trading.

Concerning the Quantization Tree algorithm, note that Γ contains such a
huge number of paths (e.g. at least 100365 in the example below) that it is
impossible to process above problems in a path-wise manner.

Therefore, one usually resorts on the Backward Dynamic Programming (BDP)
Principle, which allows a time-layer wise proceeding. This approach yields a
complexity of C

∑n
k=1 Nk−1Nk, i.e. increases only linearly in n.

In case of the optimal stopping problem (4), the true BDP-principle can be
approximated by setting

V̂n = ϕtn(X̂
Γn
n)

V̂k = max
(
ϕtk(X̂

Γk
k); E

(
V̂k+1

∣∣X̂Γk
k

))
, 0 ≤ k ≤ n− 1,

so that the F0 measurable r.v. V̂0 yields an approximation for V . Doing so we
somehow “force” the Markov property of the Quantization sequence (X̂Γk

k).
In case of the stochastic control problem (5), it was shown in [4] that there

exists a bang-bang control for (5), so that the BDP-principle leads to

P̂n ≡ 0

P̂k(Q
k) = max

{
xvk(X̂

Γk
k)

+ E
(
P̂k+1(χ

n−k−1(Qk, x))
∣∣X̂Γk

k

)
, x ∈ {0, 1} ∩ In−k−1

Qk

}
,

where the set IkQ and the function χk(Q, x) ensure to keep consumption within
the global constraints [Qmin, Qmax].

In both cases, we have to evaluate conditional expectations E
(
f(X̂k+1)|X̂k

)
,

which reduce on Γ to

E
(
f(X̂

Γk+1

k+1)
∣∣X̂Γk

k = xk
i

)
=

Nk+1∑

j=1

f(xk+1
j)πk

ij .

Concerning the approximation error for this approach, assume that the vk
are Lipschitz-continuous and that (Xk) has Lipschitz-Feller transition kernels.

5

We then get in case of a trivial σ-field F0 for a constant C > 0 (see [4], Thm 3)

|P (Q)− P̂0(Q)| ≤ C

n−1∑

k=0

(
E‖Xk − X̂Γk

k ‖
2
)1/2

.

3 Swing options in the Gaussian 2-factor model

We will now focus on the implementation of the Quantization Tree algorithm for
the valuation of Swing options in a Gaussian 2-factor model and present in detail
the computation of the transition probabilities using CUDA on a GPGPU-device.

In this model, the dynamics of the underlying are given as

St = s0 exp

(
σ1

∫ t

0

e−α1(t−s)dW 1
s + σ2

∫ t

0

e−α2(t−s)dW 2
s −

1

2
µt

)

for Brownian Motions W 1 and W 2 with some correlation parameter ρ.
Having introduced the time discretization tk = k/n, k = 0, . . . , n, we con-

sider the 2-dimensional Ornstein-Uhlenbeck process

Xk =
(∫ tk

0

e−α1(tk−s)dW 1
s ,

∫ tk

0

e−α2(tk−s)dW 2
s

)
. (6)

This Markov chain admits a useful representation as a first-order auto-
regressive (AR-1)-process:

Proposition 1 For (Xk) from (6) it holds

Xk+1 = AkXk + Tkǫk, k = 0, . . . , n−1,

where Ak and Tk are deterministic matrices and (ǫk) is an i.i.d. standard normal
sequence.

In order to estimate the transition probabilities

πk
ij = P

(
Xk ∈ Cj(Γk) |Xk−1 ∈ Ci(Γk−1)

)

=
P
(
Xk ∈ Cj(Γk) ∩Xk−1 ∈ Ci(Γk−1)

)

P
(
Xk−1 ∈ Ci(Γk−1)

) ,

we will therefore simulate M samples of (Xk) according to Proposition 1 and
perform in each time-layer k a Nearest Neighbor search to identify the Voronoi
cell Cj(Γk) in which Xk falls.

Using the additional counters pkij and pki , a serial implementation for the

estimation of πk
ij is given by Algorithm I.

We will adopt a numerical scenario, which has already proven in [5] to pro-
duce accurate results for the valuation of Swing options. Thus we set

MC-Samples: M = 100.000

6

Algorithm I

for m = 1, . . . ,M do

Initialization
x← x0, i← 0, pi1 ← 1
for k = 1, . . . , n do

Simulate ǫk
x← Akx+ Tkǫk
Find NN-Index j of x in Γk
Set
pkij += 1

pk+1j += 1
i← j

end for

end for

Set πk
ij ←

pk
ij

pk
i

, 1 ≤ i, j ≤ Nk, 1 ≤ k ≤ n.

Exercise days: n = 365

Grid size: N = Nk = 100− 500 for k = 1, . . . , n.

This setting results in a computational time of 30−90 seconds for non-parallel
estimation of the transition probabilities on a Intel Core i7 CPU@2.8GHz
and N = 100 to 500.

Since any parallel implementation of the above algorithm has to perform
actually the following steps

1.) generation of the independent random numbers ǫk

2.) a Nearest Neighbor search

3.) updating the counters pkij , p
k
i ,

we will discuss these tasks in more detail with respect to an implementation for
CUDA.

The amount of data which has to be processed in these steps when using
single precision floating-point numbers is summarized in Table 1.

Table 1: Amount of data to be processed for N = 100− 500.
per layer k total

Random numbers 100k 36.5M
Nearest Neighbor searches 100k 36.5M
size of πk

ij and pkij 40kB - 1MB 15 - 365MB
size of grids Γk 800Byte - 4kB 285kB - 1.5MB

7

3.1 Random number generation

The challenge of random number generation on parallel devices consists in mod-
ifying the sequential random number generator algorithm in such a way, that
the original sequence {xn, n = 1, . . . ,M} with M = k · s

• is generated in independent blocks of size s, i.e. k streams {xn·s+i, i =
1, . . . , s}, where n = 0, . . . , k − 1 (block approach)

or

• can be partitioned through a skip-ahead procedure, i.e. one generates
independently s streams {xn+i·s, i = 0, . . . , k − 1} for n = 1, . . . , s (skip-
ahead)

The block-approach can be accomplished by generating a well chosen se-
quence of seed values to start the parallel computation of the random number
streams. In contrast to this, for the skip-ahead approach we have to modify
the main iteration of the random number generator itself . Nevertheless, this
modification can be easily carried out for linear congruential random number
generators

xn+1 ≡ axn + c mod 2m,

For this kind of generator it holds

xn+s ≡ Axn + C mod 2m

with A = as and C =
∑s

i=0 a
ic. Thus, once the coefficients A and C are

computed, the generation of the subsequence {xn+is, i ∈ N} is as straightforward
as it is for {xn, n ∈ N}.

As a first parallel random number generator, we have implemented a parallel
version of drand48 in CUDA, which operates in 48bit arithmetic.

A slightly more sophisticated variant of this random number generator is
given by L’Ecuyer’s Multiple Recursive Generator MRG32k3a (cf. [9])

x1
n = (1403580 x1

n−2 − 810728 x1
n−3) mod m1

x2
n = (527612 x2

n−1 − 1370589 x2
n−3) mod m2

xn = (x1
n − x2

n) mod m1

for m1 = 232 − 209 and m2 = 232 − 22853.
Here, it is again possible to precompute constants (matrices) to generate the

skip-ahead sequence {xn+is, i ∈ N} efficiently (see [10]). An implementation in
CUDA of this method is given by the GPU-Library of NAG.

A third kind of random number generators for CUDA is given by Marsaglia’s
XORWOW generator in the CURAND-Library of Cuda Toolkit 3.2. As de-
scribed in [12] one easily may compute starting seed values for a block approach
and the random numbers sequence is then given by very small number of fast
bit-shifts and XOR-operations. To be more precise the initialization procedure
of the CURAND-Library computes starting values for the blocks which correspond
to 267 iterations of the random engine. Moreover the main iteration of the
random number generator for the state variables v,w,x,y,z reads

8

unsigned int curand()

{

unsigned int t;

t = (x ^ (x >> 2));

x = y;

y = z;

z = w;

w = v;

v = (v ^ (v << 4))^(t ^ (t << 1));

d += 362437;

return v + d;

}

To illustrate the performance of these three random number generators we
have chosen a Monte Carlo simulation with a very simple integrand to illustrate
the performance in simulations where the function evaluation is very cheap. To
be more precise, we estimated π = 3.14159265... by a Monte Carlo simulation
for 1

2λ
2
(
Bl2(0, 1)

)
using M = 109 random numbers.

The results for a NVIDIA GTX 480 device and CUDA 3.2 are given in Table
2. The mean and the standard deviation of the MC-Estimator were computed
from a sample of size 500.

RNG engine computational time mean std. Dev.
drand48 0.2562 sec 3.141590 5.2585e-05
MRG32k3a 0.2573 sec 3.141594 5.20932e-05
CURAND 0.2085 sec 3.141592 5.03272e-05

Table 2: Results for a Monte Carlo estimation of π = 3.14159265...

One recognizes that the XORWOWgenerator from the CURAND-library slightly
outperforms the two linear congruential implementations, since the XORWOW-
step can be processed more efficiently than a modulo operation. Nevertheless
the differences between all three random number generator are rather marginal.

Especially, when we have in mind, that the original problem of swing op-
tion pricing needs only 35M random numbers in total, the generation of this
amount of random numbers becomes negligible compared to the time spent for
the nearest neighbor searches.

3.2 Nearest Neighbor search

For each MC-realization Xk we have to perform a Nearest Neighbor search in
every time-layer k to determine the Voronoi cell Cj(Γk) in which Xk falls.

These Nearest Neighbor searches can be performed completely independent
of each other, so we implemented them as sequential procedures and only have
to pay attention to a proper adaption to the CUDA-compute capabilities.

9

Note here that we cannot employ the CUDA built-in texture fetch methods
for this task, since the grids Γk do in general not consist of a lattice of integer
numbers.

From an asymptotical point of view, the kd-tree methods (cf [7]) obtain the
fastest results for Nearest Neighbor searches of O(logN)-time. Unfortunately,
all these divide & conquer-type approaches heavily rely on recursive function
calls; a programming principle which was introduced only very recently in the
CUDA Compute Capability 2.x specification. Alternatively, one may implement
a simple brute force Nearest Neighbor search of O(N)-time complexity.

The results for 36.5M NN Searches of a random number in a 2-dimensional
grid can be found in Table 3. It is striking that the brute force approach

N brute force kd-tree
100 0.09 sec 3.56 sec
250 0.23 sec 5.14 sec
500 0.41 sec 6.59 sec

Table 3: Computational time for 36.5M Nearest neighbor searches on a NVIDIA

GTX 480 device

outperforms the kd-tree method in this setting by a huge factor, even though it
suffers from a sub-optimal asymptotic behavior.

Further analysis revealed that, when using the same random number for the
search in all threads of a given block, the kd-tree approach took in the same
setting only 0.25 to 0.34 sec (N = 100 to 500). The dramatic slowdown of Table
3, where the NN Search is performed for different random numbers in each single
thread, must be caused by a very inhomogeneous branching behavior of the
single threads during the kd-tree traversal, which prevents the GPGPU-scheduler
of distributing the threads efficiently.

We will therefore use in the sequel the brute force approach for the further
numerical experiments.

3.3 Updating pkij

As soon as we have determined the Voronoi cells Ci(Γk−1) and Cj(Γk) in which
a realization of (Xk−1, Xk) falls, we have to increase the counter pkij .

Since, in a parallel execution of steps 3.1. and 3.2., it can happen that two
threads try to update the same counter pkij at the same time, we arrive at the
classical situation of a race condition.

Consequently, such a situation would lead to an undetermined result for the
counter pkij , which practically means that we randomly lose parts of the Nearest
Neighbor search results.

To avoid this race condition, we are forced to employ memory locks, which
are implemented in CUDA by means of atomic operations. Hence, we have to
increment pkij by calling the CUDA-function

int atomicAdd(int* address, int val);.

10

The resulting parallel procedure is stated as Algorithm II.

Algorithm II

for m = 1, . . . ,M do in parallel

Initialization
x← x0, i← 0, pi1 ← 1
for k = 1, . . . , n do

Simulate ǫk
x← Akx+ Tkǫk
Find NN-Index j of x in Γk

atomic increment pkij
atomic increment pk+1j

i← j
end for

end for in parallel

Synchronize threads

Set in parallel πk
ij ←

pk
ij

pk
i

, 1 ≤ i, j ≤ Nk, 1 ≤ k ≤ n.

4 Numerical results

One of the key points in an efficient CUDA-implementation is the choice of the
proper memory structure for the individual data. Table 4 lists the available
memory types in CUDA Compute Capability 1.x.

local memory not cached 16kB per thread
constant memory cached 64kB per device
shared memory n/a 16kB per block
global memory not cached ≈ 1GB per device

Table 4: Memory types for CUDA compute capability 1.x

Note that shared memory is (beneath the processor registers) the fastest
memory available in CUDA, since it resides very close to the processor cores.
There are 16kB of shared memory available per Multiprocessor, whose content
is read- and writable by any thread in the same block of a grid.

The other memory types in Table 4 are about 400 times slower than shared
memory except constant memory which is cached and therefore achieves a sim-
ilar read performance as shared memory.

Taking into account the sizes of the arrays πk
ij , p

k
ij and Γk from Table 1, there

is no other possibility for the above algorithm than to place all the arrays in
global memory, since any thread has to access the arrays πk

ij , p
k
ij and Γk for any

k, 1 ≤ k ≤ n.

11

The fact that these arrays have to reside in global memory especially slows
down the Nearest Neighbor searches, which rely on a fast access to the grid
points of Γk.

We therefore present another approach, which maximizes the parallel execu-
tion by splitting up the problem into smaller parts, that can make use of faster
memory.

Note that due to Proposition 1 we can directly simulate the couple (Xk, εk) in
order to get a realization of (Xk, Xk+1) without the need of generatingXl, l < k.

Thus, if we accept to generate twice the amount of random numbers and
double the number of Nearest Neighbor searches, we arrive at Algorithm III.

Algorithm III

for k = 1, . . . , n do in parallel

for m = 1, . . . ,M do in parallel

Simulate Xk, ǫk

Find NN-Index i of Xk in Γk
Find NN-Index j of AkXk + Tkǫk in Γk+1

atomic increment pkij
atomic increment pki

end for in parallel

Synchronize

Set in parallel πk
ij ←

pk
ij

pk
i

, 1 ≤ i, j ≤ Nk

end for in parallel

Here, we do not only parallelize with respect to the MC-samples (pathwise),
but also with respect to the time-layer k. Therefore, we are able to perform the
whole MC-simulation of a given time-layer k (i.e. the inner loop) on a single
Multiprocessor (i.e. within a single block in CUDA-terminology).

Hence, we can store the involved grids Γk and Γk+1 entirely in shared memory
and benefit from a huge performance gain.

This can be seen in Table 5 and Figure 2, which demonstrates that the shared
memory implementation - performing even twice as many Nearest Neighbor
searches - is still significantly faster than the usual pathwise parallelization for
CUDA Compute Capability 1.x.

N 100 250 500
Algorithm II 0.82 sec 1.25 sec 1.83 sec
Algorithm III 0.31 sec 0.68 sec 1.38 sec

Table 5: Computational times for the transition probabilities on a NVIDIA GTX

295 device

All the computations for CUDA Compute Capability 1.x were performed on
a NVIDIA GTX 295 GPGPU, CUDA Toolkit 2.3 and NVIDIA X-Driver 190.53

12

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 150 200 250 300 350 400 450 500

se
c

N

Algorithm II
Algorithm III

Figure 2: Linear performance of Algorithms II & III with respect to N on a
NVIDIA GTX 295 device

for 64bit Linux. The running times in Table 5 also include the transfer of the
transition probabilities πk

ij back to the host CPU.
Furthermore, we have chosen in all examples 256 - 512 threads per block and

overall 365 - 400 blocks. This choice was optimal for our setting. Note here,
that the shared memory algorithm performs 73 · 106 Nearest Neighbor searches
in a 2-dimensional grid. Assuming that the brute force Nearest Neighbor search

(
min < (x1 − y1)

2 + (x2 − y2)
2
)

for each grid point is equivalent to 6 FP-operations (3 additions, 2 multiplica-
tions, 1 comparison), we already arrive for N = 500 at a computing power of
approx. 175 GFLOPS only for the Nearest Neighbor searches (the pure kernel
execution takes in this case 1.25sec). Compared to the peak performance of
895 GFLOPS for one unit in the NVIDIA GTX 295-device, this fact underlines
that our implementation exploits a great amount of the theoretically available
computing power of a GPGPU-devices.

4.1 Progress in hardware: the Fermi-architecture

With the arrival of CUDA Compute Capability 2.x and the Fermi-architecture,
there are now L1- and L2 caches available of up to 48kB per block. It turned out
that this change in hardware design has strong implications on the performance
of Algorithm II. As it can be seen in Table 6 and Figure 3, the new cache
can nearly completely compensate the advantage of the shared memory usage
in Algorithm III. Moreover, both parallelizations differ roughly by a factor of
two which is caused by the fact that algorithm III has to perform twice the

13

N 100 250 500
Algorithm II 0.11 sec 0.30 sec 0.63 sec
Algorithm III 0.21 sec 0.50 sec 0.99 sec

Table 6: Computational times for the transition probabilities on a NVIDIA GTX

480 device

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300 350 400 450 500

se
c

N

Algorithm II
Algorithm III

Figure 3: Performance of Algorithms II & III with respect to N on a NVIDIA

GTX 480 device

number of Nearest Neighbor searches than Algorithm II. The computations for
CUDA Compute Capability 2.x were performed on a NVIDIA GTX 480 GPGPU,
CUDA Toolkit 3.2 and NVIDIA X-Driver 260.19.29 for 64bit Linux

5 Conclusion

We have shown in this paper that the use of GPGPU-devices is quite efficient for
the estimation of transition probabilities in a Quantization Tree. Although we
resorted for the Nearest Neighbor search, which is the most compute intensive
part of the algorithm, to the sub-optimal brute-force approach, we could achieve
by means of the massive computing power of a GPGPU-device a speed-up of factor
200 compared to a serial CPU implementation. Those implementations can
therefore be used for online estimation of the transition probabilities in time-
critical applications in practice, which is not possible for a CPU implementation
that can take more than 1 min for the same task.

14

Acknowledgment

The authors would like to thank J. Portes for setting up machines and NAG for
providing the CUDA routines for the MRG32k3a generator.

References

[1] V. Bally and G. Pagès. A quantization algorithm for solving multi-
dimensional discrete-time optimal stopping problems. Bernoulli, 9(6):1003–
1049, 2003.

[2] V. Bally, G. Pagès and J. Printems. A quantization tree method for
pricing and hedging multidimensional American options. Math. Finance,
15(1):119–168, 2005.

[3] O. Bardou, S. Bouthemy and G Pagès. Optimal Quantization for the Pric-
ing of Swing Options. Applied Mathematical Finance, 16(2):183–217, 2009.

[4] O. Bardou, S. Bouthemy and G Pagès. When are Swing options bang-
bang? International Journal of Theoretical and Applied Finance (IJTAF),
13(06):867–899, 2010.

[5] A. L. Bronstein, G. Pagès and B. Wilbertz. How to speed up the quanti-
zation tree algorithm with an application to swing options. Quantitative
Finance, 10(9):995 – 1007, November 2010.

[6] J. F. Carriere. Valuation of the early-exercise price for options using sim-
ulations and nonparametric regression. Insurance: Mathematics and Eco-
nomics, 19(1):19–30, 1996.

[7] J. H. Freidman, J. L. Bentley and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209–226, 1977.

[8] S. Graf and H. Luschgy. Foundations of Quantization for Probability Dis-
tributions. Lecture Notes in Mathematics n01730. Springer, Berlin, 2000.

[9] P. L’Ecuyer. Good parameters and implementations for combined mul-
tiple recursive random number generators. OPERATIONS RESEARCH,
47(1):159–164, 1999.

[10] P. L’Ecuyer, R. Simard, E. J. Chen and W. D. Kelton. An object-oriented
random-number package with many long streams and substreams. OPER-
ATIONS RESEARCH, 50(6):1073–1075, 2002.

[11] F. A. Longstaff and E. S. Schwartz. Valuing american options by simula-
tion: A simple least-squares approach. The Review of Financial Studies,
14(1):113–147, 2001.

15

[12] G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1–6, 7
2003.

[13] G. Pagès and J. Printems. www.quantize.maths-fi.com. website devoted
to quantization, 2005. maths-fi.com.

[14] J. L. Snell. Applications of martingale system theorems. Trans. Amer.
Math. Soc., 73:293–312, 1952.

[15] J. N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex
american-style options. IEEE Transactions on Neural Networks, 12:694–
703, 2000.

16

	1 Introduction
	2 The Quantization Tree Algorithm
	3 Swing options in the Gaussian 2-factor model
	3.1 Random number generation
	3.2 Nearest Neighbor search
	3.3 Updating pkij

	4 Numerical results
	4.1 Progress in hardware: the Fermi-architecture

	5 Conclusion

