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SUMMARY

The acceleration of an option pricing technique based on Fourier cosine expansions on the graphics pro-
cessing unit (GPU) is reported. European options, in particular with multiple strikes, and Bermudan options
will be discussed. The influence of the number of terms in the Fourier cosine series expansion, the number
of strikes, as well as the number of exercise dates for Bermudan options is explored. We also give details
about the different ways of implementing on a GPU. Numerical examples include asset price processes on
the basis of a Lévy process of infinite activity and the stochastic volatility Heston model. Furthermore, we
discuss the issue of precision on the present GPU systems. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we deal with a topic from computational finance, that is, the efficient pricing of options
on stocks or other assets. Several methods for pricing these contracts exist. The Feynman–Kac the-
orem relates the conditional expectation of the value of an option contract payoff function under
the risk–neutral measure to the solution of a partial differential equation. Various pricing techniques
can therefore be developed, such as partial-(integro) differential equation finite-difference solvers,
monte Carlo simulations, or numerical integration methods. Option pricing techniques need to be
accurate, robust, and fast. The latter feature is particularly necessary when the mathematical asset
price models are calibrated to real market data. Option values, with many different parameter values
for the underlying asset price process, are then computed thousands of times to fit the mathematical
model. In this paper, we focus on this setting and show that it may make sense to perform this task
on a graphics processing unit (GPU)-based computer.

Integration-based option pricing with the help of the fast Fourier transform is a common practice
(see, for example [1–4]).

A highly efficient pricing method is the method based on Fourier cosine expansions
(COS method) [5, 6], on the basis of Fourier cosine series expansions. In this method, on the basis
of the conditional expectation formula, the conditional density function of the underlying is approx-
imated by a series expansion that is connected to the characteristic function. The COS method
is applicable if the characteristic function of the stochastic asset price process (i.e., the Fourier
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Table I. Comparison of CPU times between different CPUs.

N 16 32 64

ms(CPU1) 0.337 0.388 0.506
ms(CPU2) 0.1032 0.1503 0.2270
max. abs. error 0.0059 9.1396e-08 1.4211e-14

ms, millisecond; max. abs. error, maximum absolute error.

transform of the conditional density function) is available. This is certainly the case for state-of-the-
art asset price models, such as the Lévy jump processes and the Heston stochastic volatility process,
which we discuss in the present paper. However, also more involved hybrid stochastic processes, for
example, for interest rates and equity can be considered, as long as we can obtain a characteristic
function. For such asset models with stochastic volatility and stochastic interest rate, such as the
Heston-Hull-White or the Heston–Gaussian two-factor model, the analytic characteristic function is
typically not available. However, after some appropriate reformulations of the stochastic differential
equation (SDE) system (see, for example [7]), the coefficients of the characteristic function can be
found as the solution of a Riccati system of ordinary differential equations (ODEs), as described in
[8]. These ODE systems can be solved numerically by means of an explicit Runge–Kutta method or
by other ODE solvers. We will show that this task can also be performed efficiently on a GPU using
Compute Unified Device Architecture (CUDA) [9].

In practice, the option values obtained from a mathematical model should be consistent with mar-
ket option prices. Usually, options with many different strike prices are needed for calibration. In the
COS method, European option prices for a vector of strikes can be computed in one computation,
which accelerates the calibration procedure significantly.

To further accelerate the calibration procedure, two approaches directly come into mind. The eas-
iest is to purchase a faster CPU! As an example, Table I compares error convergence and CPU times
between the CPU used in [5] (CPU 1: Intel(R) Pentium(R) 4 CPU, 2.80GHz with cache size 1MB)
and a faster CPU (CPU 2: Intel(R) Core(TM)2 Duo CPU, E6550 @ 2.33GHz cache size 4MB) for
European calls under a geometric Brownian motion asset process. Time is in milliseconds.‡

The faster CPU gives a satisfactory acceleration, but one needs to wait (sometimes up to two
years) for an acceleration by a factor two.

Another possibility to accelerate the pricing engine is to run the program, or parts of it, on the
popular GPU, which supports parallel computation. Executing a code on a GPU is worthwhile if

1. a program can be divided into several independent parts;
2. a program does not contain many sequential parts; and
3. a program does not require much memory transfer from host to device or vice versa.

We will study the suitability of the GPU for the important task of calibration, which is tradition-
ally performed with European options. In that respect, it is a challenge to accelerate the pricing of
European options. A well-known insight in Numerical Mathematics and Scientific Computing is
that it is often easy to accelerate a suboptimal solver on novel hardware, but it is hard to improve
the computing times for optimal solvers.

In our paper, we will demonstrate a significant performance improvement on the GPU, because
of parallelization, when pricing European options for several options simultaneously, that is, with
multiple strikes.

Earlier work in the direction of GPU acceleration of an integration-based option pricing method
[10] achieved an impressive speed-up on the GPU for options with early exercise features. By a
relatively large number of space and time points, the advantages of the GPU implementation were
shown. As the COS method exhibits an exponential rate of convergence, a very large number of
computations is not necessary to obtain accurate option values. We will focus on a speed-up on the
GPU with not-more-than-necessary terms in the Fourier cosine expansion.

‡1 millisecondD 10�3 second.
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1628 B. ZHANG AND C. W. OOSTERLEE

For certain modern option products, it also makes sense to calibrate to barrier options or other
liquid financial products. The pricing of barrier options with the COS method is closely connected
to the example of pricing Bermudan options in the present paper, see [6].

The outline of this paper is as follows. Section 2 gives an introduction of the COS option pric-
ing method. For European options, different ways of implementation of the method are described
in Section 3. Section 4 presents the speed-up for multistrike European options on the GPU. The
acceleration of an explicit Runge–Kutta method for numerically solving systems of Riccati ODEs
to approximate a characteristic function (if it is not available in closed form) is presented in
Section 4.3. Section 5 gives pricing results for Bermudan options, which may be exercised early
(before the maturity date). Here, the influence of the number of terms in the Fourier cosine expansion
as well as the number of early exercise dates on the GPU speedup is discussed.

The GPU we work on is an NVIDIA GeForce 9800 GX2 produced by NVIDIA, Santa Clara,
California, USA, which has two GPUs and 1 GB of memory (512 MB for each GPU); the CPU
on the same computer, needed for data transfer, is an AMD Athlon(tm)64 X2 Dual Core Processor
4600+ (cache size 512 KB, 2412.364 MHz).

The results obtained are compared with timings on a CPU from an Intel(R) Core(TM)2 Duo CPU
E6550 (@ 2.33 GHz cache size 4 MB).

2. COS PRICING METHOD

Starting from the risk–neutral valuation formula

v.x, t0/D e
�r�t

Z 1
�1

v.y,T /f .yjx/dy,

where v.x, t / is the option value and x,y can be any increasing functions of the underlying at t0
and T , respectively; we truncate the integration range, so that

v.x, t0/� e
�r�t

Z b

a

v.y,T /f .yjx/dy (1)

with j
R
R f .yjx/dy �

R b
a
f .yjx/dyj< TOL. Error analysis of the various approximations is given

in [5, 6].
The conditional density function of the underlying is then approximated by means of the

characteristic function via a truncated Fourier cosine expansion as follows:

f .yjx/�
2
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�
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�
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�
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�
�i

ak�
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��
cos

�
k�
y � a
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�
, (2)

where Re means taking the real part of the expression in brackets and �.!I x/ is the characteristic
function of f .yjx/ defined as

�.!I x/D E.ei!y jx/. (3)

The prime at the sum symbol in (2) indicates that the first term in the expansion is multiplied by one-
half. Replacing f .yjx/ by its approximation (2) in (1) and interchanging integration and summation
gives us the COS algorithm to approximate the value of a European option:

v.x, t0/D e
�r�t

X0N�1

kD0
Re

�
�

�
k�

b � a
I x

�
e�ik�

a
b�a

�
Vk , (4)

where

Vk D
2

b � a

Z b

a

v.y,T / cos
�
k�
y � a

b � a

�
dy (5)

is the Fourier cosine coefficient of v.y,T /, which is available in closed form for several European
option payoff functions.

Formula (4) can be directly applied to calculate the value of a European option, and it also forms
the basis for pricing Bermudan options.
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The COS algorithm exhibits an exponential convergence rate for all processes whose conditional
density f .yjx/ 2 C1.Œa, b��R/. The size of the integration interval Œa, b� can be determined with
the help of the cumulants [5].

2.1. Pricing of European options with multistrike features

With Xt D log.St=K/, the solution for Equation (5) can be written as

Vk D UkK, (6)

where

Uk D

8<
:

2
b � a

.�k.0, b/� k.0, b//, for a call,

2
b � a

. .a, 0/� �.a, 0//, for a put,
(7)

with

�k.x1, x2/ WD
Z x2

x1

ex cos
�
k�
x � a

b � a

�
dx, (8)

 k.x1, x2/ WD
Z x2

x1

cos
�
k�
x � a

b � a

�
dx. (9)

Now, the pricing Formula (4) reads

v.x, t0/DKe
�r�tRe

�X0N�1

kD0
�

�
k�

b � a
I x

�
� e�ik�

a
b�aUk

�
. (10)

Let us assume that we deal with a vector of strikes,K D ŒK.1/, � � � ,K.P /�T , whereP is the number
of strikes. In this setting, x and the truncated upper and lower bounds, a and b, are functions of K,
which implies that they are also vectors with length P . For a vectorised version of the COS method,
enabling an efficient computation of multistrike options, we define the following matrices:

� ˆ is a .P �N/ matrix with elements

ˆ.j , kC 1/D �

�
k�

b.j /� a.j /
I x.j /

�
exp

�
�ik�

a.j /

b.j /� a.j /

�
Uk.a.j /, b.j //,

j D 1, � � � ,P , k D 0, � � � ,N � 1.
� ƒ is a .P �P / diagonal matrix with ƒ.j , j /DK.j /, j D 1, � � � ,P .

With these matrices, the formula for pricing options with multistrike features reads

v.x, t0/D e
�r�t ƒRe.ˆ I/, (11)

where I is an .N �1/ vector with its first element equal to 0.5 and all the other elements equal to 1.
In this way, option values for many strikes can be computed simultaneously.

2.2. COS method for Bermudan options

The pricing formula for a Bermudan option with M exercise dates, with m DM,M� 1, : : : , 2,
is divided into a stage in which a continuation value is computed and a stage in which this value is
compared with the payoff, g.x, tm�1/� v.x,T /. These stages are given by�

c.x, tm�1/D e�r�t
R
R v.y, tm/f .yjx/dy,

v.x, tm�1/Dmax .g.x, tm�1/, c.x, tm�1//,
(12)

followed by the final computation,

v.x, t0/D e
�r�t

Z
R
v.y, t1/f .yjx/dy. (13)
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1630 B. ZHANG AND C. W. OOSTERLEE

In this description, we have x WD ln .S.tm�1/=K/, y WD ln .S.tm/=K/, and v.x, t /, c.x, t / as
the option value and the continuation value at time t , respectively. For vanilla options g.x, t / �
.˛K.exp.x/� 1//C with ˛ D 1 for a call and ˛ D�1 for a put.

Practically, for each time step, we first determine an early exercise point, x�m, for which
c.x�m, tm/ D g.x�m, tm/ by means of the Newton method.§ At each time step, tm, we then can split
the Fourier cosine coefficients Vk.tm/ into two parts:

Vk.tm/D Ck
�
a, x�m, tm

�
CGk

�
x�m, b

�
, for a call, (14)

Vk.tm/DGk
�
a, x�m

�
CCk

�
x�m, b, tm

�
, for a put, (15)

for mDM� 1,M� 2, : : : , 1, and

Vk.tM /DGk.0, b/, for a call,

Vk.tM /DGk.a, 0/, for a put.

Here,
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2

b � a
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�
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Ck.x1, x2, tm/D
2

b � a

Z x2

x1

Oc.x, tm/cos
�
k�
x � a

b � a

�
dx, (17)
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a
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�
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from the Fourier cosine expansion.
Gk.x1, x2/ is known analytically, like for European options, and for Lévy processes,

C.x1, x2, tm/� Ck.x1, x2, tm//
N�1
jD0 ,

can be written as

C.x1, x2, tm/D e
�r�t Im.MsuCMcu/=� .

Here, Im means taking the imaginary part of the expression in brackets. Msu stands for the first N
elements of D�1.D.ms/ �D.us// ¶ and Mcu denotes the computation of the first N elements of
D�1.D.mc/ � sgn �D.us//, in reversed order, see [6].

In this description, we have

sgnD Œ1,�1, 1,�1, : : : �T , ms D Œm0,m�1, � � � ,m1�N , 0,mN�1, � � � ,m1�
T ,

mc D Œm2N�1,m2N�2, � � � ,m1,m0�
T , us D Œu0,u1, � � � ,uN�1, 0, � � � , 0�T ,

with elements

mj D
.x2 � x1/

b � a
�i , if j D 0,

mj D
exp

�
ij .x2�a/�

b�a

�
� exp

�
ij .x1�a/�

b�a

�
j

, if j ¤ 0.

Finally, uj D �.j�=.b � a//Vj .tmC1/ and u0 D 1
2
�.0/V0.tmC1/.

For all time steps,mDM�1, � � � , 1, the approximation of Vk.tm/ is recovered from (14) or (15).
Option value v.x, t0/ is obtained by inserting Vk.t1/ into (13) and then applying (4) with T replaced
by t1.

§If x�m lies outside the interval Œa,b�, we set x�m equal to the nearest boundary point.
¶D(vector) denotes the discrete Fourier transform, whereasD�1 stands for the inverse discrete Fourier transform.
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2.3. Underlying asset processes

In this paper, we discuss two different underlying asset processes, the Carr-Madan-Geman-Yor
(CGMY) process, a Lévy jump process, and the Heston stochastic volatility process. For efficient
use of the COS method, the characteristic function related to these processes is required.

The CGMY process, as defined in [11], is a generalization of the Variance Gamma process with
the following characteristic function:

�CGMY.!, t /D exp.tC�.�Y /
	�
M � i!/Y �M Y C .G C i!/Y �GY


�
. (18)

Four parameters need to be calibrated to market data: parameter Y W Y < 2 controls whether the
CGMY process has finite or infinite activity. Parameter C W C > 0 controls the kurtosis of the dis-
tribution, and non-negative parameters G,M give control over the rate of exponential decay on the
right and left tails of the density, respectively.

In the Heston stochastic volatility model, the underlying and the volatility are modeled by the
following SDEs,

dxt D

�
r �

1

2
�t

�
dt C

p
�tdW1,t ,

d�t D œ. N���t /dt C �
p
�tdW2,t , (19)

where xt and �t denote the log–asset price process and the variance of the asset price process,
respectively. Parameters œ, N�, and � represent the speed of mean–reversion, the long-term mean
value of variance, and the volatility of volatility parameters, respectively. Moreover, W1,t and W2,t

are Brownian motions, correlated with correlation coefficient 	.
For the log–asset price in the Heston model, an analytic characteristic function can be found,

which reads

� .!,
t ,�0/D exp

�
i!r
t C

�0

�2

�
1� e�D�t

1�Ge�D�t

�
.œ� i	�! �D/

�
�

exp

�
œ N�

�2

�

t.œ� i	�! �D/� 2 log

�
1�Ge�D�t

1�G

���
,

with D D
p
.œ� i�	!/2C .!2C i!/�2 and G D œ� i�	! �D=œ� i�	! CD.

For the value of D, we take the square root whose real part is non-negative.

Remark 2.1. (Advantage of COS method on GPU) From [12], we already know that, compared
with the execution on a CPU, a GPU is favorable for the individual time-consuming operations
in the COS method. Moreover, the elements of the sum in (4) can be computed simultaneously.
The GPU is therefore expected to outperform the CPU implementation, in particular, when many
computations are necessary, like for European options with multistrike features.

3. EUROPEAN OPTIONS

A European option can be viewed as a special case of a Bermudan option with only one possible
exercise date (the expiry time). For European options, the Fourier and inverse Fourier transform
operations are not needed.

3.1. Different ways of graphics processing unit implementation

In this section, we discuss different ways of implementation on a GPU. Consider a simple case
where we need to price one vanilla option.

From (4), the COS algorithm can be decomposed into two steps, that is, computations on each ele-
ment of a vector, Re.exp .�ik� a

b�a
/�. k�

b�a
I x/Vk/, which can be parallelized, and the summation

of vector elements.
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We consider three ways of GPU implementation:

1. Directly run the whole code on the GPU, referred to as GPU1;
2. All operations related to each vector element are parallelized on the GPU, whereas the sum-

mation is performed on the CPU. This hybrid GPU/CPU way of implementation is referred to
as GPU2; and

3. When summing up the elements of a vector, we can split the vector in two vectors, each of size
N=2, and sum up these two on the GPU. The procedure is repeated until N D 1. The summa-
tion of pairs of elements can be parallelized on the GPU this way. The number of operations
for the summation can be reduced from N to log2.N /, referred to as GPU3.

Figure 1 presents a comparison of the time consumed by the aforementioned three ways of GPU
implementation and also the CPU time. Clearly, GPU1 is faster than the CPU only when N , the
number of terms in the Fourier cosine expansion, is large, whereas the implementations GPU2 and
GPU3 are faster than either of the CPU implementation or GPU1. Moreover, as N increases, the
speedup of GPU2 and GPU3 also increases. GPU3 is slightly slower than GPU2 for small N , but
when N is very large, GPU3 beats GPU2.

Unlike the CPU or GPU1, the time for GPU2 and GPU3 does not increase much as N increases,
until N � 216.

For Bermudan options, implementation GPU3 is preferred because the complete code then runs
on the GPU, and data transfer can be reduced. With GPU2, we would need to transfer data at each
time step, which consumes time.

In this paper, we will use implementation GPU3 for all numerical examples to follow.

3.2. Numerical example

We take as an example the CGMY model with Y D 1.5. The other parameters are chosen as
S0 D 100, r D 0.1,K D 80,C D 1,M D 5,G D 5. Table II compares time and accuracy of
the CPU and the GPU results, with time measured in milliseconds.

Table II shows that with N D 1024, the GPU implementation is 1.5 times faster than running the
code on the CPU. However, it is not necessary to take such a large value of N in the COS method in
practice, as with N D 256, the option values already differ less than one basis point. Therefore, in

Figure 1. Comparison of different graphics processing unit (GPU) implementations.
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the present setting (COS method, small values of N ), the use of a GPU is not really advantageous.
However, when dealing with multiple strikes, presented in Section 4, many more computations are
needed so that the GPU performance will be more profound.

4. MULTIPLE STRIKE OPTION PRICING

In this section, we focus on pricing European options, but now with multiple strikes, on the GPU.
The parameters used, next to S0 D 100, in the CGMY process and for the Heston process are
the following:

CGMY: r D 0.1,C D 1,G D 5,M D 5,Y D 1.5,T D 1I

Heston: r D 0.040,œD 1.577, �D 0.575,�0 D 0.018, 	D�0.57,T D 10.

We price European call options with vectors of strikes, as shown in Table III. To efficiently imple-
ment (11) on a GPU, we first divide the P -axis and the N -axis in different blocks and threads, as
shown in Figure 2.

Then each element of a .P�N/-matrix can be calculated simultaneously as illustrated in Figure 3.
When performing the summation on each row of matrix v, as the final step in (11), we divide the

.P � N/-matrix into smaller submatrices. For instance, with N D 128 and 21 strikes, the corre-
sponding 21� 128 matrix can be subdivided into 56 matrices of size 3� 16. The elements of these
smaller submatrices are copied to shared memory as shown in Figure 4.

Table II. Comparison of time and precision for CPU and GPU
implementation of the COS method for a single European option.

N CPU (time) GPU (time) CPU (value) GPU (value)

256 0.193. . . 0.182 27.974744 27.974733
1024 0.691. . . 0.433 27.974744 27.974733

GPU, graphics processing unit.

Table III. Number of strikes used in the
numerical examples.

Number of strikes Value of K

3 80, 100, 120
5 80, 90, 100, 110, 120
9 80, 85, � � � , 115, 120
13 70, 75, � � � , 125, 130
17 60, 65, � � � , 135, 140
21 50, 55, � � � , 145, 150

Figure 2. Blocks and threads.

Figure 3. Parallelization of COS method for options with multistrike.
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1634 B. ZHANG AND C. W. OOSTERLEE

Figure 4. Data transfer from global memory to shared memory.

Here, aBegin is the first location of As, that is, the blocks with shared memory, and tx, ty are
the thread indices of As. Then, as we run the program, data transfer only happens within the shared
memory and not in the global memory, which saves us many GPU time.

4.1. Convergence and precision

Tables IV and V present the convergence behavior and the precision of option values with 5 and
21 strikes, respectively, for the two underlying processes. Time is again measured in milliseconds.
Option values obtained with N D 216, and in double precision, are taken as the reference values.
We calculate the maximum absolute error, for varying values of N , over the strike vectors.

Both the GPU and CPU timing results are shown to be extremely fast, as we need only N D 64
for the CGMY process and N D 128 for Heston’s model to obtain converged option values on the
GPU and the CPU. However, the execution time on the GPU is significantly smaller than on the
CPU. As we are in the milliseconds range, one might question the relevance of this gain in speed.

Table IV. Convergence and maximum absolute error when pricing a vector of five strikes.

CGMY model

N 32 64 128
MATLAB ms 0.413230 0.745590 1.388770

max. abs. error 1.3409e-05 <10�14 <10�14

GPU ms 0.141144 0.143051 0.152826
max. abs. error 0.000027 0.000034 0.000034

Heston model
N 64 128 256

MATLAB ms 1.206600 1.958680 3.873950
max. abs. error 4.2839e-04 2.2218e-08 <10�14

GPU ms 0.154972 0.159979 0.182867
max. abs. error 0.000534 0.000104 0.000104

CGMY, Carr-Madan-Geman-Yor model; MATLAB, matrix laboratory; GPU, graphics process-
ing unit; max. abs. error, maximum absolute error; ms, millisecond.

Table V. Convergence and maximum absolute error when pricing a vector of 21 strikes.

CGMY model

N 32 64 128
MATLAB ms 1.335130 2.690250 5.340340

max. abs. error 1.3409e-05 <10�14 <10�14

GPU ms 0.154018 0.169992 0.200987
max. abs. error 0.000053 0.000053 0.000053

Heston model
N 64 128 256

MATLAB ms 3.850890 7.703350 15.556240
max. abs. error 6.0991e-04 2.7601e-08 <10�14

GPU ms 0.177860 0.209093 0.333786
max. abs. error 0.000534 0.000144 0.000144

CGMY, Carr-Madan-Geman-Yor model; MATLAB, matrix laboratory; GPU, graphics process-
ing unit; max. abs. error, maximum absolute error; ms, millisecond.
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However, within a calibration setting, option prices have to be computed several thousands of times,
which immediately turns a small gain into a significant profit. The advantage of the use of the GPU
becomes more pronounced when the value of N and the number of strikes, K.P /, increase; since
then more arithmetic operations are required. As shown in Tables IV and V, the acceleration on the
GPU for Heston’s model increases for five strikes from 12 to 21, as N increases from 128 to 256.
For 21 strikes, the speedup on the GPU is a factor, 37 for N D 128 and 47 for N D 256. Because
more computations are necessary to evaluate the characteristic function of the Heston model, the
speedup on the GPU for the Heston model is higher than for the CGMY model. However, because
of the fact that the GPUs used in this test give computed values in single precision, round-off errors
can build up during the computation of the characteristic function on the GPU. A larger maximum
absolute error for the Heston model is therefore observed in the tables.

Figure 5 presents the speedup obtained on the GPU for different numbers of strikes, with
N D 128, 512, and 2048. It displays a speedup of 30–40 for 21 strikes on the GPU with N D 128
and a speedup of 60–70 for 13 and 17 strikes with N D 512. The GPU appears to be a very
satisfactory architecture for pricing options at multiple strikes.

Figure 5 also displays the influence of data transfer on the GPU time. The data transfer time is
the time to transfer the input (in this case, the value of the strikes) from the CPU to the GPU at
the beginning plus the time to transfer the output (the option values) back to the CPU after the
computations have finished.

Graphics processing unit time is the sum of the data transfer and the computation time. For larger
input sizes, the GPU is advantageous regarding the computations but the data transfer time increases.
The influence of data transfer time is more pronounced when the number of terms in the cosine
expansion, N , reaches 1000.

For a closer look, we refer to Table VI from which we see that because of the parallelization, the
GPU computation time hardly changes when N increases from 2048 to 8192. On the other hand,
data transfer time is more significant with increasingN , which gives a smaller acceleration for large
N and many strike values, as also shown in Figure 5.

Figure 5. Graphics processing unit speed-up for Heston model with different number of strikes, N D
128, 512, and 2048.

Table VI. Influence of data transfer on the computational time on a GPU.

N 2048 4096 8192

Data transfer time excluded 0.086069 0.087023 0.084877
Data transfer time included 0.493050 1.350164 4.626989

GPU, graphics processing unit.
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Table VII. Convergence and maximum absolute error when pricing a vector of 11 strikes.

Set 1 with T D 0.1 (1 month)

N 512 1024 2048
MATLAB ms 5.9980 13.4580 27.9570

max. abs. error 2.4248e-04 4.0405e-06 1.1445e-07
GPU ms 0.188828 0.279903 0.492811

max. abs. error 0.000255 0.000025 0.000025
Set 2 with T D 0.0001 (1 h)

N 1024 2048 4096
MATLAB ms 9.4810 26.9409 60.3240

max. abs. error 1.6419e-04 7.5000e-08 4.8746e-16
GPU ms 0.280857 0.494957 1.353979

max. abs. error 0.000019 0.000010 0.000010

MATLAB, matrix laboratory; GPU, graphics processing unit; max. abs. error, maximum
absolute error; ms, millisecond.

4.2. Option pricing with short maturity times

In certain practical applications, profit opportunities may arise from the calibration of Levy
processes for European option contracts with a very short time to maturity.

In this section, we report on the recent implementation of the COS method on a different GPU
architecture, a Tesla C1060, which also supports double precision. The true advantages of this GPU
for the COS method implementation are for short maturity options because we then need a larger
value of N (many terms in a cosine expansion) for convergence with the COS method, thus more
computations need to be performed.

In Table VII, the computational time in milliseconds is recorded on this GPU and on the
CPU for options under the CGMY model. A vector of strikes, K D 90, 92, � � � , 110, is priced
simultaneously. The maximum absolute error|| over all strikes for short maturities is also pre-
sented. The model parameters used are C D 0.5, G D 10, M D 30, Y D 0.5 (Set 1) and
C D 0.25, G D 5, M D 50, Y D 1.5 (Set 2).

For the experiments in Tables IV and V, we reached convergence withN D 128, and we obtained
speedups of 9 and 26 on the GPU for 5 and 21 strikes, respectively. In Table VII, N D 1024 and
N D 2048 were used in the two experiments, respectively, for convergence at short maturities, and
the Tesla GPU then achieves speedups of 48 and 54.

4.3. Riccati ordinary differential equations and characteristic function

In this subsection, we will implement an explicit Runge–Kutta ODE solver to determine the charac-
teristic function for Heston’s model. The Riccati ODEs arise in the determination of a characteristic
function. Sometimes, as in the case of the Heston model, the characteristic function is known analyt-
ically. In the cases for which we cannot find an analytic expression, we may resort to the numerical
solution of the Riccati ODEs. The numerical procedure is, for example, necessary for systems of
SDEs that include, for example, stochastic interest rate and stochastic volatility. In this numerical
procedure, an operation such as taking the square root of a complex number is not needed, in con-
trast to the evaluation of the analytic solution. For the numerical ODE solver, the influence of single
precision arithmetic is therefore less pronounced, and we even obtain a higher accuracy than with
the analytic characteristic function.

From [8], we know that the characteristic function for the Heston model (19) is of the
following form:

�x,�.!, t /D eA.!,t/CB�.!,t/�0CBx.!,t/x0 , (20)

||Reference values have been obtained withN D 220.
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with the coefficients A.!, t /, Bx.!, t /, and B�.!, t / given by the following Riccati ODEs:
8̂<
:̂

@
@t
Bx.!, t /D 0, Bx.!, 0/D i!,

@
@t
B�.!, t /D 0.5�2�2t � .œ� i	�!/�t � 0.5i! � 0.5!2, B�.!, 0/D 0,

@
@t
A.!, t /D œ N��t C i.r � q/!, A.!, 0/D 0.

(21)

It is easy to see from (21) that Bx.!, t / D i!, A.!, t /, and B�.!, t / are now solved numeri-
cally by the explicit fourth order Runge–Kutta method and inserted in the general characteristic
function (20), on the basis of which we employ the COS method.

Table VIII shows the corresponding timing results on the GPU and the CPU for 5 and 21 strikes,
respectively. Compared with the results in Tables IV and V, a higher speed-up is achieved on the
GPU here. For 5 strikes, with N D 128 and N D 256, the GPU timings are around 50 times faster
than the CPU results. For 21 strikes, the acceleration on the GPU is a factor of 100. Note that for 21
strikes because of the increased data transfer, the speed-up reduces as N increases, but because of
the exponential convergence rate, N D 128 is sufficient for convergence.

Figure 6 shows the speedup on the GPU with N D 128, 256, and 512 and a different number of
strikes. Of course, option pricing with an analytic characteristic function is still the fastest, but the
numerical solution of Riccati ODEs can be performed highly efficiently on these units.

Table VIII. Convergence and maximum absolute error for 5 and 21 strikes, Heston model’s
characteristic function obtained by the fourth order Runge–Kutta method.

5 strikes

N 64 128 256
MATLAB ms 37.9491 50.5196 81.1083

max. abs. error 4.2848e-04 8.4949e-08 1.0650e-07
GPU ms 1.091957 1.121998 1.253843

max. abs. error 0.000443 0.000013 0.000013
21 strikes

MATLAB ms 84.9870 145.0005 268.2299
max .abs. error 6.0979e-04 1.5607e-07 1.2847e-07

GPU ms 1.228094 1.402855 2.689838
max. abs. error 0.000611 0.000037 0.000037

MATLAB, matrix laboratory; GPU, graphics processing unit; max. abs. error, maximum
absolute error; ms, millisecond.

Figure 6. Graphics processing unit (GPU) acceleration for Heston model with different strike vectors and
N , characteristic function obtained by fourth order Runge–Kutta method.
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5. BERMUDAN OPTIONS

In this section, we consider the pricing of Bermudan options with a discrete number of early exer-
cise points. Also here, we do not focus on large values of N or on many time points, M. With
N D 160 in the COS method, we obtain the price of a Bermudan option with an error smaller than
10�9. Moreover, Bermudan options with up to 64 time points (M D 64) are typically sufficient to
obtain a very satisfactory approximation of the value of an American options (that can be exercised
at any time before expiry) by a repeated Richardson extrapolation, see [13].

We will show in this section that by exploiting the parallelism of a GPU, the COS algorithm is
somewhat faster than on the CPU with a realistic number of terms, N . The reduction of the total
execution time is however not as impressive as in the previous sections.

We use as a numerical example a Bermudan put option under the CGMY process. The model
parameters are S0 D 100, K D 80, M D 10, C D 1, M D 5, G D 5, Y D 1.5. Tables IX and X
compare time and accuracy on the GPU and CPU.

With N relatively small, the Bermudan option price converges well, and the resulting error is
small. However, as mentioned before, as N becomes larger, which is probably necessary for other
types of options, the advantage of using the GPU will become more pronounced.

We increase the number of exercise dates, M, to 20, 40, and 80 and compare the GPU and CPU
execution times. The model parameters are as before. We useN D 512. The timing results are listed
in Table XI.

With N D 512, the GPU is twice as fast as the CPU for different numbers of exercise dates.
The number of exercise dates does not influence the speedup of the GPU. This is because the
algorithm can not be parallelized in time, as we use values at tmC1 to calculate values at tm
in the backward recursion procedure. This results in a recursion of m D M � 1, � � � , 1 in the
CUDA implementation.

Table IX. Comparison between CPU and GPU execution times for the
CGMY model for a Bermudan option; different numbers of terms in the

Fourier cosine expansion.

N CPU (time) GPU (time)

256 13.15. . . 11.02
512 24.69. . . 13.69
1024 46.65. . . 27.34

CGMY, Carr-Madan-Geman-Yor; GPU, graphics processing unit.

Table X. Precision on the GPU, Bermudan put option, for different
numbers of terms in the Fourier cosine expansion.

N CPU (value) GPU (value)

256 28.829781987399432 28.829739
512 28.829781987399425 28.829721
1024 28.829781987399404 28.829756

GPU, graphics processing unit.

Table XI. Comparison of CPU and GPU times for the CGMY model,
Bermudan option with a different numbers of exercise dates.

M CPU (time) GPU (time)

20 51.04. . . 26.09
40 104.00. . . 50.88
80 210.20. . . 100.54

GPU, graphics processing unit.
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6. CONCLUSIONS

The COS method is a highly efficient pricing method for European and early exercise options. It is a
challenge to implement an efficient method, which requires a small number of terms in the Fourier
cosine expansion and a small number of exercise dates to approximate the value of an American
option, efficiently on a GPU.

We implemented the COS algorithm on the GPU using CUDA. The GPU timings and option val-
ues were compared with those obtained on the CPU. To exploit the advantages of a GPU, we split a
vector (or matrix) and perform summation in parallel, which enhanced the GPU performance.

A highly satisfactory performance on the GPU was observed especially in the case of multi-
ple strike European option computations. Then, we find GPU speedup ranging from 10 to 100,
depending on the form of the characteristic function and on the number of strikes that is computed
simultaneously.

Although computation on a GPU to date still exhibits some disadvantages, such as a somewhat
time-consuming memory transfer, it is a highly promising architecture for option pricing.

For involved SDE asset price models, the characteristic function must be determined numerically
by a Riccati ODE solver, as an analytic expression is not available. On the basis of the results in this
paper, the numerical ODE treatment by means of a fourth order Runge–Kutta method is also highly
efficient on a GPU.

A GPU-based architecture may serve very well as a calibration engine in option pricing.
A comparison between a GPU and a single CPU may not be completely fair. Instead, we should

have compared it with a multicore CPU machine (if it would have been available to us). This would
have improved the CPU performance.

However, it should be noted that with a multicore CPU, also the data transfer time between the
CPU and the GPU will improve. Because data transfer time dominates the total execution time so
far, we also expect an increased speedup of the total GPU time compared with the times reported in
this manuscript.
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