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Accelerating unstructured finite volume computations on
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Abstract

Accurate simulations of various physical processes on digital computers requires huge comput-

ing performance, therefore accelerating these scientific and engineering applications has a great

importance. Density of programmable logic devices doubles in every 18 months according to

Moore’s Law. On the recent devices around one hundred double precision floating-point adders

and multipliers can be implemented. In the paper an FPGA based framework is described to

efficiently utilize this huge computing power to accelerate simulation of complex physical spatio-

temporal phenomena. Simulating complicated geometries requires unstructured spatial discretiza-

tion which results in irregular memory access patterns severely limiting computing performance.

Data locality is improved by mesh node renumbering technique which results in predictable mem-

ory access pattern. Additionally storing a small window of node data in the on-chip memory of

the FPGA can increase data reuse and decrease memory bandwidth requirements. Generation

of the floating-point data path and control structure of the arithmetic unit containing dozens of

operators is a very challenging task when the goal is high operating frequency. Long and high

fanout control lines and improper placement can severely affect computing performance. In the

paper an automatic data path generation and partitioning algorithm is presented to eliminate long

delays and aid placement of the circuit. Efficiency and use of the framework is described by a case

study solving the Euler equations on an unstructured mesh using finite volume technique. On the

currently available largest FPGA the generated architecture contains three processing elements
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working in parallel providing 90 times speedup compared to a high performance microprocessor

core.

1 Introduction

Numerical simulation of complex problems evolving in time plays an important role in scientific and

engineering applications. Accurate behavior of dynamical systems can be understood using large

scale simulations which traditionally requires expensive supercomputing facilities. Several previous

studies proved the efficiency of programmable logic devices in numerical simulation of various physical

phenomena such as electromagnetic [1], transient wave [2] [3] and computational fluid dynamics [4] [5]

simulations.

A complex spatio-temporal problem can be approximated in a regular mesh structure. To get a

more accurate solution the the resolution of the mesh should be increased, which increases the number

of grid points and the running time as well. To overcome the outlined problem an unstructured mesh

will be used. The resolution of the mesh will be increased where it is required by rapid change in the

dynamics or shape of the problem. Conventional microprocessors has around 10% utilization during

unstructured mesh computations due to the irregular memory access pattern of grid data.

To accelerate the computation irregular memory access patterns should be hidden by temporally

storing the relevant grid points on the FPGA. Due to the finite on-chip memory size mesh points have

to be ordered and stored according to the requirements of computation. A very efficient new mesh

point ordering method was developed.

To obtain a high performance accelerator the operating frequency of the arithmetic unit is critical.

By using local controls to clusters of arithmetic operators the clock speed can be significantly increased

paying with some area increase for it. The data transfer between the clusters are synchronized by

FIFOs. It was proofed that a good tradeoff can be achieved if a cluster has about 10 I/O FIFOs.

To define the clusters several partitioning algorithms [6] [7] were carefully tested and compared. The

placement and the routing of the clusters however were not as good as it should be. Especially due

to the long interconnections the clock frequency could not increased further. To eliminate this kind of

problem a new combined the clustering and placement method will be shown and tested in a complex

fluid dynamical problem.

In Section 2. an overview of recent publications on accelerators working on unstructured meshes

are given. A new architecture for efficient unstructured mesh computations is proposed in Section

3. A new node reordering algorithm is presented in Section 4. and a new partitioning algorithm is
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descried in Section 5. The proposed methods are tested on a complex case study described in Section

6. Finally performance of the proposed architecture is compared to a high performance microprocessor

in Section 7.

2 Related work

Several papers are published in the early 2000s dealing with the acceleration of PDEs on unstructured

meshes. Most of them are focused on accelerating Finite Element Methods (FEM) where the global

stiffness matrix is given and the resulting large linear system of equations are solved usually by the

iterative Conjugate Gradient (CG) method. The most time consuming operation of this method is a

sparse matrix vector multiplication therefore most of the papers try to accelerate this part. Though

our architecture is designed for explicit unstructured finite volume calculations examination of these

architectures is helpful because similar problems arising in our case such as the adjacency matrix of

the mesh is sparse and elements of the state vector are accessed in a random order.

In 2000 Jones and Ramachandran [8] examined several aspects of accelerating unstructured mesh

computations on FPGAs. They proposed a hybrid architecture to accelerate the CG algorithm where

the local stiffness matrix and the bulk of the CG algorithm is computed by the CPU and only the

matrix vector multiplication is performed on the FPGA and achieved 22.4− 35.7MFLOPs computing

performance.

Another approach is the architecture proposed by deLorimier and DeHon [9] where all elements of

the matrix are stored on the FPGA to avoid bandwidth limitations but this solution severely limited

the size of the matrix. Performance of the architecture is depended on the structure of the matrix

and usually 66% of the peak performance can be achieved which results in 2-10 times acceleration

compared to the common microprocessors at that time.

Elkurdi et al. [10] first reorganize the finite element sparse matrix into a banded form then calculate

the matrix vector multiplication along special pipelineable diagonal stripes, where two successive ele-

ments can be processed by a pipelined architecture. Performance of the architecture is determined by

the available memory bandwidth and the sparsity of the matrix however utilization of the processing

elements is varying in a very wide range between 17.74− 86.24%.

duBois et al. [11] presented an architecture where nonzero elements from each row of the sparse

matrix are processed in 7 element wide vectors. They also proposed to use a reordered banded matrix

to improve data locality, but the architecture still suffer from memory bandwidth limitation.

Recently Nagar et al. [12] proposed an architecture using an optimized Streaming Multiply- Accu-
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mulator with separate cache memories for matrix and vector data. The implementation platform they

used has special memory architecture providing high 20GB/s peak memory bandwidth. Performance

of the system with four FPGAs is in the 1.17− 3.94GFLOPs range outperforming a Tesla 1070 GPU.

However utilization of the PEs is around 50% similarly to the previous architectures and increasing

the number of PEs to occupy the entire FPGA still runs into a memory bandwidth limit.

The surveyed architectures provide general solutions to accelerate FEM calculations on FPGAs but

suffer from the inherent high memory bandwidth requirement and small communication to computation

ratio of sparse matrix vector multiplication. On the other hand utilization of the execution units

depends on the structure of the sparse matrix.

In the case of finite volume discretization irregular memory access pattern and high memory band-

width requirement can be eliminated by storing a small part of the grid on-chip and reordering its nodes.

Right hand side of the discretized equations should be computed for each node in every timestep, which

requires several floating-point operations, resulting in better communication to computation ratio and

higher utilization of FPGA resources.

3 Architecture

Time evolution of dynamical systems can be easily solved numerically by explicit finite volume dis-

cretization and the solution is computed on a discrete set of points in space. The solution is advanced

in time by approximating the derivative of each node using linear combination of state values from

its small local neighborhood. Computation of subsequent grid points is independent however some

parts of its input data sets are overlapped. For practical applications the number of grid points is far

exceeding the available on-chip memory of recent FPGAs therefore state and constant values must be

stored and loaded from an off-chip memory. Overlapping input data sets can be utilized to reduce the

number of memory accesses and save memory bandwidth by saving all nodes which required during

the following computations into a local memory on the FPGA. Simple example for the values to be

stored is shown in Figure 1.

Each node is numbered and the nodes are updated in an increasing order, bold numbers indicate

the already processed nodes, encircled node 8 is the currently processed vertex, while squared nodes

are stored on the FPGA. In this case all elements required for the computation of node 8 can be

read from the fast on-chip memory of the FPGA. To process the next node a new node 15 should be

loaded and node 2 can be discarded. When updating node 9 all the required data will be available

in the on-chip memory. It is possible that multiple new nodes are required for the update of a node
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Figure 1: Local node data stored on the FPGA

indicating that the on-chip memory is undersized. The size of the required on-chip memory depends

on the structure of the grid and the numbering of the nodes.

Node data is treated as a 1D array where each element contains two separate parts one for storing

time dependent state values and one to store constant data such as physical constants and coordinates

of the grid points. In case of structured grids neighbors of each grid point can be determined by its

array index. For unstructured grids connected grid points are described by a sparse adjacency matrix

which is usually stored in a Compressed Row Storage (CRS) format [13]. In our case the matrix

contains only 0 and 1 elements therefore only column indices are stored. Additionally the elements are

read in a serial sequence hence row pointers can be replaced by a single bit to indicate the start of a

new row. It is possible that the discretization stencil is defined on triangle or tetrahedron instead of

a line between two grid points. In this case an additional element descriptor is required where node

indices of the vertexes of the element are stored. Data structures used by the system are shown in

Figure 2. Additionally an example data structure is filled with connectivity and element data for node

8 from Figure 1. Width of the index field can be set according to the requirements of the application.

More than 8 million nodes can be handled by using 24 bit wide indices which can be sufficient in many

applications.
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(state var, ...), (const, ...)

...

Node data:

Connectivity descriptor:

1 141 20 30 40 70 90 141 40 ...

... ...

Element descriptor:

... 8 141 2 30 3 40 2 70 4 90

7 140 9 141 ...

next node bit

next node bit

Figure 2: Data structures

Main parts of the proposed architecture are the Memory unit, the Neighborhood memory unit

and the Arithmetic unit as shown in Figure 3. The Memory unit is build from dual ported on-chip

BRAM memories and store a small part of grid data. Size of the on-chip memory is determined by the

bandwidth of the adjacency matrix of the mesh. Bandwidth of a matrix is defined as the maximum

distance of nonzero element from the main diagonal. (See Section 4.1 for a more formal definition.)

Neighbors of the currently processed nodes are stored in the Neighborhood memory unit. Its structure

is depending on the particular discretization stencil. In the simplest case when the stencil is defined on

a line it can be a simple register. When the stencil is defined on a triangle or tetrahedron a one write

two or three read multi ported memory is required respectively. Size of this memory is depending on

the largest node rank in the mesh, usually a 64 element memory is sufficient, which can be efficiently

implemented using the Distributed RAMs on FPGAs. Computation of the updated node value is

carried out in an element by element order by the arithmetic unit.

Computation is started by loading node values into the Memory unit until it is half filled. In this

phase value of the first node is loaded to the Current node register and the Neighborhood memory is

filled by its neighbors using the incoming connectivity descriptors. Global indices of the neighboring

nodes are translated into addresses in the Memory unit by the Local address generator unit. When

all neighbors are loaded valid stencil data can be send to the arithmetic unit in each clock cycle.

Neighborhood of the second node can be loaded into the free space of the Neighborhood memory while

processing the first node. When all parts of the first stencil are sent to the arithmetic unit Node

addressA register is incremented and the second node is loaded into the Current node register. During

the next clock cycle new node data can be written into the Memory unit and computation of the
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Memory unit

DIAAddrA DOA

AddrB DOB

Current node data

Neighborhood
memory unit

Write AddressNode AddressA

Node AddressB

Connectivity
descriptor

Local address
generator

Element
descriptor

Node data

Arithmetic unit

Updated node data

Figure 3: Block diagram of the proposed architecture

second node is started along with the loading of the neighborhood of the third node. The Memory

unit is operating as a circular buffer when it is filled the oldest node data is overwritten which can be

done safely because the size of the memory is set to be at least twice the bandwidth of the adjacency

matrix and one can be sure that these old values are never required during the update of the remaining

nodes.

Connectivity and element descriptors add an overhead for the off-chip memory requirements and

increase memory bandwidth requirement of the processor. The width of the index fields can be

optimized according to the depth of the Memory and Neighborhood memory units because all memory

accesses are hidden by these two units. Therefore the global index of the nodes are never required

only the translated memory addresses for the on-chip memories which can be much shorter. The order

of node updates are statically scheduled hence memory address translation can be done offline by the

host CPU.

The main advantage of the proposed architecture is the serial off-chip memory access pattern on

the node data and descriptor arrays. Each array is read into a FIFO buffer by using an optimal burst

length and penalties of random memory access patterns can be eliminated. Maximum size of the mesh
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is limited by the bandwidth of the adjacency matrix. Using today large, high performance FPGAs

even 10,000-40,000 nodes can be stored on-chip and depending on the structure of the mesh its size

can be in the 100,000-400,000 node range.

4 Memory Bandwidth Optimization

Efficient use of on-chip memory resources of the architecture described in the previous section is

depending on the bandwidth of the adjacency matrix of the mesh. By reordering the nodes of the

mesh the bandwidth of the adjacency matrix can be significantly reduced. In this section we show

a fast constructive method for reordering, which is comparable to the classical algorithms, and we

present a solution for generating memory access patterns which have lower bandwidth than a given

bound.

4.1 Description of the problems and related works

Matrix Bandwidth Minimization: Let G(V,E) a graph with vertex set V, |V | = n and edge

set E. Labeling is a function f(v) which assigns integers[1..n] to vertices. f(v)=f(u) if and only if

u=v u, v ∈ V . N(v) is the set of vertices which adjacent to v. The bandwidth of a vertex v is

Bf (v) = Max{|f(v) − f(u)| : u ∈ N(v)}, and the bandwidth corresponds to G with labeling f() is

Bf (G) = Max{Bf (v) : v ∈ G}.

The problem of bandwidth reduction of a sparse matrix was shown to be NP-complete by Papadimitriou[14],

so exact methods can not be applied for large problems. Many heuristic algorithm was developed from

the well-known Cuthill-McKee (CM) algorithm[15] to recent metaheuristic approaches. One of the

most promising metaheuristic results in solution quality is the GRASP (Greedy Randomized Adaptive

Search Procedure) with Path Relinking, which was presented in[16]. The most practical solution is the

GPS(Gibbs, Poole and Stockmeyer) method[17], which is one of the fastest heuristics, and also pro-

vides good solution quality. Metaheuristic methods gives better solutions, but their time consumption

many times higher than GPS. GPS algorithm was born in 1976, afterwards many attempts shown to

improve the original method, the most interesting from them is the method created by Luo[18]. All of

the improved GPS heuristics have higher time complexity, which is an important parameter in case of

large meshes.

Serial-Bandwidth: Using the classical definition of bandwidth, the size of the on-chip memory can

be given as (Bf (G) ∗ 2 + 1) ∗ sizeof(node), where (Bf (G) ∗ 2 + 1) called C BW. If we assume the
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architecture described in previous section, a more proper definition than C BW can be given. S BW

means the number of nodes which have to be stored in on-chip memory, if we want 0% cache-miss.

s(i) = MIN{f(v) : v ∈ N(u), f(u) = i}

e(i) = MAX{f(v) : v ∈ N(u), f(u) = i}

S(i) = MIN{s(i), s(i+ 1), ..., s(n)}

E(i) = MAX{e(1), e(2), ..., e(i)}

S BW = MAXi{E(i)− S(i)}

4.2 Algorithm for bandwidth reduction

Several methods have been shown in the literature for minimizing the classical bandwidth of a system.

In this section we define Amoeba1(AM1) algorithm for serial-bandwidth minimization. Our goal is to

create a fast, effective constructive method which has proper, easy to calculate S BW bounds in each

construction step(details in next subsection).

4.2.1 Notations and definitions

Amoeba1 is a constructive method, in which a solution element is chosen and labeled in each step.

Solution elements are the vertices of the input mesh, and the method grows a part till all of the vertices

are covered.

u(i)

P

I

s(i)

i nj

Figure 4: Structure of solution part P.

Figure 4. shows the structure of a solution part P with n elements. Every node(i) have three base

parameters: local index=i, s(i), u(i).

s(i): is the distance between node(i) and its lowest indexed neighbor in the part: s(i) = MAX{i− j :

j ∈ N(i)}.
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u(i): is the set of nodes which uncovered by P, but must be added in later steps because of node(i):

u(i) = {v : v ∈ N(i) AND v /∈ P}.

I: is the index of the first elemet which has not empty u() set, so for every node(i) where i < I all

neighbors covered by P.

With these parameters we can give bounds on the serial bandwidth. In AM1 method we use a simple

lower bound for describing the importance of node(i):

imp(i) = (n− i) + |u(i)|+ s(i)

This is obviously a lower bound, because if we add node v /∈ u(i) to part P we still have to add all

elements of u(i) to the part. For every node(i) i < I imp(i)=0, because these nodes have all of their

neighbors involved, so their effect on bandwidth do not depend on the later decisions.

4.2.2 Description of Amoeba1

Amoeba1 algorithm has two base steps: finding a starting vertex, and the labeling loop. The result is

an ordering of the vertices.

Finding a starting vertex The quality of the result of constructive bandwidth-reduction heuristics

depends on which is the starting vertex. In GPS method, the authors presented a simple and effective

solution for this problem. They gave an algorithm which returns the two endpoints of a pseudo-

diameter. AM1 algorithm uses this subroutine for finding the starting vertex.

Choosing a solution element AM1 selects a node from u(I), which has a neighbor in P with

maximal importance. Because all nodes in u(I) has node(I) as its neighbor, only l 6= node(I) neighbors

take part in the search.
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// selecting candidate from u(I)

1 candidate = random element of u(I)

2 global max = 0

3 for ∀k ∈ u(I)

4 local max = 0

5 for ∀l ∈ N(k) : l ∈ P and l 6= node(I)

6 if l.imp() > local max

7 local max = l.imp()

8 if local max > global max

9 candidate = k

10 global max = local max

AM1 adds the candidate to the part with index=n+1, and chooses the next element till the whole

mesh is indexed. AM1 performs a kind of breadth-first indexing.

4.2.3 Results and conclusions

AM1 is a simple constructive algorithm for large problems, we compare its results to the classical

fast and effective GPS method. As mentioned earlier, better quality algorithms exist for bandwidth

reduction, but these methods can not be applied to large meshes(¿100.000 vertex) because of their

complexity. The cases showed on Table 1 comes from 2-dimmensional meshes, with assigning a vertex

to each triangle and an edge between vertices which are represent adjacent triangles, so we get a mesh

with maximal degree = 3. This meshes appears when we use finite volume solver during the solution

of a partial differential equation. In these low-degree cases AM1 provides similar solution quality to

GPS, in 4% less time. The running time of both method depends on the number of vertices, and the

structure of the mesh(finding a starting vertex).

The results for high-degree(20-30) cases can be found on Table 2. These cases generated from the

same complex 3D geometry, by increasing the density of the mesh. We found that GPS is 29% superior

on these general instances, but 13% slower than AM1. These results shows, that the difference is not

increasing with the complexity of the problems. In our further work, we want to increase solution

quality by guiding the labeling depending on the knowledge of the geometry.
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Table 1: Results of Amoeba1 method compared to GPS.
Case N S BW GPS S BW AM1 GPS time(s) AM1 time(s)

step 2d bc cl30 7063 122 122 0,078 0,052

step 2d bc cl40 12297 176 175 0,154 0,109

step 2d bc cl50 20807 253 227 0,175 0,1

step 2d bc cl70 42449 359 341 0,633 0,49

step 2d bc cl90 68271 481 506 0,998 0,785

step 2d bc cl110 112093 569 591 2,144 1,955

step 2d bc cl130 157099 740 738 1,59 1,316

step 2d bc cl150 201069 794 805 3,239 3,094

step 2d bc cl170 252869 972 923 4,316 3,92

step 2d bc cl190 316715 1030 1082 5,913 5,707

step 2d bc cl200 394277 1093 1155 5,855 5,532

step 2d bc cl320 930071 1923 1809 17,035 18,687

S BW: serial-bandwidth of solutions, N: number of vertices.

Algorithms tested on one core of an Intel P8400 processor

Table 2: Results for 3D high-degree cases
Case N S BW GPS S BW AM1 GPS time(s) AM1 time(s)

3d 075 3652 381 391 0,279 0,27

3d 065 5185 500 763 0,144 0,107

3d 055 8668 712 764 0,655 0,587

3d 045 15861 1066 1478 0,468 0,42

3d 035 33730 1880 1863 2,209 2,22

3d 025 88307 3384 3443 7,569 6,42

3d 018 244756 6582 10110 39,509 27,598

3d 015 417573 9066 14930 85,797 59,958

3d 012 519983 20561 23554 413,72 383,075

4.3 Memory Access Optimization for Bounded Bandwidth

In case of large problems it is possible, that the renumbered mesh has larger bandwidth than the

available on-chip memory, these cases should be handled too. In this section we show an AM1 based

method, which generate an input order which has at most a pre-specified serial-bandwidth. In the

input order every vertex executed once, but can be loaded many times, so we need a flag Ex to store

it is only a ghost node(false) or have to be calculated(true). Serial bandwidth in this job means the

following: for every Ex=true vertex all of their neighbors surely be in the on-chip memory when the

execution reaches them. If the defined bound is less than the serial-bandwidth for whole mesh provided

by the AM1 method, the input will be k-times longer, where 1 ≤ k. The bound on bandwidth obviously

have to be more than the maximal degree of the graph.
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4.3.1 AM1 based bounded S BW method

The main concept of handling the bounded bandwidth is the usage of a proper serial bandwidth

estimation, which is available in AM1 method. When a Part reaches the S BW bound, the process

calculates which vertices can be executed, and call the AM1 method for the rest of vertices where Ex

is not true. The main process starts new AM1 parts until all vertices are Ex=true. The output of the

method is an access pattern(list of {index,Ex} pairs), where all vertex has true execute flag once, and

can be appear many times as a ghost node.

Estimation of serial-bandwith: Given an AM1 Part, the task is to estimate its serial bandwidth.

AM1 estimates the part’s bandwidth in each construction step. If i < I for node(i) in part P, it

has all of its neighbors inside the part, so if the bandwidth is less than the bound when I become

larger than k, node(k) can not increases S BW anymore. As shown earlier imp(i) is a lower bound on

serial-bandwidth, but in the estimation a proper upper bound is required for the stopping condition.

Because in all step AM1 adds a node from u(I) to the part, we can calculate more than a proper upper

bound for node(i), we can give the exact value.

S BW (i) = (n− i) + |
⋃

I≤k≤i

u(k)|+ s(i) I ≤ i (1)

Eq. 1 is equivalent to the definition of serial bandwidth1 Equation 1 could be a stopping condition,

but the proposed method has a less complex and useful upper bound for stopping decision defined in

Eq. 2.

S BWBound ≥ MAX
︸ ︷︷ ︸

I≤k≤n

imp(k) (2)

If Eq. 2 holds, AM1 continue to add nodes to part P, stop otherwise. This condition is not an upper

bound for the whole part, but it provides in every step that node(I) has lower serial-bandwidth than the

given bound. If I jumps to I’ when AM1 adds node(n) to P, we can be sure that for all node(i) I ≤ i ≤ I ′

serial bandwidth is under the bound, because
⋃

I≤k≤I′ u(k) = {node(n)}, so imp(i) = S BW (i) inside

the range [I ,I’].

Finalizing a Part: When Eq. 2 not holds, the proposed algorithm finalize the part, and starts a

new instance of AM1 on the rest of the not executed nodes. Finalization have two tasks: it has to

label vertices which executed in part P, and have to label vertices which all neighbors executed too,

because these nodes can be cut out of the mesh(we call them perfect nodes Pr=true). Ex=true and

1the authors have a proof
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Pr=false vertices have to be loaded again, because they have at least one Ex=false neighbor. In AM1

imp(i)=0 and u(i)={} for all node(i) for which Ex=true.

s∗ = MIN
︸ ︷︷ ︸

I≤k≤n

{k − s(k)}

// setting Ex and Pr flags

1 for ∀k ∈ P

2 if k.local index < s∗ and k.Ex ! = true

3 k.Pr = true

4 if k.local index < I

5 k.Ex = true

4.3.2 Results and conclusions

It is obvious that the proposed algorithm generates access patterns which has lower S BW than a

given bound. The input length multiplier k is a good parameter for measuring the solution quality.

(k-1)*100% of the vertices have to be reloaded from the main memory, but the processing still has 0%

cache-miss2.

Measurements on three meshes with different S BW bounds can be found on Table 3. The re-

sults shows that the solution quality mainly depends on the distance of the S BW bound and the

maximal degree of the mesh. This is a really good news, because maximal degree is around 20-30

for a typical 3D mesh, while the S BW bound is around 10-40k3 nowadays and increasing with each

new generation of FPGA-s. The number of generated parts determine the time consumption of the

proposed method, because in each restart of AM1 the algorithm calculates the pseudo diameter for the

rest nodes. The results on 3d 015 shows that we can go below 25% of the original S BW with 15-30%

reload. This method gives the opportunity of deciding the size of the on-chip memory synthesized to

the FPGA, so the designers can have more free area with sacrificing computational time.

2assuming the handling of multiplicity problems
3the bound is depending on sizeof(node)
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Table 3: Results of AM1 bounded bandwidth optimization
Case AM1 BW S BW Bound num. of parts N overall length k time(s)

3d 075 391 392 1 3562 3562 1 0,255

3d 075 391 380 4 3562 4288 1,203 0,392

3d 075 391 300 9 3562 4945 1,388 0,7

3d 075 391 200 20 3562 5929 1,664 1,148

3d 035 1863 1864 1 33730 33730 1 2,317

3d 035 1863 1800 6 33730 38053 1,128 7,78

3d 035 1863 1500 5 33730 38702 1,147 4,439

3d 035 1863 500 88 33730 58171 1,724 36,095

3d 015 14930 14931 1 417573 417573 1 70,108

3d 015 14930 14000 2 417573 431081 1,032 77,004

3d 015 14930 10000 2 417573 427211 1,023 71,278

3d 015 14930 7500 8 417573 449441 1,076 91,058

3d 015 14930 5000 34 417573 476170 1,140 53,247

3d 015 14930 2500 130 417573 557190 1,334 687,385

AM1 BW: the bandwidth provided by AM1 for the whole mesh

overall length: length of the generated access pattern

N: number of vertices, Algorithm tested on one core of an Intel P8400 processor

5 Arithmetic unit generation

The VHDL representation of the arithmetic unit optimized for speed and area was automatically

generated via the framework presented at [7]. To reach high operating frequency the floating-point

units shall be partitioned and a local control unit shall be assigned to every cluster. The objective

is to minimize the number of extra FIFOs required for data synchronization between the clusters

while guaranteeing that the signals of the control unit have tolerable fanout and do not decrease

the operating frequency of the rest of the circuit. In [7] it was demonstrated that the placement

of a partition generated by traditional partitioniers which minimize the previous objective is very

challenging and the maximum operating frequency of the slowest floating-point unit cannot be reached

with the standard Xilinx place and route tools. A new partitioning strategy was demonstrated which

produces more cut nets than common strategies however the resulting partition can be easily mapped

to the FPGA and the resulting circuit can operate near to the maximum operating frequency of the

slowest floating-point units.

The main idea of the algorithm is to draw the graph into the plane before the partitioning starts.

If a representation of the graph which minimizes the distance between the connected edges is given a

simple greedy clustering algorithm can provide a partitioning without long interconnections between

the clusters.
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The input of the procedure is a text file containing the discretized state equations of the state

variables. In the first step the text file is parsed and a data-flow graph is created where every global

variable and mathematical operator is represented with a vertex. As there are enough resources on the

FPGA and our goal is to reach the maximum operating frequency the data-flow graph is not optimized

to reduce the number of vertices however the same effect can be reached manually if local variables

are defined in the input file.

The next step of the initialization of the algorithm is to create a bipartite graph from the original

data-flow graph. As every vertex representing an operator is associated with a delay time a bipartite

graph can be easily created via a breadth-first search which visits every vertex of the graph and

computes the level of the vertex and the time required for the input to reach the given vertex. If the

levels of its ancestors are different the algorithm inserts the proper number of extra vertices (delays)

after the problematic ancestor. In physical implementation these delays will be shift registers which

hold the data for the proper number of clock cycles and the computed levels determines the vertical

coordinates of the vertices.

The proposed algorithm consists of two greedy phases. The first phase collects global information

about the graph by positioning the vertices horizontally, while clusters are created in the second phase

using the information encoded in the spatial position of the vertices.

The first greedy phase tries to minimize the distance between the connected vertices described by

the following equation:

distance(A,B) :=







(xA − xB)
2 if A and B are connected

0 otherwise

where xA and xB are the horizontal coordinates of vertex A and B respectively. A simple swap based

algorithm like Kernighan-Lin [19] have been designed which minimize this objective for all vertices

together. This algorithm can be easily trapped in the local minimum therefore the initial placement

of the vertices is critical. In our experiments the fast Barycenter heuristic [20] was used to create

an initial solution however more complex techniques can be used as well. The Barycenter heuristic

was initialized with several random placements and the best solution was seeded to the swap based

iterative algorithm.

The second phase is another simple greedy algorithm which search the result of the first phase

for rectangular clusters. Height of the rectangular domains can be chosen arbitrary however in our

examples it is set to two. The algorithm is started from the top left corner and the largest possible

rectangular cluster is searched which still meets the I/O constraint. Next the algorithm moves right
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and search for the largest possible rectangular cluster from the rest of the unclustered vertices. If there

are no more unclustered vertices in the selected layers the algorithm moves down and continues with

the lower layers.

Position of specific parts of the circuit can be constrained by the Xilinx PlanAhead software. It

enables the user to create rectangular placement constraints also called pblocks. The Xilinx P&R tools

are likely to disperse the registers of the FIFOs which can limit the operating frequency of the circuit

therefore separate pblocks were created for each FIFO buffer. As the Xilinx P&R tools were able to

place and route the floating-point units inside the clusters no pblock were created for the floating-point

units just for the clusters. The pblocks was placed manually using the positions of the placed vertices

however in a future work this can be fully automatized if the area requirements of the clusters are also

calculated.

6 Case study: Finite volume solver for the Euler equations

In this section we describe the computational modelling of compressible fluid and gas flows by some

of the basic tools available in the field of Computational Fluid Dynamics (CFD). The art of CFD is

heavily exploiting the enormous processing power available by recent computer technology. Indeed, its

central concept is the approximation of the continuous model problem by a discrete one, requiring the

processing and the manipulation of a huge amount of data.

6.1 Fluid Flows

A wide range of industrial processes and scientific phenomena involve gas or fluids flows over complex

obstacles, e.g. air flow around vehicles and buildings, the flow of water in the oceans or liquid in

BioMEMS. In such applications the temporal evolution of non-ideal, compressible fluids is quite often

modelled by the system of Navier-Stokes equations. The model is based on the fundamental laws

of mass-, momentum- and energy conservation, including the dissipative effects of viscosity, diffusion

and heat conduction. By neglecting all non-ideal processes and assuming adiabatic variations, we

obtain the Euler equations [21, 22], describing the dynamics of dissipation-free, inviscid, compressible

fluids. They are a coupled set of nonlinear hyperbolic partial differential equations, in conservative

form expressed as
∂ρ

∂t
+∇ · (ρv) = 0 (3a)

∂ (ρv)

∂t
+∇ ·

(

ρvv + Îp
)

= 0 (3b)
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∂E

∂t
+∇ · ((E + p)v) = 0 (3c)

where t denotes time, ∇ is the Nabla operator, ρ is the density, u, v are the x- and y-component of

the velocity vector v, respectively, p is the thermal pressure of the fluid, Î is the identity matrix, and

E is the total energy density defined by

E =
p

γ − 1
+

1

2
ρv · v. (3d)

In equation (3d) the value of the ratio of specific heats is taken to be γ = 1.4. For later use we introduce

the conservative state vector U = [ρ, ρu, ρv, E]T , the set of primitive variables P = [ρ, u, v, p]T and

the speed of sound c =
√

γp/ρ. It is also convenient to merge (3a), (3b) and (3c) into hyperbolic

conservation law form in terms of U and the flux tensor

F =








ρv

ρvv + Ip

(E + p)v








(4)

as:
∂U

∂t
+∇ · F = 0. (5)

6.2 Discretization of the governing equations

Logically structured arrangement of data is a convenient choice for the efficient operation of the

FPGA based implementations [5]. However, structured data representation is not flexible for the

spatial discretization of complex geometries. As one of the main innovative contributions of this

paper, here we consider an unstructured, cell-centered representation of physical quantities. In the

following paragraphs we describe the mesh geometry, the governing equations, and the main features

of the numerical algorithm.

6.2.1 The geometry of the mesh

The computational domain Ω is composed of non-overlapping triangles. The i-th face of triangle T is

labelled by fi. The normal vector of fi pointing outward T that is scaled by the length of the face is

ni. The volume of triangle T is VT . Following the finite volume methodology, all components of the

volume averaged quantities are stored at the mass center of the triangles.
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Figure 5: Interface with the normal vector and the cells required in the computation

6.2.2 The Discretization Scheme

Application of the cell centered finite volume discretization method leads to the following semi-discrete

form of governing equations (5)
dUT

dt
= −

1

VT

∑

f

Ff · nf , (6)

where the summation is meant for all three faces of cell T , and Ff is the flux tensor evaluated at face

f . Let us consider face f in a coordinate frame attached to the face, such, that its x-axes is normal

to f (see Fig. 5). Face f separates triangle L (left) and triangle R (right). In this case the Ff · nf

scalar product equals to the x-component of F (i.e. Fx) multiplied by the area of the face. In order to

stabilize the solution procedure, artificial dissipation has to be introduced into the scheme. According

to the standard procedure, this is achieved by replacing the physical flux tensor by the numerical flux

function FN containing the dissipative stabilization term. A finite volume scheme is characterized by

the evaluation of FN , which is the function of both UL and UR. In this paper we employ the simple

and robust Lax-Friedrichs numerical flux function defined as

FN =
FL + FR

2
− (|ū|+ c̄)

UR − UL

2
. (7)

In the last equation FL=Fx(UL) and FR=Fx(UR) and notations |ū| and |c̄| represent the average

value of the u velocity component and the speed of sound at an interface, respectively. The temporal
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derivative is dicretized by the first-order forward Euler method:

dUT

dt
=

Un+1
T − Un

T

∆t
, (8)

where Un
T is the known value of the state vector at time level n, Un+1

T is the unknown value of the

state vector at time level n+ 1, and ∆t is the time step.

By working out the algebra described so far, leads to the discrete form of the governing equations

to compute the numerical flux term F and the dissipation term D.

Un+1
T = Un

T −
∆t

VT

∑

f

R̂nf
Ff |nf |, (9)

where R̂nf
is the rotation tensor describing the transformation from the normal-parallel coordinate

frame of face f to the x − y frame. Quantity Ff is defined in a coordinate frame attached to face f ,

with such an orientation that state left is identical to the state of the update triangle T while state

right corresponds to the state of the triangle situated at the opposite side of the face. With these

conventions, the normal component of the numerical flux function is given by

F ρ
f =

ρLuL + ρRuR

2
+ (|ū|+ c̄)

ρR − ρL
2

(10a)

F ρu
f =

(
ρLu

2
L + pL

)
+
(
ρRu

2
R + pR

)

2
+ (|ū|+ c̄)

ρRuR − ρLuL

2
(10b)

F ρv
f =

ρLuLvL + ρRuRvR
2

+ (|ū|+ c̄)
ρRvR − ρLvL

2
(10c)

FE
f =

(EL + pL) uL + (ER + pR)uR

2
+ (|ū|+ c̄)

ER − EL

2
(10d)

7 Results, performance

The generated arithmetic unit will be implemented on our AlphaData ADM-XRC-6T1 reconfigurable

development system [23] equipped with a Xilinx Virtex-6 XC6VSX475T FPGA [24] and 2Gbyte on-

board DRAM in four 32bit wide banks running on 8000MHz.

In our test case the cell centered approach is used therefore each triangle is represented by a node

and each node has 3 neighbors except at the boundaries where ghost nodes are used to implement

inflow, outflow or wall boundary conditions. For simplicity size and normal vector of all faces are

precomputed which results in higher memory bandwidth requirement, but the arithmetic unit will

be simpler. The architecture is implemented using both single and double precision floating point

numbers. The node data structure contains four time dependent variables [ρ, ρu, ρv, E] and the area of
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Figure 6: The partitioned arithmetic unit

the triangle as a constant additionally pressure p and local speed of sound c which is computed on the

FPGA for each node also should be stored. Therefore width of data bus of the Memory unit is 28 and

56 byte in the single and double precision cases. To provide this wide memory bus 14 BRAMs should

be used in a 32× 512 configuration. When all BRAMs are allocated for the Memory unit 38,912 nodes

can be stored on the FPGA which is usually more than enough for practical 2D meshes.

Depending on the width of the values the input data bus is 20 or 80 byte wide while 16 or 32 byte

wide results should be loaded and saved in every 3 clock cycles. Additionally 3 face descriptors should

be loaded which contains 9 floating point values and 3 × 2 byte wide indices altogether. Therefore

10.3Gbyte/s or 19.7Gbyte/s memory bandwidth is required to feed the arithmetic unit with valid data

in each clock cycle. In the double precision case this bandwidth cannot be provided on our prototyping

board and the system will be memory bandwidth limited. It should be noted that computing face

normals on the FPGA using the coordinates of the vertices results in about 30% smaller memory

bandwidth requirement at a price of more complicated on-chip memory structure and arithmetic unit.

Results from the output of one processor can be feed directly to another processor linearly increasing

the performance of the architecture without additional bandwidth requirement.

7.1 Test setup

To show the efficiency of our solution a complex test case was used, in which a Mach 3 flow over a

forward facing step was computed. The simulated region is a two dimensional cut of a pipe which has
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Figure 7: Coarse resolution mesh for the forward facing step test case

closed at the upper and lower boundaries, while the left and right boundaries are open. The direction

of the flow is from left to right and the speed of the flow at the left boundary is 3-time the speed of

sound constantly. The solution contains shock waves reflecting from the closed boundaries.

Unstructured mesh for the domain are generated by the freely available Gmsh mesh generator

[25]. Several meshes are generated using different characteristic length between 1/30.0− 1/200.0 while

characteristic length of the elements near the corner of the step is divided by 12.5. The number of

triangles in the resulting meshes is ranging in the 7,063-394,277 interval. An example mesh generated

by using 1/40.0 characteristic length and containing 12,297 triangles is shown in Figure 7.

7.2 Performance comparison

During a comparison various mesh sizes are used with 7,063 to 394,277 triangles. Performance of

our architecture is estimated using the result of static timing analysis which is indicated 390MHz

operating frequency in the double precision case. Three clock cycles are required to update the state

of one triangle therefore performance of one processor is 130million triangle update/s. Computation

of one triangle requires 213 floating point operations therefore performance of our architecture is

27.69GFLOPs. On the Virtex-6 XC6VSX475T FPGA three arithmetic units can be implemented

resulting in 83.07GFLOPs cumulative computing performance.

Performance of our architecture is compared to a high performance Intel Xeon E5620microprocessor

running on 2.4GHz clock frequency. On the microprocessor a single core is used and the simulation

is carried out with and without renumbering the nodes. Performance of the simulations is shown

in Figure 8. As we expected without renumbering the performance of the simulation is steadily

decreasing as the mesh size is increased while renumbering the nodes improved the performance of the
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Figure 8: Measured performance of Intel Xeon E5620 microprocessor

Figure 9: First-order solution of the Mach 3 flow after 4s simulation time on a 394,277 triangle mesh

microprocessor by 15% to 4.22million triangle update/s or equivalently 898.86MFLOPs.

Comparison of the performance of the two architectures show that a single processor implemented

on the FPGA can outperform the Intel Xeon processor computing 30 times faster. By connecting three

processors operating in parallel on a single FPGA achieve linear speedup and provide 90 times more

computing power than a microprocessor.

Result of the computation on the largest simulated grid after 4s of simulation time is shown in Fig-

ure 9. Reference solution for the previous problem computed by the more accurate residual distribution

upwind scheme can be found in [26].
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8 Conclusions

A framework for accelerating the solution of PDEs using explicit unstructured finite volume discretiza-

tion is presented. Irregular memory access patterns can be eliminated by using the proposed memory

structure which results in higher available memory bandwidth and full utilization of the arithmetic

unit. Efficient use of the on-chip memory is provided by a new node reordering algorithm which can be

extended to generate fixed bandwidth partitions. The new algorithm is comparable to the well known

GPS algorithm in both runtime and quality of the results.

Generation of the application specific arithmetic unit is described by using a complex numerical

problem solving the Euler equations. The discretized state equations are automatically translated to

a synthesizable VHDL description using Xilinx floating-point IP cores. Performance of the arithmetic

unit is improved by using partitioning and local control units. Nodes of the arithmetic unit is rearranged

to minimize edge crossing which helped placement of the partitions and improved clock frequency of

the design.

Performance comparison of the architecture using a single processor running on 390MHz showed

that 30 times speedup can be achieved compared to a high performance microprocessor core. Com-

puting performance can be further improved by implementing three processors on one FPGA reaching

90 times speedup.

Currently size of the mesh is limited by the bandwidth of its adjacency matrix which must be

smaller than 40,000. The architecture should be improved to efficiently handle multiple partitions and

extended to use multiple FPGAs during computation.
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