UNIVERSITY OF TROMS@ UIT ==

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Cogset: A High-Performance
MapReduce Engine

A
-y

Steffen Viken Valvag

A dissertation for the degree of
Philosophiae Doctor

September 2011

Abstract

MapReduce has become a widely employed programming model for large-scale data-intensive
computations. Traditional MapReduce engines employ dynamic routing of data as a core mech-
anism for fault tolerance and load balancing. An alternative mechanism is static routing, which
reduces the need to store temporary copies of intermediate data, but requires a tighter coupling
between the components for storage and processing. The initial intuition motivating our work
is that reading and writing less temporary data could improve performance, while the tight
coupling of storage and processing could be leveraged to improve data locality.

We therefore conjecture that a high-performance MapReduce engine can be based on static
routing, while preserving the non-functional properties associated with traditional engines.
To investigate this thesis, we design, implement, and experiment with Cogset, a distributed
MapReduce engine that deviates considerably from the traditional design.

We evaluate the performance of Cogset by comparing it to a widely used traditional MapRe-
duce engine using a previously established benchmark. The results confirm our thesis that a
high-performance MapReduce engine can be based on static routing, although analysis indi-
cates that the reasons for Cogset’s performance improvements are more subtle than expected.
Through our work we develop a better understanding of static routing, its benefits and limita-
tions, and its ramifications for a MapReduce engine.

A secondary goal of our work is to explore how higher-level abstractions that are com-
monly built on top of MapReduce will interact with an execution engine based on static routing.
Cogset is therefore designed with a generic, low-level core interface, upon which MapReduce
is implemented as a relatively thin layer, as one of several supported programming interfaces.

At its core, Cogset provides a few fundamental mechanisms for reliable and distributed stor-
age of data, and parallel processing of statically partitioned data. While this dissertation mainly
focuses on how these capabilities are leveraged to implement a distributed MapReduce engine,
we also demonstrate how two other higher-level abstractions were built on top of Cogset. These
may serve as alternative access points for data-intensive applications, and illustrate how some
of the lessons learned from Cogset can be applicable in a broader context.

i1

Contents

[Acknowledgements|

L__Introduction|

(1.1 Data-Intensive Computing|
(1.2 Cloud Computing]
(1.3 MapReduce|

(1.3.1 Data Shuffling|,

[1.5 Scope and Assumptions|. e
(1.6 Methodology|

(1.8 Summary of Contributions|

[1.9 Outline of the Dissertationl v

2 Related Work
2.1 Dataflow Graphs|

2.2 Dataflow Engines|
2.3 MapReduce|
[2.3.1 Programming Interface
[2.3.2 Example Applications| Lo oL
2.3.3 ExecutionEngine|. L.

[2.3.5 The MapReduce Datatlow Graph|
2.4 Map-Reduce-Merge|.
2.5 Workflow Composition and High-level Languages|.
[2.6 Alternative and Hybrid Architectures|.
27 Summary|

Design and Architecture of Cogset|

[3.1 Key Design Choices|.
(3.2 Data Partittoning|

11

ix

13
13
14
16
17
17
20
22
24
25
26
27
29

(3.8 In-situ Data Processing| L. 40

3.9 Summary| 41
4 Implementation of Cogset]| 43
BT Records . . . o oot 44
2 Record Formatters| 44
(4.3 Partitioning| e 46
4.4 Keysand Key Functions| 47
....................................... 48
4.6 On-disk DatalLayoud, 49
Record Distri P 49

4.8 Distribution Sessionsl Lo 51
M9 Traversalsl 52
.10 MapReduce Support| 55
[4.11 Communication Layer] 58
.12 Summary| e 59
5 Experimental Evaluation| 61
5.1 The MR/DB Benchmarkl 62
[5.2 Previously Benchmarked Systems| 65
[5.3 Experimental Setup and Benchmark Adaptation| 65
5.4 Hadoop Optimizations|, 67
5.5 Benchmark Results| 0 . 67
[5.5.1 GrepResults| 67
0552 SelectResults|. 68
[5.5.3 Aggregate Results| oo 68
B354 JoinResults 68

0SS UDFResultso 0o o 72

0.5.6 Relative Performancef. o oL 74

[5.6 Analyzing and Optimizing Hadoop| 74
[5.6.1 Task Scheduling| 0 oo 75
[5.6.2 Multi-Core Optimizations| 76

[5.7 Summary| 78
6 Higher-level Abstractions| 79
6.1 O1vos| 79
6.1.1 The Dataset abstraction|. 81
[6.1.2 Oivos Operators| 84
[6.1.3 Example Oivos Application| 85
[6.1.4 Compiling Oivos Programs|. 89

(6.2 Update Maps| 90
[6.2.1 Update Map Interface| 91
[6.2.2 Implementation of Update Maps| 93
[6.2.3 Web Crawler Example| 95

(6.3 Summary| 98

v

929

[/ Concluding Remarks|

....................................... 99
[72 Conclusions e 101
Futur Kl . e 101
Publication 103
107

vi

List of Figures

[2.1 Birthday grouping example implemented in Python.|. 18
[2.2 Word count aggregation example implemented 1n Python|. 18
[2.3 Population density sorting example implemented in Python.| 18
[2.4 Minimal MapReduce engine implemented in Python.| 20
[2.5 A MapReduce dataflow graph with M=3 andR=2. 25
[3.1 Data set partitioning, using chained declustering for replica placement.|. 35
(3.2 Example traversal. Large partitions are processed first, to balance the load |

evenly betweenallnodes.|. 38
[3.3 'Traversal where one node (N3) fails mid-way through the traversal. Neighbor- |

ing nodes pick up the extra load (blue and green partitions). 39
4.1 Interfaces for record formatting.| 45
M2 Partitionerinterfacel. 47
4.3 Key function interface.| oL oL 47
4.4 A generic hash partitioner,| o oL 48
4.5 Main Cogsetinterface.| L 50
4.6 Record distributor and session handle mterfaces.). 50
47 Partition visitorinterface] Lo oo 53
4.8 Partition interfacel. 53
4.9 RecordVisitor and RecordReader interfaces. 54
{4.10 Partition visitor for the map phase of a MapReduce job.| 56
.11 Partition visitor for the reduce phase of a MapReduce job.|. 57
[5.1 Grep execution times inseconds.| Lo 69
5.2 Select execution times in seconds.| oo 69
5.3 Select execution times 1n seconds, with an emulated index.| 70
[5.4 Aggregate execution imes mnseconds.| oL 70
5.5 Join execution timesinseconds) oL 71
[5.6 Join execution times 1n seconds, with an emulated index.| 71
5.7 UDFexecutiontimesinseconds. 72
0.8 Relative execution times for the MR/DB benchmark 73
[6.1 Or1vos interfaces for manipulation of datasets.| 81
[6.2 Oivos interfaces for declaring and materializing datasets| 82
[6.3 Function interfaces associated with O1vos operators.|. 83
[6.4 Record classes used in the web indexer example.| 86
[6.5 Main program of the web indexer example.| 87

vil

[6.6 O1vos mapper function to tokenize HTML documents.| 87

[6.7 Oi1vos reducer function to aggregate tokens into an inverted index.| 88
[6.8 Oivos merger function to merge entries from two inverted indexes into one.| . . 88
(6.9 Automatic function composition of two user-defined mapper functions.| 90
[6.10 Using the Update operation to asynchronously update values.|. 92
[6.11 Using the Traverse operation to visit all key/value parrs.|. 93
[6.12 Applying a batch of updates, by joining a set of data records with a set of update |

records, producing an updated set of datarecords.| L. 94
[6.13 The main loop of a web crawler using a key/value database.[. 96

[6.14 The main loop of a web crawler using an update map.| 97

viil

Acknowledgements

Back in 2004, I was one of the software developers working for Fast Search & Transfer (FAST),
a leading actor and recognized innovator in the enterprise search business; presently a part of
Microsoft. One morning, professor Dag Johansen, my future Ph.D. advisor, stopped by the
office and brought a recently published paper to our attention: it described a new system called
MapReduce, that greatly simplified distributed processing of large, unstructured data sets.

As programmers with first-hand experience with the practical challenges posed by distributed
applications, we immediately recognized the significance of MapReduce, and looked for ways
to apply similar principles in our own software. In one meeting, while we were reflecting upon
the restricted precedence graph implicit in MapReduce, pondering ways to support a more
expressive programming interface, Frode Vatvedt Fjeld remarked that a precedence graph could
be specified using a regular Makefile. The next day I built a prototype version of a distributed
“make” program that quickly evolved into a new foundation for our web analysis platform.

This kind of rapid innovation is a good example of my time in FAST, and I thank all of the
people I worked with there for inspiring me and expanding my horizons. In particular I'd like
to thank Tale Skogan and Hakon Brugérd for being very useful discussion partners not just
back then, but throughout the course of my Ph.D. work. In general, many of the ideas I explore
in this dissertation can be traced back to discussions I have had with people in FAST.

At the University of Tromsg, I have also enjoyed a welcoming, supportive, and creative
workplace environment. Many of my colleagues here and in the iAD research project have
aided me with useful suggestions, discussions, and insightful feedback along the way. Age
Kvalnes, Havard Dagenborg Johansen, Audun @strem Nordal, Dmitrii Zagorodnov, and pro-
fessor Johannes Gehrke have all been particularly helpful at various stages of my work.

Professor Dag Johansen deserves a special mention, as my Ph.D. advisor and academic men-
tor for several years. His undying enthusiasm is infectious, and I thank him for all his good
advice, for his persistent support, and for his unwavering faith in me and my work. I also thank
my second advisor, professor Bjgrn Olstad, for inspiration and encouragement.

Finally, I am grateful for my dear girlfriend Mona, and for our lovely children. They made
it all worth my while.

X

Chapter 1

Introduction

Modern data centers commonly contain very large clusters of commodity computers, built from
low-cost hardware components. Individually, these machines are generally no more powerful
than the average home computer, and apart from a more compact physical design that allows
them to be stacked in racks, they are quite unremarkable. However, by cooperating, having
each participant work in parallel on a small part of a much bigger overall problem, clusters of
low-end machines can perform highly demanding computations, such as weather forecasting,
DNA sequencing, or sifting through the vast and rapidly growing collection of interlinked web
pages that comprise the World Wide Web.

Ideally, if one machine takes two hours to solve a problem, one could expect two cooperating
machines to do it in one hour. Such an ideal is called linear speedup. Additionally, if those
two machines could solve a twice as large problem in the same time as one machine, there
would be so-called linear scaleup. Three reasons why these ideals are hard to attain in practice
are: (/) in order to divide a problem into suitable sub-problems and prepare all participants,
there will be some start-up and communication overhead, which eventually grows dominant,
(2) as the number of participants increases, it will be increasingly hard to devise evenly sized
sub-problems for all of them, causing bottlenecks, and (3) there may be contention for shared
resources, causing interference between participants and overall slowdowns.

To minimize the problem of interference, a much-adopted solution is to avoid centralized
storage systems and shared memory. Instead, each participating machine is a regular low-cost
commodity computer with its own private CPU, memory and local hard drive, and the machines
are loosely interconnected in a generic local area network (LAN) of the kind found in many
workplaces. Successfully deployed at ever-increasing scales, such shared-nothing architectures
have proved to be a very cheap way of scaling [[1]. Commodity hardware, when purchased in
bulk, is sufficiently inexpensive that faulty components can simply be replaced rather than
diagnosed and repaired. On the other hand, in an environment where individual components
are generally unreliable and even considered disposable, it is by no means trivial to program
robust distributed applications. A simple and inexpensive approach to scaling hardware can
thus lead to a proliferation of highly complex distributed software.

To combat this complexity, there is great demand for modular software abstractions that
factor out specific functional concerns, to which programmers must explicitly relate, while re-
using established solutions for generic non-functional concerns such as distribution of data,
inter-process communication and synchronization, and fault tolerance. Examples include dis-
tributed file systems, which focus on reliably storing data in an unreliable environment by

replicating it on multiple machines; naming services, which provide an abstract namespace
through which distributed processes can establish communication; and distributed lock ser-
vices, which allow processes that execute in parallel to synchronize their actions as required in
order to ensure correct results. Such software infrastructure emerged as a natural consequence
of distributed computing in general and shared-nothing hardware architectures in particular.

As new application areas and deployment scenarios appear, introducing new requirements,
the software abstractions that support shared-nothing clusters continue to evolve. Two specific
developments have been particularly influential in recent years: the increased focus on data-
intensive computing, and the advent of cloud computing. The next sections describe these
particular developments and how they have motivated new software infrastructure and novel
programming models.

1.1 Data-Intensive Computing

For most traditional high-performance computing applications, such as weather forecast-
ing, cryptography, or protein folding, performance is mainly limited by the available CPU time.
Such compute-intensive applications may informally be characterized as number-crunching ap-
plications, since they operate on small and well-defined data sets, but perform extensive com-
putations in order to produce the desired results (e.g, the future state of a simulated weather
model, or the prime factors of a large integer).

In contrast, the performance of data-intensive applications is mainly limited by the amount of
data to be processed. Such applications are particularly sensitive to scheduling algorithms and
data placement, due to the high cost of accessing data and shuffling it between participating
machines. This introduces a new set of requirements and trade-offs, and techniques such as
batching, caching, and co-location of related data items may be instrumental for optimizing
data-intensive computing.

The explosive growth of the world wide web brought a new set of data-intensive applica-
tions. As an unprecedented source of rapidly growing and largely unstructured data, the web
introduced new technical challenges as well as business opportunities. Companies found ways
to profit not just from serving and distributing web data, but also from collecting and analyzing
it. Perhaps most notably, a 1998 startup company named Google Inc. was highly successful
and prospered greatly from providing a conceptually simple service: web search.

The web has become the default medium for publishing electronic information, but it has no
built-in facilities for locating information of interest. To provide such a service, a large portion
of the web must be downloaded, processed and analyzed in various ways and finally indexed—
and in order to provide up-to-date search results at all times, the process must be repeated
as frequently as possible in a continuous cycle [2]. Google achieved this by establishing an
environment for data-intensive computing based on large shared-nothing clusters, which were
scaled up to unprecedented sizes in step with the ever-increasing amounts of data and users on
the web.

As one of the first companies to attempt large-scale web indexing, Google found existing
software abstractions lacking or unsuitable, and developed a new suite of software infrastruc-
ture, aimed specifically at supporting large-scale data-intensive computations. Many of the
individual systems that comprise this infrastructure have been the subject of academic publica-
tions [3,4, 5,16, (7, 8, 9,110] and received considerable interest, since they demonstrate practical
approaches that have been deployed in live production environments on very large scales.

In particular, the MapReduce programming model [6] made a great impact by demonstrating
a simple, flexible and generic way of processing and generating large distributed data sets.
MapReduce programs are written in a particular functional style and may be executed within
a framework that automatically enables distributed and highly parallel execution. MapReduce
was quickly embraced as a new paradigm for data-intensive computing, and widely adopted
by other companies working with web-scale data sets. For example, Hadoop—an open source
implementation of MapReduce—is currently used by major companies such as Amazon, eBay,
Facebook, Twitter, Yahoo!, and many others [11].

1.2 Cloud Computing

The adoption of MapReduce and similar high-level programming models was encouraged
by another concurrent development: a new paradigm for software deployment known as cloud
computing [1]. The aim of cloud computing is to turn computing power into a common utility
that is always available on demand and in abundant supply, much like electrical power delivered
through the electricity grid. This long-held dream has recently become economically viable,
with the construction and operation of extremely large-scale, commodity-computer data centers
at low-cost locations.

Cloud providers allow customers to purchase on-demand access to computing power in var-
ious forms, for example as a cluster of virtual machines, provisioned from a much larger un-
derlying cluster of physical machines. Customers may log in remotely and execute their own
software on the virtual machines, and purchase access to additional machines whenever the
need arises. As a result, computing clusters are now more accessible than ever: there is no
need for small companies to make large up-front investments in hardware to provision for peak
loads or anticipated future growth—yvirtual computing clusters hosted in the cloud may simply
be expanded on demand, minimizing financial risks [[1].

To fully exploit the potential of cloud computing, applications should be able to scale up
or down with minimal disruption of service, and without excessive tuning and reconfigura-
tion. This property is referred to as elasticity, and extends the list of requirements placed on
software infrastructure for cloud environments. Conversely, high-level software abstractions
and programming models are particularly attractive for cloud applications, given the dynamic
nature of the underlying hardware environment.

MapReduce programs do not explicitly relate to the division of work and distribution of
data, nor to the many low-level complications that distributed execution entails. As long as
the application obeys certain restrictions imposed by the programming model, the MapReduce
engine ensures fault-tolerant and scalable execution. A MapReduce program may thus be de-
veloped and tested on a single machine or small cluster, and be deployed with a high degree
of confidence on a much larger scale. This makes MapReduce a particularly good match for
data-intensive applications executing in the cloud. Amazon’s commercial cloud computing
platform, Amazon Web Services, includes MapReduce support both as a separate high-level
web service [[12]], and in the form of customized virtual machine images.

While hard to quantify, a final and frequently emphasized reason why MapReduce appeals
to a broad audience of software developers is its simplicity. With the increased accessibility
and availability of distributed computing clusters, enabled by cloud computing, development
of distributed software is no longer a field exclusive to domain experts. Using MapReduce,

even novice programmers can learn to make effective use of large computing clusters [6]]. This
is due to a remarkably simple programming interface, which is described next.

1.3 MapReduce

In the MapReduce programming model, data sets are modeled as collections of key/value
pairs. A MapReduce program processes one such data set and produces another. The pro-
grammer is relieved of non-functional concerns such as data distribution, scheduling, and fault
tolerance, and is only required to provide two functions: a map function and a reduce func-
tion. The map function is applied to each input key/value pair, producing a set of intermediate
key/value pairs. The MapReduce engine groups the set of intermediate pairs by key, and the
reduce function is invoked once for each unique intermediate key. The reduce function may
access all of the values associated with the given intermediate key using an iterator, and emits
the key/value pairs that constitute the final output.

As an example of a computation that could be implemented as a MapReduce program, con-
sider the task of constructing an inverted index. An inverted index is a fundamental index
data structure used by search engines to associate index terms (e.g., alphanumeric strings) with
indexed documents. In a web search engine, the input data set would typically be a set of
(url, html) pairs, associating URLs with the HTML source of the corresponding web pages. The
desired output would be a mapping from index terms to the URLs of the pages in which the
terms occur. Using MapReduce, this could be accomplished by mapping all input (url, html)
pairs to sets of intermediate (term, url) pairs, and reducing all (term, url) pairs for each unique
term to a final (term, url-list) pair, where a url-list would be a set of URLSs, typically encoded
in a compact form. The map function in this example would essentially be a custom HTML
parser that extracts and emits all index terms from a web page, while the reduce function would
encode the list of URLs for a given index term.

The MapReduce programming model was introduced in 2004 [6]. In its abstract form, it
is little more than an interface specification, and a functional MapReduce engine is trivial to
implement. For example, Section [2.3.2] includes a minimal but functionally complete single-
process MapReduce engine implemented in just 20 lines of Python code. The most significant
contribution of the initial MapReduce paper was to describe how Google had designed and
implemented a highly scalable and fault-tolerant distributed MapReduce engine and deployed
it on clusters with thousands of machines. As such, the term MapReduce, unless otherwise
qualified, usually refers to distributed MapReduce engines built along similar design principles
as Google’s original implementation, with similar non-functional properties. Throughout this
dissertation, we will refer to such MapReduce engines as traditional MapReduce engines.

A traditional MapReduce engine is based on principles found in dataflow engines, a core
component of parallel databases [13]], and a natural building block for data-intensive compu-
tations. Despite this common ground, MapReduce differs from parallel databases in several
ways:

Programming Interface MapReduce programs are written in a general-purpose programming
language such as C++ or Java. The MapReduce engine is invoked using a library that al-
lows a program to start executing as a single process before branching into a full-fledged
distributed computation. The map and reduce functions are regular functions, imple-
mented in the general-purpose programming language, and integration with existing code
is therefore trivial.

This differs from the typical database approach, where computations are initiated by for-
mulating queries in a separate, domain-specific query language—typically the Structured
Query Language (SQL) or some restricted subset of SQL. Such query languages are gen-
erally unsuitable for expressing complex functions such as the HTML parsing from the
preceding MapReduce example.

Fault Tolerance Traditional MapReduce engines target data-intensive applications and are
highly resilient to machine failures. Long-running computations are supported and ex-
pected, and the traditional design tolerates machine failures with minimal disruption of
the overall progress.

Parallel databases are optimized for high-throughput execution of numerous short-running
queries and designed to handle failures by restarting all queries in progress.

Data Model MapReduce models all records as simple key/value pairs, and parses the input
data at run-time into sequences of key/value pairs according to a user-specified input
format that may be customized programmatically.

Parallel databases use schemas to model data, typically using the relational model [14].
Schemas enforce a well-known pre-defined structure for all records, and facilitate certain
optimizations such as compression, indexing, and column-based storage, but schema-
based approaches may be a poor fit for inherently unstructured data.

Decoupled Storage Traditional MapReduce engines are loosely coupled to the supporting
storage system, which is typically a block-based distributed file system. The absence
of schemas means there is no requirement to initially import and convert the data into
a special database-specific storage format. Data may therefore be processed in situ, by
implementing an input format that reads and parses records directly from the distributed
file system.

A downside of this loose coupling is that data placement decisions are made indepen-
dently from the processing logic. This may lead to poor data locality and be detrimental
to performance for many computations. For example, relational joins benefit greatly from
co-locating matching partitions of the input data sets, which is hard to ensure using a tra-
ditional MapReduce engine. Parallel databases closely integrate storage and processing
to address these concerns.

1.3.1 Data Shuffling

A traditional MapReduce engine executes a program in two phases. In the first phase, a
number of map tasks are executed; each map task reads a separate partition of the input data
and invokes the map function for each key/value pair. In the second phase, a number of reduce
tasks are executed; each reduce task processes a separate partition of the intermediate key space,
invoking the reduce function for each intermediate key in that partition.

Before the second phase can begin, all intermediate data must be grouped and partitioned by
key. An essential aspect of a MapReduce engine is the algorithm used for grouping intermediate
data and transporting it to the machines that execute the relevant reduce tasks. This part of
a MapReduce computation, known as data shuffling, is traditionally implemented using an
algorithm we will refer to as dynamic routing. With dynamic routing, the output of each map

task is partitioned according to the total number of reduce tasks and temporarily stored on local
disk. When a reduce task executes, it fetches a specific output partition from every map task,
collecting and merging all intermediate key/value pairs for a given partition of the intermediate
key space. Reduce tasks may therefore execute on any available machine, and intermediate
data is copied on demand to the appropriate machines.

In contrast, parallel databases employ what we refer to as static routing of records, relying
on a predetermined configuration or query plan to decide how data should be partitioned, and
which machines are responsible for storing or processing each partition. Since the destination
machine of each record can be determined immediately, communication can be push-based,
streaming data directly to a subsequent consumer, and intermediate temporary storage can be
avoided in many cases.

While efficient under many circumstances, two potential drawbacks of static routing are (/)
poor fault tolerance, and (2) poor load balancing in the presence of data skew. Both result
from the static assignment of partitions to machines: if a machine fails, all data routed to that
machine is lost and the entire computation must be restarted, and if a machine is overloaded
with data to process, it is difficult to off-load its work.

By using dynamic routing, traditional MapReduce engines effectively checkpoint the com-
putation at frequent intervals. The flexible assignment of tasks to machines allows machine
failures to be tolerated simply by re-executing failed tasks elsewhere. Partial output from failed
tasks can trivially be discarded, since they only write to temporary storage while executing (as
opposed to directly streaming data to subsequent tasks).

More generally, dynamic routing allows MapReduce engines to tolerate not just failed ma-
chines, but also slow or overloaded machines. Provided the computation is subdivided into a
relatively large number of tasks (compared to the number of machines employed), load can
easily be balanced across a heterogeneous cluster by allowing fast machines to execute more
tasks than slow machines. Static routing is less flexible, because tasks may be tied to specific
machines and unable to execute elsewhere. As a result, static routing is more vulnerable both
to hardware heterogeneity and to data skew, where an uneven distribution of keys may require
a minority of the available machines to process a majority of the records, causing performance
bottlenecks.

In summary, dynamic routing facilitates both fault tolerance and load balancing, but has a
potential overhead that stems from the temporary storage of intermediate output partitions on
local disk. This incurs additional 1/0 compared to an approach that streams data directly to
a subsequent consumer. In addition, when the intermediate output partitions are fetched on
demand, the resulting 1/0 access pattern can cause excessive disk seeking, which is detrimental
to performance [[15]].

1.4 Thesis Statement

Since dynamic routing is a core mechanism in the traditional design of a MapReduce en-
gine, central to both fault tolerance and load balancing, it may be interesting to explore the
properties of a MapReduce engine based on static routing. Such an engine could shuffle data
by streaming it directly to the appropriate nodes, reducing the need for intermediate temporary
storage. On the other hand, this would require alternative mechanisms for fault tolerance and
load balancing, and a tighter coupling to the underlying storage layer. We conjecture that such

a design is feasible, and that it could result in improved performance. Specifically, the thesis of
this dissertation is that:

It is possible to build a high-performance MapReduce engine based on static routing.

To evaluate this thesis, we must either adapt a traditional MapReduce engine such as Hadoop
to use static routing, or design and implement a new engine based on static routing. The former
approach might facilitate evaluation of the thesis, since our adapted MapReduce engine could
be compared directly to the original version. On the other hand, when adapting an existing
engine our options would be limited by existing design choices. We will therefore choose the
latter approach and design and implement a new MapReduce engine from the ground up. Our
central design choice of static routing will be allowed to shape the remainder of the design,
subject only to the constraints that are imposed by other requirements that MapReduce engines
are commonly expected to meet. Specifically, these additional requirements are as follows:

Fault Tolerance The MapReduce engine should let applications continue to make progress,
and complete in a timely manner, in spite of individual machine failures.

Load Balancing The MapReduce engine should be able to compensate for slow machines by
balancing load in an adaptive manner.

Reliable Storage The MapReduce engine should either be coupled to, or integrated with a
component that offers reliable, replicated storage of data sets to be processed.

To facilitate performance evaluation, we introduce a fourth requirement, for compatibility
with Hadoop, the most widely deployed open source implementation of a traditional MapRe-
duce engine.

Compatibility The MapReduce engine should be compatible with Hadoop, allowing existing
MapReduce applications written for Hadoop to be executed with minimal changes.

This fourth requirement allows existing applications and previously established benchmarks
to be used for the evaluation of our thesis. Furthermore, innovations or existing higher-level
abstractions layered on top of Hadoop, such as the Pig Latin query language [[16], will remain
applicable to our MapReduce engine.

The common approach of stacking additional functionality and abstractions in layers on top
of MapReduce—as exemplified by Pig Latin—raises the question of how such higher-level
abstractions might leverage an engine based on static routing. A natural extension of our work
is to investigate the potential implications that a redesigned core engine might have for higher-
level abstractions. This motivates a fifth requirement.

Extensibility The MapReduce engine should fully expose the fundamental mechanisms that
enable reliable and distributed storage of data, as well as parallel processing of statically
partitioned data—independently of the MapReduce interface.

In other words, while a MapReduce interface compatible with Hadoop is one requirement,
this interface should be built as a layer on top of a more generic, low-level interface that exposes
the engine’s full set of capabilities. This final requirement allows us to freely experiment with
higher-level abstractions that exploit static routing, independently of the semantics that would
be enforced by going through the MapReduce interface.

7

1.5 Scope and Assumptions

Throughout this dissertation, we make certain assumptions about the hardware environment
and problem domain, both to focus our attention and guide our design choices, and as the
implicit backdrop for our discussion. We document these assumptions here, and define the
scope of our research by specifying any limitations and deferred lines of inquiry.

e We target a distributed shared-nothing environment [17], where machines have locally
attached storage, no shared memory, and only communicate by exchanging messages
over an unreliable communication network.

e We restrict our problem domain to applications that process large data sets, which cannot
fit in the combined main memory of the available machines. In other words, the computa-
tions must involve secondary storage. We also assume that network 1/0 can be a potential
bottleneck (i.e. we do not assume infinite or extremely high network bandwidth).

e We assume the predominant form of available non-volatile secondary storage are mag-
netic hard disks, or devices with similar performance characteristics. Although non-
volatile storage comes in many other forms, the cost-efficiency of magnetic hard disks
still makes them the preferred alternative when working with large data sets.

e We adopt the fail-stop failure model [18]. In other words, we make the common assump-
tions that (/) processors will halt on failure, rather than make erroneous state transforma-
tions, (2) processors can detect when other processors have failed, and (3) there is some
amount of stable storage available which will be unaffected by failures. Stable storage
can be approximated through replication. We also assume synchronous communication,
where there is an upper bound on message latency. In combination with the fail-stop
model, this allows failures to be detected via pinging, i.e. by exchanging regular status
messages to signify liveness.

e While scalability is an important concern, we limit our evaluation to small and medium-
scale computing clusters. This is for practical reasons, to allow for rapid development
and deployment, and flexible experimentation in a controlled environment. While large
clusters of virtual machines could be provisioned from a commercial cloud provider, such
a cluster would be harder to monitor and manage. Software and configuration changes
would take longer to deploy, and experiments in such an environment would not be re-
producible, diminishing their scientific value.

1.6 Methodology

Computer systems are man-made, which to some may disqualify them as worthy objects of
study within the natural sciences. However, at its core, computer science is the study of infor-
mation processes, and such processes do occur in nature. Computers need not rely on electronic
hardware; they can also be implemented on alternative physical media such as biomolecules
or trapped-ion quantum computing devices. The first programmable computer, designed by
Charles Babbage in the early 19th century, was built of gears and mechanical components, and
powered by cranking a handle [19]. Conversely, many processes occurring in nature can be

viewed as instances of information processing—though such naturally occurring computations
may be running on what we would view as exotic hardware.

With this in mind, computer science does meet every criterion for being a science [20].
As with other sciences, computer science research relies on a body of techniques collectively
known as the scientific method. A scientific method of inquiry must be based on gathering
observable, empirical and measurable evidence subject to specific principles of reasoning. Us-
ing the hypothetico-deductive method, explanations for phenomena are sought by formulating
hypotheses and comparing their predictions to experimental observations. Correct predictions
may strengthen a hypothesis, while observations that conflict with the predictions may falsify
it. A falsified hypothesis must be discarded or modified to account for the new evidence. This is
an iterative process: based on the results of experiments, conclusions may be drawn that serve
as a starting point for a new hypothesis, from which additional predictions are made, leading to
the design of a new set of experiments.

The field of computer science is commonly divided into three disciplines, which correspond
to different paradigms for research [21]]:

Theory Rooted in mathematics, this discipline studies objects whose properties and relation-
ships can be clearly defined and reasoned about using logical reasoning. A prime exam-
ple is the study of algorithms; given sufficiently detailed descriptions, hypotheses about
algorithms (such as the hypothesis that a given algorithm will eventually terminate) can
be proved using logical reasoning.

Abstraction Rooted in experimental science, this discipline constructs models based on hy-
potheses or through inductive reasoning about observable objects or phenomena. The
studied objects could be software or hardware components, or the holistic behavior of a
complex computer system. The model is evaluated by comparing its predictions to exper-
imentally collected data. Abstraction resembles the scientific disciplines within natural
sciences like biology, physics and chemistry. Their common goal is to construct accurate
models of the rules and laws that govern the behavior of observable objects. Accurate
models can be used to predict the behavior in circumstances that have not been observed
experimentally.

Design Rooted in engineering, this discipline uses a systematic approach to construct systems
or devices that solve specific problems. A set of requirements describes the functional
and non-functional characteristics of the construct. Next, the system or device is spec-
ified, designed and implemented. Finally, the construct is tested to verify that it meets
the stated requirements. If not, the process is repeated, refining and improving the end
product with each new iteration.

In practice, these disciplines are intertwined, and research typically draws upon all three
paradigms to varying degrees. This dissertation is not of a theoretical nature, but we draw
upon much established theory, for example regarding the inherent properties and limitations of
distributed systems. We use abstraction to reason about system behavior at a high level and
form hypotheses about how that behavior will be affected by architectural changes. Through
experiments we check if our high-level model correctly predicted system behavior.

Our central thesis is evaluated by allowing it to dictate a central design choice for an ex-
perimental MapReduce engine. When complemented by a set of additional requirements,

this forms a specification that we translate into a complete design and working implementa-
tion using the methodology of the design discipline. In this dissertation, we present the end
product—a working MapReduce engine—but also draw conclusions based on experience from
earlier iterations of the process, where we encountered unexpected complications or synergies
that affected the final design.

This iterative process is a core aspect of systems research: after designing and implementing
a prototype, we test and experiment with it, and use the resulting experience to design new
versions. In the context of engineering, this process ideally culminates in a finished product
that meets the stated requirements. In systems research, the process is explorative, speculative,
and open-ended.

Experiments are the backbone of our research. This applies both in the general sense of build-
ing experimental systems that challenge fundamental assumptions and central design choices,
and in the specific sense of conducting unbiased and reproducible experiments in a controlled
environment. Based on experience, intuition, and creativity, we devise and experiment with un-
traditional approaches and explore new territory. Through empirical measurements we observe
how our experimental systems behave, and gain new experience.

1.7 iAD Context

This work is part of the Information Access Disruptions (1AD) project. Partially funded by
the Research Council of Norway as a Centre for Research-based Innovation (SFI), iAD is an
international project directed by Microsoft Development Center Norway (originally by Fast
Search & Transfer) and includes multiple other commercial and academic partners: Accenture,
Cornell University, Dublin City University, BI Norwegian School of Management and the uni-
versities in Tromsg (UiT), Trondheim (NTNU) and Oslo (UiO). The iAD Centre targets core
research for the information access domain. This domain includes but is not limited to search
and search-derived applications.

The iAD research group in Tromsg focuses on fundamental structures and concepts for run-
time systems supporting large-scale information access applications. Such applications com-
monly require a framework for performing data-intensive analytics, for example to analyse web
graphs or compute recommendations for end users. This role would traditionally be filled by
a MapReduce engine; the work presented in this dissertation is part of an on-going effort to
investigate alternative approaches to analytics.

1.8 Summary of Contributions
This dissertation makes the following contributions.

e We have designed and implemented Cogser—a new MapReduce engine that diverges
considerably from the traditional design. In accordance with our thesis, Cogset is de-
signed to use static routing of data. In turn, this required us to design and implement a
new set of mechanisms to meet the additional requirements of fault tolerance and load
balancing. Cogset demonstrates how static routing can be applied by a MapReduce
engine, incorporating architectural elements from parallel databases, while preserving
the non-functional properties commonly associated with MapReduce. This is achieved
through a design that combines new and previously established techniques into a novel

10

composition. The design and implementation of Cogset are presented in chapters 3
and 4.

e We have evaluated the performance of Cogset by comparing it to the widely deployed
Hadoop engine, in order to determine whether or not Cogset qualifies as a high-performance
MapReduce engine. To ensure an unbiased comparison, we employed previously estab-
lished benchmarks developed for Hadoop. Our results show that Cogset performs better
than Hadoop for a range of benchmark tasks, with speedups of up to 100%. The details
and results of this evaluation are presented in Chapter [3]

e As aby-product of our experimental evaluation, we have uncovered specific performance
issues with the Hadoop engine. Chapter [5] also describes the analysis and investigation
that caused us to suspect and allowed us to identify these issues. In response, we have
developed a custom plug-in for Hadoop to partly address one issue, relating to multi-core
CPU performance, without modifying the core Hadoop code. We also show how to patch
Hadoop’s task scheduling algorithm to address another issue that causes excessive idle
time. Our evaluation confirms that these changes are effective at improving Hadoop’s
performance, closing some of the performance gap between Hadoop and Cogset.

e We have investigated how higher-level abstractions that offer different entry points for
data-intensive applications can be built using Cogset as a core engine, potentially bypass-
ing the MapReduce API. As part of this work, we have developed two new abstractions.
Oivos allows workflows involving multiple related data sets to be expressed in a declara-
tive manner, by automatically compiling suitable dataflow graphs that are executed using
Cogset. Update Maps leverage Cogset’s support for efficient relational joins into a new
abstraction for batch processing that mimics a key/value database, but replaces its tradi-
tional synchronous interface with a mechanism for making asynchronous updates. These
new abstractions are discussed in Chapter [6]

1.9 Outline of the Dissertation

In this chapter, we have presented the background and motivation for our research. We
have stated our thesis, described our methods, and summarized our main contributions. The
remainder of the dissertation is structured as follows.

e Chapter[2]surveys previous work of particular relevance, including early work on dataflow
graphs, and the more recent generation of systems inspired by MapReduce.

e Chapter [3| presents the overall architecture and design of Cogset.
e Chapter [details the implementation of Cogset.

e Chapter [5]evaluates the performance of Cogset by benchmarking it against Hadoop, dis-
cusses the results, and details our related optimizations of Hadoop.

e Chapter[6] discusses how to build higher-level abstractions on top of Cogset, and demon-
strates such extensibility by presenting the new Oivos and update map abstractions.

e Chapter[7|concludes and outlines possible future work.

11

12

Chapter 2
Related Work

In this chapter we discuss previous work of particular relevance to Cogset. We begin by re-
viewing the concepts of dataflow graphs and dataflow engines, which are central components
in parallel databases and a foundation for MapReduce. Next, we describe the MapReduce
programming model in detail through a series of example applications, and outline the tradi-
tional architecture of a distributed MapReduce engine. We also describe various specializations
and refinements of MapReduce, a number of higher-level abstractions implemented by using
MapReduce as a building block, and hybrid systems that combine architectural elements of
MapReduce with conventional database technology.

2.1 Dataflow Graphs

One way to relate MapReduce to previous work is by viewing it as a way of specifying and
executing dataflow graphs. In a dataflow graph, a collection of operators is composed into a
directed acyclic communication graph. Whenever the output from one operator serves as the
input to another operator, there is a corresponding edge in the dataflow graph. While each op-
erator may be restricted to processing its input sequentially, parallelism can still be achieved
either by pipelining operators (allowing consumers and producers to execute concurrently), or
by partitioning data and processing all partitions in parallel using multiple replicated opera-
tors. These two patterns are referred to respectively as pipelined parallelism and partitioned
parallelism.

Dataflow graphs may be constructed explicitly by a programmer, or generated automatically
by a compiler. Once constructed, a dataflow graph can be analyzed using well-known graph
algorithms, and any potential for parallelism will be evident from its structure. An orthogonal
line of research concerns how to automatically discover and exploit parallelism in sequential
programs. One approach to automatic parallelization is to rewrite sequential programs into
dataflow graphs according to deduced data dependencies—this approach hinges on accurate
algorithms for determining data dependencies. A pragmatic middle ground is to employ pro-
gramming models that explicitly expose data dependencies, facilitating automatic compilation
into dataflow graphs.

Regardless of their actual method of construction, dataflow graphs remain important ab-
stractions for parallel processing. Once a computation is expressed as a dataflow graph, many
aspects of its execution can be automated by a generic execution engine. For example, opera-
tors in the graph can be scheduled to run automatically once the required input data is available

13

(in a so-called data-driven computation), or the engine can deduce which operators to execute
in order to produce some particular output (in a demand-driven computation).

Dataflow graphs are based on fundamental ideas and insights that date back several decades.
The notion of structuring programs as simple building blocks composed into more elaborate
directed graphs according to their data dependencies dates back at least to the late 1950s [22,
23, 124]. During the 1960s, this topic was explored extensively, typically in the context of job
scheduling constrained by a precedence graph [25, 26, 27]. The first graphical user interface
for specifying programs modeled as precedence graphs appeared in 1966 [28]. The modern
notion of dataflow programming, as graph-structured parallel computations, was first clearly
articulated in 1970 [29]], although most subsequent work in the 1970s was based on a more
restrictive model [30]. Hardware architectures based on the dataflow model also emerged([31]].
Although these had limited commercial success, out-of-order execution in modern processors
resembles a dataflow architecture in that instructions within a given window are allowed to
execute concurrently while completing in data dependency order.

During the 1980s, state of the art high-performance database systems moved from running
on mainframes with special-purpose hardware to running on shared-nothing clusters [32, 33,
34]. At the core of this new generation of parallel database systems were software engines for
executing dataflow graphs [13]]. The next section describes these software engines and how
they inspired or evolved into more generic, stand-alone dataflow engines.

2.2 Dataflow Engines

Parallel database systems employ internal dataflow engines to evaluate queries. The data base
tables are partitioned, distributing relational tuples among the available machines. Queries, usu-
ally expressed in the Structured Query Language (SQL), are compiled into dataflow graphs con-
taining relational operators, which are in general well-suited for partitioned parallelism [[13]].
Operators exchange tuples, filtering, sorting, aggregating and correlating them in order to pro-
duce the final query result. For example, an operator might filter a sequence of tuples such that
each tuple only retains a certain subset of attributes, implementing projection, a fundamental
operation in relational algebra.

Since database queries are expressed in a high-level declarative language, the actual means
of query evaluation is traditionally viewed as an internal implementation detail of which users
should be oblivious. In practice, some insight into the actual query evaluation algorithms and
their performance characteristics may be required in order to formulate optimal queries, but the
underlying dataflow engine is not directly exposed as a programming abstraction.

In contrast, generic dataflow engines have a lower-level interface, but support a broader range
of applications, by allowing programs to be explicitly structured as dataflow graphs. An early
example is River [35, 36]—a programming environment that offers abstractions for connecting
application-specific modules to each other via queues. Queues may have multiple producers
and consumers, and may connect modules running locally on the same machine, or modules
distributed on different machines. River focuses on supporting 1/0-bound applications in het-
erogeneous environments, and is tightly coupled with an underlying 1/0 substrate. Dynamic
load balancing is provided through the distributed queue abstraction, which allows multiple
consumers to consume data at different rates from a single multi-consumer queue, and through
the graduated declustering algorithm, in which the effective disk read bandwidth offered from

14

individual disks to specific clients is adjusted to compensate for perturbations in disk perfor-
mance.

More recently, Microsoft Research developed Dryad [37], a general-purpose distributed ex-
ecution engine for applications structured as dataflow graphs. Dryad succeeded—and was di-
rectly inspired by—Google’s implementation of MapReduce, but we describe it here in the
more general context of dataflow engines. Similar to River modules, the vertices of a Dryad ap-
plication may reside in the same local process or be distributed on multiple machines. Vertices
communicate through channels based on TCP pipes, shared-memory FIFO queues, or temporary
files. In the latter case, the channel is effectively a persistent data buffer, and its two endpoint
vertices (the producer and the consumer) do not have to execute concurrently. Accordingly, the
channel may serve as a checkpoint from which execution can be resumed in case of failures.

Dryad applications compose dataflow graphs using a generic graph composition language
that is embedded into C++ through a combination of operator overloading and regular method
calls. The core of the language is a graph object, which encapsulates a directed acyclic graph
in which certain vertices are tagged as input vertices and others are tagged as output vertices.
Edges represent communication channels and may not enter input vertices or leave output ver-
tices. Large graphs may be composed from simpler subgraphs by applying operators to existing
graph objects, starting initially with singleton graphs constructed from individual vertices. For
example, the unary ~ operator may be used to create multiple replicas of a single graph, and the
binary >= and >> operators combine two disjoint graphs into a new graph by connecting the
output vertices from one graph to the input vertices of the other (using pointwise or complete
bipartite composition, respectively). The binary | | operator merges two arbitrary subgraphs
that may have vertices in common, allowing the expression of other, potentially asymmetric
graph topologies.

Dryad only provides point-to-point communication channels; although multi-producer, multi-
consumer channels such as the distributed queues in River can be implemented by inserting
an intermediate vertex to which all of the producers and consumers are attached, any associ-
ated load balancing would have to be implemented by user code inside the vertex. The main
strengths of Dryad, which distinguish it from River, are its abilities to automatically deploy a
dataflow graph, mapping vertices to a set of available machines, and to provide fault-tolerant
execution of a deployed dataflow graph.

For efficiency, Dryad allows the mapping of vertices to machines to be explicitly guided by
constraints or preferences that are manually assigned to each vertex. For example, input vertices
should be co-located with the data they intend to read, and vertices that exchange high data
volumes using TCP pipes may prefer certain subsets of machines to take advantage of network
topology. Dryad has a central job manager component that performs the initial deployment of
vertices in accordance with the given constraints and goes on to schedule additional vertices for
execution as their input channels become available. Vertices are required to be deterministic,
so if a vertex fails, the scheduler simply arranges for it to execute again using the same input.

The above mechanisms have certain limitations related to the use of transient channels such
as TCP pipes and shared-memory FIFOs. Vertices connected by transient channels have to
execute concurrently, and upon failure, errors will propagate along the channels, making large
connected components of vertices fail as a unit. As such, Dryad programs must take care not to
make excessive use of transient channels, to ensure that enough machines can be allocated at
all times, and to maintain the desired level of fault tolerance by inserting occasional persistent
file-based channels to serve as checkpoints.

15

An interesting aspect of Dryad is the ability to dynamically restructure a dataflow graph
while it is being executed, by adding new vertices or edges. Each vertex is assigned to a partic-
ular stage, and for each stage there is an associated stage manager which receives notifications
about state changes in its vertices and may react accordingly. For example, the stage manager
could dynamically adjust the degree of parallelism to use in a particular stage of the compu-
tation based on the observed size of the input data, dynamically repartition the data based on
an observed sample, or implement an aggregation tree that adapts dynamically to the network
topology. One feature implemented by the default stage manager attempts to prevent a sin-
gle slow machine from delaying the completion of an entire stage, by monitoring the rate of
progress of all vertices and scheduling duplicate executions of vertices that appear to be pro-
gressing slower than their peers. The mandatory deterministic nature of vertices ensures that
duplicate executions will produce the same output, and downstream vertices are free to use the
output from the first duplicate execution to finish. This particular feature was directly inspired
by the redundant scheduling of backup tasks in Google’s implementation of MapReduce [6].

In general, Dryad provides some powerful mechanisms such as deployment constraints, tran-
sient channels, stage managers and run-time restructuring of the dataflow graph, but it is largely
up to applications to make intelligent use of the mechanisms through customized code. A natu-
ral tendency will be to refactor such application code into reusable library code, for example in
the form of generic vertices for common tasks, custom stage managers that encapsulate specific
communication patterns, or custom routines for constructing entire communication graphs ac-
cording to certain general parameters. In effect, Dryad may thus serve primarily as a platform
for implementing higher-level programming abstractions that are easier to adopt, while the low-
level generic interfaces for graph construction remain available to expert users. For example,
one specific abstraction that can be built as a layer on top of Dryad is MapReduce—the subject
of the next section.

2.3 MapReduce

When the Internet search company Google Inc. started digesting and analyzing large portions
of the world wide web on a regular basis, they concluded that no existing system for distributed
data processing could meet their requirements. Their computing environment consisted of
massive shared-nothing clusters built from inexpensive but unreliable commodity hardware,
and scaled up to handle unprecedented volumes of unstructured web data. To make effective
and productive use of this environment, programmers required tools that allowed them to focus
on the actual application logic, rather than the numerous non-functional concerns such as parti-
tioning and distribution of data, division and scheduling of work, inter-process communication
and synchronization, fault tolerance and load balancing.

A dataflow engine excels at parallel data processing, and is able to mask certain non-functional
concerns—specifically those of scheduling and synchronization—but in order to explicitly
specify a distributed dataflow graph, the details of data placement and partitioning must be
exposed to the programmer. Furthermore, some algorithmic insight is required in order to
manually construct dataflow graphs that are suitable for efficient parallel execution, and the
exact topology of such a graph should be tailored to the number of available machines. The
graph topology may also need to be adjusted in order to achieve dynamic load balancing, which
is another desirable feature in large clusters. Explicit dataflow programming for a distributed
environment therefore requires a certain expertise.

16

A final important requirement for large-scale distributed computations is fault tolerance.
The dataflow engines used in parallel databases are tuned for high-throughput execution of
numerous short-running queries and handle failures simply by restarting affected queries. This
is inappropriate for long-running distributed computations, which are required to keep making
progress even if individual machines fail. Hence, while a low-level generic dataflow engine
may be a useful building block for distributed computations, it has to meet new requirements.

To meet these challenges, Google developed MapReduce [6], which couples a simple and
generic way of specifying distributed computations with an execution engine that is highly re-
silient to failures. Under the hood, MapReduce programs are structured as dataflow graphs
with a particular topology, to be executed by a custom dataflow engine tailored for the pur-
pose. Rather than explicitly constructing the dataflow graph, programmers merely customize
the behavior of certain operators in the graph, as described next.

2.3.1 Programming Interface

MapReduce derives its name from a remarkably simple programming interface, in which
two user-supplied functions play a prominent role: a map function and a reduce function. The
map function typically filters or transforms the input data to produce an intermediate data set,
while the reduce function aggregates the intermediate data to produce the final output.

The data sets involved are modeled as collections of key/value pairs; a MapReduce program
essentially reads one such data set and produces another, as follows. All input pairs are ini-
tially passed to the map function, which emits a sequence of intermediate key/value pairs. The
MapReduce engine groups the intermediate pairs by key, and then invokes the reduce function
once for each unique intermediate key. Using an iterator, the reduce function can access all of
the values associated with the given intermediate key. The key/value pairs that are emitted by
the reduce function constitute the final output.

2.3.2 Example Applications

MapReduce programs are written in a general-purpose programming language such as C++,
Java or Python, invoking the MapReduce engine through a library. The exact appearance of a
MapReduce program therefore depends on the language employed and the details of the library
interface. We provide some examples here that are written in Python; these can be executed by
the example execution engine that we present in the next section. In our examples, key/value
pairs are emitted using Python’s yield statement. In other words, the map and reduce functions
are implemented as generators: suspendable functions that generate sequences on demand,
upon iteration. In other languages that lack this feature, pairs are typically emitted by invoking
a provided callback function.

Our three examples are idiomatic MapReduce applications selected to represent three par-
tially overlapping classes of computations: grouping, aggregation, and sorting. These reflect
different aspects of the exact MapReduce semantics; we detail these semantics and their impli-
cations as we present the examples.

Birthday Grouping Example

This example illustrates how MapReduce can be used to group records according to custom
criteria. To apply MapReduce for grouping of records, associate a unique intermediate key with

17

def mapper(name, birthday):
yield (birthday.strftime(’%a’), name)

def reducer(weekday, names):
yield (weekday, °/’.join(names))

Sample input:

input = [(’Alice’, date (1980, 5, 21)), (’Bob’, date (1977, 8, 11)),
(’Charlie’, date(1962, 11, 3)), (’David’, date(1972, 4, 19))]

print (MapReduce (mapper, reducer, input))

QOutput: [(’Sat’, *Charlie’), ('Thu’, 'Bob’), (’'Wed’, ’Alice/David’)]

Figure 2.1. Birthday grouping example implemented in Python.

def mapper(key, text):
for word in text.split():
yield (word, 1)

def reducer(word, values):
total = 0
for count in values:
total += count
yield (word, total)

Sample input:
input = [(1, ’to.be._or_not_to_be’), (2, ’that_is_the_question’)]

print (MapReduce (mapper, reducer, input))

Output: [(’be’, 2), (’is’, 1), ('not’, 1), (‘or’, 1),
('question’, 1), (’'that’, 1), ('the’, 1), ('to’, 2)]

Figure 2.2. Word count aggregation example implemented in Python.

def mapper(country , stats):
density = stats [Population’] / stats[’ Area’]
yield (density , country)

def reducer(density, countries):
for country in countries:
yield (country, '%.2f’ % density)

Sample input:

input = [(’China’, {’Area’: 9640821, ’Population’: 1336718015}),
(’Norway’, {’Area’: 385252, ’Population’: 4943600}),
(’USA”’, {’Area’: 9826675, ’Population’: 308745538})]

print (MapReduce (mapper, reducer, input))

Output:
[(Norway’, ’'12.83’), ('USA’, ’31.42°), (’China’, ’'138.657)]

Figure 2.3. Population density sorting example implemented in Python.

18

each group and use a map function that emits records as values associated with the appropriate
keys. The MapReduce engine guarantees exactly one invocation of the reduce function for each
unique intermediate key; the reduce function will thus be invoked once for each group.

The example groups a set of names according to the weekday of their associated birth dates.
There are 7 groups, corresponding to the days of the week; their keys are regular strings:
'Mon’, "Tue’, ..., Sun’. The output is a single concatenated string of names for each day of the
week. This application also illustrates the seamless integration between the MapReduce en-
gine and the general-purpose programming language in which it is embedded; in this case, the
functionality for manipulating dates and determining their weekdays is provided by Python’s
standard library. Figure shows the Python code for this application.

Word Count Aggregation Example

This classical example shows how MapReduce can be used to compute custom aggregate func-
tions such as sums and averages over groups of records. As in the previous example, the
MapReduce engine performs the actual grouping, according to the intermediate keys emitted
by the map function. The aggregation of a group of records is implemented by the reduce
function, by iterating over the values associated with a given intermediate key, using the pro-
vided iterator. The MapReduce engine guarantees that the full set of values associated with the
key will be accessible through the iterator, without omissions or repetitions, ensuring correct
aggregation.

The example aggregates the number of occurrences of each unique word in a collection of
text data. Each input value is a text string; the map function splits the string into distinct words
and emits an intermediate (word, 1) pair for each word, reflecting the fact that the given word
occurred once in the input text. The reduce function aggregates the occurrence counts for a
given word, summing up the total number of occurrences in all of the input text. In this ex-
ample, the input keys, which presumably provide a context for the text strings, are irrelevant
and therefore ignored; they could for example be URLs, file names, page numbers or line num-
bers. Figure [2.2] shows the Python code for this application. Although Python has a built-in
sum function to compute the sum of a sequence, the reduce function uses explicit iteration to
emphasize the general approach.

Population Density Sorting Example

This example illustrates the ordering guarantees provided by MapReduce. As noted, the reduce
function is guaranteed to be invoked exactly once for each unique intermediate key, providing
iterator access to a complete set of associated values. Additionally, the MapReduce engine
guarantees that the reduce function processes intermediate key/value pairs in increasing key
orderﬂ This ordering guarantee can be used to sort records according to custom criteria as
follows. Let the map function emit records as values associated with intermediate keys that are
chosen or constructed to reflect the desired sort order. According to the ordering guarantees,
the records emitted by the reduce function will then be output in sorted order.

The example processes a set of countries with associated demographic statistics. It uses the
map function to compute the population density of each country, and orders the output in as-

These are the semantics described in the original MapReduce paper. In the absence of side effects, an equiv-
alent guarantee would be to reorder emitted output pairs to correspond to the same apparent order of processing.

19

cending order of population density by using the computed population densities as intermediate
keys. The reduce function simply collects and emits all records unchanged. Figure shows
the Python code for this application. Note how the input and output pairs remain keyed by
country, while the chosen intermediate key determines the sort order.

def GroupKeys(pairs):
group_key, group_values = None, []
for key, value in sorted(pairs):
if group_key == key:
group_values.append(value)
else:
if group_key is not None:
yield (group_key, group_values)
group_key , group_values = key, [value]
if group_key is not None:
yield (group-key, group_values)

def MapReduce(mapper, reducer, input):

Map all input pairs to produce intermediate pairs

intermediate = []

for key, value in input:
intermediate . extend (mapper (key, value))

Group the intermediate pairs by key, and reduce each

unique intermediate key, with associated values

output = []

for key, values in GroupKeys(intermediate):
output.extend (reducer (key, values))

return output

Figure 2.4. Minimal MapReduce engine implemented in Python.

2.3.3 Execution Engine

Google’s MapReduce engine was designed to facilitate distributed, fault-tolerant processing
of large data sets that cannot fit in main memory. Before considering the details of Google’s
distributed engine, it may be useful to consider how an in-memory single-process MapReduce
engine could be implemented. This is quite straightforward, as illustrated by the example
execution engine we have implemented in Figure 2.4, Our example engine implements the
MapReduce entry point that was invoked in the preceding examples. While non-distributed
and based on in-memory data structures, the engine is functionally complete. Its execution can
be broken down into three steps.

1. Mapping. The engine iterates over all input key/value pairs and invokes the map function
for each pair, collecting all emitted intermediate pairs.

2. Grouping. The intermediate key/value pairs are grouped by key, using sorting. Once the
pairs are sorted by key, pairs with equal keys appear as contiguous runs and can be iden-
tified in linear time. Hashing could be used as an alternative approach to grouping, but a
sorting step would still be required in order to provide the correct ordering guarantees.

20

3. Reduction. The reduce function is invoked for each unique intermediate key. For sim-
plicity, our example engine extracts each group of equal-keyed values into a new list that
is passed to the reduce function. It is possible to avoid this memory overhead by imple-
menting a custom iterator that directly accesses the appropriate range of indexes in the
originally accumulated list.

We now contrast our single-process example engine to the actual distributed MapReduce
engine that was developed by Google. The distributed engine follows the same high-level
algorithm, but must divide work between all participating machines in order to benefit from
distribution. This is accomplished by partitioning the data to be processed, thereby implicitly
partitioning the workload. Two parameters, M and R, determine the granularity of this parti-
tioning. To elaborate, Google’s distributed MapReduce engine executes a similar sequence of
steps as our example engine, but differs in the following respects:

1. Parallel Mapping. The distributed engine automatically splits the input data into a num-
ber of partitions that may be processed independently and in parallel. Specifically, the
input is split into M partitions, and a separate map task is scheduled to process each
individual partition. A map task sequentially reads its input partition, parsing the input
into a sequence of key/value pairs according to a user-specified input format, and applies
the map function to each pair.

2. Parallel Grouping. The intermediate key/value pairs emitted by the map function are
buffered in memory by the map tasks, and periodically written to local disk, partitioned
according to their keys into R separate intermediate files. The intermediate key space
is thus partitioned (using hashing by default), grouping the intermediate records into R
groups. Since the intermediate pairs are partitioned by key, all equal-keyed pairs are
assigned to the same group, so the groups can be reduced independently and in parallel.

3. Parallel Reduction. To perform the reduction, the distributed engine schedules a second
set of tasks. There are R such reduce tasks, each of which is responsible for a separate
partition of the intermediate key space. Each reduce task must read) intermediate files:
one specific output file from each of the M map tasks. The required files are fetched using
remote procedure calls, and subsequently sorted into a single sequence of intermediate
key/value pairs (held in memory if possible). The sorting is necessary because multiple
intermediate keys may map to the same reduce task, and groups the key/value pairs such
that pairs with equal keys appear as contiguous sequences. The reduce task can therefore
read the sorted pairs sequentially and invoke the reduce function for each unique key that
is encountered, passing a special iterator to the reduce function that may be used by the
user code to read subsequent values associated with the same key.

4. Partitioned Output. As a consequence of the parallel reduction, the final output emitted
by the reduce function is partitioned. Specifically, the output is split into R partitions:
one per partition of the intermediate key space. A user-specified output format deter-
mines how to persist the output partitions; typically, output is written to a distributed file
system such as the Google File System [/]]. If an application cannot operate directly on
a partitioned output data set, it must manually implement a final merging step to pro-
duce non-partitioned output, or use R = 1, which limits the potential parallelism. The

21

distributed MapReduce engine does accept partitioned input data, so if the output of one
MapReduce program is to be passed as input to another, no extra step is required.

The architecture of Google’s MapReduce engine has been re-used by other implementa-
tions. In particular, Hadoop—the most widely deployed open-source MapReduce engine—has
a very similar architecture. It employs the exact same strategy of partitioning work into map
tasks and reduce tasks, and fetching intermediate map output files on demand. Hadoop also
includes a distributed file system called HDFS, which closely mirrors the design of the Google
File System, and plays the same role as the common place to store the data sets involved in
MapReduce computations. For convenience, we collectively refer to MapReduce engines that
follow Google’s original architecture as traditional MapReduce engines.

2.3.4 Semantics and Additional Hooks

The original Google implementation of MapReduce passes strings to and from all user-
defined functions and leaves it to the user code to convert between strings and appropriate
types. However, the map and reduce functions conceptually have associated type signatures:

map (k1,v1) — list(k2,v2)
reduce | (k2,list(v2)) — list(k3,v3)

In other words, input keys and values are drawn from a different domain than the intermediate
keys and values, and output keys and values are drawn from a third separate domain. In practice,
it may be useful to also use the intermediate keys as output keys, to preserve the grouping done
by the MapReduce engine.

For deterministic results, the map and reduce functions are required to have certain additional
properties that allow MapReduce programs to be automatically parallelized. Specifically, they
cannot maintain hidden state across invocations, have semantically observable side effects, or
rely on external input. In other words they must be pure functions. Imperative languages such
as C++ and Java do not in general provide mechanisms to enforce the purity of a function, so in
MapReduce programs implemented in those languages it is up to the programmer to abide by
these restrictions. Failure to do so will lead to unpredictable and potentially incorrect results.

As a pure function, the map function may conceptually be evaluated in parallel for all input
key/value pairs. Similarly, the reduce function may be evaluated in parallel for all unique
intermediate keys. As such, a MapReduce program can in principle be executed with arbitrary
degrees of parallelism, without modifying its code, subject only to the limitations posed by the
number of input pairs and the number of unique intermediate keys. In practice, the overhead
of this extremely fine-grained approach is likely to be excessive under most circumstances, and
a more coarse-grained division of work is desirable. The parameters M and 2 determine this
granularity in traditional engines. Hadoop’s default configuration adjusts M according to the
size of the input data, such that each map task processes 64 MB of the input.

In addition to the map and reduce functions, MapReduce engines typically provide several
other programming hooks where user-defined code may be plugged in to customize a compu-
tation.

Input format The MapReduce programming model does not make particular assumptions
about the on-disk storage format. In fact, the input is not required to reside on disk at all;

22

it could for example be retrieved as query results from a relational database, or simply be
generated by a deterministic algorithm. Independence from the underlying storage sys-
tem is cited by the MapReduce designers as a key advantage over parallel databases. [[15]]
This flexibility is achieved by allowing custom input formats to be plugged in as a piece
of user-defined code. The exact interface to this code may vary between engines, but the
common goal of the input format is to provide key/value pairs to the map function, and
(in a traditional engine) to provide automatic partitioning of the input, according to the
desired number of map tasks.

In Hadoop, the default input format reads sequentially from a set of HDFS files, assign-
ing separate files and byte ranges to each map task. The details of which files to read
(typically a single input directory in HDFS), how to parse the data into key/value pairs,
and the expected types of the keys and values, are all specified in the job’s configuration.
When passed to the map function, keys and values are instances of regular Java classes,
as specified in the configuration.

Google’s engine is implemented in C++, and delegates the responsibility for type safety
to the user-defined functions. Keys and values are simple byte strings; the map function
must interpret these as appropriate, for example by parsing them into integers or decoding
them as unicode strings. The logic for retrieving input data and parsing it into key/value
pairs may still be customized, as in Hadoop.

Output format There is typically a similar way to customize how the output emitted from
the reduce function is collected, by plugging in a custom output format. Usually, the
output should be persisted in the companion distributed file system. (HDFS, in the case
of Hadoop). Traditional engines assume that the output from reduce tasks is persisted
(or consumed) in a reliable manner, so once a reduce task has completed, it will never
be re-executed. This differs from how map tasks are handled; even if a map task has
completed, it may later need to be re-executed in order to regenerate intermediate data
that has been lost due to a failed machine.

Partitioning function For many applications, the details of how the intermediate key space
is partitioned are irrelevant; the only concern is to avoid excessive data skew, which
would adversely impact load balancing. Engines therefore default to hash partitioning;
the intermediate data is partitioned by hashing the intermediate keys into R separate
buckets. Since each reduce task produces one partition of the final output, the partitioning
of the intermediate key space also determines how the final output is partitioned. This can
commonly be customized by plugging in a partitioning function, for example to use range
partitioning, where each partition contains a given contiguous range of intermediate keys.
Range partitioning is more prone to data skew, but can be useful in many scenarios, for
example for sorting. If the aim is to produce a single sorted output file, this can be done
by range partitioning the intermediate data by the sort key, and finally concatenating all
output partitions.

Comparison function As noted, traditional MapReduce engines rely on sorting to correctly
implement reduction and to provide a guarantee for the order in which keys are passed
to the reduce function. For correct reduction, an arbitrary ordering of keys is sufficient,
since the sorting is only used to group equal-keyed records. When the ordering guar-
antee is used to produce sorted output, applications may wish to employ a particular

23

ordering of keys. This is accommodated by a hook to specify a comparison function,
which compares a pair of keys to determine if they are equal, or if not, which one is less
than the other. Accordingly, the sorting algorithm must be comparison-based (excluding
radix sort algorithms, for example) and all comparisons between keys are implemented
by invoking the comparison function.

Combiner function If a distributed computation is commutative and associative, and performs
a data reduction, it can benefit from an aggregation tree [37]. For example, the sum of a
set of values can be aggregated from multiple partial sums; this is beneficial because the
partial sums can be computed locally, close to where the data is stored. This reduces the
amount of data that must be transferred over the communication network, as an instance
of upstream evaluation [38]).

Due to the general restrictions on the topology of the underlying dataflow graph, as de-
scribed in the next section, traditional MapReduce engines do not support arbitrarily
shaped multi-level aggregation trees. However, a mechanism for symmetric, two-level
aggregation is provided through an optionally specified combiner function. The com-
biner function has the same signature as the reduce function, and partially aggregates
intermediate key/value pairs from a single map task, before the partially aggregated data
is transferred to the reduce tasks.

Commonly, the same function is used both as the combiner and as the reduce function.
The word count aggregation example given above could use its reduce function as a com-
biner too, in order to compute partial word counts. To see why this would be beneficial,
consider a very common word such as “the”, which would occur very frequently in the
input data. With no combiner, every map task would emit a high number of intermediate
pairs keyed by the word “the”—all of which would have to be stored temporarily on disk
and subsequently transferred over the network to a reduce task for aggregation. With a
combiner, all of these intermediate pairs would be aggregated into a single pair, reflecting
the total number of occurrences in that particular input partition, before the intermediate
data was stored and transferred to a reduce task.

2.3.5 The MapReduce Dataflow Graph

To summarize the architecture of traditional MapReduce engines, they decompose compu-
tations into a number of separate tasks, each of which has certain input requirements and pro-
duces some output. When considering these data dependencies, the tasks form a dataflow graph
with a specific shape. Figure shows an example with three map tasks and two reduce tasks
(M = 3, R = 2). In total there are M x R intermediate files, stored on local disks throughout
the cluster, and labeled in the figure as t-1-1, t-1-2, etc. If sorting is viewed as an integral part of
the reduce tasks, the map and reduce tasks form a complete bipartite graph in which all reduce
tasks depend on data from all map tasks. This reflects the two-phase nature of MapReduce,
which dictates that all map tasks must finish before any reduce task may start. Intermediate
files may be prefetched and partially sorted, but the reduce tasks may not start invoking the
reduce function before the output from all map tasks is available.

Viewed as dataflow engines, traditional MapReduce engines are essentially specialized im-
plementations in which the dataflow graphs are restricted to the specific bipartite shape de-
scribed above. The exact number of map and reduce tasks may be varied, and the behavior of

24

input-1 @

t-1-2

t-3-1

input-2 @

input-3 @

Figure 2.5. A MapReduce dataflow graph with M=3 and R=2.

these tasks is customizable through the map and reduce functions, but the overall communi-
cation pattern remains fixed. While sacrificing some generality, this restriction does simplify
various parts of the system, such as the data structures maintained by the task scheduler, since
there is no need to explicitly represent the edges of the graph.

2.4 Map-Reduce-Merge

The relational data model [[14]] has underpinned database technology for several decades,
and remains a popular way to model and think about data, even when other tools are employed
for data processing. In relational terms, a MapReduce program implements a selection and a
projection operation in the map phase, followed by a group-by aggregation in the reduce phase.
The selection and projection is implemented by the user-supplied map function, the execution
engine implements the grouping, and the user-supplied reduce function implements the aggre-
gation. However, computations involving more complex relational algebra are cumbersome to
express using MapReduce. Due to the fixed topology of the underlying dataflow graphs, certain
queries can only be executed as a sequence of collaborating MapReduce programs. In addi-
tion, relational joins are common when processing multiple related heterogeneous data sets,
but joining is not efficiently supported by the MapReduce model.

Within the constraints of the MapReduce model, a simple sort-merge equi-join algorithm can
be implemented using a map function that emits relational tuples keyed by the join attribute,
and a reduce function that merges all equal-keyed tuples, but this approach has some poten-
tial problems. Conceptually, there are two input relations, and tuples from one input relation
should be paired with tuples from the other. However, the reduce function can only access a
single collection of tuples: they all have the same join attribute (since it was used as the in-
termediate key), but they may originate from either of the input relations. Consequently, the
reduce function must read all of the tuples into memory in order to do the pairing correctly.

25

For example, an inner join should discard tuples whose join attribute only occurs in one of the
input relations, but the reduce function cannot safely do so until all of its input tuples have been
examined.

Map-Reduce-Merge [39] recognized the shortcomings of MapReduce with regard to rela-
tional joins, and proposed an extension of the programming model. The extended model and
implementation allows two input data sets, and adds a third merge phase after the map and re-
duce phases. The two input data sets are first processed by two separate sets of map and reduce
tasks, and in the third phase the output from the two sets of reduce tasks is passed to a final
set of merge tasks, which apply a user-defined merger function. The merger defines how to
combine two intermediate key/value pairs (one derived from each input data set) and produce
the final output. Despite its name, the Map-Reduce-Merge model does not necessarily rely on
merging in the third phase—the iteration logic that determines the order in which intermediate
pairs are passed to the merger can be customized. This allows the implementation of different
join algorithms such as nested-loop joins, hash joins and sort-merge joins, as well as other bi-
nary matching algorithms such as set difference. The flow of data between reduce and merge
tasks can also be customized through a separate partition selector function.

The downside of the extensions provided by Map-Reduce-Merge is that they complicate
both the programming interface and the implementation of the MapReduce engine in order
to support the specific use case of efficient relational joins. At the same time, the topology
of the dataflow graph is restricted in similar ways as by MapReduce, and complex relational
queries must still be executed as a sequence of Map-Reduce-Merge programs. As such, Map-
Reduce-Merge sacrifices some of the simplicity for which MapReduce is popular, without fully
addressing its weaknesses when compared to a generic dataflow engine.

2.5 Workflow Composition and High-level Languages

Even if joins are not a critical requirement, a MapReduce computation is fundamentally
restricted in that the data to be processed can be repartitioned only once, as it is output by the
map phase and persisted as an intermediate data set. As a consequence, certain computations
can not easily be implemented as a single MapReduce computation. To compensate for this,
more complex computations may be composed as a collection of related MapReduce programs,
arranged in a pipeline, where the output of the first program serves as the input to the next, or in
a more complicated manner. For example, Google rewrote the indexing system that produces
the index structures for their web search service from using ad hoc distributed passes over the
input data to using a sequence of 5 to 10 MapReduce programs [60].

Many higher-level abstractions are also designed specifically to ease the composition of
multi-pass MapReduce computations, and may diverge from the traditional MapReduce pro-
gramming model to provide additional operations beyond mapping and reducing, such as merg-
ing of multiple data sets. For example, Sawzall [10] is an interpreted language for data analysis
that is specifically designed to be integrated with MapReduce as an underlying execution en-
gine. A Sawzall program conceptually executes in parallel for every record in a data set, and
may produce output by emitting records to any number of declared aggregators. When execut-
ing an analysis using Sawzall, a generic MapReduce program interprets the Sawzall program
once for each record during the map phase, and then aggregates the various records that were
emitted during the reduce phase. In practice, Sawzall collapses and consolidates what would

26

usually be expressed as a number of related MapReduce programs executing on the same data
set into one entwined computation that just makes a single pass over the input data set.

Other systems provide libraries or embedded languages to compose workflows involving
multiple related data sets, including operations such as merging, to enable a more natural way
to express relational joins. Cascading [40], FlumeJava [4]], Hive [41], and Pig [16] are examples
of systems that directly compile workflows into collections of MapReduce programs. Cascad-
ing and FlumeJava offer a programmatic interface to workflow composition, similar in nature
to DryadLLINQ [42], which implements a set of programming abstractions for compiling Dryad
graphs. This approach may be viewed as embedding a new language into a general-purpose lan-
guage, in the form of a library. Hive and Pig define new domain-specific languages—HiveQL
and Pig Latin, respectively—and provide compilers and interpreters to execute programs ex-
pressed in those languages as a series of MapReduce computations on a Hadoop deployment.
Another similar language is SCOPE [43]]; these languages all share a similar set of relational
data operators, and emphasize extensibility by providing language features for seamless in-
tegration of user-defined code implemented in a general-purpose language. In a somewhat
similar vein, BOOM [44,435]] is a data-centric, declarative language specifically intended to de-
velop distributed systems running in the cloud, and has been used to reimplement the Hadoop
runtime.

The trend of creating new, declarative languages extends to other high-level abstractions that
blur the distinction between rigid, domain-specific query languages, exemplified by SQL as
the established standard for relational query processing, and MapReduce-style computations,
structured around opaque user-defined functions. For example, some of the recent abstrac-
tions developed by Google target similar application areas as MapReduce, while offering quite
different programming interfaces. Dremel [9] supports a SQL variant for large-scale query
processing or aggregation of nested data, while Pregel [8] implements a vertex-centric graph
processing language.

2.6 Alternative and Hybrid Architectures

Despite the above refinements and specializations, MapReduce still inhabits a key position
in the software stack that Google developed to harness their gigantic computing clusters. While
the Google File System [7] provides the abstraction of a reliable and shared storage, MapRe-
duce offers a simple, functional interface for distributed processing. Once applications are cast
into the MapReduce framework, they all enjoy the scalability and fault tolerance inherent in its
execution engine.

This separation of concerns may be a sound engineering practice, but by separating storage
and processing into separate layers, an apparent risk is that performance may suffer from the
extra layer of indirection. An alternative approach is to fuse the distributed file system and
processing engine into a single, tightly coupled component. This philosophy is characteristic
of parallel databases, and is also embraced by others, for example in the twin systems Sector
and Sphere [46]. These closely integrate the mechanisms for data processing with the storage
layer, by offering the capability of evaluating user-defined functions locally on storage nodes.
Sector and Sphere may leverage this capability to execute MapReduce computations, but have
no built-in features for automatic partitioning of data, and are designed for geographically
distributed data centers connected through high-speed networks.

27

Traditional MapReduce engines are designed for data-intensive computations and target
shared-nothing environments with locally attached hard disks. As such, data should ideally
be read in bulk and using a sequential access pattern, to accommodate the performance charac-
teristics of hard disks, where seeking between different locations on disk is a time-consuming,
mechanical process and adversely affects the rate of data transfer. In alternative hardware
environments, such as a shared-memory multi-core architecture, the underlying storage may
support constant-time access. There are MapReduce implementations that target such environ-
ments, such as Phoenix [47, 48], which is a shared-memory implementation of MapReduce for
multi-core environments, and MARS [49, |50], which accelerates MapReduce using graphics
processors for coprocessing. In a similar vein, the Nornir run-time [51] offers an efficient multi-
core implementation of Kahn process networks [52], allowing the structuring of CPU-intensive
computations as arbitrary communication graphs, which may contain cycles.

In our work, we focus on the traditional application areas of MapReduce, i.e. large-scale
data-intensive analysis. We therefore target the traditional shared-nothing hardware environ-
ment. These alternative implementations are still relevant, since they underline the generality
of MapReduce as a programming model for parallel computations. Our experimental evalua-
tion in Chapter [5] also reveals that multi-core performance may be an important concern even
for traditional workloads.

Twister [S3] is a MapReduce engine that extends the classic MapReduce programming model
with support for iterative jobs. Like Cogset, Twister explores alternative algorithms for data
shuffling; in the case of Twister, all communication and data transfer is factored out as a sep-
arate and substitutable publish-subscribe messaging infrastructure. This may be an interesting
platform for experimentation, and effectively breaks the MapReduce engine into three loosely
coupled components: storage, communication, and processing. Such a loosely coupled archi-
tecture is flexible, but most systems opt for a closer integration of these three concerns, in the
interests of performance.

As noted in Section traditional MapReduce engines are loosely coupled to the un-
derlying storage system, and may retrieve records from a variety of sources using customized
input formats. One interesting line of research is to integrate a distributed MapReduce engine
with existing single-node relational databases, using a number of database instances as the stor-
age layer and the MapReduce engine as a centralized coordinator that distributes queries and
merges results. Such hybrid approaches essentially federate multiple single-node databases
into a single distributed database, using MapReduce as a framework for fault tolerance and
load balancing. Two concrete examples are HadoopDB [54]] and Osprey [55]], which both in-
tegrate a number of single-node instances of PostgreSQL, a powerful open source database
system [56]. HadoopDB is based on Hadoop and extends Hive [41], to draw on its support for
compiling SQL queries into Hadoop execution plans. HadoopDB modifies the execution plans
so that certain sub-queries are executed in parallel by the PostgreSQL databases; the results are
then merged by Hadoop.

Osprey has a similar strategy for query execution, but implements the central coordinator
from scratch, rather than building on Hadoop. The coordinator compiles SQL queries into a
number of independent sub-queries to be executed in parallel on different nodes. Failed sub-
queries are re-executed on other nodes with replicas of the same data, mimicking the general
approach to fault tolerance and load balancing taken by traditional MapReduce engines, while
drawing on the capabilities of PostgreSQL for efficient query execution on individual nodes.

28

2.7 Summary

This chapter surveyed related work, focusing on the MapReduce programming model and
possible ways to implement a MapReduce engine. As a programming model, MapReduce is
distinguished by delegating the majority of functionality to user-defined functions, whose in-
ternals are opaque to the execution engine. A single-process MapReduce engine is simple to
implement, as evidenced by our example implementation in Python. The original distributed
MapReduce engine developed by Google is founded on principles from dataflow engines, but
restricts the dataflow graph to a certain topology. In return, traditional MapReduce engines
are more resilient to failures than the dataflow engines under the hood of parallel databases.
Subsequent work has layered additional abstractions on top of MapReduce in various ways,
either to facilitate computations spanning multiple MapReduce passes, or to enable expression
of more complex queries. Many efforts aim to combine the robustness of traditional MapRe-
duce engines with SQL-based query interfaces and/or index-based query execution, blurring the
distinction between MapReduce and parallel databases.

29

30

Chapter 3

Design and Architecture of Cogset

The thesis of this dissertation posits that a high-performance MapReduce engine can be con-
structed with static routing as a core mechanism. In this and the following chapter we present
Cogset, a distributed system that we designed and implemented to investigate this conjecture.
Here, we describe the overall architecture and design of Cogset, and in Chapter @] we dive into
the details of its implementation.

Since Cogset is intended to be a core engine on which multiple higher-level abstractions
may be constructed (see our requirement for extensibility in Section [I.4)), our overall focus is
on maintaining simplicity, generality, and performance. Additional complexity may be added
in layers on top of Cogset, and should not be imposed in cases where a less restrictive inter-
face is sufficient. We refer to all programs that communicate with Cogset through its public
interfaces as clients, whether they be actual end-user applications or other services offering
higher-level abstractions. Our ambition to let Cogset serve as the foundation for a stack of
software abstractions is reflected in many aspects of our design, where we seek to identify the
common denominators for potential higher-level abstractions.

The design of Cogset required some fundamental initial choices that have far-reaching (and
in some cases subtle) consequences for the whole system, affecting both its interfaces, seman-
tics and non-functional aspects. We start by describing these key design choices and their
motivation, establishing a broad overview of the Cogset architecture and its properties. Sub-
sequently, we proceed to discuss the central programming abstractions in Cogset, and the core
mechanisms that enable reliable storage and fault-tolerant, load-balanced processing of data.

3.1 Key Design Choices

Functionally, Cogset is a system for storage and processing of data sets, which are comprised
of records. Cogset stores a collection of named data sets and provides interfaces for parallel data
processing. For efficiency, and as a consequence of static routing, the mechanisms for storage
and processing are more tightly coupled than in a traditional MapReduce engine. Even though
Cogset can run on a single node, our design is aimed at efficient distributed deployments.

In the following, we discuss five important and major choices in the Cogset design. The
first two design choices are directly motivated by our decision to employ static routing. As
such, they may be viewed as a more elaborate statement of our one overarching, guiding design
choice. They detail our concrete understanding and interpretation of the concept of static rout-

31

ing: data placement should be predetermined by a static configuration, and new records should
be transferred directly to the appropriate storage nodes.

Predictable data placement Commonly, storage systems effectively assign individual data
partitions to arbitrary storage nodes, either because the system is unaware of the partition-
ing (i.e. it is done externally, outside of the storage system), or because other concerns
dictate the data placement policy. For example, in the case of a traditional MapReduce
computation generating data to be stored in the Google File System (GFS) [7], each re-
duce task writes one output partition to GFS. The actual storage nodes for each partition
are selected by GFS based on concerns such as network topology, favoring nodes close to
the one hosting the reduce task. The contents and context of the partition (e.g., partition
number 3 out of 7) do not factor into the decision. As such, it is difficult to ensure co-
location of related records that originate from different MapReduce computations, and
applications such as relational joins may suffer from poor data locality.

Cogset takes a different approach and allows clients to explicitly influence data locality.
Specifically, clients may ensure that records are co-located by assigning them to the same
partition number. All data sets are partitioned into the same number of partitions, and the
corresponding partition numbers (of all data sets) are always co-located. This restricts
Cogset with regard to data placement policies, but paves the way for highly efficient
relational joins, and benefits all computations that are able to capitalize on co-located
input data.

Direct routing of data As noted in Section traditional MapReduce engines temporarily
store the intermediate output data produced by map tasks on local disks, to be retrieved
on demand once the corresponding reduce tasks are scheduled to execute. This is both
a central part of the traditional fault tolerance mechanism, and an approach born from
necessity, given the overall design: since reduce tasks can be scheduled to execute on
any node, the map output data cannot be routed directly to the appropriate storage nodes.

Given our choice to predetermine data placement via a static configuration, a natural
follow-up is to route data directly to its destination, rather than performing additional
1/0 to store an extra temporary copy. We view this as an integral part of static routing,
so Cogset does adopt direct routing of data, avoiding temporary storage. New records
are transferred over the network directly to the appropriate storage nodes, where they are
immediately persisted. As a consequence, we cannot employ the traditional MapReduce
mechanisms for fault tolerance, where partial output from failed tasks can trivially be
discarded. Instead, we designed a new mechanism, distribution sessions, which are a
form of simplified transactions, allowing undesired side effects resulting from failures to
be ignored.

Beyond these two design choices, which embody our central choice of using static routing,
we made some additional and largely orthogonal choices. These design choices are motivated
by our supplementary requirements for efficiency, generality and extensibility.

Explicit partitioning When data sets are too big to fit on the local storage of a single node,

they must be partitioned in order to enable parallel processing on multiple nodes. Given
this requirement, we chose to expose partitions as a fundamental concept in Cogset,

32

rather than provide abstractions that hide the inherently partitioned nature of our data.
When generating a new data set, or processing an existing one, all new records are as-
signed to a particular partition number. As noted, clients are aware of and may explicitly
influence this partitioning, for example to co-locate records.

Higher-level abstractions built on top of Cogset still have the option of implicitly parti-
tioning data, if this is desirable and feasible for the abstraction in question. An abstraction
using implicit partitioning would by nature also be tasked with any data locality concerns.
Explicit partitioning is therefore appropriate at this abstraction level, as the most general
common denominator.

Visitor-based data access In traditional storage systems, data is streamed to clients on de-
mand. Whenever a client wishes to process a data set, the entire data set must be trans-
ferred over the network. To see how this can be inefficient, consider a simple example
where a client needs to scan through a large set of data items looking for a particular item,
to determine whether or not it exists. Streaming all of the data over the network before
scanning wastes bandwidth compared to the alternative approach of simply scanning the
data locally on the storage node, and transferring a simple yes/no answer. Furthermore,
a parallel scan of the data would have to be orchestrated entirely by the client; a non-
trivial task that would likely involve multiple cooperating nodes retrieving and scanning
separate subsets of the data.

In contrast, Cogset encourages all data access to be made locally on the storage nodes.
Rather than streaming large data sets to the clients, the situation is reversed, and clients
transfer small pieces of code to the storage nodes, as an instance of remote evalua-
tion [577]]. Specifically, a visitor function is transferred and evaluated in parallel on each
storage node. When evaluated, the visitor may thus access the data stored locally on each
storage node, without consuming any network bandwidth. Parallel computations are also
easy to express, since the visitor will be evaluated in parallel for all partitions of the data.

Replication In a general sense, replication serves two purposes. It provides redundancy, which
enables fault tolerance, and it increases availability, which facilitates load balancing.
Since both fault tolerance and load balancing are important requirements, we decided
to make the replication mechanism an integral part of Cogset. Replication of data may
appear to be a self-evident requirement in a system for reliable storage, but there was still
the option of making Cogset an unreliable storage system, and implementing replication
in higher-level abstractions only. However, we rejected this option, because replication is
so tightly coupled to fault tolerance and data placement. Instead, we exploit our aware-
ness of and control over data replication to provide a dynamic load balancing mechanism,
as detailed further in the next two sections.

3.2 Data Partitioning

Traditionally, MapReduce engines store data in a block-based distributed file system, break-
ing each data set into a variable number of fixed-size partitions, or blocks. In contrast, we
designed Cogset to break each data set into a fixed number of variable-sized partitions. When
the number of partitions is fixed, a static configuration can assign partitions to nodes. In block-
based file systems such as GFS and HDFS, the mapping that assigns blocks to nodes must be

33

dynamic, and is maintained by a centralized master. As a consequence, the centralized master
must be consulted before reading or writing data blocks. In Cogset, a globally known static
configuration determines data placement. In practice, this is implemented through a simple
configuration file that is read upon start-up, and assumed to be identical for all nodes. In our
deployments we ensure this in a convenient way by keeping the configuration file in a common,
NFS-mounted location accessible to all nodes.

Cogset’s configuration only specifies where each partition of a data set should be stored.
It does not specify how individual records map to partitions; this may be influenced by user-
defined hooks, which we describe in more detail in Section|4.3] Applications should preferably
be oblivious of the concrete details concerning data placement. On the other hand, they may
require co-location of related records in different data sets, for example to perform a relational
join. Cogset accommodates this requirement by enforcing a particular constraint: correspond-
ing partitions of different data sets are always co-located. As noted, all data sets are split into
a fixed number of partitions; the partitions are enumerated, and equal partition numbers are
always assigned to the same storage node. Applications thus ensure co-location of relevant
data by assigning related records to the same partition number. Given the co-location con-
straint, data placement is configured simply by mapping partition numbers to nodes; there is no
specific configuration for individual data sets.

Given the static configuration of data placement, Cogset nodes or clients can distribute data
directly to the appropriate storage nodes without involving any centralized master, avoiding
a potential bottleneck. Direct routing of data also allows multiple concurrent data streams to
be merged by a storage node before they are written to disk, interleaving records produced by
different nodes. With the traditional algorithm for dynamic routing of data, each map task must
temporarily store all produced records locally; they are later fetched and transferred to other
nodes, subject to the unpredictable scheduling of reduce tasks. Overall, this leads to a more
scattered 1/0 access pattern, which may be a cause for inefficiency by causing excessive disk
seek times [15]].

3.3 Distribution Sessions

One concern that must be addressed when static routing is employed for distribution of data
is how to handle failures gracefully, without restarting the whole computation. In the traditional
MapReduce architecture, all map tasks write their output to separate intermediate files. In the
event of task failures, there is no need for a complicated rollback mechanism to undo side
effects; the respective intermediate files are simply discarded. In contrast, Cogset by design
transfers data directly to the appropriate nodes and streams it continuously to disk, potentially
merging data streams from multiple producers. If a process fails while producing data, and is
subsequently re-executed, the produced data could be duplicated on disk.

To maintain a consistent view of data, even in the event of failures, we therefore designed
a new abstraction for Cogset. This abstraction—a distribution session—may be viewed as a
simple form of transaction, in which the only allowed operation is to append data to a file. To
add records to a data set, a client process must initiate a new distribution session, creating a
unique 64-bit identifier for the session. This distribution session identifier (DSI) is associated
with all records produced as part of the session, and stored along with the records when they
are persisted on disk. Clients may commit a distribution session using a two-phase commit
protocol coordinated by the client. When committing a distribution session, each Cogset node

34

syncs the affected local files, flushing the data to disk, before updating a log of committed DSIs.
Optimizing for the common case where failures are rare, there is no rollback mechanism in the
event of failures or aborted sessions. Instead, the DSI of each record is inspected when reading
data from disk, and any uncommitted records are skipped. If desired, long-lived data sets can
be cleansed of uncommitted records by copying the data set, reclaiming any wasted disk space.
As an implementation detail, the storage overhead associated with DSIs is reduced by batching
records into pages, as described in section Section d.3]

3.4 Replica Placement and Neighborship Relation

While data must be partitioned for distributed processing, it must also be replicated for
reliable storage. In Cogset, a partition is also the unit of replication. The static configuration
that maps partitions to nodes may therefore specify the replication strategy simply by assigning
partitions to more than one node. When a record is distributed, it is sent to all storage nodes

hosting the record’s partition. Cogset does allow replica placement to be configured arbitrarily,
but is designed with a particular default strategy for replica placement in mind, described next.

Nodes H I Il

Figure 3.1. Data set partitioning, using chained declustering for replica placement.

Figure [3.1] shows a concrete example to illustrate how data sets are partitioned in Cogset,
using its default configuration. The example features two data sets, color-coded as blue and
green, respectively. For ease of exposition, the example breaks each data set into 5 partitions;
a typical configuration would specify a higher number of partitions relative to the number
of nodes, for more fine-grained load balancing. Using chained declustering [58], partitions
are assigned to nodes in round-robin fashion, storing a replica of partition number ¢ on node
tmod N,i+ 1mod N, ...,o + R — 1 mod N where N is the number of nodes and R is the
replication degree. In this example, partitions are replicated with replication degree 2, which
is the default. The salient aspect of chained declustering is that it imposes a logical structure
where nodes form a chain, with each pair of neighbors in the chain having some replicas in
common. We formalize this notion through the following definition:

Definition 1. Two nodes are neighbors if and only if they have replicated partitions in common.

35

Note that the above neighborship relation is defined independently of the actual replica
placement strategy. Using the default configuration, each partition is replicated on two neigh-
boring nodes, and the nodes form a circular chain of neighbors.

3.5 Traversals

So far, we have described the parts of Cogset’s design that govern how data is partitioned,
distributed, stored consistently, and replicated. This sets the stage for the most central aspect
of Cogset’s design—the fundamental and generic mechanism for processing data in a parallel,
fault-tolerant and load-balanced manner: traversals.

In a traditional MapReduce architecture where the distributed file system is decoupled from
the processing engine, data is generally streamed from a storage node to a processing node.
In contrast, Cogset integrates a core mechanism for parallel processing into the storage nodes,
encouraging all data access to be made locally. Instead of streaming large data sets to the
clients, clients transfer small pieces of code to the storage nodes.

Specifically, a visitor function is transferred and evaluated in parallel on each Cogset node;
we refer to this parallel evaluation as a traversal. A visitor may access the data stored locally
on each node, without consuming any network bandwidth. Over the course of a traversal, a
visitor may read multiple data sets, and output records to any number of new or existing data
sets. This flexibility allows complex algorithms such as multi-way joins to be implemented as a
single traversal. Unlike traditional MapReduce jobs, traversals are not tied to the processing of
one specific data set; nor is there any pre-declared list of data sets that will be accessed during
a traversal. It is entirely possible for a traversal to read some records from one data set, and
depending on the results of that inspection, decide which other data sets to access, if any.

The aim of a traversal is to invoke the user-defined visitor function exactly once for each
partition number. When invoking the visitor function, Cogset provides an object that offers
access to all data sets of a particular partition number. Due to the data placement constraints,
these partitions are all co-located locally on the node where the function is invoked. The visitor
function is opaque to Cogset, so its side effects are unknown. However, some of them can
be observed by Cogset; notably, to read or add any records to new or existing data sets, the
visitor must go through Cogset’s APIs. Given the black box nature of visitor functions, we
refer generically to the invocation of a visitor function simply as “processing a partition”. The
specific programming interfaces involved in traversals are detailed in Chapter 4} here we focus
on the high-level traversal algorithm.

Cogset’s traversal algorithm diverges from the traditional MapReduce architecture, which
is based on the master-worker paradigm, where a central master monitors and coordinates the
full set of workers and makes all scheduling decisions. With Cogset, the client process fills
a similar role as the central coordinator, sending the control messages for initiating and fi-
nalizing a traversal, and receiving progress messages from the Cogset nodes as the traversal
proceeds. However, the scheduling algorithm is fully distributed and symmetric. Specifically,
every Cogset node executes the same algorithm during a traversal, whose steps are as follows.

1. An initiation message is received from the client process. The message contains a unique
identifier for the traversal, to distinguish between separate and potentially concurrent
traversals, a (serialized) visitor function to be employed for the traversal, and a set of
previously committed DSIs that defines the traversal’s view of its input data. It may also
specify a subset of partitions to process, defaulting to the full set of partitions.

36

2. The Cogset node spawns a dedicated child process for the traversal. This is a practical
step to isolate errors caused by the user-defined visitor functions, preventing such errors
from propagating and affecting concurrent traversals. The visitor function is sent to the
child process.

3. A set P of partitions is initialized to contain all partitions that are hosted by the node.

4. A set N of neighbors is initialized to contain all other nodes that also host replicas of
partitions in P.

5. One partition in P is selected for processing, and communicated to the child process,
which invokes the user-defined visitor function to initiate processing of the selected par-
tition.

6. When the child process reports that the processing of a partition is complete, the Cogset
node removes the partition from P, notifies its neighbors N, and reports progress to the
client. The progress message also includes any new DSIs that have been created, in the
common case of visitors that generate new output data.

7. Unless P is empty, steps 5-7 are repeated.

This high-level description omits some important details concerning how nodes monitor and
coordinate with their neighbors. Concurrently with the above steps, each node regularly ex-
changes status messages with its neighbors N, both to detect failed neighbors and in order to
accurately update the set of remaining partitions P. To avoid the race condition where two
neighbors simultaneously decide to process the same partition, the implementation of step 5
includes one round of status updates, flagged to generate immediate responses, minimizing la-
tency. If a race is detected, node identifiers are used as tie breakers and the losing nodes make
a new selection.

3.6 Load Balancing

Given the static policy for data placement, and general strategy of accessing data locally,
it may appear that Cogset’s capabilities for load balancing would be limited. In reality, the
fact that all data is replicated can be exploited to effectively transfer load between neighboring
nodes. During a traversal, all partitions must be processed, but every partition is replicated on
multiple nodes, and can be processed by either of those nodes. The crucial step in the traversal
algorithm is step 5, where a Cogset node selects which partition to process next, effectively
implementing a distributed scheduling algorithm.

Using simulations, we have evaluated multiple such scheduling policies, and arrived at the
following default. To select a partition, a node estimates the total amount of work remaining
for itself, and for each of its neighbors. It then selects the node with most work remaining,
and determines which of the remaining partitions hosted by that node has the highest estimated
processing cost; this partition is selected as the next one to be processed. To obtain the esti-
mated processing costs, a separate user-defined hook is invoked for each partition, as described
in Section Our simulations using this scheduling policy indicate that Cogset’s traversal
algorithm is sufficiently flexible to balance load effectively both in heterogeneous environments
and in the presence of data skew.

37

Traversal Simulation

N5 - 100%

N4 P21 213 PI6 - 2] H 2 || B B 100%
N3 P27 P28 n P19 H PIS — 100%

3 E
Z %)
NZ Ps3 . Ps9 P47 . Ps6 P49 Ps0 | PSS — 1 OO%

Nl P48 P64 P4 Ps4 P6S P2 P13 Ps2 P10 P63 P45 Ps7 | P61 | P51 | P46 — 1 OO%

| | | | |
0 20 40 60 30 100 120
Time

Figure 3.2. Example traversal. Large partitions are processed first, to balance the load
evenly between all nodes.

For an intuitive illustration of how this works, consider Figure [3.2] which visualizes a sim-
ulated traversal using a Gantt chart. The figure shows a traversal involving 6 nodes, hosting
a total of 60 partitions, replicated for a total of 20 partition replicas per node. For each node,
the timeline shows the order in which partitions are processed, and the time taken to process
each partition. Partitions are color-coded to illustrate their locations; NO hosts all pink and cyan
partitions, N1 hosts all cyan and yellow partitions, etc. The timeline is normalized such that
all nodes would ideally finish at time 100, if the load were perfectly balanced. In the example,
all nodes do finish the traversal very close to that time, even though there is significant data
skew. By processing large partitions first, the total load is balanced effectively, while respect-
ing the restrictions imposed by the replica placement. For example, both N2 and N3 start off
by processing different blue partitions, which dominate in size; the neighboring nodes N1 and
N4 compensate by processing yellow and green partitions.

A second example, in Figure [3.3] shows a scenario where one node (N3) fails mid-way
through the traversal. The failed node hosts blue and green partitions, and after its failure is
detected, the neighboring nodes N2 and N4 switch to almost exclusively processing blue and
green partitions, respectively, picking up the extra load. In turn, their neighbors compensate by
processing more yellow and red partitions, in a ripple effect that effectively balances out the
extra load among all remaining nodes. Once again, all nodes complete the traversal in close
succession, this time at around time 110 due to the extra load.

In summary, the key insight behind Cogset’s load balancing algorithm is that neighbors may
off-load each other. This motivates our choice of chained declustering as the default strategy
for replica placement, as described in Section [3.4] The neighborship relation is determined by
replica placement, and when using chained declustering, the relation connects all nodes into a

38

circular chain. This allows very effective load balancing by propagating excess load along the
chain of neighboring nodes.

Traversal Simulation

I I I I I
N5 = 100%
- 100%
- 100% -
2 g
= &
- 100%
Nl P48 P64 P54 P67 P66 P47 Ps6 P73 P49 P62 P45 P70 P58 P50 | P61 PS1 | P55 | P46 — 100%
| | | | |
0 20 40 60 80 100 120
Time

Figure 3.3. Traversal where one node (N3) fails mid-way through the traversal. Neighboring
nodes pick up the extra load (blue and green partitions).

The use of chained declustering as a foundation for load balancing was also explored in the
recent Osprey system [55]. Osprey is a federated parallel database that decomposes queries
into sub-queries to be executed in parallel on a collection of regular single-node PostgreSQL
instances. Failed sub-queries are re-executed on another instance with access to a replica of
the same data. The core algorithm for balancing load between instances is similar to what
Cogset incorporates into its traversal algorithm, although our algorithm is fully distributed in a
symmetric manner, while Osprey uses a central coordinator for scheduling. Our algorithm was
independently designed but appears to be based on the same intuitions; the concurrent work on
Osprey confirms that this is a sound approach to load balancing.

3.7 Fault Tolerance

To elaborate on fault tolerance, recall that the goal of a traversal is to process every partition;
in other words, to invoke the visitor function exactly once for each partition number. In the-
ory, this implies that a visitor function should be invoked as an atomic operation. In practice,
those semantics must be approximated, due to the potential for failures. The invocation of a
visitor function may take a long time (more than a minute for some partitions in some of our
benchmarks), and a node may well fail while invoking the function. For example, there may be
software bugs in the visitor function, which is defined by the user code.

Cogset handles such failures by re-execution: the partition in question is simply rescheduled
for processing, potentially on a neighboring node. Since a separate child process is used to

39

invoke the visitor function, software bugs and transient errors are contained and prevented
from crashing the main process of the Cogset node. If the main process fails while a partition
is being processed, the child process will also terminate, as if failing.

Re-execution is a straightforward strategy for fault tolerance, but to make it work, Cogset
must be able to ignore the side effects of partially processing a partition. This is enabled by
the distribution session mechanism. When a visitor function is invoked, it may distribute new
records to other nodes, which are immediately persisted on disk, even though the visitor func-
tion may subsequently fail and be re-executed. Distribution sessions ensure that such partial
output can be discounted, since the records in question would be uncommitted and ignored by
future reads.

Traversals may be read-only (or more generally, idempotent), but typically do produce some
output records, which are added to one or more data sets. If and when to commit these records is
a matter of client policy; as the traversal progresses, all new DSIs are reported back to the client.
If the client maintains a log of completed partitions, it may commit DSIS on a per-partition
basis, effectively check-pointing the computation after each completed partition. Such a client
can recover from a failure by starting a new traversal using the same visitor function, restricted
to the set of partitions whose output remains to be committed. Alternatively, all DSIs may be
committed together when the traversal is complete, in which case the client can be stateless, in
exchange for making a client failure (analogous to a master failure in traditional MapReduce
engines) more costly.

A more common failure scenario is the case where a Cogset node fails, as in Figure [3.3
While our load-balancing algorithm is able to compensate for failed nodes, a failed node will
reduce the replication degree of a number of partitions. This must be remedied by re-integrating
a new node to host the affected partitions, or by creating new replicas of the partitions on the
remaining nodes. To reintegrate a failed node, the partition replicas stored on that node must be
synchronized with the replicas on its neighboring nodes, to incorporate any changes that were
committed during its downtime. Reconfiguring the placement of partition replicas is simple, but
can entail copying of significant data volumes between nodes. Currently, these operations can
only be performed off-line, while no traversals are in progress. Potential future work includes
devising algorithms for re-integrating nodes into a running system with traversals in progress,
and similarly for on-line reconfiguration of replica placement.

3.8 In-situ Data Processing

In Section [1.3] we listed the potential for in-situ data processing as one of the advantages of
MapReduce, setting it apart from parallel databases. By implementing a custom input format,
as described in Section [2.3.4] pre-existing external files can be used as input to a MapReduce
computation, without any initial reformatting. All that is required to integrate an external file
is the customized logic for parsing it into a sequence of key/value pairs.

Internally, Cogset batches records into pages before they are transferred over the network
or stored on disk, as described in more detail in Section Pages are self-contained and
self-extracting data structures; their internal representation may vary and is opaque to Cogset.
A Cogset node stores data as a set of regular files in the local file system, using one file per
partition per data set. Files created by Cogset invariably contain a sequence of pages. De-
spite this apparent rigidity, Cogset still retains the capability for in-situ processing of records.

40

This is accomplished by providing a very cheap mechanism for importing, or more accurately
integrating, existing data files into the storage managed by a Cogset node.

Specifically, a set of records stored in a local file can be added—as a constant-time bulk
operation—to a given partition of a data set using a simple command-line tool. The arguments
to the tool are the local file to integrate, a specification of the format of that file, and the data set
and partition number to which the external records should be added. The tool works by creating
an indirection page which is appended to the appropriate partition file in the regular manner.
When unpacking itself, the indirection page will not decode its own payload (which is empty);
instead, it will read the contents of the external file, parsing records as originally specified on
the command-line, for example by treating each line of plain text as one record.

A similar approach can be used to integrate other external data sources into Cogset, such
as relational database queries, although we have not created specific command-line tools for
that. Just like a traditional input format, an indirection page can contain arbitrary logic for
providing records. For example, it could generate a very large but deterministic sequence of
records based on a pseudo-random number generator initialized with a specific seed—a useful
feature in many scenarios, notably for testing purposes.

3.9 Summary

This chapter presented the design of Cogset, which is intended to be a core engine for
distributed data processing, on which multiple higher-level abstractions may be constructed.
MapReduce support is a central requirement, but ultimately viewed as just one specialized ap-
plication of Cogset. The defining aspects of Cogset’s design are its basic mechanisms for repli-
cating and distributing data using static routing, and a generic traversal mechanism that allows
parallel evaluation of an arbitrary user-defined function for all data partitions. The traversal
algorithm encapsulates the details required to ensure fault tolerance and dynamic load balanc-
ing, while imposing fewer restrictions than MapReduce on the supplied user-defined functions,
allowing direct implementation of algorithms such as hash joins.

41

42

Chapter 4

Implementation of Cogset

Chapter [3| describes the design of Cogset, in terms of the overall architecture and the core
abstractions. In this chapter, we describe how our design was instantiated by a concrete Java
implementation. Java is a widely used general-purpose object-oriented programming language
that is portable and has native support for dynamically importing user-defined code at run-
time. Using reflection and introspection, classes can be dynamically instantiated, and objects
resulting from invoking user-defined code can be examined and type checked at run-time. This
makes Java well suited for our system, but it should be noted that our overall design could be
instantiated in any general purpose programming language without major modifications. The
principal reason for choosing Java was for compatibility with Hadoop, which is implemented
in Java. To facilitate experimental evaluation, Hadoop compatibility was one of our initial
requirements for Cogset, as detailed in Section

When listing Java code, we will in the interest of readability omit certain non-essential details
such as exception types, access modifiers such as public/protected/private, and idiomatic code
such as “getters” and “setters” (i.e., public access methods for private fields). If our design was
instantiated in another programming language, such details would be prone to change, but the
essential interfaces that we list could be transcribed into other object-oriented languages such
as C++ or C# in a straightforward manner.

When describing our implementation, we adopt a bottom-up approach, working our way
from the initial low-level details that must be addressed internally by Cogset to the higher-
level interfaces to which client code must explicitly relate. Finally, we describe how the actual
MapReduce interfaces that are compatible with Hadoop are implemented as a thin layer on top
of the more generic interfaces to Cogset’s core abstractions.

This bottom-up approach also offers a different perspective on the system’s design than the
top-down view given in Chapter 3] In some respects, this may provide a more instructive mo-
tivation for the design. When developing software, implementation and design are commonly
overlapping phases in a cycle of gradual refinement. As such, the most accurate way to describe
our implementation is not just as an instantiation of the final design, but also as a process that
was instrumental in shaping it. We seek to reflect this duality by motivating our implementation
choices along the way, pointing out alternative approaches that were identified but discarded.

43

4.1 Records

The key to handling large data sets is to partition them, so that each partition can be processed
independently and in parallel. A prerequisite for partitioning is to define which contiguous byte
sequences must be processed as one, or equivalently, the boundary points at which partitioning
is allowed. The common term for this indivisible sequence of bytes is a record, and in a system
for data storage and processing, such as Cogset, it constitutes both the basic data unit, and by
extension, the unit of processing.

Cogset’s public interfaces relate to individual records in various ways; records may for in-
stance be added to existing data sets, inspected in order to assign a partition number, or read by
user code during a traversal. In these contexts, when records are exposed to user code, they are
represented as regular, in-memory Java objects. This is convenient, not just for type safety, but
also because established object-oriented design patterns can be employed even where records
are involved. For example, derived properties of a record (e.g., converting between units of
measurement) may be implemented as regular methods to be invoked, and records may be
compared in the usual way via the standard Comparable interface, or used as keys in an asso-
ciative map such as the standard HashMap class.

The next section describes an important aspect of Cogset’s implementation, which may fre-
quently be overlooked in higher-level discussions: how in-memory records are converted to
and from bytes stored on disk.

4.2 Record Formatters

Cogset supports records of both fixed and variable length. Fixed length records are less
flexible, but have the advantage that the boundary points in a stream of bytes can easily be
computed, since they are all multiples of the record length. With variable length records, it
may be less trivial to determine valid boundaries. One approach is to add delimiters that can
be identified while scanning the data sequentially, for example by using newline characters as
delimiters and considering each line of a text file to be a (variable-length) record. Another is
to add padding at certain intervals to ensure that a record boundary can always be found at
certain specific offsets. Delimiters pose a storage overhead both by their necessary inclusion
in between each record, and also by the need to add escape sequences for delimiters occurring
within a record. Padding imposes a maximum record size, and also entails a storage overhead
that depends on the average record size relative to the padding interval. For example, if records
are on average 1024 bytes long, and padding is applied to align a record boundary at every 64
kilobytes, one would expect an average of 512 padding bytes in each 64 kilobyte interval, i.e. a
space overhead of roughly 0.8%. In general, there are a number of ways to encode records into
byte sequences, and the appropriate record encoding depends on the data types involved.

To accommodate a broad range of data types, Cogset does not enforce or require a specific
record encoding. Rather, Cogset treats records as opaque objects, and requires clients to supply
a record formatter in the form of a pluggable piece of code. The record formatter implements
the necessary logic for encoding and decoding records, converting them between raw byte se-
quences and in-memory objects (i.e., regular class instances). This may be done using padding,
delimiters, or any other scheme appropriate for the data types involved. Whenever a record is
exposed to user-defined code, it is in the form of an in-memory object; the record formatter is
the only piece of code that must relate to the actual record encoding.

44

interface RecordFormat<A> extends Serializable

{
RecordDecoder<A> getDecoder (Class<A> recordClass , InputStream in);
RecordEncoder<A> getEncoder (Class<A> recordClass , OutputStream out);
}
interface RecordDecoder<A> extends Closeable
{
A decodeRecord ();
}
interface RecordEncoder<A> extends Closeable
{
void encodeRecord(A record);
void encodeRecords(Iterator <A> records);
void flush ();
}
abstract class AbstractRecordEncoder<A> implements RecordEncoder<A>
{
void encodeRecord (A record)
{
encodeRecords (Collections.singleton(record). iterator ());
}
void encodeRecords(Iterator <A> records)
{
while (records.hasNext()) {
encodeRecord(records .next ());
}
}
void flush () {}
}

Figure 4.1. Interfaces for record formatting.

Figure shows the specific RecordFormat interface to be implemented by record format-
ters; given a standard Java InputStream or OutputStream instance, a record formatter wraps
the instance with an adaptor that allows records of a specific type to be decoded or encoded.
We refer to these adaptors respectively as record decoders and record encoders. Record for-
matters are parametrized by the class used to represent the records; a record formatter might
only work for a specific record class, or it might work for any class implementing some spe-
cific interface. The record class could be anything ranging from the standard String class, to
a Map associating string keys with string values, or a user-defined class containing fields of
various types, all depending on the application needs. Either way, Cogset treats each record as
an opaque object—whenever records need to be encoded as or decoded from byte sequences,
Cogset simply delegates the task to a record formatter by acquiring a suitable record encoder
or record decoder and remains oblivious of any internal details of the record class.

As can be noted in Figure the RecordEncoder interface has separate methods for encod-
ing a single record and for encoding a sequence of multiple records, accessed using an iterator.

45

Record encoders can choose to inherit default and mutually recursive implementations of these
two methods from the AbstractRecordEncoder class, so only one of the two methods must be
implemented. For simple record formatters that only consider one record at a time (relying,
for example, on delimiters), it is sufficient to implement the “singular” encodeRecord method.
Record formatters that employ encoding optimizations spanning multiple records, will want
to implement the “plural” encodeRecords method to avoid batching records internally. For
example, a formatter that employs compression typically benefits from compressing data in
large chunks. Whenever a whole sequence of records is to be encoded, Cogset will invoke the
encodeRecords method, allowing the formatter to perform the compression by accessing the
original sequence of records directly, rather than batching the records internally. Since the se-
quence of records to be encoded is accessed via an iterator interface, it does not have to reside
in-memory. It could be anything from a cursor retrieving records from a database query to a
function that generates records on the fly. Despite these facilities to avoid internal batching
of records, there may still be record encoders that choose to buffer data internally for conve-
nience, for example to insert periodic checksums. To accommodate this option, Cogset will
invoke the flush method whenever it requires all buffered data to be flushed to the underlying
output stream.

Record formatters are commonly reusable for a range of record classes, and Cogset provides
a library with several ready-made formatters. These include the SerializableRecordFormat,
which relies on the standard Java serialization mechanism, and works for any class that imple-
ments the standard Serializable interface. There are also special record classes and format-
ters to facilitate interaction with Hadoop code. Hadoop internally employs a special-purpose
light-weight encoding protocol as an alternative to standard Java serialization, and requires
all keys and values to be instances of classes that implement a particular Writable interface.
Cogset therefore includes a standard WritableRecordFormat formatter that works with any
record class that implements the Writable interface. Furthermore, Cogset provides a generic
WritableKey Value record class which encapsulates an arbitrary key/value pair, and an associ-
ated record formatter. This enables seamless interfacing with Hadoop code that operates on
key/value pairs.

4.3 Partitioning

In a distributed shared-nothing environment, large data sets must be partitioned for parallel
processing. Ideally, the data set should be partitioned such that computational resources can be
exploited to the extent possible. For example, if the computational cost of processing a record
is uniform, and the environment is homogeneous, each node should process the same number
of records. For some applications, a simple round-robin partitioning scheme that assigns record
number ¢ to partition ¢ mod P, where P is the number of partitions, will suffice. Other opera-
tions require partitioning according to certain constraints, i.e. co-location of certain records; for
example a relational equi-join requires all equal-keyed records to reside in the same partition.
This particular constraint can be enforced using hash partitioning or range partitioning. The
choice of partitioning algorithm is thus important, and the cost of repartitioning a data set can
be high, since it requires reading, redistributing and writing all data.

Cogset provides a customizable and flexible way to specify partitioning algorithms, or im-
plement new ones. Whenever new records are added to a data set, clients may provide a custom
partitioner object that implements the Partitioner interface shown in Figure As outlined in

46

interface Partitioner <A>

{
}

int getPartition (A record, int numPartitions);

Figure 4.2. Partitioner interface.

Chapter 3] all data sets are split into a number of partitions; for each new record, the partitioner
object is invoked to determine which partition should hold the record. Specifically, the record
and the total number of partitions employed are passed to the getPartition method, and it returns
a partition number for the record. Round-robin partitioning can thus be implemented simply
by incrementing a counter held internally in the partitioner object, and returning the counter
modulo the number of partitions.

4.4 Keys and Key Functions

As with record formatters, a number of ready-made partitioners are provided by library code.
A very common approach is to partition data sets by hashing some key field contained in each
record. This is the partitioning scheme hard-coded into Google’s original MapReduce engine,
and also the default algorithm used by Hadoop. Sorting is another fundamental operation that
requires a defined ordering of records, commonly by comparing a certain ’key” property of
each record.

interface KeyFunction<A, K> extends Serializable

{
}

K getKey (A record);

Figure 4.3. Key function interface.

Cogset supports both hash-based partitioning, range partitioning and sorting, but for all of
these, the concept of a record key must be defined, along with methods for hashing and compar-
ing record keys. Recall that Cogset represents a record as an opaque instance of a record class,
not as an explicit key/value pair or any other pre-defined structure. To accommodate the case
where records have a logical key that should be exposed, Cogset employs key functions, which
are objects implementing the KeyFunction interface in Figure 4.3] A key function is invoked
through the getKey method; it accepts a record and returns its key. Key functions serve to
decouple the concept of a record key from the record class representing the record. The object
returned by a key function must consistently implement the standard Java hashCode, equals
and compareTo methods (the latter specified by the Comparable interface). Many standard
Java classes meet this requirement, such as the String class and all the basic data types, so a
typical key function implementation would be to simply return one of the fields defined in the
record class.

The generic HashPartitioner and RangePartitioner classes provided by Cogset can be reused
with any record class, despite having no view of its internals—clients just have to provide a
suitable key function for extracting keys from records. As a concrete example, consider the
HashPartitioner class, shown in Figure 4.4] Its constructor accepts a key function, which is

47

class HashPartitioner <A> implements Partitioner <A>

{
KeyFunction<A, ?> keyFunction;
HashPartitioner (KeyFunction<A, ?> keyFunction)
{
this . keyFunction = keyFunction;
}
int getPartition (A record, int numPartitions)
{
Object key = keyFunction.getKey(record);
return Math. abs (key.hashCode () % numPartitions);
}
}

Figure 4.4. A generic hash partitioner.

stored internally and used to extract keys from records as needed. This level of indirection
allows the HashPartitioner to be reused with any record class.

Another reason to decouple key functions from record classes is that a given record may have
several possible key properties, depending on context. To give a concrete use case to illustrate
this, a commercial web site might employ an advertisement click tracking feature to log every
event where a user clicks on an advertisement displayed on a web page. In the resulting data
set, each record would have a source URL property, denoting the web page in question, and an
advertisement ID property, identifying the particular advertisement. Such a data set could be
mined to determine the effectiveness of the particular advertisements displayed on each page.
To examine the advertisements most frequently viewed from each page, the data set should be
partitioned based on the source URL property, ensuring that all records pertaining to a specific
web page are co-located in the same partition. In contrast, to analyze the particular set of web
pages from which each advertisement was viewed, the data set should be partitioned by the
advertisement ID property, co-locating all records pertaining to a specific advertisement.

In Cogset, since key functions are decoupled from record classes, the above use case could
be modeled with a single record class, and separate key functions for extracting either of the
two possible key properties from a record. Partitioning the data set one way or the other would
be achieved simply by passing the appropriate key function to the partitioner.

4.5 Pages

A Cogset deployment consists of multiple nodes, each hosting a particular subset of parti-
tions. When a node is partitioning a data set, records must be transferred to the appropriate
nodes, as dictated by the partitioner. Regardless of the network protocols employed, which we
return to in Section .11} a record must be encoded as a sequence of bytes before being trans-
mitted over the network. A certain amount of meta-data must also be communicated to the node
receiving a record; most crucially, the record’s partition number and the record formatter to be
used for decoding the record. To reduce space overhead and amortize the cost of transferring
meta-data, Cogset batches records into pages. The records of a page all have some meta-data
in common, which is only transferred once per page. Specifically, all records in a page belong

48

to the same partition, and are encoded using the same record formatter. By always transferring
data in units of a page, as opposed to transferring individual records, the number of 1/0-related
system calls is reduced, lowering the communication overhead.

Pages may have variable size, up to a configured maximum (64 kilobytes by default). Each
page has a fixed size header which includes the length of the remaining data. The record format-
ter is encoded using standard Java serialization and follows immediately after the page header;
the remaining data is a number of records encoded using the record formatter. To access the
records of a page, the record formatter is first decoded using standard Java deserialization, and
then used to decode the remaining data. As such, each page is a self-contained data structure
with the ability to unpack itself, and the pages in a given partition may well be encoded using
a variety of record formatters.

To construct a page incrementally, a separate page builder abstraction is provided. Given
a specific record formatter, it writes records into a byte buffer that is grown on demand (a
ByteArrayOutputStream). At any point, the page builder may be asked to construct a final-
ized” page with the current contents. This constructs the actual page data structure, serializing
the record formatter and appending the encoded record data, and resets the byte buffer. The
page builder may thus be used as a record buffer to avoid pre-allocating large amounts of mem-
ory for pages, thereby bounding memory overhead.

4.6 On-disk Data Layout

When a Cogset node receives a new page, there is no need to unpack it before writing it
to disk. The salient information about a page is readily accessible in its header: the name of
the data set that the page belongs to, and its partition number. Each Cogset node maintains a
separate directory in the local file system for each of the partitions that it hosts. The directory
contains one data file for each data set, named after the data set. In addition, there is one log
file per partition directory, recording on-going and committed distribution sessions.

Given this data layout, a Cogset node can trivially locate the appropriate local file for a page.
The partition number and data set name are both accessible in the page header, and used to
directly construct the corresponding path in the local file system. The entire page is then ap-
pended to the local file in question, without further inspection. This minimizes the overhead of
decoding and encoding records; they are only encoded once, before transmitting them over the
network, and only decoded once, when they are read from disk. This is particularly beneficial
in the presence of replication; by making producers encode records before the data is replicated,
the total overhead is further reduced.

The modular data layout, where each partition is stored in a separate directory, also aims to
facilitate maintenance and redistribution of partitions. As an off-line operation, the data in a
Cogset deployment can be redistributed by changing the configuration (specifically, how parti-
tions are mapped to nodes) and directly copying the relevant directories between nodes. Simi-
larly to pages, partition directories are self-contained data structures, which simplifies mainte-
nance.

4.7 Record Distributors

To summarize, Cogset stores a collection of named data sets, which are partitioned, and each
node hosts a certain subset of the partitions. Adding new records to a data set involves multiple

49

steps, building on the previously described components. First, the partition of each record must
be determined by invoking a partitioner. Next, the records for each partition are batched into
pages using a page builder and an associated record formatter. Finally, as pages fill up, reaching
a configurable threshold size, they are transferred to the appropriate nodes, to be appended to
the corresponding files on disk.

interface Cogset

<A> RecordDistributor <A> openDistributor (Class<A> recordClass,
Partitioner <A> partitioner , RecordFormat<A> format, String name);

Traversal visitAllPartitions (PartitionVisitor visitor);

void commitSessions(Collection<SessionHandle> sessions);

Figure 4.5. Main Cogset interface.

interface RecordDistributor <A> extends Closeable

{
void addRecord (A record);
void addRecords(Iterator <A> records);
SessionHandle close ();
}
interface SessionHandle
{
void commit ();
}

Figure 4.6. Record distributor and session handle interfaces.

All of these steps are orchestrated by a record distributor, which implements the interface
shown in Figure Clients may create record distributors using the openDistributor method
of the main Cogset interface, shown in Figure 4.5] specifying the name of a data set to which
records should be added, the record class used to represent records, a partitioner and a record
formatter.

These arguments are stored internally in the record distributor. It also maintains one page
builder per partition, as an array indexed by partition number. When the addRecord method is
invoked, the record is passed to the partitioner, which returns a partition number for the record.
The record is then passed to the corresponding page builder, which will buffer records until
the threshold page size is reached. At this point, the distributor finalizes the page, resetting the
page builder. To reduce memory consumption, pages reaching the threshold size are transmitted
immediately to their destination nodes. An upper bound for the memory consumed by a record
distributor is thus given by the threshold page size multiplied by the number of partitions. For
example, with a threshold page size of 64 kilobytes and 1024 partitions, a record distributor
will consume no more than 64 megabytes for main memory buffering. Note that records are

50

buffered not as instances of record classes, but as byte strings encoded by the record formatter.
As such, any space saving technique—such as compression—that is applied by the formatter
will also increase the number of records that can be buffered in main memory.

As noted, full pages are transmitted directly to the appropriate nodes. In turn, pages received
by a node are written directly to disk. Each partition of a data set is stored as a single local file,
to which pages are appended. For each file, Cogset’s internal threads synchronize to ensure that
pages are appended sequentially and in arrival order, preserving record and page boundaries on
disk. The records originating from a particular record distributor will therefore appear in the
order added. Records originating from different, concurrent distributors may be interleaved in
any order.

Since pages are encoded by a record formatter prior to transmission, no further formatting
is required on the receiving node and pages can be appended directly to the appropriate local
files. This append-only 1/0 pattern is very efficient, since general purpose file systems and hard
disks are generally heavily optimized for sequential bulk writes. Restricting file mutations to
append-only also enables a straightforward mechanism for atomically committing changes, as
described next.

4.8 Distribution Sessions

When a data set is generated or imported from an external source using a record distribu-
tor, the resulting pages are distributed and written continuously to disk on the various nodes
in the Cogset deployment. In the event of a failure, for example on the client node where the
record distributor executes, some pages may have been persisted while others have not. For
determinism, a stricter consistency model is required, where either all or none of the records
are added. Clients might rely on higher-level protocols implemented outside of Cogset to de-
termine whether or not a data set is consistent, but Cogset also provides a built-in and flexible
mechanism to ensure consistency, called distribution sessions.

A distribution session represents a set of records that should be added as a single atomic unit;
either all of the records are persisted or none of them. Upon creation, each record distributor
initiates a new distribution session, and all records added using the distributor are associated
with that session. After the record distributor is closed, the session may be committed using a
two-phase commit protocol coordinated by the client.

Each record distributor generates a unique distribution session identifier (DST), which is a
64 bit number that includes bits from the Cogset node’s 1P address and process identifier to
ensure uniqueness. The DSI is included in every page created by the record distributor, and
follows the page as it is transmitted to other nodes. The record distributor maintains statistics
of how many pages have been transmitted to each partition. Conversely, each node keeps a
log of committed DSIs in each partition, as well as the number of pages written to each of its
partitions in currently uncommitted sessions.

A client initiates a commit by sending a prepare to commit message to all nodes. The mes-
sage is tailored for each node, specifying the DSI and the number of pages added to each
partition hosted by the receiving node. Upon receipt, a node checks that the correct number of
pages has been persisted for each of its partitions. If this is verified, the node responds with a
commit message, attesting that all records have been persisted. Otherwise, the node responds
with an abort message. The client tallies the responses; if all nodes respond with commit mes-

51

sages, the session is committed and the client broadcasts a final committed message to notify
all of the nodes.

There is no explicit abort operation for a session, and no need to roll back state in the event
of failures. Instead, pages whose sessions are uncommitted are simply skipped whenever a
data set is read. On disk, each page has a small header that specifies the length of the page
and its associated DSI. Skipping a page is therefore a simple matter of moving the file pointer
(seeking) past it, and there is no need to actually decode its contents in order to skip it.

Sessions that go uncommitted (for whatever reason) will leave a certain amount of garbage
data that will have to be skipped by subsequent readers. Under the common assumptions that
failures are relatively rare, and most sessions will be committed, or in the case of short-lived
data sets, this should pose little space overhead. If it is deemed to be a problem, the procedure
for garbage collection is straightforward: simply read a data set, skipping over all uncommitted
data, write a new copy of it, and remove the old one.

When a record distributor is closed using its close method, the return value is a session
handle—an object that encapsulates the DSI of a session as well as other relevant statistics
from the session. The session may subsequently be committed by invoking the commit method
of the session handle, or the client may choose to commit multiple sessions at the same time,
by passing a collection of session handles to the commitSessions method of the main Cogset
interface. In other words, a client may choose to add records to multiple data sets (using
multiple record distributors) and subsequently commit all of those changes as a single atomic
operation.

In general, the main drawback of using a two-phase commit protocol is that participants may
deadlock if the central coordinator fails while collecting commit/abort votes [59]. In Cogset,
the client acts as the coordinator, and the potential for a failing client to deadlock the Cogset
nodes should be avoided. However, the traditional concern for deadlocks stems from database
applications, where the participating nodes typically hold a set of locks while waiting for the
coordinator to confirm the final outcome of the protocol (abort or commit). In Cogset, the
only operations to be committed are simple file appends; there is no need to hold any locks or
otherwise impede progress while waiting for the client to make a decision, and hence no risk
of deadlocking.

4.9 Traversals

Given the implementation details presented so far, a notable omission may be the lack of
any interface for reading records. In traditional systems involving a shared file system and a
separate abstraction for distributed processing, data is commonly streamed over the network
to the processes reading the data. One of the observations motivating Cogset is that it is more
efficient to schedule the processing on a node where data can be read locally, thus reducing
network load. Ideally, all reading of data should happen locally, and data should only be trans-
ferred to another node for the purpose of storing it there. At the same time, clients should not
have to be concerned with the exact locations of data, since that would breach the abstraction
layers.

To meet both of the above requirements, Cogset offers an untraditional, visitor-based inter-
face for data access. When clients wish to process a data set, they do not fetch records from
the Cogset nodes. Instead they specify a function to execute locally (and in parallel) on the
actual Cogset nodes. Specifically, clients specify a visifor function that should be invoked

52

interface PartitionVisitor extends Serializable

{

void visitPartition (Partition p);

double estimatedCost(Partition p);

Figure 4.7. Partition visitor interface.

interface Partition
{
<A> RecordReader<A> readDataSet(Class<A> recordClass , String name);

<A> RecordReader<A> readSortedDataSet(Class<A> recordClass ,
KeyFunction<A, ?> keyFunction, RecordFormat<A> format, String name);

void scanDataSet(RecordVisitor<A> visitor , String name);
long dataSetSize (String name);

int getPartitionNumber ();

Figure 4.8. Partition interface.

once for each partition number. The visitor is a serializable Java object that implements the
Partition Visitor interface shown in Figure By invoking the visitAllPartitions method of
the main Cogset interface (see Figure {.5)), a client initiates a fraversal, in which copies of the
specified visitor are distributed to all nodes, and invoked in parallel, once per partition. In Sec-
tion we described the high-level traversal algorithm; here, we focus on the implementation
details and the specific interfaces involved.

During a traversal, each Cogset node repeatedly selects one of its locally hosted partitions,
invoking the visitor for each partition through the visitPartition method. The supplied argument
implements the Partition interface shown in Figure through which the visitor can read
records or add new ones. In particular, the readDataSet method can be used to read the records
of a named data set; the returned RecordReader is a custom iterator that provides access to all
the records of the specific partition and only those. This amounts to sequentially reading a local
file (while skipping over uncommitted pages), so only local 1/0 is performed. The records of
the given partition are returned in the order in which they were originally added. To read all
records in a data set, a visitor may simply invoke the readDataSet for every partition, i.e. once
per invocation of visitPartition.

An alternative way of reading records is provided by the scanDataSet method. This provides
yet another visitor-based access method, allowing the visitor to process all records of a partition
in parallel (in no particular order). The supplied RecordVisitor callback is invoked once for
each record. Under the hood, Cogset employs multiple threads to scan a data set; while pages
must be read sequentially, they are decoded and scanned in parallel. Record visitors must
therefore be re-entrant, i.e. tolerant of concurrent invocations from separate threads. The two
approaches to reading records complement each other; the conventional iterator-based interface

53

interface RecordVisitor <A>

{
void visitRecord (A record);
}
interface RecordReader<A> extends Iterator <A>, Closeable
{
A readRecord ();
}

Figure 4.9. RecordVisitor and RecordReader interfaces.

1s useful when the order in which records are read matters, while the visitor-based interface
promises better multi-core performance for CPU-intensive tasks, due to its underlying multi-
threaded implementation. The Record Visitor and RecordReader interfaces, instrumental to the
two approaches for reading records, are both detailed in Figure

Visitors may also add records to new data sets using the openDistributor method. Its sig-
nature is identical to the equally named method in the main Cogset interface, but the returned
record distributor has a slightly different behavior. When a given invocation of visitPartition
completes, all record distributors that were created during the call are implicitly closed, without
committing the distribution sessions. Instead, the session handles are communicated back to
the client that initiated the traversal. If or when to commit the sessions is a matter of client
policy, as discussed in Section

Commonly, a visitor performs a symmetric computation and does the same processing for
every partition, such as filtering or aggregating the records of a particular data set. In this
case, its visitPartition method will have no need to determine which specific partition is being
processed. If a visitor performs an asymmetric computation it may wish to process certain
partitions differently; to this end, the getPartitionNumber method can be used to determine
which particular partition is being processed in any given invocation of visitPartition.

In Section [3.6) we described how Cogset’s traversal algorithm allows dynamic load balancing
by carefully selecting an order of processing for partitions. The semantics of a traversal only
require each partition to be processed once, but it may happen in any order, and using any of
the partition replicas. To make intelligent scheduling decisions, it helps to have an estimate of
how costly it will be to process a given partition. By preferring to process more costly partitions
first, there will be less variance towards the end of a traversal, when some nodes must inevitably
go idle.

The estimatedCost method of the Partition Visitor interface provides a hook where visitors
may indicate an estimate for how costly it will be to process a given partition. These estimates
are obtained by each node at the start of a traversal, by invoking the method once for each
partition hosted by the node. The returned estimates have no predefined domain, but are used
as relative weights. A typical implementation is to return the amount of data to processed in a
given partition, obtained using the dataSetSize method of the Partition interface. Bear in mind
that visitor functions are user-defined black boxes to Cogset, and have no accompanying decla-
ration naming the data sets that will be accessed (if any). As such, there is no way for Cogset to
derive this estimate automatically. On the other hand, accurate estimates are not crucial for load
balancing; they mainly serve to minimize idle time towards the end of a traversal, by ensuring

54

that costly partitions are processed early. For heterogeneous or hard to estimate computations,
visitor functions may simply return a constant cost estimate of 1 for every partition.

A crucial property of the Partition interface is that it provides access to a particular partition
of all data sets. Applications may ensure that records from different data sets are co-located by
assigning them to the same partition number. To see how this is useful, consider the example of
a relational equi-join implemented using the hash-merge join algorithm. The data sets would
first be populated by adding the records with a record distributor, using a partitioner that hashes
the desired join attributes. Records with equal join attributes would thus be co-located in the
same partition. The join could subsequently be performed using a single traversal with a fully
symmetric visitor: for each partition, it would read the data sets in sorted order using the
readSortedDataSet method, merging them to keep only the records of interest, and add all
resulting records to a new data set. Depending on the size of the partition, readSortedDataSet
either sorts records in-memory or falls back to an external merge sort. In the latter case the
supplied RecordFormat argument is required, in order to encode records as they are stored in
temporary files.

4.10 MapReduce Support

A classical MapReduce computation can be performed using an extension of the above hash-
merge join algorithm. Recall that in a MapReduce context, records are key/value pairs, and
there are user-defined map and reduce functions to be applied. A MapReduce computation can
be implemented manually as follows, using the generic interfaces to Cogset’s core abstractions.
When populating the data set, all records are passed to the map function, and the key/value
pairs emitted by the map function are added to an intermediate data set, partitioned by hashing
the keys. The reduce phase is performed by a traversal whose visitor function reads each
partition of the intermediate data set, sorted by key, and applies the reduce function once for
each contiguous sequence of equal-keyed records.

Cogset implements a library to generalize this, providing a traditional MapReduce interface
on top of Cogset’s traversal mechanism. In accordance with the requirements set forth in Sec-
tion this library implements Hadoop’s public API, for compatibility with existing Hadoop
applications. A Hadoop job is executed by Cogset as two consecutive traversals. The first
traversal implements the map phase by reading one or more input data sets and applying the
map function to each input record; the map output is automatically partitioned by passing it to
a record distributor. The second traversal implements the reduce phase by sorting each map
output partition and applying the reduce function.

Figure [4.10] illustrates how the map phase traversal is implemented. In this instance, the
visitor class implements both the Partition Visitor and Record Visitor interfaces from Cogset,
in addition to Hadoop’s OutputCollector and Reporter interfaces. The estimateCost method,
which is used by Cogset for scheduling purposes, estimates the relative cost of processing
a partition by returning the total amount of data to be mapped. The visitPartition method
performs the mapping by scanning all input data sets, and populating a new data set with records
emitted from the map function. In response to the scanDataSet invocations, the visitRecord
callback is invoked once for each input record. visitRecord in turn invokes the user-defined
map function, which implements Hadoop’s Mapper interface. All records emitted from the
map function are collected by the collect method, and persisted using a record distributor.

55

class MapVisitor implements PartitionVisitor ,
RecordVisitor <WritableKeyValue >, OutputCollector , Reporter

{
Mapper mapper;
RecordDistributor <WritableKeyValue> out;
double estimateCost(Partition p) {
double cost = 0;
for (String dataSet: getInputDataSets ()) {
cost += p.dataSetSize(dataSet);
}
return cost;
}
void visitPartition (Partition p) {
mapper = getMapper ();
Partitioner par = new HashPartitioner ();
String dataSet = getOutputDataSet();
out = p.openDistributor (par, dataSet);
for (String dataSet: getInputDataSets ()) {
p.-scanDataSet(this , dataSet);
}
}
void visitRecord (WritableKeyValue record) {
mapper.map(record .key, record.value, this, this);
}
void collect(Writable key, Writable value) {
out.addRecord (new WritableKeyValue (key, value));
}
}

Figure 4.10. Partition visitor for the map phase of a MapReduce job.

Figure shows the visitor used for the second traversal, implementing the reduce phase.
It is similar to the map phase visitor, but this time, an iterator-based interface is used for reading
the input data set. By using the readSortedDataSet method, the visitor is requesting that Cogset
should sort the data set partition on the fly. The sort order is determined in the usual way for
Java objects, i.e. through the Comparable interface, which must be implemented by the record
class. Depending on available memory and the size of the data set partition, an external sort
may be required, temporarily flushing data to disk. This is an additional reason—beyond finer-
grained load balancing—to configure Cogset to use a relatively high number of partitions: with
a higher number of partitions, each data set partition is on average smaller, and the likelihood
that it can be sorted in-memory increases. Note that a Cogset node only visits one partition
at a time during a traversal, so all of the machine’s physical memory is generally available for
sorting each partition.

To execute a MapReduce job using Cogset, users may construct a Hadoop JobConf object
in the regular way and replace the call to JobClient.runJob() with a similar call to the Cogset
MapReduce library. Cogset ignores many settings in the JobConf object that are particular to
Hadoop, but existing map, reduce and combine functions all work as expected. The reporter

56

class Reducelterator implements Iterator <Writable>

// Details omitted; custom iterator that wraps a record reader
// with the capability for traversing contiguous sequences of
// equal—keyed records, assuming sorted input

class ReduceVisitor implements PartitionVisitor , OutputCollector, Reporter

{

RecordDistributor <WritableKeyValue> out;

double estimateCost(Partition p) {
return p.dataSetSize (getlnputDataSet());
}

void visitPartition (Partition p)
{
Reducer reducer getReducer ();
Partitioner par = new HashPartitioner ();
String dataSet = getOutputDataSet();
out = p.openDistributor (par, dataSet);
RecordReader<WritableKeyValue> in;
in = p.readSortedDataSet(WritableKeyValue. class,
WritableKeyValue . DEFAULT KEY,
WritableKeyValue . DEFAULT FORMAT,
getInputDataSet ());
Reducelterator iter = new Reducelterator(in);
// Invoke the reducer once for each unique key in the input:
while (iter.hasNextKey()) {
WritableComparable key = iter .nextKey ();
reducer.reduce (key, iter , this, this);

}

void collect(Writable key, Writable value) {
out.addRecord (new WritableKeyValue (key, value));
}

Figure 4.11. Partition visitor for the reduce phase of a MapReduce job.

57

object can be used to set status messages and increment counters; this information is relayed
to the Cogset client. Also supported are the new org.apache.hadoop.mapreduce interfaces that
were introduced with version 0.20 of Hadoop.

4.11 Communication Layer

Cogset nodes must communicate with one another and with clients both to distribute data and
to coordinate their activities during traversals. To this end, we considered various implementa-
tion mechanisms and network protocols. Crucially, we sought to implement a communication
layer that offered a stable interface, with the appropriate semantics required by Cogset, while
allowing the underlying implementation and network protocols to be varied for experimen-
tal purposes. The choice of network protocols is important in a shared-nothing environment,
where all inter-node communication must be done over an unreliable network, so we considered
it important to facilitate future experimentation along that axis.

Both the original MapReduce implementation and the Hadoop implementation rely on re-
mote procedure calls (RPCs) for communication. RPCs are a convenient abstraction for dis-
tributed applications, allowing inter-process communication to be structured like regular method
calls, masking the fact that the invoked method executes in the address space of another process,
typically on another machine. However, RPCs are a poor fit for many of the communication
patterns employed by Cogset. When distributing data, a single page should be sent to mul-
tiple nodes for replication, whereas a conventional RPC targets a single node. Similarly, the
two phase commit protocol must broadcast an initial message before waiting to collect replies
from all participating nodes, tallying their votes. Synchronous RPCs are a poor fit for such a
communication pattern.

We therefore decided to adopt a lower-level, but more general communication primitive as
our common denominator: non-blocking, reliable message passing. Asynchronous communi-
cation is a better fit for Cogset’s communication patterns, and synchronous abstractions can
always be implemented on top of asynchronous abstractions. In contrast, the opposite may be
harder to achieve in practice: each synchronous call would have to be wrapped in a separate
thread in order to provide asynchronous semantics. The overhead of such an approach could
be excessive with a high number of concurrent calls.

Reliable delivery of messages over an unreliable network can be achieved through retrans-
mission of lost messages. This must be triggered by timeouts, whose duration must be tuned,
and known complications are the possibility of duplicate or out-of-order messages. These is-
sues have already been addressed by the ubiquitous and thoroughly tested TCP protocol, so we
chose to employ TCP for all communication. TCP is connection-oriented, but to provide a pure
message-passing interface, we implemented a communication layer with a connection-less in-
terface, explicitly specifying the destination node for each individual message. Internally, the
communication layer pools and re-uses TCP connections to avoid the overhead and latency of
redundantly establishing duplicate connections between nodes. An added benefit of this ap-
proach is that the flow control mechanisms inherent in a TCP connection thus serve to throttle
the rate of message delivery. This avoids overloading a recipient node with data messages from
a sending node that produces data at a higher rate than it can be persisted by the recipient.
An alternative implementation of the communication layer, for example based on UDP, can be
substituted without affecting other parts of the Cogset implementation.

58

Beyond reliable delivery and flow control, TCP also provides ordered delivery of messages.
As a consequence, pages (and hence, records) are persisted in the order in which they are
created. Our protocols for committing distribution sessions or coordinating traversals do not
rely on the ordering guarantee, so it is possible to modify our message passing implementation
to employ a network protocol without ordering guarantees. The consequence would be slightly
different semantics when adding records to data sets. In theory, the records would have no
well-defined ordering. This may actually be acceptable for many applications, that either sort
records before accessing them (as in the reduce phase of a MapReduce computation), or process
each record independently of others (as in the corresponding map phase).

Considering the fact that Cogset replicates each page and distributes it to a number of nodes,
there is an apparent potential to save some network bandwidth by employing a multicast pro-
tocol. However, this would complicate the implementation of the communication layer, both
because the level of multicast support by the network infrastructure may vary, and also because
it would preclude TCP as an underlying network protocol. As such, an implementation based
on multicast would have to address the additional concern of reliable delivery. For this reason,
we have refrained from using multicast in our current implementation of Cogset. It remains an
interesting area to explore in potential future work.

4.12 Summary

This chapter presented the Java implementation of Cogset, describing its central program-
ming interfaces and how Hadoop-compatible MapReduce support is implemented in a separate
layer on top of the core Cogset interfaces. Cogset represents records using regular in-memory
class instances, and provides hooks where the user can influence how records are encoded to
and decoded from byte strings. Clients may also influence data placement by defining custom
partitioning functions, and may determine sort order by implementing the Comparable inter-
face in the record classes. The MapReduce support is accessed using a variant of the Hadoop
API, by constructing a JobConf object in the usual way and passing it to Cogset. Clients may
also bypass the MapReduce layer and execute traversals directly, specifying their own partition
visitors. Such partition visitors have free reins to access and modify any and all data sets, and
are therefore less restricted than the map and reduce functions in a MapReduce computation.

59

60

Chapter 5

Experimental Evaluation

To investigate our thesis that static routing can be used as a foundation for a high-performance
MapReduce engine, we first designed and implemented Cogset, as described in the previous
two chapters. This chapter describes the next step, where we experiment with Cogset, measur-
ing its performance, and compare it to other systems in order to draw conclusions.

Our performance evaluation compares Cogset to Hadoop, an established and widely de-
ployed open-source MapReduce engine that represents the state of the art for traditional en-
gines. These experiments support our main thesis, in that Cogset generally outperforms Hadoop,
but they also prompted a closer investigation of Hadoop’s internals, to fully understand the un-
derlying reasons. This chapter also relates our experience from that investigation, where we
uncovered certain performance issues specific to Hadoop. We show how these issues can be
addressed, and include results on how Hadoop performs after those optimizations have been ap-
plied. This constitutes valuable experience that both affirms some of our own design choices,
and highlights potential pitfalls that should be avoided by others.

Compared to previous work, Cogset may be viewed as a hybrid between a traditional MapRe-
duce engine and a parallel database: its architecture deviates from the traditional MapReduce
approach of dynamic routing, drawing inspiration from parallel databases by adopting static
routing. Yet Cogset embraces the MapReduce philosophy of structuring computations around
user-defined functions, and creating a generic, reusable framework for evaluating such func-
tions in a highly parallel, fault-tolerant and load-balanced way.

Since MapReduce was first introduced, its relative benefits and drawbacks as compared to
parallel databases have been the subject of considerable debate. Certain aspects of that debate
are inherently subjective, such as the various views on which programming interfaces should
be provided, and on how data should be modeled. Such individual preferences may come
naturally, as a matter of intuition, but while the merits of each approach can be propounded
anecdotically, they are hard to quantify objectively.

Consequently, the most concrete points of contention revolve around perceived performance
issues. In 2009, Pavlo et al. published a comprehensive work comparing MapReduce to parallel
databases, viewing them as opposing paradigms for large-scale data analysis, and concluding
that parallel databases have strikingly better performance [60]. The Hadoop engine was adopted
as a representative for the MapReduce paradigm, and compared to three commercial parallel
database systems. For this work, the authors developed a new benchmark that we refer to here
as the MapReduce/Database (MR/DB) benchmark.

61

Given Cogset’s position as an intermediate point in the design space between traditional
MapReduce engines and parallel databases, the MR/DB benchmark was a natural benchmark
to adopt for our performance evaluation. Cogset is intended to serve as a potential replacement
not just for MapReduce engines, but also for computations that might otherwise be delegated to
parallel databases. By adopting a benchmark designed to compare the two, we ensure that the
workload is relevant for our intended application areas, and therefore suitable for testing our
hypotheses. Adopting a previously established benchmark also has the obvious advantage that
it allows indirect comparisons to other systems for which results using the same benchmark
have been reported.

In the remainder of this chapter, we first present the MR/DB benchmark and detail its con-
stituent data sets and tasks. We then give a brief overview of the systems that have previously
been evaluated using the same benchmark. Next, we describe our experimental setup, present
our results and discuss their significance. Finally, we give an in-depth account of how we
used our experiments to investigate Hadoop’s behavior and devised a new set of optimizations
specifically for Hadoop.

5.1 The MR/DB Benchmark

The MR/DB benchmark is explicitly designed to compare the performance of MapReduce
engines and parallel databases. It consists of five tasks that can be expressed either as SQL
queries or as MapReduce computations: Grep, Select, Aggregate, Join, and UDF. The bench-
mark includes Java source code for the MapReduce implementations of each task, using the
Hadoop API. It also defines relational schemas for the data sets employed, and includes tools
to generate them. Before executing the benchmark tasks, the data sets are imported by each of
the benchmarked systems in a system-specific way. Parallel databases may take this opportu-
nity to build index structures for the data. The MapReduce implementations of the benchmark
tasks access records sequentially from regular files, without relying on index structures.

In the following, we detail each of the benchmark tasks in turn, describing the data sets
involved, and outline how the tasks are typically executed by a parallel database and by a
MapReduce engine.

Grep The Grep task was first described in the original MapReduce paper [6]. It performs a
complete scan of a data set looking for lines of text that match a specific pattern and
emits matching lines. Grep executes on a randomly generated data set of 10 billion 100-
character lines, comprising about 1 TB of data. The search pattern occurs infrequently,
so little output is generated. The SQL schema and query for Grep is shown below:

CREATE TABLE Data (
key VARCHAR (10) PRIMARY KEY,
field VARCHAR (90)

)

SELECT % FROM Data WHERE field LIKE ’'%XYZ%';

There is no index on the field being searched, so a parallel database must scan through
every record sequentially in order to execute the query. Depending on the on-disk data
layout, the database might be able to access only the relevant field of each record. The

62

MapReduce implementation of this task scans through the entire data set, using the map
function to search for and emit matching records. For this simple task, there is no reduce
function, so in this case the output from the map phase constitutes the final output of the
MapReduce computation. (Both Hadoop and Cogset support map-only computations;
this option is not explicitly mentioned in the original MapReduce paper, but it is a simple
extension.)

The remaining four tasks use three related data sets. Two data sets model log files of HTTP
server traffic: Rankings contains URLs and their associated pageRank values, and records in
UserVisits denote users visiting web sites. UserVisit records include multiple fields, such as
the URL that was accessed and the originating source 1P address (sourcelP). The third data set
is a randomly generated collection of HTML documents with embedded hyperlinks. The SQL
schemas for these data sets are as follows:

CREATE TABLE Rankings (

pageURL VARCHAR (100) PRIMARY KEY,
pageRank INT,
avgDuration INT

)i

CREATE TABLE UserVisits (

sourcelP VARCHAR (16),
destURL VARCHAR (100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR (64)
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR (32),
duration INT

)i

CREATE TABLE Documents (
url VARCHAR (100)
contents TEXT

PRIMARY KEY,

)i

Select The Select task selects all Rankings records with a pageRank larger than some thresh-
old. Parallel databases typically index this table by sorting it by pageRank, and can
trivially find matching records—the MapReduce version uses a map-only job to perform
a sequential scan over the entire data set. It corresponds to the following SQL query:

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Aggregate The Aggregate task groups UserVisits records by sourcelP and calculates the total
advertisement revenue (adRevenue) generated by visits from each 1. Using MapReduce,
this task is implemented by a map function that outputs the sourcelP and adRevenue
for each input record (projecting just the relevant attributes), and a reduce function that
calculates the total adRevenue for each IP. A combiner function is employed for pre-
aggregation in the map phase. In SQL, this is a classic group-by aggregation query, as
shown below:

63

SELECT sourcelIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourcelP;

A second variant query groups records by a substring of the 1P address, producing a
smaller result set, with fewer groups:

SELECT SUBSTR (sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR (sourcelIP, 1, 7);

Join The Join task performs a join between the Rankings and UserVisits data sets, to pro-

UDF

duce intermediate records that associate pageRanks with the URLs of each user visit
from a specified date range. The intermediate records are grouped by sourcelP, and for
each group of user visits originating from the same IP, the total adRevenue and aver-
age pageRank is computed. Finally, the single source IP that generated the highest total
adRevenue is emitted, along with its average pageRank. For this task, parallel databases
can use an index to retrieve user visits from the specified date range, whereas MapRe-
duce performs a complete scan of the input. Furthermore, grouping by source IP is done
when data is loaded into the parallel databases, so they can perform the join locally on
each node. In contrast, MapReduce must repartition the data to perform this grouping,
by using the join attribute (URL) as intermediate keys, and completing the join in the
reduce phase. A second MapReduce pass computes the total adRevenue and average
pageRank for each source 1P, and a third pass finds the single record with the highest
total adRevenue. In SQL, this task is implemented by one query to populate a temporary
table with aggregated values, and a second query to select the single output record:

SELECT INTO Temp sourcelP,
AVG (pageRank) as avgPageRank,
SUM (adRevenue) as totalRevenue
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL
AND UV.visitDate BETWEEN Date(’2000-01-15")
AND Date (2000-01-22")
GROUP BY UV.sourcelP;

SELECT sourcelP, totalRevenue, avgPageRank
FROM Temp
ORDER BY totalRevenue DESC LIMIT 1;

The final benchmark task, UDF, exercises the capabilities of parallel databases for inte-
grating user-defined functions (UDFs) into query plans. The task inverts a web graph by
extracting all hyperlinks from each HTML document and aggregating the total number of
in-links for each unique URL. MapReduce uses a map function that parses HTML code
to extract hyperlinks from the document contents. Since such parsing cannot easily be
expressed in SQL, parallel databases must integrate a user-defined function F, similar to
the map function, which extracts hyperlinks into a temporary table:

SELECT INTO Temp F (contents) FROM Documents;

SELECT url, SUM(value) FROM Temp GROUP BY url;

64

The second SQL query aggregates the output from the user-defined function and corre-
sponds to the reduce phase of the MapReduce computation.

5.2 Previously Benchmarked Systems

Previous work has employed the MR/DB benchmark to compare several other systems to
Hadoop. Here, we briefly describe these systems and their previous benchmark performance.

Vertica [61] is a commercial parallel database system based on the C-Store research project [62].

Vertica stores table columns (record attributes) separately, which is advantageous if only
a subset of the columns are accessed frequently. Also, efficient compression techniques
can be employed to improve performance for read-mostly workloads. In the original
benchmark paper, Vertica outperformed Hadoop by significant factors for most tasks—
this can be attributed both to its compression techniques and queries that allow use of
indexes for data access. The corresponding MapReduce programs are implemented as
brute force scans over the entire data sets. Subsequent criticism notes that realistic map
functions for these queries would take advantage of similar indexes, either occurring
naturally or otherwise supported by the input data source [[15].

DB-X is an unidentified parallel edition of a commercial database system and was included
in the original MR/DB benchmark. Like Vertica, DB-X employs hash partitioning and
compression, but the storage is row-based, so individual columns can not be accessed
separately. DB-X also outperformed Hadoop, but given the difference in storage formats,
it did not match the performance of Vertica for the queries that accessed small subsets of
the columns in the input tables.

HadoopDB [54] is a hybrid system that employs Hadoop as a coordinator for a collection
of single-node PostgreSQL databases. It extends Hive [41], to draw on its support for
compiling SQL queries into Hadoop execution plans. HadoopDB modifies the execution
plans so that certain sub-queries are executed in parallel by the PostgreSQL databases;
the results are then merged by Hadoop. HadoopDB was evaluated using the MR/DB
benchmark in a separate paper [54]], comparing its performance to Hadoop and Vertica.
Results for DB-X were only included as extrapolations from the original benchmark.

5.3 Experimental Setup and Benchmark Adaptation

For our experiments, we used a cluster of 25 Dell PowerEdge 1955 machines, interconnected
by a HP ProCurve 4208 VL with a 48-port 1 Gb/s switched Ethernet module. Machines had two
quad-core Intel Xeon processors and two SCSI disks configured in RAID 0. There were 3 racks:
racks A and B held 17 machines with 2 GHz processors and 8 MB level 2 cache, and rack C
had 8 machines with 2.66 GHz processors and 12 MB level 2 cache. The disks in racks B and C
had a peak bandwidth for reads of about 155 MB/s, while the disks in rack A were smaller but
faster, with a peak of about 195 MB/s. These speeds were measured using hdparm, a command
line utility for viewing and tuning hard drive parameters, using its -t option. We dedicated
a separate node in rack A, with similar specifications, for running the Hadoop name node,
the Hadoop job-tracker, and the Cogset client processes. Using iperf, an open source cross-
platform network testing utility, we measured the effective TCP payload bandwidth between
nodes in our cluster to 112 MB/s.

65

Option Value Default
dfs.replication 2 3
dfs.block.size 256 MB 64 MB
dfs.datanode.scan.period.hours | -1 (disabled) 3 weeks
io.sort.factor 100 10
io.sort.mb 256 100
mapred.child.java.opts -Xmx512M | -Xmx200M
mapred.job.reuse.jvm.num.tasks -1 -1
tasktracker.http.threads 60 40

Table 5.1. Hadoop configuration

We used Java 1.6 and Hadoop version 0.20.2, configured as in the MR/DB benchmark, with
a few options different from the default. These configuration changes are summarized in Ta-
ble We reduced the replication degree in HDFS to 2, to match Cogset’s default configu-
ration, and because disk space was a scarce resource in our cluster. Pavlo et al. reported that
this change made no difference to Hadoop’s performance [60]]; based on initial test runs, we
drew the same conclusion. To minimize the overhead of creating new processes, we configured
Hadoop to re-use instances of the Java Virtual Machine (JVM). (This has become the default
setting in Hadoop 0.20.2, but we state it explicitly here for clarity, since JVM initialization is a
known cause of overhead in earlier versions of Hadoop [60].)

We reduced the amount of logging to the bare minimum by filtering out all but warnings
and errors and logging to local disk onl We disabled the periodic block scanning in HDFS,
which performs low-priority background maintenance tasks such as checksum verification, to
avoid any interference with our experiments. Like Hadoop, Cogset was configured to maintain
2 replicas of all partitions. We used a total of 500 partitions, assigning 40 partition replicas to
each of the 25 nodes using the chained declustering algorithm described in Section [3.4}

In addition to the time it takes to execute each benchmark task using Hadoop, the MR/DB
benchmark also reported the time to merge all output files into a single result file. This extra step
is generally unnecessary when using the MapReduce paradigm, since subsequent MapReduce
jobs can operate directly on a partitioned set of input files. Moreover, the merging step generally
takes excessive time to execute using Hadoop, since Hadoop performs poorly for jobs that
process numerous small input files. In Section [5.6] we explain how this is due to a weakness in
Hadoop’s task scheduling algorithm. With Cogset, a set of small files can generally be merged
in negligible time, if a single result file (stored in a single partition) is required, but again, this
is generally not necessary.

For practical reasons, we needed to make a few minor modifications to the MR/DB bench-
mark code. First of all, the benchmark was adapted to run either on Hadoop or on Cogset
depending on a command-line option. Also, Cogset requires map and reduce functions to be
thread-safe. Such functions are mostly thread-safe by nature, since they have no dependen-
cies on other records or keys, but there are exceptions. In particular, a few shared instances
of the SimpleDateFormat class were replaced with separate instances per thread, using the
ThreadLocal class from the standard library.

Similarly, we adapted the benchmark data generation tools to optionally output generated
data to Cogset, using the record distributor abstraction described in Section We employed

'Logging was configured by modifying log4j.properties and certain environment variables.

66

the WritableRecordFormat record format described in Section to use Hadoop’s custom
serialization protocol for storing records on disk. Like Hadoop, Cogset accessed all records
sequentially for all benchmark tasks, without relying on any pre-generated index structures.

For each benchmark task, we executed 10 trials using the same input data. The error bars
in our graphs show 95% confidence intervals based on these samples. Between each trial, we
stopped all processes, cleared the file system read cache on all nodes (using the shell command
”sync; echo 1 > /proc/sys/vm/drop_caches”) and restarted all processes. Hadoop was given
one minute to settle into a steady state before initiating any MapReduce jobs.

5.4 Hadoop Optimizations

Hadoop’s performance may be sensitive to its exact configuration. Options that may affect
performance include the number of tasks to execute concurrently on each node, the amount of
main memory to reserve for sorting, and the total number of map and reduce tasks to employ,
which determines the number of input and intermediate partitions, respectively.

Furthermore, the performance of a Hadoop job may depend not just on the user-defined code
implementing the map and reduce functions, but also on other hooks such as the input and
output formats used for record encoding. These are typically provided by library code, but may
be configured independently for each job.

As a consequence, our experiments must closely follow the MR/DB benchmark configu-
ration to yield comparable results. At the same time, it may be possible to find alternative
configurations of Hadoop that yield improved performance. When executing our experiments
with the original benchmark configuration of Hadoop, Cogset’s performance was strikingly
better. While investigating the reasons for this, we discovered ways to significantly improve
Hadoop’s performance both by reconfiguring it and by plugging in alternative implementations
for some of its user-defined hooks.

We therefore report two sets of benchmark results for Hadoop. The results labeled “Hadoop”
are obtained by executing the benchmark using the configuration specified by the benchmark,
while the results labeled “Optimized Hadoop” show the best performance we were able to
achieve with Hadoop when applying our own optimizations. As the next section shows, these
optimizations were surprisingly effective, and are interesting in their own right. We therefore
revisit that topic in Section [5.6] giving a detailed account of how we optimized Hadoop’s per-
formance.

5.5 Benchmark Results

This section reports the results from executing the MR/DB benchmark with Cogset, Hadoop,
and our optimized version of Hadoop. We first present the results for each of the five benchmark
tasks, then conclude with an indirect comparison to previously benchmarked systems, based on
the observed performance relative to Hadoop.

5.5.1 Grep Results
Grep exercises sequential scanning of data. Since our experiments start with a cold file sys-

tem cache, the 1TB data set must be read into memory. The map function filters the records
using a very selective predicate. Therefore, the bottleneck in this experiment ought to be how

67

fast data can be read from disk. Averaged over all nodes, the disks in our cluster have a peak
read bandwidth of approximately 168 MB/s. During a traversal, Cogset employs a single pro-
cess per node that continuously reads sequentially from the local file system. In the map phase,
Cogset scans data at a rate of 142 MB/s. In contrast, Hadoop scans at just 56 MB/s. With the
optimizations described in Section [5.6] this was improved to 76 MB/s. Figure shows the
resulting execution times.

5.5.2 Select Results

Select also scans and filters the input, but its predicate is less selective, so a non-trivial
amount of map output must be persisted. Figure [5.2] shows the results: as before, Cogset
benefits from its higher scanning speed. The relative difference between Cogset and Hadoop
is larger here than for Grep—this is primarily because of CPU bottlenecks in Hadoop that
become more prominent when the map function emits more records. By applying the same
optimizations as for Grep, the performance of Hadoop improves significantly.

Parallel databases sort the input data by pageRank prior to executing this task. If the same
pre-processing were made before executing the MapReduce version, it would be straight-
forward to write a custom input format that reads until encountering a specified threshold
pageRank value. We also measured the performance when using such an approach, thus mim-
icking the effects of accessing the input data using an index. This resulted in approximately
50% shorter execution times both for Hadoop and Cogset, as shown in Figure [5.3]

5.5.3 Aggregate Results

A UserVisit record can comprise more than 200 bytes, but Aggregate only accesses the
sourcelP and adRevenue fields of each record, for a total of 20 bytes. Aggregate thus high-
lights the situational advantages of column-oriented storage. For row-oriented databases, and
for MapReduce, the overriding cost is to scan the entire input data set. The intermediate data
set is much smaller than the input and can quickly be aggregated in the reduce phase. Again,
Hadoop suffers from poor scanning performance, while Cogset is more than twice as fast. Our
optimizations for Hadoop are able to close some of the gap. The execution times for Aggregate
are shown in Figure

The MR/DB benchmark also features a second variant of Aggregate that groups the output
by a substring of the source 1P, resulting in much fewer groups (i.e. fewer unique keys to be
reduced). Both Hadoop and Cogset are insensitive to this change, and the results are practically
identical using this variant, so we do not include them here.

5.5.4 Join Results

Join illustrates the benefits of index structures. MapReduce scans through 30 years worth
of (randomly generated) user visit log records to extract the records from one specific week.
Understandably, the cost of selecting the correct subset of the records using a brute force scan
overshadows the cost of performing the actual join. For this task, our optimizations for Hadoop
are very effective and make Hadoop perform almost as well as Cogset, as shown in Figure[5.5]
Unoptimized, Hadoop performs poorly, with similar execution times as for Aggregate, which
also requires scanning the entire set of user visits.

68

Completion Time in Seconds

Completion Time in Seconds

800

700

600

500

400

300

200

100

Hadoop s Cogset ——
Optimized Hadoop

Figure 5.1. Grep execution times in seconds.

H

Hadoop mmmm Cogset T
Optimized Hadoop

Figure 5.2. Select execution times in seconds.

69

Completion Time in Seconds

Completion Time in Seconds

Hadoop Cogset
Optimized Hadoop

Figure 5.3. Select execution times in seconds, with an emulated index.

1400

1200

1000

800

600

400

200

Hadoop Cogset 1
Optimized Hadoop

Figure 5.4. Aggregate execution times in seconds.

70

Completion Time in Seconds

Completion Time in Seconds

1400

1200

1000

800

600

400

200

350

Hadoop s Cogset
Optimized Hadoop

Figure 5.5. Join execution times in seconds.

300

250

200

150

100

50

HH

Hadoop Cogset T
Optimized Hadoop

Figure 5.6. Join execution times in seconds, with an emulated index.

71

The log of user visits would realistically be stored in multiple files, with date ranges encoded
into their file names. This “natural index” would allow MapReduce to only process input files
that overlap with the desired input date range. Again, we would like to isolate the performance
gains we could achieve using indexes, when the input format only supplies records from the
correct date range. We emulate this by pre-filtering the UserVisits files, creating a new set of
files to be used as input. The performance of this approach is shown in Figure [5.6]

5.5.5 UDF Results

600

500

H

400 oo S o

cVJ) — f— S——

200 | [o

Completion Time in Seconds

100 | .

Hadoop s Cogset
Optimized Hadoop

Figure 5.7. UDF execution times in seconds.

UDF employs a CPU-intensive map function that extracts hyperlinks using a regular ex-
pression. In line with previous results, Cogset completes the map phase faster than Hadoop.
In return, Cogset takes slightly longer than the optimized version of Hadoop for sorting and
reducing. This is because Hadoop starts the reduce tasks before all map tasks are finished,
pre-fetching and pre-sorting map output partitions. This exploits some of the idle capacity that
is available at the end of the map phase. Cogset executes each traversal independently, and has
no MapReduce-specific optimizations, so there is no overlap between the map phase and the
reduce phase. Unlike Hadoop, Cogset also stores map output reliably by replicating it. The
execution times for UDF are shown in Figure

72

€L

Relative Execution Time

Grep Select Select w/index Aggregate Join Join w/index UDF
Hadoop == DB-X mm HadoopDB =
Optimized Hadoop == Vertica == Cogset ™

Figure 5.8. Relative execution times for the MR/DB benchmark.

5.5.6 Relative Performance

Figure |5.8|shows the relative performance of all systems evaluated using the MR/DB bench-
mark. All numbers are relative to Hadoop’s performance; the numbers for Vertica and DB-X
are from the original benchmark paper, and the numbers for HadoopDB are from the 10-node
experiments in the paper introducing HadoopDB [54]. (They did not include measurements
for a 25-node deployment). The usual pitfalls of extrapolating or indirectly comparing perfor-
mance measurements apply; in particular, there could be elements of the experimental setup
that emphasize different strengths and weaknesses in the various systems. For example, our
cluster has relatively fast disks compared to the single-core CPU speed, which might accentuate
CPU bottlenecks that would otherwise go unnoticed.

The relative performance results show that Cogset’s performance rivals that of the parallel
databases for the Grep, Select, Aggregate and UDF tasks, with the exception of Vertica’s Select
performance, which is considerably higher than any other system, presumably due to its data
compression featureﬂ

For Join, the parallel databases benefit both from index structures and from the partitioning
that was done at load time, which allows a local hash join. The join algorithm used in the
corresponding MapReduce implementation is less efficient, and needlessly copies the entire
UserVisits data set from the first to the second MapReduce job, rather than discarding irrelevant
attributes. The biggest overhead still stems from scanning the entire UserVisits data set in order
to extract a very narrow date range. We emulated the effect of an index on visitDate by pre-
filtering the data set: these results are shown in Figure [5.6] and labeled as “Join w/index” in
Figure

Implementing a join without first repartitioning the input data sets is somewhat impractical
using Hadoop, but possible. Reduce-only jobs are not supported, so to avoid repartitioning, a
map-only job must be used. A join could then be implemented by using a custom input format
that merges records from multiple input files.

If the MapReduce interface is bypassed, Cogset can perform a local hash join using custom
traversals. A straightforward implementation using one traversal to perform the hash join and
a second to group and aggregate the output from the join by sourcelP resulted in execution
times less than 90 seconds—almost four times as fast as the MapReduce version executed using
Hadoop (see Figure[5.5)), and faster than HadoopDB in relative terms. Thus, a join implemented
using Cogset’s core interfaces can approach the performance of parallel databases.

5.6 Analyzing and Optimizing Hadoop

The large gap in performance between Hadoop and Cogset prompted us to investigate the
internals of Hadoop more closely. This was an attempt to determine whether the poor per-
formance was due to shortcomings in the Hadoop implementation, suboptimal configuration
of Hadoop, or due to more fundamental limitations intrinsic to the MapReduce programming
model. This section gives a detailed account of how we analyzed Hadoop to answer these
questions, and how we devised two specific optimizations that address some of the implemen-
tation weaknesses that we uncovered. As noted, the benchmark results obtained by using the

2The MR/DB paper is also unclear about the details of the Select task: it states that 36,000 records are selected
per node, but the published code generates 4.1 million matching records per node.

74

optimizations described here were labeled as “Optimized Hadoop” in the previous section, and
these optimizations markedly improved Hadoop’s performance.

5.6.1 Task Scheduling

Our results show that Hadoop generally scans input data at a much lower rate than the peak
disk read bandwidth. To investigate why, we first examined the Grep task, where Cogset scans
data more than twice as fast as Hadoop, proving that there is substantial room for improvement.
Using vmstat -p, we monitored the rate at which data was read from disk on various nodes.
Surprisingly, disks frequently went idle for several seconds, even though Grep ought to be
disk-bound.

To account for this idle time, we examined the high-level statistics maintained by the Hadoop
job-tracker. It reported an average execution time for each map task close to 8 seconds for all
Grep trials, while the total duration of the map phase was approximately 750 seconds. By
default, Hadoop allows concurrent execution of up to 2 map tasks on each node, for a total of
50 execution slots in our case. Summing up the execution time for all of the 3777 map tasks
indicates that their total execution time was around 600 seconds per slot. In other words, each
of the execution slots was idle for around 20% of the time.

To investigate further, we parsed the verbose job history logs and extracted the start- and end
times of each individual task, building up a detailed timeline of each trial run. We discovered
that there was generally a delay of up to 3 seconds from the time one task was completed until
another task was scheduled to execute in its slot.

An examination of the task-tracker code revealed why. Each task-tracker manages the exe-
cution of tasks on a specific node, but must communicate with the central job-tracker to obtain
scheduling decisions. This communication is piggybacked on a periodic heartbeat RPC call
from the task-tracker to the job-tracker; instructions about new tasks to execute are included in
the heartbeat response. The task-tracker does not generate a heartbeat immediately upon task
completion. Instead, it waits until the next regularly scheduled heartbeat, which occurs every 3
seconds. Therefore, completed tasks are only reported every 3 seconds, and if all of the tasks
executing on a node finish within the same 3 second window, the node will go completely idle
until the next heartbeat.

With an average of 1.5 seconds left of the heartbeat interval, and an average task execu-
tion time of 8 seconds, the probability of an execution slot being idle is (1.5/9.5) = 15.8%.
Each task-tracker has two execution slots, so with independent distributions of tasks start times,
nodes should be completely idle around (1.5/9.5)? = 1.66% of the time. In reality, tasks only
start executing at one of the 3 second marks, immediately after a heartbeat response is received,
and thus tend to complete at similar times as well. This increases the probability of all execution
slots going idle towards the end of a heartbeat interval. Our timeline analysis of the Grep trials
revealed that each node was completely idle around 5-6% of the time during the early parts of
the map phase; this excludes the idle time that results from the barrier synchronization point
at the end of the map phase, which accounted for an additional 3-4% of the time in our exper-
iments. The latter idle time is unavoidable, but can be minimized by using more fine-grained
tasks—the backup task mechanism also helps, by avoiding delays caused by abnormally slow
stragglers.

Allowing nodes to idle for extended periods of time is wasteful for a benchmark that ought to
be disk-bound. The only way to make sure the disk is fully utilized, given the default heartbeat

75

interval, is to add more concurrent map tasks. Unfortunately, this leads to a less optimal access
pattern, since multiple readers will then concurrently access separate regions of the disk. The
heartbeat interval is automatically determined by Hadoop based on cluster size (and may be
even longer than 3 seconds for larger clusters), so we had to patch two lines of code in the
task-tracker to make it configurable. We then reduced the heartbeat interval to 50 milliseconds,
to ensure that the job-tracker would react promptly to completed tasks. For Grep, this simple
change resulted in an immediate improvement in Hadoop’s performance by about 15%. A bet-
ter solution to this problem would be to send a heartbeat message immediately upon every task
completion—this would require a few additional changes to the code. If there are compelling
reasons for communicating infrequently with the job-tracker, an alternative might be to add
a short queue in each task-tracker holding tasks that are scheduled for execution, effectively
making scheduling decisions slightly in advance to avoid idle nodes.

The delayed reporting of completed tasks has an even more dramatic performance impact
when using Hadoop’s default configuration. The MR/DB benchmark uses an HDFS block size
of 256MB, which is four times larger than the default. Hadoop schedules one map task for each
HDFS input block, so with a smaller block size, each task completes faster, and the probability
of a node going idle during a heartbeat interval increases. In the extreme case, when Hadoop
is used to process a set of very small files (each of which is stored in a separate block), the
overhead is excessive: no matter how fast a single task completes, each node can only execute
two tasks during each 3-second heartbeat interval. When executing Grep using the default
HDFS block size, nodes were completely idle for around 34% of the time, resulting in an overall
slowdown of about 80%.

5.6.2 Multi-Core Optimizations

Despite reconfiguring the heartbeat interval to reduce idle time, the performance gap between
Hadoop and Cogset remained relatively large: Cogset still executed Grep roughly twice as fast
as Hadoop. Now that map tasks were executing more or less continuously, we turned our
attention to their internals. Centering around the flow of data, the activities of a map task can
be broken down into the following distinct steps:

1. Reading raw data from HDFS over TCP.

2. Verifying checksums embedded in the data to detect corrupted data blocks.

3. Parsing the raw bytes into records using the specified input format.

4. Invoking the map function once per record.

5. (Optionally) pre-aggregating emitted records using the specified combiner.

6. Collecting all emitted output records and partitioning them by intermediate key.

7. Partially sortingE] and flushing the collected output to local disk.

With the exception of a separate thread for spilling records to disk, Hadoop employs a single
thread to drive the execution of all 7 steps, and is thus limited to a single CPU core. While

3Hadoop partially sorts map outputs to speed up subsequent merging by the reduce tasks.

76

developing Cogset, we experienced that data processing quickly becomes CPU-bound when
records are small and must be parsed into numerous Java objects to be processed by user code.
Furthermore, the presence of multiple user-definable hooks in the critical path makes hot-spots
harder to predict and identify. Therefore, a single-threaded approach is vulnerable to CPU
bottlenecks that in turn prevent maximum disk utilization. A better design would be to structure
map tasks as a sequence of pipelined stages that execute concurrently in separate threads.

To quantify the relative cost of the individual steps outlined above, we first implemented
a simple single-threaded program that reads (and discards) data from HDFS at the maximum
possible speed. Surprisingly, we found that HDFS throughput peaked at about 131 MB/s even
when reading locall from a warm file system cache—this is significantly less than our disk
bandwidth. If we also parsed the data to identify line breaks (using Hadoop library code), the
program could only achieve 85 MB/s, which was actually slower than reading from a cold
cache (i.e. from disk) without line parsing. In other words, a single thread reading from HDFS
quickly becomes CPU-bound. To make the program disk-bound, checksum verification had to
be disabled. Even then, line parsing could not be done by the same thread without limiting
throughput. Note that this limitation was imposed by the program structure and not by the
hardware: our machines have 8 cores and plenty of cycles to spare, but our single-threaded
program could only utilize one core.

We concluded that in order to maximize throughput from HDFS, multiple threads must be
employed, starting with step 2 above. A single thread must be dedicated to reading the in-
coming data from the TCP socket and then immediately hand the data off to other threads that
perform the remaining steps. Unfortunately, the second step, checksum verification, is closely
integrated into the HDFS client code, with no hooks for customization by user-supplied code.
On the other hand, it seems clear that such verification could be done in a multi-threaded fash-
ion without sacrificing throughput, as long as there is available CPU capacity: simply break the
input stream into chunks, and verify them in parallel using a separate pool of threads. There-
fore, we decided to disable checksum verification in order to discover what throughput could
be achieved by such a re-engineered version of HDFS. Even if users had to choose one over the
other, we expect many would prefer improved performance over checksum verification, since
the latter can also be performed periodically by the HDFS data nodes, in periods of light load.

To address the remaining CPU-intensive steps, we also needed to perform record parsing in
parallel. To achieve this, we implemented a custom input format for multi-threaded parsing of
text files. The input format splits its input into byte ranges, which are delegated to a separate
pool of threads for parsing. Each parsing-thread locates all line breaks in one byte range, and
also peeks at the beginning of the next range in order to identify lines that cross range bound-
aries. The extracted lines are split into key/value pairs and then passed directly to the mapper
and combiner functions; this is an improvised way of including steps 4-5 in our input format
implementation. A similar effect could be achieved by also writing a custom map runner, but
that would require additional user code. Instead, we use the default map runner with an identity
map function as the mechanism for relaying output records from our input format to the output
collector in step 6. To summarize, our custom multi-threaded input format dedicates a single
thread to executing step 1 above, skips step 2, and allows steps 3-5 to execute in parallel using
multiple threads.

“In this context, reading locally means reading from an HDFS data node running on the same machine.

77

Using our patched task-tracker, configured with a 50 millisecond heartbeat interval and our
multi-threaded input format, we were able to improve Hadoop’s performance significantly for
all benchmark tasks, as shown in Section [5.5]

Grep, Select, Join, and UDF all employ CPU-intensive map functions and benefit from multi-
threaded mapping. Additionally, Aggregate benefits from pre-aggregation in the map phase and
performed significantly better with multi-threaded evaluation of combiner functions. Initially,
we just implemented multi-threaded mapping and kept the existing code for combining records;
this resulted in no improvement for Aggregate, since combining remained a single-threaded
bottleneck. This underlines the general importance of parallelizing all steps of a processing
pipeline to avoid bottlenecks.

5.7 Summary

In this chapter, we evaluated Cogset’s performance by comparing it directly to Hadoop, and
indirectly to parallel databases, using the established MR/DB benchmark. Our results show
that Cogset performs much better than Hadoop on this benchmark, being more than twice as
fast to complete several of the benchmark tasks. When investigating the underlying reasons
for this gap in performance, we also found ways to improve Hadoop’s performance by adopt-
ing some of the same implementation techniques used in Cogset. We patched Hadoop’s task
scheduling algorithm to prevent individual nodes from going idle, ensuring a more efficient 1/0
access pattern, and we adopted Cogset’s multi-threaded approach to record parsing to improve
Hadoop’s performance on multi-core CPUs.

Our results support our thesis that static routing may underpin a high-performance MapRe-
duce engine. Cogset’s design was shaped by static routing as its guiding principle, which re-
sulted in a generic processing abstraction—a traversal—that has proved to be highly efficient.
During a traversal, the static assignment of data partitions to nodes allows each node to read
data continuously from disk, with a minimum of coordination between nodes. By routing out-
put data directly to other nodes, rather than storing it temporarily on local disk, the 1/0 access
pattern is only minimally disrupted by writes and by random-access seeking.

78

Chapter 6

Higher-level Abstractions

MapReduce was originally motivated by a desire to process very large data sets in an efficient,
scalable, fault-tolerant, and load-balanced manner in a distributed shared-nothing environment.
The widespread adoption of MapReduce can be attributed to the simplicity of its programming
model, where user-defined functions are executed in a generic framework that automates non-
functional concerns.

With Cogset, we explore the thesis that a high-performance MapReduce engine can be based
on static routing. Cogset was built from the ground up with static routing as its guiding de-
sign choice. The previous chapters demonstrate that Cogset meets the requirements commonly
expected of a MapReduce engine, as outlined in Section [I.4] and is capable of efficiently exe-
cuting benchmark applications developed for Hadoop.

A requirement that remains to be discussed is extensibility; the ability to layer higher-level
abstractions on top of Cogset’s core engine. One feasible approach would be to substitute
Cogset for Hadoop in existing systems such as Pig [16] and Hive [41], which directly employ
Hadoop as an underlying execution engine. However, Cogset also has a lower-level and more
generic core interface, on which its MapReduce support is implemented as a thin layer. This
core interface was designed to facilitate the construction of higher-level abstractions, avoiding
any limitations imposed by going through the MapReduce interface.

To demonstrate the generality and extensibility of Cogset, we have built two systems that
use Cogset’s core engine, but provide alternative programming interfaces: Oivos and Update
Maps. In this chapter, we present these systems, explain the semantics of their programming
interface, and detail how they are built as separate layers on top of Cogset’s core.

When discussing these systems, we show how they are representative higher-level abstrac-
tions by drawing parallels to other systems, and explain the complications of layering these
abstractions on top of a traditional MapReduce engine. This puts Cogset into a new perspec-
tive, demonstrating its applicability not just as an efficient MapReduce engine, but also as a
viable platform for a range of higher-level abstractions.

6.1 Oivos

As previously remarked in Section certain limitations are inherent to the MapReduce
programming model. Many computations cannot be expressed using a single MapReduce pass;
for example, if they need to repartition the data set more than once. Such computations must
be broken up into a number of separate MapReduce passes.

79

One of the main strengths of MapReduce is that non-functional concerns are handled by
the execution engine, allowing the programmer to focus on the application logic. But when
a computation is performed using multiple MapReduce passes, several non-functional issues
concerning scheduling, synchronization, and fault tolerance resurface. For example, some pro-
cess external to the MapReduce implementation must monitor the status and progress of passes,
determining if and when to re-execute a failed pass or start the next one. The programmer must
also determine a valid execution order for the MapReduce passes, considering that some of the
data might be out of date and need to be regenerated. In the event of potential parallelism,
arranging for multiple passes to execute concurrently is another task left to the programmer.
Even if an optimal scheduling of passes is achieved, a typical MapReduce implementation will
introduce a barrier synchronization point at the end of each pass, requiring every reduce task
in one pass to complete before any of the map tasks in the next pass can start. This restriction
reduces the potential parallelism in multi-pass MapReduce computations.

To address these limitations, we created Oivos—a system that allows computations spanning
a heterogeneous collection of data sets to be expressed at a high abstraction level, in a declar-
ative functional style familiar to many programmers. Oivos derives its name from the Sami
word for the source of a river, and revolves around the composition of workflows. Applications
employ abstractions provided by Oivos to programmatically specify how new data sets may be
derived from existing ones, supplying user-defined functions as parameters to the various core
operators, similar to how MapReduce applications specify map and reduce functions.

Unlike MapReduce, Oivos supports programs with multiple input data sets, from which any
number of intermediate or output data sets may be derived. In general, the resulting data depen-
dencies may form an arbitrary acyclic graph. Upon request, Oivos automatically determines
how to materialize a derived data set, performing what may amount to multiple MapReduce
passes. There is no need to implement a computation as a collection of small programs whose
execution must be coordinated externally; a single program specifies everything, even if multi-
ple data sets are involved.

Originally, we designed and implemented Oivos as a stand-alone system that encompassed a
simple distributed file system, as well as a distributed task scheduling facility. One shortcoming
we experienced using this approach was that the strict logical separation of data storage and
task scheduling tended to restrict performance, due to the resulting poor data locality. This
experience partly motivated our design of Cogset, where we opted for a closer integration
between storage and scheduling systems.

In its second incarnation, which we describe here, Oivos is built as a layer on top of Cogset’s
core engine. While Cogset provides the required infrastructure for distributed storage and
processing, Oivos adds the programmatic interfaces for conveniently manipulating multiple
interdependent data sets. This serves as an example of how to build powerful higher-level
abstractions using Cogset’s core engine as a foundation.

Oivos facilitates the expression of complex computations in a more flexible and intuitive
way than as a series of MapReduce passes. As with MapReduce computations, the program
is compiled into a series of traversals, the fundamental processing mechanism provided by
Cogset. This substantiates our idea that traversals may serve as a suitable building block for
multiple higher-level abstractions.

Externally, Oivos has many similarities with other workflow composition languages such
as DryadLINQ [42] and FlumeJava [4] (see Section [2.5| for details). Like MapReduce, these
languages are embedded into a general purpose programming language, in the form of a library.

80

Oivos is implemented similarly, as a library on top of Cogset’s core, and implementations of
other workflow composition languages could potentially be layered on top of Cogset’s core in
an equivalent manner.

In the following, we first describe the high-level programming interface offered by Oivos,
and the semantics of the core operators that it provides. We then present an example Oivos
program, and explain how Oivos programs are compiled into a series of Cogset traversals.

6.1.1 The Dataset abstraction

The primary abstraction offered by Oivos is a Dataset, which represents a homogeneous set
of records, and corresponds directly to a Cogset data set. Oivos programs generally revolve
around the manipulation of such Dataset objects. An excerpt of the abstract Dataset class is
shown in Figure As in previous chapters, we omit non-essential code details such as access
modifiers and exception types, to improve readability.

abstract class Dataset<A> implements Serializable
{ abstract Dataset<A> setKeyFunction (KeyFunction<A, ?> keyFunction);
abstract Dataset<A> setKey(String keyField);
abstract Dataset<A> setName(String name);
abstract Dataset<A> setFormat (RecordFormat<A> format);
abstract Dataset map(Mapper<A, B> mapper);
abstract Dataset<A> sort(KeyFunction<A, ?> keyFunction);
abstract Dataset reduce (Reducer<A, B> reducer);
abstract Dataset<A> combine (Combiner<A> combiner);
abstract <B, C> Dataset<C> merge(Dataset x, Merger<A, B, C> merger);
abstract Dataset<A> filter (Filter <A> filter);
final <B, C> Dataset<C> mapAndReduce (Mapper<A, B> mapper,
KeyFunction<B, ?> intKeyFunction,

Reducer<B, C> reducer)

return map(mapper). setKeyFunction(intKeyFunction). reduce(reducer);

Figure 6.1. Oivos interfaces for manipulation of data sets.

Data sets may either be declared as input data sets, or they may be derived by applying
operators to other data sets. The data set operators are generally parametrized by user-specified
functions and may thus be viewed as higher-order functions that transform data sets into new
data sets. By invoking various methods on Dataset objects, corresponding to the available
operators, derived data sets are declared.

81

Oivos programs are declarative, and do not specify an order of execution; they merely declare
all data sets, specifying how they relate to one another. A computation is initiated by specifying
one or more desired output data sets; Oivos will automatically determine which traversals to
execute in order to materialize those data sets.

Oivos thus employs lazy evaluation: a Dataset object specifies how to potentially produce
a specific data set by processing existing data sets, but no such processing will actually occur
until a materialized version of the data set is requested. To materialize a data set, the Dataset
is passed to the materialize method of the DatasetFactory class, shown in Figure [6.2] There is
also an overloaded version of the materialize method, used to materialize a collection of data
sets. A DatasetFactory instance is coupled upon construction to a Cogset instance, which will
be used to execute the required traversals when materializing data sets.

class DatasetFactory

{ DatasetFactory (Cogset cogset);
<A> Dataset<A> inputDataset(String name, Class<A> recordClass,
KeyFunction<A, ?> keyFunction);
<A> Dataset<A> inputDataset(String name, Class<A> recordClass);
void materialize (Dataset<?> dataset);
void materialize (Collection<Dataset<?>> datasets);
}

Figure 6.2. Oivos interfaces for declaring and materializing data sets.

The Dataset class is parametrized with the record class of the underlying Cogset data set.
User-defined functions that operate on records are similarly parametrized with the relevant
record types. The use of Java generics thus aids in type-checking Oivos programs. For example,
an attempt to apply a mapper function to an incompatible data set will trigger a compile-time
error from the Java compiler. The need for explicit run-time type checking and casting is also
greatly reduced.

Each data set also has an associated key function, as described in Section 4.4} used by Oivos
for hash partitioning of the data set. The key function of a data set may be set using the
setKeyFunction method. An alternative method, setKey, can be used for the common case
where the desired key is a single field in the record class. This automatically constructs an
appropriate key function using the Java reflection APIs. There are also methods to set the name
of a derived data set, or its record formatter, as described in Section 4.2

The remaining methods of the Dataset class correspond to the various data set operators,
and are covered in detail in the next section. They generally accept a user-defined function
implementing one of the interfaces in Figure [6.3] and return new Dataset objects.

To declare input data sets, Oivos programs use the inputDataSet method of the DatasetFactory
class. There are various overloaded versions of this method, due to multiple optional parame-
ters. The only required parameters are the name of the data set and its record class. Figure[6.2]
also shows one overloaded variant of the method, to illustrate that the key function of the input
data set can be specified explicitly. If the key function is omitted, Oivos will for convenience

82

interface Output<A>

{
void emit(A record);
}
interface Mapper<A, B> extends Serializable
{
void map(A record, Output output);
}
interface Reducer<A, B> extends Serializable
{
void reduce(Iterator <A> records , Output output);
}
interface Combiner<A> extends Serializable
{
A combine(A a, A b);
}
interface Merger<A, B, C> extends Serializable
{
void merge(A left, B right, Output<C> output);
}
interface Filter <A> extends Serializable
{
boolean filter (A record);
}

Figure 6.3. Function interfaces associated with Oivos operators.

attempt to infer a suitable key function for the data set using various heuristics, such as using
reflection to find the first public field in the record class to implement the Comparable inter-
face. A suitable record formatter will also be inferred in many cases using similar heuristics,
for example by checking if the record class implements Hadoop’s Writable interface.

There are some advantages to specifying Oivos programs through a programmatic interface,
as opposed to inventing a new domain-specific language. Since there are few limitations to
what a user-specified function such as a mapper could potentially compute, a domain-specific
data set manipulation language would in reality have to include most if not all facilities of
a general-purpose programming language. Our approach allows for seamless integration of
Oivos programs with an existing code base. Functionality like MDS5 check-summing, URL
parsing, and date formatting can be implemented simply by invoking the standard Java li-
braries. Another useful property is that Dataset objects fully encapsulate the specification of
how to produce a data set; as such, the principle of lazy evaluation can be used to defer the
materialization until it is necessary. If an existing component A implements the logic required
to produce a data set that another component B needs, A can simply construct an appropriate
Dataset object that specifies how to produce the data set, and pass the object to B, in serialized
form over a network connection if need be. Dataset objects may even be stored on disk, for
later materialization.

83

6.1.2 Oivos Operators

In summary, Oivos programs declare data sets that may be transformed into other data sets
using a number of operators. We now present the most important operators in Oivos, and
describe their exact semantics. This includes the traditional map and reduce operators, which
can be used to implement a traditional MapReduce job. (In fact, Figure shows how Oivos
provides a generic mapAndReduce function to do just that.) Crucially, there is also a merge
operator that can be used to perform relational joins.

Map The map operator applies a user-specified mapper function to each record in a data set.
The mapper function may emit zero or more output records per input record. The result
is a new data set containing all emitted records. The record and key types of the output
data set may differ from those of the input data set.

Sort The sort operator sorts the records within each partition of a data set according to the
user-specified key. This operator is applied implicitly by other operators that require
sorted input, and may be applied explicitly as well. The result is a new data set with the
same record type as the input data set, although the keys of the input and output tables
may differ.

Reduce The reduce operator applies a user-specified reducer function once per unique key in a
data set; the reducer function accepts a key and an iterator that can be used to iterate over
all records with that specific key. Like mapper functions, reducer functions may emit a
varying number of output records; the result is a new data set whose record and key types
may differ from the input table.

Combine The combine operator is used to combine all records with equal keys into a single
record. The user specifies a combiner function that accepts two records and returns one;
it is repeatedly applied to pairs of records with equal keys until a single record remains
per unique key. The combiner function must be associative and commutative, such that
the resulting record will be identical regardless of the order in which the function is
applied to record pairs. Additionally it may not change the record keys. The result of
the combine operator is a new data set that has the same record and key types as the
data set, with exactly one record per unique key. This operator is similar to the family
of higher-order fold functions known from functional languages, except that it does not
imply a particular order of evaluation.

Unlike reducers, combiners cannot change record keys (a restriction enforced at run-
time), so it is possible to preserve the ordering of a sequence of records while combining
them. This is useful, since it allows an optimization for upstream aggregation to “lift”
the combine operation, moving it upstream past a merge operation without disrupting the
merge.

Like its MapReduce counterpart, the Oivos combine operator may be used for partial up-
stream aggregation, but the differing signatures of the combiner functions makes a subtle
difference. MapReduce combiners have the same function signature as reducers and must
rely on sorted input. Oivos combiners only require a pair of equal-keyed records and are
thus better suited for hash-based aggregation. Technically, hash-based aggregation could
be implemented by a MapReduce engine by passing record pairs to the combiner as a

84

sorted sequence of length 2, but additional run-time checks would have to be added to
ensure that the combiner emits exactly one record of the correct type.

Merge The merge operator is a binary operator that merges two sorted input data sets with
the same key type into one new data set, applying a user-specified merger function for
each unique key. The merger function accepts two records and may emit zero or more
output records. In the case of keys that appear in both input data sets, the arguments to
the merger function are one record from each of the input data sets. For keys that only
appear in one of the input data sets, a null record is passed as the “missing” argument.
The merger function may thus implement outer or inner joins as desired. If the same key
occurs multiple times in one of the input data sets, the merger function will be invoked
once for each occurrence. If the same key occurs multiple times in both of the input
data sets, a run-time error is triggered. The result of a merge is a new data set, whose
record and key types may differ from those of the input tables. For simplicity, we chose
to limit this operator to working on two input data sets, since a series of binary merges
can implement a multi-way merge, for more complex joins.

Filter The filter operator filters out certain records of a data set, according to a logical predicate
specified by a user-defined function. This is essentially a special case of the map operator,
but there are some advantages to including it as a separate operator. Explicitly using the
filter operator may make a program clearer and less error-prone, and when a data set is
filtered, the ordering of the remaining records is preserved. This is an important property
that cannot be inferred of mapper functions in general, and allows a filter operation to be
“lifted” in the same way as a combine operation, for upstream aggregation.

The data set operators described here are inherently well-suited for parallel evaluation. This
is because the user-specified functions are either applied once per input record (e.g., mapper
functions) or once per unique key (e.g., reducer or combiner functions). In the former case,
the function has no dependencies on other records and may thus be evaluated in parallel for all
records. Similarly, reducer and combiner functions may be evaluated in parallel for all unique
keys. In practice, the level of parallelism is determined by the number of Cogset nodes. Data
sets are materialized by executing traversals, during which all nodes process separate partitions
of the data sets, in parallel.

Note that using the combine operator when possible is generally preferable to using the
reduce operator; this is because reducer functions require a collection of all records with equal
keys in order to evaluate. In contrast, a combiner function only requires a pair of records with
equal keys and may thus be evaluated earlier (using the principle of upstream evaluation [38]]).
In short, the combine operator is inherently more parallelizable than the reduce operator.

6.1.3 Example Oivos Application

In the initial publication on MapReduce, Dean and Ghemawat reported that Google’s web
indexing code was refactored from a number of ad hoc distributed processing passes to using
a sequence of 5 to 10 MapReduce passes [6]. Web indexing is thus a representative example
of computations that must be implemented as multiple MapReduce passes. In this section,
we develop an example Oivos application that constructs a web index, to demonstrate how a
real-life application is structured using Oivos. Specifically, our example application will:

85

e Process a collection of downloaded web pages (HTML documents). In a real-life sce-
nario, this would typically be a batch of documents provided by a separate web crawler
component.

e For each document, parse the HTML code to extract all index terms and hyperlinks. Terms
occurring in anchor texts will be included as index terms for the documents they link to.

e Build an inverted index that maps each index term to the set of documents in which it
occurs.

e Merge the new inverted index with an existing inverted index to form a single, new index.
Incrementally merging inverted indexes is a common technique for minimizing indexing
latency while bounding the number of separate indexes that must be searched in order to
evaluate queries.

class Document implements Writable

{
@DefaultKey
String url;
String html;
}
class Token implements Writable
{
@DefaultKey
String term;
String url;
}
class IndexEntry implements Writable
{
@DefaultKey
String term;
List<String> urls;
}

Figure 6.4. Record classes used in the web indexer example.

Hyperlinks are generally an important piece of input for web search engines, to improve the
relevance of the search results [2]. In our example application, we wish to include the words
used in anchor texts as index terms. Anchor texts are the segments of text that actually appear
as clickable links in the web browser; if a page A links to a page B using the text “Main Menu”,
then the words “Main” and “Menu” should be used as index terms for B.

The inverted index structure, which constitutes the final output of our example application, is
a data set where each record associates one index term (typically an alphanumerical text string)
with a list of document identifiers, such as URLs. This is called an inverted index because it
inverts the initial representation of the data, where each document identifier is associated with
a list of terms to be indexed.

Our example involves a number of data sets, whose record classes are listed in Figure @
The classes all implement Hadoop’s Writable interface, so the default WritableRecordFormat

86

provided by Cogset can be used, as outlined in Section The classes also include construc-
tors to initialize the various record fields, and methods specified by the Writable interface to
write or read the fields to or from a data stream. In the figure, we have omitted the imple-
mentation of these methods, since they are straightforward. The @ DefaultKey annotations are
inspected programmatically using reflection, and instructs Oivos to use the respective annotated
fields as record keys, unless another key function is specified explicitly.

static void oivosExample(Cogset cogset)
Dataset<IndexEntry> index , tmplndex, newlndex;
Dataset<Document> docs;
Dataset<Token> tokens;

DatasetFactory df = new DatasetFactory(cogset);
index = df.inputDataset(‘‘index’’, IndexEntry.class);
docs = df.inputDataset(‘‘docs’’, Document. class);

tokens = docs.map(new Tokenizer ());

tmpIndex = tokens.reduce (new Indexer());

newlndex = index.merge(tmplndex, new IndexMerger());
df . materialize (newlIndex .setName (‘ ‘newlndex’’));

Figure 6.5. Main program of the web indexer example.

class Link

{
String href;
String anchor;
}
class Tokenizer implements Mapper<Document, Token>
{
void map(Document document, Output<Token> output) {
HTMLParser parser = new HTMLParser(document. html);
for (String word: parser.parseWords()) {
output.emit(new Token(document.url, word));
}
for (Link link: parser.parseLinks()) {
for (String word: link.anchor.split(‘‘ >’)) {
output.emit(new Token(link.href, word));
}
¥
}
}

Figure 6.6. Oivos mapper function to tokenize HTML documents.
The input to our computation is an existing inverted index, and a set of Document records.

Each document should be parsed, extracting a set of Token records, which associate individual
index terms with URLSs. For the main text of a document, the extracted terms will be associated

87

class Indexer implements Reducer<Token, IndexEntry>

{
void reduce(Iterator <Token> tokens, Output<IndexEntry> output) {
Token first = tokens.next();
IndexEntry entry = new IndexEntry(first.term, first.url);
while (tokens.hasNext()) {
entry.urls.add(tokens.next (). url);
¥
output.append(entry);
}
}

Figure 6.7. Oivos reducer function to aggregate tokens into an inverted index.

class IndexMerger implements Merger<IndexEntry , IndexEntry, IndexEntry>

{

void merge(IndexEntry left , IndexEntry right, Output<IndexEntry> output)

{
if (left == null) {
output.append(right);

} else if (right == null) {
output.append(left);
} else {

IndexEntry entry new IndexEntry(left.term);
Set<String> urls = new TreeSet<String >(left.urls);
urls .addAll(right.urls);

entry.urls.addAll(urls);

output.append(entry);

Figure 6.8. Oivos merger function to merge entries from two inverted indexes into one.

with the document’s URL. For hyperlinks, the terms extracted from their anchor text will be
associated with the URLs that they link to.

The Token records are grouped by URL and aggregated to form an inverted index by ap-
plying the reduce operator, performing a reduction that emits one IndexEntry record for each
unique index term. This data set is merged with the existing inverted index, also comprised of
IndexEntry records, using the merge operator.

Figure [6.5] shows the main program for this example, comprising just a few lines of code
to declare the relationships between the various data sets. Figure [6.6] shows the accompany-
ing Tokenizer class that implements the mapper function to extract tokens from documents,
Figure shows the Indexer class that implements the reducer function to aggregate tokens
into an inverted index, and Figure shows the IndexMerger class that implements the final
merger function. We omit the hypothetical HTMLParser class used to parse HTML code, since
the details of HTML parsing are tangential to our example. However, it should be noted that
interfacing with a third party library for HTML parsing is a simple matter of invoking the library

88

from one of the user-defined functions used in the Oivos program. Similarly, the power of the
Java standard library is readily available; for example, the IndexMerger class uses the standard
TreeSet class to merge the occurrence lists associated with an index term.

6.1.4 Compiling Oivos Programs

The implementation of Oivos relies heavily on polymorphism. The abstract Dataset class has
numerous subclasses, corresponding to the various ways in which new data sets can be derived.
For example, the default implementation of the map method creates a new MappedDataset
instance that holds a reference to the input data set and the mapper function to employ. To
materialize a MappedDataset, the conceptual steps are simple: first materialize the input data
set, and then execute a traversal to invoke the mapper function and generate the new data set.

In general, the various Dataset objects form a data dependency graph, constructed incremen-
tally by the programmer when declaring derived data sets. A data set can thus be materialized
by a recursive algorithm that first materializes its input data sets, and then performs a traver-
sal to generate the new data set. However, Oivos makes a few optimizations to minimize the
number of traversals, which leads to a slightly more complicated algorithm to compile the set
of traversals to be executed.

One such optimization is automatic function composition. In certain cases, consecutive pro-
cessing steps can be collapsed and performed as one, in a single traversal. A prime example is
two (or more) consecutive map operations on the same data set. In a naive approach, this would
lead to the creation of an intermediate data set to hold the records emitted by the first mapper
function. A second traversal would then read the intermediate data set and evaluate the second
mapper function, to produce the final data set. However, there is no need to repartition the
intermediate data in this computation, so it would be possible to directly evaluate both mapper
functions in a single pass over the input data set, using a single traversal.

Oivos implements a set of mechanisms to optimize cases like this, by automatically compos-
ing user-defined functions where possible. Figure [6.9] shows an example of how this works for
consecutive map operations. As noted earlier, the default implementation of the map operation
is to instantiate a new MappedDataset object to represent the new, derived data set. However, in
the MappedDataset class, the map method is overridden with a special implementation. This
implementation composes a new mapper function by instantiating a new Mapper object that
wraps both of the mapper functions used by the two consecutive map operations. As shown in
Figure the ComposedMapperAndMapper class implements a mapper function that works
by invoking two other mapper functions in sequence, passing the output from the first mapper
function as input to the other.

Similar compositions such as reducers composed with subsequent mappers, and mappers
composed with subsequent filters, are implemented in the same way, by overriding select meth-
ods to avoid the creation of superfluous intermediate data sets. This technique demonstrates that
computations centered around user-defined functions may well have potential for optimization,
even though the user-defined functions are opaque to the optimizer. This also highlights a po-
tential advantage of using a higher-level abstraction to specify complex computations, as an
alternative to multi-pass MapReduce computations. Making optimizations of this kind would
be much harder, and likely a manual task, in the case of a computation implemented as a col-
lection of individual MapReduce programs.

89

class ArrayListOutput<A> extends ArrayList<A> implements Output<A>

{

void emit(A record)

{
super .add(record);
}
}
class MappedOutput<A, B> implements Output<A>
{
Mapper<A, B> mapper;
Output output;
ArrayListOutput tmpOutput = new ArrayListOutput();
void emit(A record)
{
tmpOutput. clear ();
mapper . .map(record , tmpOutput);
for (B x: tmpOutput) {
output.emit(x);
}
}
}
class ComposedMapperAndMapper<A, B, C> implements Mapper<A, C>
{
Mapper<A, B> mapperl ;
Mapper<B, C> mapper2;
void map(A record, Output<C> output)
{
mapperl .map(record , new MappedOutput<B, C>(mapper2, output));
}
}

Figure 6.9. Automatic function composition of two user-defined mapper functions.

6.2 Update Maps

MapReduce is well suited for batch-oriented processing, where a large number of related
state changes are performed in bulk, as a single relatively time-consuming operation. This may
yield excellent amortized performance, but many applications are designed with underlying as-
sumptions or requirements that appear to preclude batch processing. Specifically, they assume
or require that minor state changes can be applied synchronously, with low latency. Typically,
these requirements motivate the use of databases as the underlying storage layer, even though
a batch-oriented programming model such as MapReduce might otherwise be preferred, for
example due to its scalability.

A popular abstraction for applications that require a synchronous storage interface are so-
called key/value databases (3,163, 164]. Like MapReduce, such databases model data as simple
key/value pairs. Unlike MapReduce, a key/value database provides near constant-time opera-
tions to modify or delete the value associated with an individual key, and to add a new key/value

90

mapping. This flexibility is achieved by using on-disk index structures such as B-trees or hash
tables.

The downside of a key/value database is that the underlying data structures tend to impose a
seek-intensive 1/0 access pattern, which is inefficient on traditional storage media. In contrast,
batch processing generally relies on large sequential 1/0 operations, achieving much higher 1/0
throughput. As such, the amortized cost of an individual state change can potentially be much
lower if batch processing is employed.

By nature, some applications cannot employ batch processing, for example because they
involve real-time interactions with users, which cannot be delayed. For other applications, the
choice to use a key/value database may have been motivated by the convenience of a simple and
intuitive programming interface. In the latter case, changing requirements with regards to load
or scale can make the switch to a batch-oriented approach more attractive as the application
evolves.

However, refactoring an existing application from using a database storage layer to using
MapReduce or a similar batch-oriented infrastructure can be a challenge. With a synchronous
key/value interface, modifications can be performed in an ad hoc manner, on any number of
code paths. To efficiently utilize MapReduce for batch processing, a more systematic approach
is needed, where a number of modifications must be accumulated asynchronously, until the
entire batch of modifications is executed in bulk, as a MapReduce job.

In this section, we present the update map abstraction, which is designed to facilitate such
transitions. It aims to combine the convenience of a key/value database with the performance
of a batch-oriented approach. The update map interface resembles that of a key/value database,
but its implementation can automatically accumulate updates and apply them in batches. Our
design of the update map abstraction was motivated by a concrete effort to refactor a real-life
web crawler application from relying extensively on a key/value database into using a more
scalable batch-oriented approach.

In the following, we first present the update map interface, and present some simple exam-
ples to clarify its semantics. We then outline the implementation of update maps both using
MapReduce and as an extension on top of Cogset’s core, and discuss why the latter approach
may be more efficient. Finally, we include a simplified pseudo-code version of the web crawler
application that originally motivated our work, to show a more complete example of update
map usage.

6.2.1 Update Map Interface

The update map interface attempts to mimic the basic interface of a key/value database,
which can be condensed into the following:

Get (Key) = Value | Synchronous look-up
Set (Key, Value) Synchronous overwrite

Keys can be mapped to values through the Set operation, and the value associated with a key
is retrieved using the Get operation. Since the Set operation simply overwrites the old value,
updates such as incrementing a value by one must be performed by (/) reading the old value
using the Get operation, (2) calculating the new value, and (3) writing back the new value using
the Set operation. Not only does this constitute a race condition, it is also inefficient in terms
of 1/0 and latency.

91

Our update map abstraction addresses this limitation by introducing an Update operation that
asynchronously updates the value associated with a key, possibly as a function of the previous
value. Rather than directly specifying a new value, the Update operation accepts an updater
function which is used to determine the new value. The updater function accepts the previous
value associated with a key and returns the new value. Note that the updater function can be
evaluated lazily, i.e. its evaluation can be deferred until the new value is actually required.

function two (key, value):
return 2

function increment (key, wvalue):

if value != null:
return value + 1
else:

return 1

function remove (key, value):
return null

function multiply (key, wvalue, factor):
return value x factor

Update (' abc’, two)

Update (' abc’, increment)
Update (' abc’, remove)

Update (' x’, bind(multiply, factor=3))
Update ('y’, bind(multiply, factor=7))

Figure 6.10. Using the Update operation to asynchronously update values.

The second part of the update map interface is where the key difference to a traditional
key/value database lies; rather than supporting a synchronous Get operation, the update map
supports a bulk operation to visit all values in the database. This operation is named Traverse,
alluding to the way it can be implemented using Cogset, and accepts a visitor function which
is invoked once for each key/value pair in the database. By design, there is no facility to
synchronously look up the value associated with a single key; a full traversal of the database
is required whenever values are to be read. This allows implementations to collect batches of
pending updates and apply them lazily at traversal time. For a given application, the suitability
of an update map thus depends on the ratio of updates to traversals. The core interface of update
maps is summarized below.

Update (Key, Updater) | Asynchronous update
Traverse (Visitor) Visit all values

Figure[6.10]illustrates the use of the Update operation with various updater functions, using
language-neutral pseudo-code. The first updater function always returns the value 2, uncondi-
tionally overwriting any previous value associated with the key. The second function examines
the previous value and increments it by 1. If the key had no previously associated value, the

92

special null value is passed to the updater function, which in this case sets the initial value to
1. By a similar convention, the third updater function serves to remove a key from the database
by always returning null.

The fourth updater function, multiply, is more generic and accepts an additional parameter
whose value must be bound prior to invoking Update. In our example, it is used first to multiply
one value by 3 and then another by 7. The value of the additional factor argument is specified
using a hypothetical bind primitive. For functional languages, the natural way to implement
parameter binding would be through partial function applications. In our Java implementation
of update maps, updater and visitor functions are objects implementing a specific interface.
Bound parameters can then be stored as object fields and specified at the time of construction.
The same approach would be natural for other object-oriented languages.

function removeOdd (key, wvalue) :
if value mod 2 ==
value = null
return value

function show (key, value):
print key, value
return value

Traverse (increment)
Traverse (removeQdd)
Traverse (show)

Figure 6.11. Using the Traverse operation to visit all key/value pairs.

These examples all ignored the key argument, so it might seem superfluous. The main moti-
vation for including it is that it allows updater functions to double as visitor functions, because
they have the same type signature. When the Traverse operation is used to iterate over all
key/value pairs, the visitor function can return a new value for each key that is visited, or re-
move the key by returning null. The same functions can thus be used as updaters to update the
values associated with individual keys, or as visitors to update all values in the database.

Figure provides an example to illustrate the use of the Traverse operation. The ex-
ample first increments all values by 1, then removes all keys with odd-numbered values, and
finally displays all remaining keys and values (assuming the existence of a print statement for
displaying values).

6.2.2 Implementation of Update Maps

The general idea motivating update maps is that they can be implemented efficiently using a
sequential 1/0 access pattern. In the following, we first describe a generic approach to imple-
menting update maps, regardless of the underlying platform, before going into the specifics of
the implementation of update maps on top of MapReduce or using Cogset.

Given its asynchronous nature, the Update operation can be implemented by appending the
updates to a log, deferring their actual evaluation until it is required by a Traverse operation.
With appropriate buffering this only incurs an occasional burst of sequential 1/0, which gives

93

the Update operation a low amortized cost. The resulting log is a sequence of update records,
each of which contains an updater function, its bound parameters, the key to which the update
applies, and a sequence number. Updates to the same key should be applied in order of increas-
ing sequence numbers. Since it may be practical or even necessary to split the log into several
files, it may be convenient to include the sequence numbers explicitly rather than relying on file
offsets for ordering of updates.

key | seqno | updater
"abc’ 1 AME,v):v+1
'xyz’ 2 Ak,v) :v/5
"abc’ 3 Ak, v) :v%2

4

key | value
"abc’ 48
'xyz’ 9

key | value
"abc’ 23
'xXyz’ 45

Figure 6.12. Applying a batch of updates, by joining a set of data records with a set of
update records, producing an updated set of data records.

In addition to the update log, there must be a set of files containing data records, each
of which contains a key and its most recently computed value. To implement the Traverse
operation, all pending updates must first be applied, by joining the update log with the set of
data records as illustrated by the example in Figure The figure displays updater functions
using lambda notation. There are two pending updates for the key “abc”: Incrementing its
value by 1, and multiplying the value by 2, in that order. The “xyz” key has one pending
update: dividing its value by 5. The set of data records is joined with the set of update records,
producing a new set of data records; once this is done, the two input sets can be discarded.
The actual invocation of the visitor function is piggybacked on the join algorithm, by invoking
the visitor once for each key in the database, after any pending updates have been applied, and
before writing the new key/value pair to disk. The various ways in which update maps can be
implemented differ mainly in how this join is implemented, and in the details of how update
and data records are stored.

In our initial work on update maps [65]], we developed a stand-alone single-node implemen-
tation based on a hash-merge join algorithm. In this implementation, the key space is hashed
into a number of buckets, and each bucket contains a separate file for data records, as well as a
separate update log. Update operations are implemented by hashing the key to be updated, and
appending an update record to the corresponding update log. Data record files are maintained
in sorted order. To apply the updates in a given bucket, the update log is sorted in-memory
and the updates are merged with the data records, reading the old data record file sequentially
while writing a new one sequentially. This procedure can be applied separately for each bucket,
whenever an update log is about to grow too large to fit in main memory. When executing a
Traverse operation, each bucket can be processed in turn, so the main memory only needs to
accommodate one update log at a time.

94

Our stand-alone hash-merge implementation proved that a single-node update map could be
implemented very efficiently. However, for larger data volumes, a distributed implementation
is required. A natural consideration is therefore to implement the update map abstraction on
top of MapReduce. Concretely, the update log and the set of data records could be stored
in a distributed file system, and joined using a MapReduce computation that implements the
Traverse operation. Unfortunately, this approach would suffer from poor data locality, and
require a full repartitioning and reshuffling of all data for every MapReduce job in order to
perform the join. Again, this highlights the shortcomings of MapReduce when applied for
relational joins; the joining must be performed in the reduce phase, and the preceding map and
data-shuffling phases constitute a very costly way to co-locate the relevant records to be joined.

With Cogset’s static routing, the above problem is addressed by ensuring that all records
are grouped correctly at the time they are first written to disk. Distributed update maps can
therefore be implemented in a straightforward manner using Cogset’s core abstractions, with
one data set to hold update records and another to hold all data records. Both data sets are
hash partitioned using the same keys, and Cogset ensures that corresponding partitions are co-
located. The Update operation is implemented simply by adding a new update record to its data
set, and the Traverse operation is implemented using a single traversal. As in the stand-alone
hash-merge implementation, the traversal joins the two data sets by processing one partition
at a time, so all of the available main memory on a node can be dedicated to holding a single
partition of the update log. The obvious difference is that Cogset allows a number of nodes to
collaborate in a distributed computation, automating the non-functional aspects of partitioning
the data across the nodes, and coordinating their activities during a traversal.

In conclusion, both MapReduce and Cogset can be used as an underlying engine for dis-
tributed update maps. However, Cogset’s static routing may allow for a more efficient imple-
mentation, given that update maps rely heavily on relational joins under the hood. The exact
performance characteristics of an update map depend on several factors, such as the size and
disposition of keys and values, the hardware employed, and not least the access pattern of the
application. Intuitively, a complete rebuild of the entire database for every batch of updates
may seem prohibitively expensive. However, given the disparity in the effective 1/0 bandwidth
achieved when using sequential 1/0 as compared to a seek-intensive random access pattern,
occasionally regenerating the full data set may well be faster than continuously maintaining
index structures to allow in-place modification.

6.2.3 Web Crawler Example

The update map interface, whose simplicity allows for very efficient implementations, might
in return seem overly restrictive for real life applications. We therefore present a more com-
plete example in this section: a large scale web crawler—the application that was our original
motivation for the update map abstraction. Web crawlers download web pages and parse them
to extract hyperlinks to additional pages, which are again downloaded, forming a continuous
work cycle.

In many deployments, the web crawler focuses on a narrowed subset of the web, for example
a single top-level domain, and thus ignores many URLSs. The original web crawler was designed
primarily for such use cases, with very flexible policies for scheduling and filtering of URLS
to be downloaded. We wanted to redesign it for larger, web-scale crawls, where throughput
becomes the main concern.

95

process downloaded URLs
for url, status in downloads:
meta = Get (url)

if status !'= 200:
download error - retry later?
if meta.retries++ > maxRetries:
meta.status = gone
else:
meta.status = error
else:
download ok - parse links
meta.timestamp = now ()
meta.status = ok

for link in parse(meta.content):

linkMeta = Get (1link)

if linkMeta != null:
seen this URL before
linkMeta.linkCount++

else:
never saw it before
linkMeta = newMeta (link)

Set (1link, linkMeta)

Set (url, meta)

schedule more URLs for download
for url, meta in database:
if meta.status = new:
if meta.linkCount > 3:
schedule (url)
else if meta.status in (ok, error):
if meta.timestamp < yesterday():
schedule (url)

Figure 6.13. The main loop of a web crawler using a key/value database.

The main bottleneck in the original web crawler turned out to be the key/value database
used to store various meta-data for each URL. Statistics such as the last download time, the
number of failed download attempts, and the number of in-links encountered were recorded
for each unique URL, which entailed enough random 1/0 accesses to severely limit the overall
throughput.

Figure [6.13] gives a somewhat simplified view of the main loop of the original crawler: a
separate download engine manages a large set of concurrent downloads, and the main loop
iterates over the downloaded URLs and their HTTP status codes. Failed downloads are retried
for a number of times before the URLs are flagged as permanently missing. For successful
downloads, a time stamp is recorded and the downloaded content is parsed for additional hy-
perlinks. For each link, the in-link count of the target URL is incremented, or a new meta-data
entry is created if it is the first time the URL is encountered. Finally, the database is traversed in
order to schedule additional URLs for download. In this example, new URLs are scheduled for

96

download if they have been encountered in at least 3 links, while previously downloaded URLs
are rescheduled for a new download after 24 hours.

Once the set of encountered URLs grows sufficiently large, the frequent meta-data look-ups
of the crawler’s main loop become a performance problem. The key to optimizing the loop
is realizing that the URL meta-data is only ever updated as a function of its previous value.
Synchronous look-ups are not required; for example, there is no need to synchronously read
the previous in-link count of a URL in order to increment it. However, we are hampered by
the interface of the key/value database, which forces us to do synchronous look-ups in order
to modify the meta-data. Figure [6.14] shows how we overcame this in the new version of
our crawler, by rewriting the inner loop to use an update map with three different updater
functions and one visitor function. The update map interface is thus sufficiently flexible for
this application; updates can be processed asynchronously and new batches of URLs for the
download engine can be generated by an occasional traversal.

6.3 Summary

In this chapter, we discussed Cogset in a new perspective, focusing on its generality and
extensibility, rather than its specific application as a MapReduce engine. We presented two new
abstractions—Oivos and update maps—to substantiate our claim that Cogset’s core engine can
be employed as a foundation for multiple higher-level abstractions.

Oivos addresses the complications of structuring large computations as collections of related
MapReduce programs, by introducing a higher-level declarative language in which multiple
related data sets can be manipulated. New data sets can be derived from existing data sets
through the application of a number of operators, whose behavior is customized through user-
defined functions. Oivos automatically composes user-defined functions where possible, and
compiles a set of traversals to execute in order to materialize the desired output data sets.
Externally, Oivos resembles other workflow composition languages developed for Hadoop and
Dryad, and demonstrates that equivalent abstractions can be built using Cogset’s core engine.

With update maps, we set out to explore the feasibility of restructuring real-life applications
to rely exclusively on sequential 1/0. Applications that rely on synchronous look-ups in a
key/value database abstraction would seemingly be hard pressed to make do without random
1/0 accesses. However, many synchronous look-ups can be rewritten as asynchronous updates,
paving the way for batch processing using the update map abstraction.

We described how to implement update maps in a stand-alone manner on a single node, and
how to implement distributed update maps on top of MapReduce and using Cogset. Given
that the core operation in an update map is essentially a relational join, Cogset’s static routing
should be highly beneficial for this application. In this instance, Cogset’s core engine may
therefore be better suited than a traditional MapReduce engine as a foundation for higher-level
abstractions.

97

function urlError (url, meta):
if meta.retries++ > maxRetries:

meta.status = gone
else:
meta.status = error

return meta

function urlOK (url, meta):
meta.timestamp = now ()

meta.status = ok
for link in parse(meta.content):

Update (1ink, addLink)
return meta

function addLink (url, meta):

if meta != null:
meta.linkCount++
else:
meta = newMeta (url)

return meta

function scheduleURL (url, meta):

if meta.status = new:
if meta.linkCount > 3:
schedule (url)
else if meta.status in (ok,
if meta.timestamp < yesterday/():
schedule (url)

return meta

error) :

process downloaded URLs
status in downloads:

for url,
if status != 200:
Update (url, urlError)
else:

Update (url, urlOK)

schedule more URLs for download
Traverse (scheduleURL)

Figure 6.14. The main loop of a web crawler using an update map.

98

Chapter 7

Concluding Remarks

We conclude this dissertation by summarizing and re-stating our results, comparing them to
our main thesis. Based on our results, we draw three main conclusions. Finally, we highlight
certain open questions and unresolved issues, and outline how these could be investigated and
addressed in future work.

7.1 Results

This dissertation explores alternative designs for distributed MapReduce engines, focusing
in particular on the algorithm for data shuffling, where the output from the map phase is repar-
titioned and redistributed in preparation for the reduce phase.

Traditional MapReduce engines, following the original design of Google’s engine, employ
dynamic routing for data shuffling, an algorithm where intermediate data is stored temporarily
on the nodes executing map tasks and subsequently fetched on demand by the nodes executing
reduce tasks. The mechanisms for load balancing and fault tolerance are closely intertwined
with this algorithm, and dynamic routing is thus a defining characteristic of traditional MapRe-
duce engines.

An alternative approach is to use static routing, in which a predetermined configuration
dictates where to process and store each data partition. While this general approach is known
from parallel databases, the feasibility and ramifications of employing static routing as a core
principle in a MapReduce engine are previously unexplored. As stated initially in Section (1.4}
we conjecture that a MapReduce engine based on static routing is feasible, and could result in
improved performance. Specifically, the thesis of this dissertation is that:

It is possible to build a high-performance MapReduce engine based on static routing.

To evaluate our thesis we designed and implemented Cogset, which deviates considerably
from the traditional design of a MapReduce engine. The use of static routing for data shuffling
and data distribution was adopted as a central design choice that was allowed to shape the
remainder of Cogset’s design. As such, Cogset is a system based on static routing. The question
of whether or not our thesis holds can then be broken down into two parts:

1. Does Cogset qualify as a fully functional MapReduce engine?

2. Does Cogset qualify as a high-performance MapReduce engine?

99

To answer the first question, we first note that Cogset features a MapReduce API compati-
ble with Hadoop, and is capable of executing existing Hadoop applications in a semantically
equivalent way. As such, Cogset fulfills the functional requirements of a MapReduce engine.
In Section [I.4] we also listed three common non-functional requirements for a MapReduce
engine: reliable storage, fault tolerance, and load balancing.

Cogset employs replication to meet the requirement for reliable storage. All data sets are
partitioned, and each partition is replicated on multiple nodes in order to protect against data
loss. The replication of data set partitions also plays a crucial role in the algorithms for fault
tolerance and load balancing. As described in Chapter [3] Cogset provides a core processing
abstraction called a traversal which allows a user-defined function to process all partitions of
one or more data sets in a fault-tolerant and load-balanced way. Even though partitions are
statically assigned to certain nodes, the traversal algorithm can balance the load imposed on
individual nodes by carefully selecting which of a partition’s replicas to process. Slow nodes
can then be off-loaded by other nodes that are hosting replicas of the same partitions. Similarly,
replication ensures that no Cogset node is a single point of failure, and a traversal will continue
to make progress even if one node fails, by processing its partitions elsewhere.

To answer the second question, of whether or not Cogset qualifies as a high-performance
MapReduce engine, we refer to the results of our experimental evaluation in Chapter [5] Using
the established MR/DB benchmark, we compared Cogset’s performance to Hadoop and ob-
served that Cogset performed markedly better for the majority of the benchmark tasks. In some
instances, the performance gap was so large that we were compelled to investigate further, and
discovered two concrete implementation weaknesses in Hadoop.

In particular, our experiments show that Cogset performs much better than Hadoop when
sequentially scanning through a data set. Cogset’s architecture allows such scans to be per-
formed by processes reading directly from the local disk. With Hadoop’s architecture, all reads
from the distributed file system go through a network connection, imposing additional over-
head and a more scattered 1/0 access pattern. Moreover, Hadoop’s internal program structure
leads to single-threaded CPU bottlenecks, reducing performance on modern multi-core proces-
sors. By adopting elements of Cogset’s multi-threaded program structure in a custom plug-in
for Hadoop, we were able to close some of the performance gap between Cogset and Hadoop.

Additionally, we observed a weakness in Hadoop’s task scheduling algorithm that left nodes
idle, leading to reduced throughput and increased completion times for individual jobs. Patch-
ing this weakness also improved Hadoop’s performance. In contrast, Cogset has a fully dis-
tributed scheduling mechanism where nodes only coordinate with their immediate neighbors
(as defined in Section [3.4), allowing them to make prompt scheduling decisions without intro-
ducing a potential central bottleneck.

To us, these unanticipated findings on Hadoop reinforce the importance of experiment-
ing with alternative designs, challenging common assumptions. By building an untraditional
MapReduce engine, based on static routing, we also discovered ways to improve the perfor-
mance of engines following the traditional design.

As demonstrated in Chapter [6] Cogset also serves as a viable platform for higher-level ab-
stractions, which can be built directly on top of its core engine, bypassing the MapReduce
interface. Cogset traversals are a flexible building block that encapsulate the non-functional
concerns associated with data distribution, fault tolerance, and load balancing, while impos-
ing a minimum of semantical restrictions on the user-defined code. For certain applications,
such as our update map abstraction, the ability to freely manipulate multiple data sets with

100

custom traversals allows a more efficient algorithm than an implementation restricted by the
MapReduce programming model.

7.2 Conclusions

In summary, based on the work presented in this dissertation, we draw the following three
main conclusions:

1. Cogset qualifies as a high-performance MapReduce engine, and thus confirms our main
thesis that a high-performance MapReduce engine can be based on static routing.

2. Aspects of Cogset’s implementation can also be retrofitted into a traditional MapReduce
engine, to realize significant performance gains.

3. Cogset can also be used as a flexible core engine for alternative, higher-level program-
ming abstractions.

7.3 Future Work

There are many interesting lines of inquiry to pursue in the future, to follow up on the work
presented here or investigate related approaches. In the following, we list some of the most
interesting areas for future work.

Further Benchmarking Although Cogset was subjected to a range of workloads with the
MR/DB benchmark, it would be interesting to perform additional benchmarking, and to
directly compare Cogset to other systems than Hadoop. One possible weakness of the
MR/DB benchmark is its general focus on read-intensive workloads, for which Hadoop
appears to be particularly inefficient. More extensive benchmarking with larger scale
deployments and with write-intensive workloads would be useful to establish a more
complete understanding of the potential trade-offs involved in designing a MapReduce
engine.

Further experiments might also allow us to pin-point more exactly the reasons why
Cogset performs better than Hadoop, and to what extent similar performance improve-
ments can be realized for Hadoop by refactoring its implementation. It would be inter-
esting (though potentially difficult) to separate the performance characteristics resulting
from architectural differences from those resulting from aspects of implementation.

Fault Tolerance and Load Balancing A more theoretical analysis and formalization of the
traversal algorithm employed by Cogset would be interesting, and an experimental eval-
uation focusing on the non-functional aspects of traversals is in order. Even though data
skew may occur, the MR/DB benchmark that we adopted for this work does not explic-
itly evaluate load balancing as a separate aspect. Similarly, the benchmark only evaluates
performance in failure-free scenarios. There are varying degrees of fault tolerance and
ability to balance load, so further experiments along this axis would be very interesting.
Our implementation of Cogset also requires stopping the system in order to add nodes or
reintegrate failed nodes. Devising algorithms to perform these and other reconfigurations
as on-line operations could pose an interesting challenge.

101

Multicast Communication As noted in Section Cogset might benefit from employing a
multicast protocol for network communication. This is due to the communication pattern
where identical replicas of a page are distributed to multiple nodes. A related question is
whether or not additional performance improvements can be achieved by sacrificing the
property of ordered message delivery and changing the semantics such that the records
of a data set partition have no well-defined ordering. In the future, Cogset might be an
interesting test bed for experimental communication protocols.

Higher-level Abstractions When building abstractions on top of Cogset, we believe there is
still great potential for innovation. In the future, we expect to both refine our existing
higher-level abstractions and introduce new ones. This may also drive the development of
new core features to include in Cogset, as new requirements are exposed. A broader range
of higher-level abstractions would strengthen our confidence that Cogset can function as
a generic and efficient core engine for a wide variety of data processing applications.

102

Appendix A

Publications

This dissertation is based on work presented in the following publications:

Paper I

Steffen Viken Valvag and Dag Johansen. Oivos: Simple and Efficient Distributed
Data Processing. In Proceedings of the 2008 Tenth IEEE International Conference
on High Performance Computing and Communications (HPCC 2008), pages 113—
122. IEEE Computer Society, September 2008.

In this paper, we point out the inconvenience and potential inefficiency of structuring com-
putations as collections of related MapReduce programs. To facilitate the expression of more
complex computations, we introduce Oivos; a high-level declarative programming model for
manipulation of data sets. We describe the semantics of this programming model, where a
number of operators allow new data sets to be derived from existing data sets, and materialized
on demand through lazy evaluation. As with MapReduce, user-defined functions play a cen-
tral role, and the Oivos operators are parametrized by user-defined functions to customize their
behavior.

We show how Oivos programs may specify computations that span a heterogeneous collec-
tion of interdependent data sets, and present an underlying run-time for Oivos which includes
a block-based distributed file system and an engine for executing arbitrary sets of tasks con-
nected through data dependencies into an acyclic precedence graph. We explain how Oivos
computations are compiled into precedence graphs by partitioning data sets and arranging for
independent processing of all partitions, in parallel. By adjusting the granularity of the parti-
tioning, the degree of parallelism can be increased automatically, without altering the high-level
user code. Compared to MapReduce, Oivos thus offers the same ability to execute distributed
computations based on user-defined functions without concern for the practical details of data
distribution, synchronization, scheduling, and fault tolerance, but has the added benefit that
such computations can involve multiple related data sets.

In our experimental evaluation, we show how an Oivos program can outperform an equiva-
lent sequence of MapReduce passes, by avoiding superfluous repartitioning steps and perform-
ing less 1/0.

103

Paper 11

Steffen Viken Valvag and Dag Johansen. Update Maps — A New Abstraction
for High-Throughput Batch Processing. In Proceedings of the 2009 IEEE Inter-
national Conference on Networking, Architecture, and Storage (NAS 2009), pages
431-438. IEEE Computer Society, July 2009.

In this paper, we discuss the trade-offs between latency and throughput that arise when de-
signing the storage system for an application, depending on the application’s access pattern and
the underlying on-disk data structures. Many applications are designed to use a synchronous
storage interface, such as that provided by a key/value database, where data is modeled as
key/value pairs and the value associated with a given key can be retrieved or modified syn-
chronously, via index structures such as B-trees or hash tables. Such databases invariably have
a random 1/0 access pattern, which is inefficient on traditional storage media.

To maximize throughput, an alternative is to employ batch processing, accumulating pending
updates and applying them periodically, in batches. Batch processing may enable a more effi-
cient sequential 1/0 access pattern and thereby trade latency for improved throughput. One way
to implement batch processing is using the MapReduce programming model, which is particu-
larly attractive for distributed applications due to its masking of non-functional concerns. With
MapReduce, data sets are modeled similarly as in a key/value database, as a set of key/value
pairs. However, MapReduce computations process data sets in bulk, by applying a user-defined
function to all key/value pairs. Refactoring an application from using a key/value database to
using a batch-oriented approach such as MapReduce can be difficult.

Such transitions are facilitated by our update map abstraction, which aims to combine the
convenience of a key/value database with the performance of a batch-oriented approach. The
update map interface resembles that of an ordinary key/value database, but its implementation
can rely on batch processing and sequential 1/0, for improved throughput. To demonstrate how
this abstraction can be useful for real-life applications, we show how an example web crawler
application based on a key/value database can be refactored to use update maps for storage.
Based on this example, we conclude that update maps are particularly attractive when appli-
cations originally designed to use key/value databases must evolve to meet new requirements
with regards to load or scale.

We evaluate three different implementations of update maps and study their performance
trade-offs. One implementation employs the Hadoop MapReduce engine and executes periodic
MapReduce jobs to apply batches of updates. Another implementation, which proved more
efficient, operates similarly but employs a hand-crafted hash-merge join algorithm to apply up-
dates, and ensures better data locality by partitioning both the set of key/value pairs and the set
of pending updates in a consistent manner. Depending on the application’s access pattern, this
batch-oriented implementation can significantly outperform our third implementation, which is
based on an underlying key/value database.

104

Paper I11

Steffen Viken Valvag and Dag Johansen. Cogset: A Unified Engine for Reliable
Storage and Parallel Processing. In Proceedings of the 2009 Sixth IFIP Interna-
tional Conference on Network and Parallel Computing (NPC 2009), pages 174—
181. IEEE Computer Society, October 2009.

In this paper, we introduce Cogset as an alternative to traditional MapReduce engines, pre-
senting its overall architecture and main abstractions. We also note our vision to let Cogset
serve as the foundation for a stack of higher-level abstractions. As our main motivation, we
observe that the traditional algorithm for data shuffling may cause poor data locality. We there-
fore adopt static routing as a central design choice, and create a tighter coupling between the
mechanisms for reliable storage and parallel processing.

We outline Cogset’s traversal algorithm, describing how it tolerates failures and enables load
balancing within the constraints posed by static routing. We also describe the mechanisms
for distributing records, and the commit protocol used to ensure consistency. We then present
Cogset’s core programming interface and four benchmark applications using Cogset, drawn
from the web indexing domain. In our experimental evaluation, we compare the performance
of these applications to a set of equivalent Hadoop applications, with very favorable results.

Paper IV

Steffen Viken Valvig, Dag Johansen, and Age Kvalnes. Cogset vs. Hadoop: Mea-
surements and Analysis. In Proceedings of the 2010 Second IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2010), pages
768-775. IEEE Computer Society, December 2010.

An extended version of this paper has been submitted for review to the journal
Concurrency and Computation: Practice and Experience.

In this paper, we describe Cogset’s support for MapReduce computations through a Hadoop
compatibility layer implemented on top of the core Cogset interfaces. We then leverage this
compatibility to directly compare the performance of Cogset and Hadoop, using the MR/DB
benchmark developed by Pavlo et al. We examine the various data sets and tasks comprising
the MR/DB benchmark, describe the systems that have previously been evaluated using the
same benchmark, and detail our experimental setup. Our results show that Cogset generally
outperforms Hadoop by a significant margin.

To discover why, we analyze Hadoop’s internals in more detail and uncover issues with
Hadoop’s implementation that adversely affect its benchmark performance. Adopting princi-
ples from Cogset’s implementation, we modify Hadoop’s task scheduling algorithm and de-
velop a plug-in for multi-threaded record parsing, mapping, and combining. These optimiza-
tions of Hadoop are successful in closing some of the performance gap.

105

106

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” Tech. Rep. EECS-2009-28, UC Berkeley Reliable Adaptive Distributed Sys-
tems Laboratory, 2009.

S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107-117, Elsevier, 1998.

M. Burrows, “The Chubby lock service for loosely-coupled distributed systems,” in Pro-
ceedings of the 7th symposium on Operating Systems Design and Implementation, OSDI
’06, pp. 335-350, USENIX Association, 2006.

C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and N. Weizen-
baum, “FlumeJava: easy, efficient data-parallel pipelines,” in Proceedings of the 2010
ACM SIGPLAN conference on Programming language design and implementation, PLDI
10, pp. 363-375, ACM, 2010.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,”
ACM Transactions on Computer Systems, vol. 26, no. 2, pp. 4:1-4:26, ACM, 2008.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”

in Proceedings of the 6th symposium on Operating Systems Design and Implementation,
OSDI *04, pp. 137-150, USENIX Association, 2004.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in Proceedings of
the 19th ACM SIGOPS Symposium on Operating Systems Principles, SOSP °03, pp. 29—
43, ACM, 2003.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski, “Pregel: a system for large-scale graph processing,” in Proceedings of the 2010
international conference on Management of data, SIGMOD ’10, pp. 135-146, ACM,
2010.

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakomar, M. Tolton, and T. Vassilakis,
“Dremel: interactive analysis of web-scale datasets,” in Proceedings of the 36th Interna-
tional Conference on Very Large Data Bases, vol. 3 of VLDB 10, pp. 330-339, VLDB
Endowment, 2010.

107

[10] R.Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the data: Parallel analy-
sis with Sawzall,” Scientific Programming, vol. 13, no. 4, pp. 277-298, 10S Press, 2005.

[11] “List of Companies Using Hadoop.” Online at http://wiki.apache.org/hadoop/PoweredBy,
archived at http://www.webcitation.org/6 IN1GRihM, September 2011.

[12] “Amazon Elastic MapReduce.” Online at http://aws.amazon.com/elasticmapreduce,
archived at http://www.webcitation.org/6 IN2V3KxX, September 2011.

[13] D. J. DeWitt and J. Gray, “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, vol. 35, no. 6, pp. 85-98, ACM, 1992.

[14] E. F. Codd, “A relational model of data for large shared data banks,” Communications of
the ACM, vol. 26, no. 1, pp. 64-69, ACM, 1983.

[15] J. Dean and S. Ghemawat, “MapReduce: A flexible data processing tool,” Communica-
tions of the ACM, vol. 53, no. 1, pp. 72-77, ACM, 2010.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: a not-so-foreign
language for data processing,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pp. 1099-1110, ACM, 2008.

[17] M. Stonebraker, “The case for shared nothing,” Database Engineering, vol. 9, no. 1,
pp- 4-9, IEEE Computer Society, 1986.

[18] F. B. Schneider, “Byzantine generals in action: implementing fail-stop processors,” ACM
Transactions on Computer Systems, vol. 2, no. 2, pp. 145-154, 1984.

[19] D. Swade, The Difference Engine. Penguin, 2002.

[20] P.J. Denning, “Is computer science science?,” Communications of the ACM, vol. 48, no. 4,
pp- 27-31, ACM, 2005.

[21] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young, “Com-
puting as a discipline,” Communications of the ACM, vol. 32, no. 1, pp. 9-23, ACM,
1989.

[22] E. F. Codd, “Multiprogram scheduling: parts 3 and 4. scheduling algorithm and external
constraints,” Communations of the ACM, vol. 3, no. 7, pp. 413—418, ACM, 1960.

[23] J. L. McKenney, “Simultaneous processing of jobs on an electronic computer,” Manage-
ment Science, vol. 8, no. 3, pp. 344-354, INFORMS, 1962.

[24] E.S. Schwartz, “An automatic sequencing procedure with application to parallel program-
ming,” Journal of the ACM, vol. 8, no. 4, pp. 513-537, ACM, 1961.

[25] J. P. Anderson, “Program structures for parallel processing,” Communications of the ACM,
vol. 8, no. 12, pp. 786788, ACM, 1965.

[26] J. B. Dennis and E. C. Van Horn, “Programming semantics for multiprogrammed compu-
tations,” Commununications of the ACM, vol. 9, no. 3, pp. 143—-155, ACM, 1966.

108

[27] A. Opler, “Procedure-oriented language statements to facilitate parallel processing,” Com-
munications of the ACM, vol. 8, no. 5, pp. 306-307, ACM, 1965.

[28] W.R. Sutherland, The on-line graphical specification of computer procedures. PhD thesis,
Department of Electrical Engineering, Massachusetts Institute of Tecnology, 1966.

[29] D. A. Adams, “A model for parallel computations,” in Parallel Processor Systems, Tech-
nologies, and Applications, pp. 311-333, Spartan, 1970.

[30] J. B. Dennis, “First version of a data flow procedure language,” in Programming Sympo-
sium, vol. 19 of Lecture Notes in Computer Science, pp. 362-376, Springer, 1974.

[31] J. B. Dennis, “Data flow supercomputers,” Computer, vol. 13, no. 11, pp. 48-56, IEEE
Computer Society, 1980.

[32] G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data placement in Bubba,” in
Proceedings of the 1988 ACM SIGMOD international conference on Management of data,
SIGMOD ’88, pp. 99-108, ACM, 1988.

[33] D.J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Muralikrishna,
“Gamma - a high performance dataflow database machine,” in Proceedings of the 12th
International Conference on Very Large Data Bases, VLDB 86, pp. 228-237, Morgan
Kaufmann Publishers Inc., 1986.

[34] G. Graefe, “Encapsulation of parallelism in the volcano query processing system,” in
Proceedings of the 1990 ACM SIGMOD international conference on Management of data,
SIGMOD 90, pp. 102-111, ACM, 1990.

[35] R. H. Arpaci-Dusseau, “Run-time adaptation in river,” ACM Transactions on Computer
Systems, vol. 21, no. 1, pp. 36-86, ACM, 2003.

[36] R.H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Hellerstein, D. Patter-
son, and K. Yelick, “Cluster I/O with River: Making the fast case common,” in Proceed-
ings of the 6th Workshop on Input/Output in Parallel and Distributed Systems, IOPADS
’99, pp. 10-22, ACM, 1999.

[37] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-parallel
programs from sequential building blocks,” in Proceedings of the 2nd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems, EuroSys *07, pp. 59-72, ACM, 2007.

[38] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Achieving scalability and expressive-
ness in an internet-scale event notification service,” in Proceedings of the 19th annual
ACM symposium on Principles of distributed computing, PODC 00, pp. 219-227, ACM,
2000.

[39] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-merge: simplified
relational data processing on large clusters,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, SIGMOD ’07, pp. 1029-1040, ACM,
2007.

109

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

“About Cascading.” Online at http://www.cascading.org/about.html, archived at
http://backupurl.com/ghsevi, September 2011.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy, “Hive: a warehousing solution over a map-reduce framework,” Proceedings
of the VLDB Endowment, vol. 2, no. 2, pp. 1626-1629, VLDB Endowment, 2009.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey,
“DryadLINQ: A system for general-purpose distributed data-parallel computing using a
high-level language,” in Proceedings of the 8th USENIX conference on Operating Systems
Design and Implementation, OSDI’08, pp. 1-14, USENIX Association, 2008.

R. Chaiken, B. Jenkins, P-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou,
“SCOPE: easy and efficient parallel processing of massive data sets,” Proceedings of the
VLDB Endowment, vol. 1, no. 2, pp. 1265-1276, VLDB Endowment, 2008.

P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears, “Boom
analytics: exploring data-centric, declarative programming for the cloud,” in Proceedings
of the 5th European conference on Computer systems, EuroSys ’10, pp. 223-236, ACM,
2010.

P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. C. Sears,
“Boom: Data-centric programming in the datacenter,” Tech. Rep. UCB/EECS-2009-98,
EECS Department, UC Berkeley, 2009.

Y. Gu and R. L. Grossman, “Sector and sphere: the design and implementation of a high-
performance data cloud,” Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, vol. 367, no. 1897, pp. 24292445, The Royal
Society, 2009.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evaluating
MapReduce for multi-core and multiprocessor systems,” in Proceedings of the 2007 IEEE
13th International Symposium on High Performance Computer Architecture, HPCA-13,
pp. 13-24, IEEE Computer Society, 2007.

R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable MapReduce on
a large-scale shared-memory system,” in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization, ISWC °09, pp. 198-207, IEEE Computer
Society, 2009.

W. Fang, B. He, Q. Luo, and N. Govindaraju, “Mars: Accelerating MapReduce with
graphics processors,” IEEE Transactions on Parallel and Distributed Systems, vol. 22,
no. 4, pp. 608-620, IEEE Computer Society, 2011.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a MapReduce frame-
work on graphics processors,” in Proceedings of the 17th international conference on
FParallel architectures and compilation techniques, PACT 08, pp. 260-269, ACM, 2008.

110

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Z. Vrba, P. Halvorsen, C. Griwodz, P. Beskow, and D. Johansen, “The Nornir run-time
system for parallel programs using Kahn process networks,” in Proceedings of the 2009
6th IFIP International Conference on Network and Parallel Computing, NPC °09, pp. 1-
8, IEEE Computer Society, 2009.

G. Kahn, “The semantics of a simple language for parallel programming,” in Information
processing, pp. 471-475, North Holland, 1974.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox, “Twister:
a runtime for iterative MapReduce,” in Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, HPDC 10, pp. 810-818, ACM,
2010.

A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz,
“HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for ana-
lytical workloads,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 922-933,
VLDB Endowment, 2009.

C. Yang, C. Yen, C. Tan, and S. Madden, “Osprey: Implementing MapReduce-style fault
tolerance in a shared-nothing distributed database,” in Proceedings of the 26th Interna-
tional Conference on Data Engineering, ICDE * 10, pp. 657-668, IEEE Computer Society,
2010.

“About PostgreSQL.” Online at http://www.postgresql.org/about, archived at
http://backupurl.com/bp1614, September 2011.

J. W. Stamos and D. K. Gifford, “Remote evaluation,” ACM Transactions on Program-
ming Languages and Systems, vol. 12, no. 4, pp. 537-564, ACM, 1990.

H.-1. Hsiao and D. J. DeWitt, “Chained declustering: A new availability strategy for mul-
tiprocessor database machines,” in Proceedings of the 6th International Conference on
Data Engineering, ICDE ’90, pp. 456—465, IEEE Computer Society, 1990.

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis, “Sinfonia: a
new paradigm for building scalable distributed systems,” in Proceedings of the 21st ACM
SIGOPS Symposium on Operating Systems Principles, SOSP *07, pp. 159-174, ACM,
2007.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker,
“A comparison of approaches to large-scale data analysis,” in Proceedings of the 35th
SIGMOD international conference on Management of data, SIGMOD ’09, pp. 165-178,
ACM, 20009.

“Vertica Analytics Platform.” Online at http://www.vertica.com/the-analytics-platform,
archived at http://backupurl.com/sturh2, September 2011.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik, “C-store:
a column-oriented DBMS,” in Proceedings of the 31st international conference on Very
large data bases, VLDB °05, pp. 553-564, VLDB Endowment, 2005.

111

[63] “Oracle Berkeley DB.” Online at http://www.oracle.com/technetwork/database/berkeleydb,
archived at http://www.webcitation.org/6 IN9DWbtp, September 2011.

[64] G.DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly available key-value
store,” in Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems Prin-
ciples, SOSP 07, pp. 205-220, ACM, 2007.

[65] S. V. Valvag and D. Johansen, “Update maps - a new abstraction for high-throughput batch
processing,” in Proceedings of the 2009 IEEE International Conference on Networking,
Architecture, and Storage, NAS 09, pp. 431-438, IEEE Computer Society, 2009.

[66] S. V. Valvag and D. Johansen, “Oivos: Simple and efficient distributed data processing,” in
Proceedings of the 2008 10th IEEE International Conference on High Performance Com-
puting and Communications, HPCC 08, pp. 113-122, IEEE Computer Society, 2008.

[67] S. V. Valvag and D. Johansen, “Cogset: A unified engine for reliable storage and parallel
processing,” in Proceedings of the 2009 6th IFIP International Conference on Network
and Parallel Computing, NPC *09, pp. 174-181, IEEE Computer Society, 2009.

[68] S. V. Valvag, D. Johansen, and A. Kvalnes, “Cogset vs. Hadoop: Measurements and
analysis,” in Proceedings of the 2010 2nd IEEE International Conference on Cloud Com-
puting Technology and Science, CloudCom ’10, pp. 768775, IEEE Computer Society,
2010.

112

ISBN XXX-XX-XXXX-XXX-X

	Acknowledgements
	Introduction
	Data-Intensive Computing
	Cloud Computing
	MapReduce
	Data Shuffling

	Thesis Statement
	Scope and Assumptions
	Methodology
	iAD Context
	Summary of Contributions
	Outline of the Dissertation

	Related Work
	Dataflow Graphs
	Dataflow Engines
	MapReduce
	Programming Interface
	Example Applications
	Execution Engine
	Semantics and Additional Hooks
	The MapReduce Dataflow Graph

	Map-Reduce-Merge
	Workflow Composition and High-level Languages
	Alternative and Hybrid Architectures
	Summary

	Design and Architecture of Cogset
	Key Design Choices
	Data Partitioning
	Distribution Sessions
	Replica Placement and Neighborship Relation
	Traversals
	Load Balancing
	Fault Tolerance
	In-situ Data Processing
	Summary

	Implementation of Cogset
	Records
	Record Formatters
	Partitioning
	Keys and Key Functions
	Pages
	On-disk Data Layout
	Record Distributors
	Distribution Sessions
	Traversals
	MapReduce Support
	Communication Layer
	Summary

	Experimental Evaluation
	The MR/DB Benchmark
	Previously Benchmarked Systems
	Experimental Setup and Benchmark Adaptation
	Hadoop Optimizations
	Benchmark Results
	Grep Results
	Select Results
	Aggregate Results
	Join Results
	UDF Results
	Relative Performance

	Analyzing and Optimizing Hadoop
	Task Scheduling
	Multi-Core Optimizations

	Summary

	Higher-level Abstractions
	Oivos
	The Dataset abstraction
	Oivos Operators
	Example Oivos Application
	Compiling Oivos Programs

	Update Maps
	Update Map Interface
	Implementation of Update Maps
	Web Crawler Example

	Summary

	Concluding Remarks
	Results
	Conclusions
	Future Work

	Publications
	Bibliography

