
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Provenance and data differencing for workflow reproducibility
analysis

Paolo Missier1∗ , Simon Woodman1, Hugo Hiden1, Paul Watson1

1 School of Computing Science, Newcastle University, Newcastle-Upon-Tyne, UK

SUMMARY

One of the foundations of science is that researchers must publish the methodology used to achieve their
results so that others can attempt to reproduce them. This has the added benefit of allowing methods
to be adopted and adapted for other purposes. In the field of e-Science, services – often choreographed
through workflow, process data to generate results. The reproduction of results is often not straightforward
as the computational objects may not be made available or may have been updated since the results were
generated. For example, services are often updated to fix bugs or improve algorithms. This paper addresses
these problems in three ways. Firstly, it introduces a new framework to clarify the range of meanings of
“reproducibility”. Secondly, it describes a new algorithm, PDIFF, that uses a comparison of workflow
provenance traces to determine whether an experiment has been reproduced; the main innovation is that
if this is not the case then the specific point(s) of divergence are identified through graph analysis, assisting
any researcher wishing to understand those differences. One key feature is support for user-defined, semantic
data comparison operators. Finally, the paper describes an implementation of PDIFF that leverages the
power of the e-Science Central platform which enacts workflows in the cloud. As well as automatically
generating a provenance trace for consumption by PDIFF, the platform supports the storage and re-use of
old versions of workflows, data and services; the paper shows how this can be powerfully exploited in order
to achieve reproduction and re-use.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: e-science, reproducibility, provenance, scientific workflow

1. INTRODUCTION

1.1. Motivation

A key underpinning of scientific discourse is the ability independently to verify or refute
experimental results that are presented in support of a claim. With e-science in particular, such a
need translates into expectations that the computational machinery used by one research group to
produce the results be made publicly available in sufficient detail as to be used by third parties
to construct a scientific argument in support of, or against, those results. Whilst it has long been
the practice of scientific scholarly communication to require experimental methods to be described
alongside the experimental data, it is generally accepted that reproducing an experiment based on
its paper description requires substantial effort from independent researchers, either in the lab or in
form of new program implementation.

Expectations regarding reproducibility in science have, however, been evolving towards higher
levels of automation of the validation and reproduction process. This is driven by the observation

∗Correspondence to: E-mail: Paolo.Missier@ncl.ac.uk

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

ar
X

iv
:1

40
6.

09
05

v1
 [

cs
.D

B
]

 3
 J

un
 2

01
4

2 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

that actual acceleration of the production of scientific results, enabled by technology infrastructure
which provides elastic computational facilities for “big data” e-science, is critically dependent
upon the large-scale availability of datasets themselves, their sharing, and their use in collaborative
settings.

Following this observation, new social incentives are being tested with the goal of encouraging,
and in some cases forcing, the publication of datasets associated with the results published in
papers. Evidence of increasing sharing can be found mostly in the form of online repositories. These
include, amongst others, the recently created Thomson’s Data Citation Index†; the Dryad repository
for published data underlying articles in the biosciences (datadryad.org/); the databib.org
registry of data repositories (databib.org/) (over 200 user contributed repository entries at
time of writing), as well as Best Practice guidelines for data publication, issued by data preservation
projects like DataONE‡.

This dissemination phenomenon combines with the increasing rate at which publishable data
sets are being produced, resulting in the need for automated validation and quality control
of the experimental methods and of their outcomes, all of which imposes new reproducibility
requirements. Here the term reproducibility denotes the ability for a third party who has access to
the description of the original experiment and its results to reproduce those results using a possibly
different setting, with the goal to to confirm or dispute the original experimenter’s claims. Note
that this subsumes, and is hopefully more interesting, than the simpler case of repeatability, i.e.
the attempt to replicate an experiment and obtain the same exact results when no changes occur
anywhere.

In this paper we focus on the specific setting of workflow-based experiments, where reproduction
involves creating a new version of the original experiment, while possibly altering some of the
conditions (technical environment, scientific assumptions, input datasets). In this setting, we address
the need to support experimenters in comparing results that may diverge because of those changes,
and to help them diagnose the causes of such divergence. Depending on the technical infrastructure
used to carry out the original experiment, different technical hurdles may stand in the way of
repeatability and reproducibility. The apparently simple task of repeating a completely automated
process that was implemented for example using workflow technology, after a period of time since
the experiment was originally carried out, may be complicated by the evolution of the technical
environment that supports the implementation, as well as by changes in the state of surrounding
databases, and other factors that are not within the control of the experimenter. This well-known
phenomenon, known as “workflow decay”, is one indication that complete reproducibility may
be too ambitious even in the most favourable of settings, and that weaker forms of partial
reproducibility should be investigated, as suggested by De Roure et al. [1]. Yet, it is easy to see
that this simple form of repeatability underpins the ability to reuse experiments designed by others
as part of new experiments. Cohen-Boulakia et al. elaborate on reusability specifically for workflow-
based programming [2]: a older workflow that has ceased to function is not a candidate for reuse as
part of a new workflow that is being designed today.

Additional difficulties may be encountered when more computational infrastructure with specific
dependencies (libraries, system configuration) is deployed to support data processing and analysis.
For some of these, well-known techniques involving the use of virtual machines (VMs) can be
used. VMs make complex applications self-contained by providing a runtime environment that
fulfills all of the applications dependencies. One can, for instance, create a VM containing an
application consisting of a variety of bespoke scripts, along with all the libraries, databases and
other dependencies that ensure the scripts can run successfully regardless of where the VMs are
deployed, including on public cloud nodes.

†wokinfo.com/products_tools/multidisciplinary/dci/
‡notebooks.dataone.org/bestpractices/

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

datadryad.org/
databib.org/
wokinfo.com/products_tools/multidisciplinary/dci/
notebooks.dataone.org/bestpractices/

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 3

1.2. Goals

VM technology is useful to provide a self-contained runtime environment, and indeed Groth et
al. show that a combination of VM technology for partial workflow re-run along with provenance
can be useful in certain cases to promote reproducibility [3]. However, our contention is that it
is the capability to compare execution traces and datasets with each other that sits at the core
of any argumentation that involves the reproduction of scientific results. Simple as it sounds, this
aspect of reproducibility seems to have received relatively little attention in the recent literature,
with a few exceptions as noted later. Yet, without appropriate operational definitions of similarity
of data, one cannot hope to answer the question of whether the outcome of an experiment is a valid
confirmation of a previous version of the same, or of a similarly designed experiment. The work
described in this paper is focused primarily on this aspect of reproducibility, namely on adding
data-comparison capability to an existing e-science infrastructure, and to make it available to user
scientists in addition to other reproducibility features, as a tool for supporting scientific discourse.

Our long term goal is to support experimenters in answering two related questions. Firstly, given
the ability to carry out (variations of) the same experiments, to what extent can the outcomes of those
experiments be considered equivalent? Secondly, if they are not equivalent, what are the possible
causes for the divergence?

Answering the first question is hard in general, as it requires knowledge of the type of the data,
their format, and more importantly, their semantics. Consider for example two workflows, which
process data in a similar way but at some stage employ two different statistical learning techniques
to induce a classification model. Presumably, their outputs will be different for any execution of
each of the two, and yet they may still be sufficiently close to be comparable. Thus, in this case
a legitimate question is, are there suitable measures of data similarity that help support high-
level conclusions of the form “the second method confirms the results of the first on a specific
set of input datasets”? Answering this question requires knowledge of machine learning theory,
namely to establish whether two classifiers can be considered equivalent, although the results
they produce are not identical. While the general problem of establishing data equivalence is
knowledge-intensive, limiting the scope to simpler structural comparison may still lead to effective
conclusions. For instance, for some applications that operate on XML data, it may be enough
to just define measures of similarity between two XML documents based on computing their
structural differences, a problem successfully addressed by Wang et al. [4]. These examples suggest
a spectrum of complexity in data similarity, starting from the simplest (two datasets are the same
if their files are byte-wise identical), to structurally more complex data structures (XML “diff”
operators), to end with the harder problems of semantics-based similarity as in the earlier machine
learning example.

Our second question, regarding the diagnosis of the possible causes for dissimilarity of results,
requires the ability to capture and then analyse the provenance traces associated with each of the
experiments. Stucturally, the provenance trace of a workflow execution is an acyclic digraph (DAG)
in which the nodes denote either a piece of data or an activity, and the edges denote relationships
amongst data and activities, which reflect the production and consumption of data throughout the
workflow execution steps (a simple but more formal definition is given in Sec. 2). While the problem
of comparing two traces is in principle a classic one of finding subgraph isomorphisms in directed
labelled graphs [5, 6], greatly simplifying assumptions can be made by observing that workflow
provenance traces are a specific type of acyclic digraph with additional labelling, namely regarding
the ports on which activities produce and consume data items, which make it possible to reduce the
space of potential matches. Our assumption is that two provenance traces pertaining to two similar
workflows are expected to be structurally similar, and to contain data nodes that are comparable,
in the sense clarified above. When this is the case, then there is hope that one can detect points in
the traces where results begin to diverge, and to diagnose the causes of such divergence by pairwise
graph traversal.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

1.3. Contributions

We offer two main contributions, both set in the context of workflow-based e-science. Our reference
implementation is based upon the e-Science Central workflow management system, developed by
Hiden et al. in our group [7]. The first contribution (Sec. 2) is a framework to characterise the
reproducibility space, defined by the change in time of one or more of the technical elements
that make up a computational experiment, leading to various forms of “workflow decay”, i.e.
disfunctional or broken workflows.

The second contribution, described in Sec. 3, is PDIFF, an algorithm and prototype
implementation to help users analyse diverging outputs that occur when trying to reproduce
workflows over time. This is complemented by an initial set of data comparison functions that
address typical data types used in e-Science Central workflows. As these workflows are routinely
used to produce, for example, machine learning models for chemical engineering research [8], our
suite of data comparison functions includes the statistical similarity of predictive models produced
using machine learning techniques (in addition to comparing plain text files and XML documents).
This set of functions is easily extensible, as they are implemented using workflow blocks, which
can be rapidly implemented and deployed on the middleware.

Finally, in Sec. 4 we describe how PDIFF and the data diff functions leverage the current
e-Science Central middleware and complement the functionality of its existing provenance
management sub-system. The technique described in the paper is not specific to the e-Science
Central platform, however. Indeed, since e-Science Central provenance is encoded using the Open
Provenance Model [9] (and will in the near future be aligned with the new PROV model [10]), it
applies to any provenance system that adopts the standard.

1.4. Related work

The perceived importance of enabling transparent, reproducible science has been growing over
the past few years. There is a misplaced belief, however, that adopting e-science infrastructures
for computational science will automatically provide longevity to the programs that encode the
experimental methods. Evidence to the contrary, along with some analysis of the causes of non-
reproducibility, is beginning to emerge, mainly in the form of editorials [11], [12]. The argument in
support of reproducible research, however, is not new, dating back from 2006 [13]. More recently,
Dummond and Peng separately make a distinction between repeatability and reproducibility [14],
[15]. Bechhofer et al. make a similar distinction concerning specifically the sharing of scientific
data [16].

In high profile Data Management conferences like SIGMOD, established initiatives to encourage
contributors to make their experiments reproducible and shareable have been ongoing for a number
of years, with some success§.

Technical solutions for ensuring reproducibility in computational sciences date back over 10
years [17], but have matured more recently with workflow management systems (WFMS) like
Galaxy [18], [19] and VisTrails [20]. In both Galaxy and VisTrails, repeatability is facilitated by
ensuring that the evolution of the software components used in the workflows is controlled by the
organizations that design the workflows. This “controlled services” approach is shared by other
WFMS such as Kepler [21] and Knime (www.knime.org/), an open-source workflow-based
integration platform for data analytics. This is in contrast to WFMS like Taverna [22], which are able
to orchestrate the invocation of operations over arbitrary web services, which makes it very general
but also very vulnerable to version changes as well as maintenance issues of those services. A recent
analysis of the decay problem, conducted by Zhao et al. on about 100 Taverna workflows authored
between 2007 and 2012 that are published on the myExperiment repository, reveals that more than
80% of those workflows either fail to produce the expected results, or fail to run altogether [23]. Such
a high failure rate is not surprising given that experimental workflows by their nature tend to make
use, at least in part, of experimental services which are themselves subject to frequent changes or

§The SIGMOD reproducibility initiative: www.sigmod.org/2012/reproducibility.shtml.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.knime.org/
www.sigmod.org/2012/reproducibility.shtml

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 5

may cease to be maintained. There are no obvious solutions to this problem, either, but the analysis
technique described in this paper applies to Taverna provenance traces [24], which comply with
the Open Provenance Model (and now with the W3C PROV model [10]). In this respect, e-Science
Central sits in the “closed world” camp, with versioned services data and workflows stored and
managed by the platform. By default a workflow will make use of the latest version of a service, but
this can be overridden, to the extent that past versions are still available on the platform. In any case,
the version history of each service can be queried, a useful feature for the application described in
this work.

The use of provenance to enable reproducibility has been explored in several settings. Moreau
showed that a provenance trace expressed using the Open Provenance Model can be given a
denotation semantics (that is, an interpretation) that effectively amounts to “executing” a provenance
grpah and thus reproducing the computation it represents [25]. In the workflow setting, to the best
of our knowledge, VisTrails and Pegasus/Wings [26] are the only WFMS where the evolution of
workflows is recorded, leading to a complete provenance trace that accounts for all edit operations
performed by a designer to create a new version of an existing workflow, as shown by Koop et
al. [27]. A similar feature is available in e-Science Central, namely in the form of a record history
of all versions of a workflow. Whilst edit scripts can potentially be constructed from such history,
those are currently not explicit or in the form of a provenance trace. Thus, our divergence analysis
is solely based upon the provenance of workflow executions, rather than the provenance of the
workflow itself. Note that this makes the technique more widely applicable, i.e. to the majority of
WFMS for which version history is not available.

Our technique falls under the general class of graph matching [28]. Specifically relevant is the
heuristic polinomial algorithm for change detection in un-ordered trees, by Chawathe and Garcia-
Molina [29]. Although matching provenance traces can be viewed as a change detection problem,
it is less general because additional constraints on the data nodes, derived from the semantics of
provenance graphs, reduce the space of possible matching candidates for any given node.

The idea of comparing workflow and provenance traces was explored by Altintas et al. [30] for
the Kepler system, with the goal of exploiting a database of traces as a cache to be used in lieu
of repeating potentially expensive workflow computation wheneve possible. This “smart rerun”
is based on matching provenance trace fragments with an upcoming computation fragment in a
workflow run, and replace the latter with the former when a match is found. This serves a different
purpose from PDIFF, however. Whilst in SRM success is declared when a match is found, in
PDIFF the interesting points in the graphs are those where divergence, rather than matching nodes,
are detected.

Perhaps the most prominent research result on computing the difference of two provenance graphs
is that of Bao et al. [31]. The premise of the work is that general workflow specifications that include
arbitrary loops lead to provenance traces for which “differencing” is as complex as general subgraph
isomorphism. The main insight is that the differencing problem becomes computationally feasible
under the additional assumption that the workflow graphs have a series-parallel (s-p) structure,
with well-nested forking and looping. While the e-Science Central workflow model does allow
the specification of non-s-p workflows, its loop facility is highly restricted, i.e. to a map operator
that iterates over a list. Additionally, PDIFF relies on named input and output ports to steer the
coordinated traversal of two provenance graphs, as explained in Sec. 3.1. The combination of these
features leads to a provenance comparison algorithm where each node is visited once.

2. A FRAMEWORK FOR REPRODUCIBILITY IN COMPUTATIONAL EXPERIMENTS

The framework presented in this section applies to generic computer programs for which provenance
traces can be generated. However, we restrict our attention to scientific workflows and workflow
management systems, as the approach described in the rest of the paper has been implemented
specifically for a workflow-based programming environment, namely eScience Central. Scientific
workflows and their virtues as a programming paradigm for the rapid prototyping of science
applications have been described at length by Deelman et al. [32]. For our purposes, we adopt

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

a minimal definition of workflow as a directed graph W = 〈T,E〉 consisting of a set T of
computational units (tasks) which are capable of producing and consuming data items on ports
P and a set E ⊂ T × T of edges representing data dependencies amongst processors, such that
〈ti.pA, tj .pB〉 ∈ E denotes that data produced by ti on port pA ∈ P is to be routed to port pB ∈ P
of task tj during the course of the computation¶. We write:

tr = exec(W,d,ED ,wfms) (1)

to denote the execution of a workflow W on input data d, with the additional indication that W
depends on external elements such as third-party services and database state, collectively denoted
ED (for “External Dependencies”). W also depends on a runtime environment wfms , namely the
workflow management system.

The outcome of the execution is a graph-structured execution trace tr . A trace is defined by a
set D of data items, a set A of activities, and a set R = {R1 . . . Rn} of relations Ri ⊂ (D ∪A)×
(D ∪A). Different provenance models, including the OPM and PROV, introduce different types
of relations. For the purpose of this work, we adopt a simple model R = {used , genBy} where
used ⊂ A× P ×D and genBy ⊂ D ×A× P denote that an activity a has used data item d from
its port p, written used(a, p, d), and that d has been generated by a on port p, written genBy(d, a, p),
respectively. Thus, a trace is simply a set of used and genBy records which are created during
one workflow run, from the observation of the inputs and outputs of each workflow block that is
activated. In particular, activities that appear in a trace correspond to instances, or invocations, of
tasks that appear in the workflow. Distinguished data items in a trace for a workflow run are the
inputs and the outputs of the workflow, denoted tr .I and tr .O respectively. Formally, tr .I = {d ∈
D|a ∈ A⇒ (d, a) /∈ genBy}. Symmetrically, tr .O = {d ∈ D|a ∈ A⇒ (a, d) /∈ used}.

2.1. Evolution of workflow execution elements

At various points in time, each of the elements that participate in an execution may evolve, either
independently or in lock-step. This is represented by subscripting each of the elements in (1), as
follows:

tr t = exect(Wi,EDj , dh,wfmsk), with i, j, h, k < t (2)

This indicates that a specific version of each of the elements that participate in the execution is
used at time t. Suppose for instance that version 1 is initially defined at time t1 for all elements:
〈W1,ED1, d1,wfms1〉. One execution at this time produces tr1. Then, at time t2, a new version
W2 of the workflow is produced, everything else being unchanged. When executed, the workflow
produces tr2. At time t3, further changes occur to the external dependencies and to the input dataset,
leading to a new combination 〈W2,ED3, d3,wfms1〉 and to the new result tr3. Fig. 1 shows this
incremental evolution, with changes happening at t4 to the WFMS itself, from wfms1 to wfms4, and
finally once more to the dependencies, from ED3 to ED5. The last column in the figure indicates
“default” execution, that is, executions based on the latest available version of each element.

We use this simple model to give a precise meaning to the informal notions of repeatability and
reproducibility introduced earlier, as follows.

• We say that a baseline execution of the form (2) is repeatable if it is possible to compute (2)
at some time t′ > t.

• We say that execution (2) is reproducible if it is possible to compute a new version of (2) at
time t′ > t, i.e.:

tr t′ = exect′(Wi′ ,EDj′ , dh′ ,wfmsk′)

in the case where at least one of the elements involved in the original execution at time t has
changed, i.e., Wi 6= Wi′ , EDj 6= EDj′ , dh 6= dh′ , or wfmsk 6= wfmsk′ .

¶More complete formalizations of workflow models are available, but this level of abstraction will suffice for our
purposes.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 7

W ED d wfms

t1

t2

t3

W1

W2

ED1

ED3

d1

d3

wfms4t4

wfms1 tr1 = exec1(W1,SD1,d1,wfms1)

tr3 = exec3(W2,SD3,d3,wfms1)

tr5 = exec5(W2,SD5,d3,wfms4)ED5t5

tr2 = exec2(W2,SD1,d1,wfms1)

tr4 = exec4(W2,SD3,d3,wfms4)

Figure 1. Example of evolution timeline

Notice that a situation where data changes: dh → dh′ but Wi remains the same, or vice versa, may
require additional adapters to ensure that the new input can be used in the original workflow, or that
the new workflow can accommodate the original input, respectively.

These simple definitions entail a number of issues that make repeating and reproducing executions
complex in practice. Firstly, execution repetition becomes complicated when at least one the
elements involved in the computation has changed between t and t′, because in this case each of the
original elements must have been saved and still made available. Secondly, reproducibility is not
trivial either, because in general there is no guarantee that the same workflow can be run with new
external dependencies, or using a new version of the WFMS, or using a new input dataset.

Furthermore, we interpret the notion of reproducibility as a means by which experimenters
validate results using deliberately altered conditions (Wi′ , dj′). In this case, the goal may not be
to obtain exactly the original result, but rather one that is similar enough to it to conclude that the
original method and its results were indeed valid. Thus, we propose that reproducibility requires the
ability to compare the results tr t.O, tr t′ .O of two executions, using dedicated similarity functions,
i.e., ∆D(tr t.O, tr t′ .O) (for example, one such function may simply detect whether the two datasets
are identical). However, a further complication arises as the criteria used to compare two data items
in general depends on the type of the data, requiring the definition of a whole collection of ∆D

functions, one for each of possibly many data types of interest.
A final problem arises when one concludes, after having computed exect(. . .), exect′(. . .), and

∆D(tr t.O, tr t′ .O), that the results are in fact not similar enough to conclude that the execution has
been successfully reproduced. In this case, one would like to identify the possible causes for such
divergence.

We address these problems in the rest of the paper. In particular, after discussing general
techniques for supporting repeatability and reproducibility, we focus on the last problem, namely
the role of provenance traces in diagnosing divergence in non-reproducible results, and describe a
prototype implementation of such a diagnostic tool built as part of the eScience Central WFMS,
underpinned by simple but representative data similarity functions.

2.2. Mapping the reproducibility space

Our formulation can be used to summarize some of the repeatability/reproducibility scenarios
mentioned earlier. The grid in Fig. 2 illustrates a distinction between elements whose evolution is
under the control of the experimenter, namely W and d, and those that are beyond their control,
namely ED and wfms . Ignoring the latter for a moment, one can interpret the co-evolution of
methods and data in terms of objectives that are part of the scientific discourse, ranging from simply
repeating the experiment (as defined above), to observing the effect of changes in the method, in the
input data, or both. Our implementation of a provenance-based divergence analysis with associated
data similarity functions is aimed mainly at supporting the latter three scenarios.

When external factors evolve as well, various forms of decay occur, leading to workflows that no
longer deliver the intended functionality, or cannot be executed altogether. Our analysis tool may

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

d
wf

d
wf ! wf'

d ! d'
wf

d ! d'
wf ! wf'

ED

wfs wfs ! wfs'

ED ! ED'

results
confirmation

repeatability

reproducibility

Experimental
variations

method
variation

data
variation

data and
method

variation

Environmental variations

decay region

disfunctional
workflow

- service updates
- state changes

non-functioning
workflow

exception
analysis,

debugging

divergence
analysis

Figure 2. Mapping the reproducibility space

help diagnose the former case, where the results are not as expected and the cause is to be found
in new versions of third-party services, updated database states, or the non-deterministic behaviour
of some of the workflow blocks. In contrast, exceptions analysis is required to diagnose a broken
workflow, and it is out of the scope of this work.

3. PROVENANCE AND DATA DIFFERENCING

3.1. Detecting divergence in execution traces

In this section we present PDIFF, an algorithm designed to compare two provenance traces, tr t,
tr t′ , that are generated from related executions, i.e., of the form (2) where at least one of the four
contributing elements has changed between times t and t′. Specifically, the algorithm attempts to
identify differences in the two traces, which are due to one of the causes portrayed in Fig. 2, namely
workflow evolution, input data evolution, as well as non-destructive external changes such as service
and database state evolution. Note that we only consider cases where both executions succeed,
although they may produce different results. We do not consider the cases of workflow decay that
lead to nonfunctional workflows, as those are best analysed using standard debugging techniques,
and by looking at runtime exceptions.

The aim of the divergence detection algorithm is to identify whether two execution traces are
identical, and if they are not, where do they diverge. Specifically, given two outputs, one from each
of the two traces, the algorithm tries to match nodes from the two graphs by traversing them in
lock-step as much as possible, from the bottom up, i.e., starting from the final workflow outputs.
When mismatches are encountered, either because of differences in data content, or because of
non-isomorphic graph structure, the algorithm records these mismatches in a “delta” data structure
and then tries to continue by searching for new matching nodes further up in the traces. The delta
structure is a graph whose nodes are labelled with pairs of trace nodes that are expected to match
but do not, as well as with entire fragments of trace graphs that break the continuity of the lock-step
traversal. Broadly speaking, the graph structure reflects the traversal order of the two graphs. A more
detailed account of the construction can be found in Sec. 3.2. Our goal is to compute a final delta
tree that can be used to explain observed differences in workflow outputs, in terms of differences
throughout the two executions. We first illustrate the idea in the case of simple data evolution:

tr t = exect(W,ED , d,wfms), tr t′ = exect′(W,ED , d′,wfms)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 9

The workflow for this example has three inputs and one output, and is portrayed in Fig. 3. The
two execution traces in Fig. 4, denoted A and B, correspond to inputs trt.I = {d1, d2, d3} and
trt′ .I = {d1′ , d2′ , d3}, respectively. The two outputs dF , dF ′ differ, as expected, however note that
not all of the inputs contribute to this mismatch. Indeed, observe that input d1′ on S0 produces
the same result as input d1. Running PDIFF on these two traces produces the delta graph, indeed
a simple path in this case, shown in the rightmost part of Fig. 4. The path consists of pairs of
mismatching nodes, that can be used to explain the mismatch dF 6= dF ′ . We can see for example
that d2 6= d2′ caused all of the intermediate data products downstream from S1 to differ, eventually
explaining the difference in the outputs.

PDIFF works by traversing the two traces from the bottom up. As long as the two graphs are
isomorphic, as is the case in this simple example, the algorithm proceeds in a breadth-first fashion
up the traces, simply testing for differences in data and activity nodes, alternately. A new node is
added to the delta graph whenever mismatches are encountered. The structure is a graph, rather
than a tree, because different branches can sometimes be merged, as shown in the next example.
Note that mismatches may occur even when the input datasets are identical, for example when one
or more of the services exhibits non-deterministic behaviour, or depends on external state that has
changed between executions.

S0 S1

S2 S3

S4

Figure 3. Simple workflow (and its representation in the e-Science Central GUI) to illustrate divergence
analysis in the presence of data evolution

d1

S0

d2

S1

z w

S2

d3

yx

S3

S4

df

d1'

S0

d2'

S1

z w'

S2

d3

y'x

S3

S4

df'

(i) Trace A (ii) Trace B

�dF , dF ��

�y, y��

�w,w��

�d2, d2��

(iii) Delta tree

Figure 4. Example traces for two executions of the workflow of Fig. 3, and simple delta

The case of non-isomorphic traces, which arise in the case of workflow evolution or of evolution
in the version of some of the services, present additional challenges to the matching algorithm. As
a second, more elaborate example, consider the two workflows in Fig. 5 (not that these are two
different evolutions of the workflow of Fig. 3). The main differences between them are as follows:

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

• S0 is followed by S0′ in WA but not in WB;
• S3 is preceded by S3′ in WB but not in WA;
• S2 in WA is replaced by a new version, S2v2, in WB;
• S1 in WA is replaced by S5 in WB .

(a)

(b)

Figure 5. Example workflows to illustrate general divergence analysis

Let us assume that the input data is the same for both workflows, resulting in the following
scenario:

tr t = exect(W,ED , d,wfms), tr t′ = exect(W
′,ED ′, d,wfms)

where ED ′ consists of the version change in service S2. PDIFF operates on the assumption that
the two traces are not too drastically different, and on the expectation that workflow evolution can
be described using a combination of the patterns listed above. Although the algorithm provides no
formal guarantees that all possible cases of graph structure mismatches will be correctly identified,
this informal assumption is true for the two traces portrayed in Fig. 6, corresponding to one
execution of each of the two example workflows. On these traces, PDIFF produces the delta graph
shown in Fig. 7. The algorithm operates as follows.

Initially, the outputs trt.O = x and trt′ .O = x′ are compared, and the initial mismatch x 6= x′ is
recorded in the delta graph. Note that the outputs are uniquely determined by a combination of the
unique workflow run, the ID of the output block that produces them, and the name of the output port.
Moving up, the services that produce x and x′, S4, are found to be the same, and no action is taken.
As S4 has consumed two inputs‖, the traversal branches out to follow each of the two ports, p0, p1.
Considering the left branch, the mismatching transient data y 6= y′ is detected and added to the delta
graph. The traversal then continues past w,w′, when a service mismatch S0′ , S3′ is detected. This
is recorded in the delta graph, but it also triggers an exploration upwards on both traces, to find the
nearest matching service node, if it exists, which would allow the pairwise comparison to resume. In
this case, S0 is such a “sync” node (it happens to be at the same level in both graphs in this example,
but this is not necessarily the case). The graph fragments that were skipped during the search on
each trace represent relevant structural differences in the two graphs, and are therefore recorded as
part of the delta graph as well. These represent structural variations that occurred in each of the two

‖The algorithm assumes that the same service will always have the same number of ports.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 11

graphs. In the next step, a version mismatch is detected between S and Sv2, and again added to the
graph. The final step on this branch finds identical original input data, d1.

d1

S0

S0'

w h

S3 S2

y z

S4

x

k

S1

d2

d1'

S0

k'h'

S3'

S2v2

w'

S3

S4

y' z'

x'

S5

d2

(i) Trace A (ii) Trace B

P0 P1
P0 P1

P0 P0 P1P1

S Sv2

d0 d0

Figure 6. Example traces for two executions of the workflow of Fig. 5

A similar traversal occurs on the right side of the traces, starting at port p1 of S4. The mismatch
z 6= z′ is first recorded, followed by S2 6= S2v2. In this case, however, PDIFF is able to detect that
the mismatch is due to a simple service version upgrade, as service versions are available as part of
the provenance trace, and thus it does not trigger any further upwards search. One more branching
occurs at this point: on the left, h 6= h′, followed by a further service mismatch, S0′ 6= S0. As we
saw earlier, this causes PDIFF to search for the nearest matching service node, which is again S0.
Note however that in this instance, the “diff” graph fragment on the right trace is null, because
S0′ has been added to one of the two workflows. The traversal resumes from S0 on both sides.
Because this node was used earlier as a sync point on the left branches of the two traces, any further
traversal upwards in the graph would follow exactly the same steps, and therefore it can be avoided.
Furthermore, the delta path starting with pair 〈S, Sv2〉 can be shared with this branch of the delta
graph, resulting in a join in the graph as shown at the top of Fig. 7. Finally, we come to the p1 branch
of S2v2, where k 6= k′ and then S1 6= S5. Although this does trigger a new upwards search, this ends
immediately upon finding the input data.

We have mentioned that PDIFF assumes that the two traces are similar enough for this
comparison to progress to the end. Large differences amongst the traces are manifested as
divergence that cannot be reconciled later in the graph traversal. In this case, the earlier divergence
point is reported. For instance, if the same output is produced by drastically different workflows,
then PDIFF reports that there are no sync points at all.

3.2. Support functions

The pseudo code for the algorithm appears in Alg. 1, using a conceptual recursive formulation for
clarity. The support functions used by the algorithm are described informally, as follows.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

�x, x��

�y, y�� �z, z��

�w,w��

�k, k���S0� , S3��

S0' S3'

�S1, S5�
(service repl.)

�S2, S2v2�
(version change)

�h, h��

S0'

P0 branch of S4 P1 branch of S4

P0 branch of S2 P1 branch of S2

�S,Sv2�
(version change)

�d, d��

�S0, S0��

Figure 7. Delta graph from PDIFF on the traces of Fig. 6

• Functions UPD(d) and UPS(a, p) perform one step of the upwards graph traversal. Specifically,
UPD(d) traverses a genBy(d, a) relation where d is a data node and returns the node for the
activity a that generated d. UPS(a, p) traverses a used(a, d, p) relation where a is an activity
node, and returns the node for the data d used by a through port p.

• Function DDIFF(nL, nR) defines datatype-specific comparison of data. This is used when
matching the inputs and outputs of two workflow executions, i.e., tr t.I and tr t.O. Examples
of such data comparison functions are presented in the next section. Note that intermediate
results, represented as internal data nodes in the traces above, are transient data which are not
explicitly stored in the provenance database. To save space, only their MD-5 hash is recorded
in the node. This results in a crude but very efficient data mismatch test for internal nodes with
boolean result. In contrast, in the case of actual data the function may produce a similarity
value between 0 and 1. For simplicity, we assume that a threshold is applied, so that data
diff functions all return TRUE if significant differences are detected, and FALSE otherwise∗∗.
Similarly, function ADIFF(nL, nR) compares two service nodes using the service identifiers,
and returns TRUE if the services are not the same. It can further flag differences that are due
solely to mismatches in service versions.

• FINDNODE(nL, nR) performs the search for a new matching node following a service node
mismatch. It returns a 4-tuple consisting of the graph fragments that were skipped during
the search (either or both can be null), as well as references to the matching service nodes
in each of the two traces, if they exist (note that either both of these are valid references,
or neither is). More formally, consider the subgraphs upwards from nL and nR, i.e., upL
= {UPS(nL, pi)} for all input ports pi of nL, and upR = {UPS(nR, pj)} for all input ports

∗∗Whilst the transient nature of intermediate data does preclude the use of content-based comparison functions, note that
one can control the granularity of provenance, and thus the points where actual data is stored with it, by breaking down
a complex workflow into a composition of smaller ones. Using small workflows is indeed typical for existing e-Science
Central applications.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 13

Algorithm 1 PDIFF: Provenance trace divergence detection
function PDIFF(∆, nL, nR)

if nL is null or nR is null then
return ∆

end if
if nL.type == DATA NODE then . when comparing two data nodes:

if DDIFF(nL, nR) then . data mismatch
∆←ADDDELTA(∆, 〈nL, nR〉) . add this mismatch to ∆

end if
return PDIFF(∆, UPD(nL), UPD(nR)) . and continue up the graph

end if
if nL.type == ACTIVITY NODE then . when comparing two activity nodes:

if ADIFF(nL, nR) then . activity mismatch
if (different version of the same service) then

∆←ADDDELTA(∆, 〈nL, nR〉) . add this version mismatch to ∆ and continue
else

∆←ADDDELTA(∆, 〈nL, nR〉) . add this service mismatch to ∆
〈GL,GR, nL′, nR′〉 ← FINDNODE(nL, nR) . resync traversal if possible
if nR′ is null and nL′ is null then . resync failed

return ∆ . return
end if
∆←ADDDELTA(∆, 〈GL,GR〉) . resync succeeded, record mismatching graphs
stopF lag ←ISDELTASTOP(∆) . has a branch been joined in the delta graph?
if stopF lag then

return ∆ . sync’ed to a previous sync point, delta graphs joined. this traversal terminates
end if
if nR is not null then

nR← nR′

end if
if nL is not null then

nL← nL′

end if
end if

end if
return MERGEDELTAS({ PDIFF(∆, UPS(nL, p), UPS(nR, p))|p ∈ nL.ports }) . traverse each input port

end if
end function

pj of nR. FINDNODE finds the closest matching activity nodes, i.e., the earliest encountered
activity nodes nL′ in upL and nR′ in upR such that ADIFF(nL′, nR′) is false. It records
the mismatching nodes encountered in the new graph fragments GL, GR, respectively, or it
returns null node identifiers if the search fails.

• Finally, function ADDDELTA(∆, deltaElement) adds deltaElement to ∆ and returns the
new delta graph. This function also needs to be able to join tree branches on sync points
as discussed in our previous examples. Suppose a delta node g containing two graph trace
fragments is added to the delta, and suppose n is next sync node found by FINDNODE. In this
case, g is annotated with n. If n is found again at a later time following a new graph mismatch
g′, then this is an indication that the traversal can stop, and that the graph above g can be
shared with g′. Fig. 7 shows one example. Auxiliary function ISDELTASTOP(∆) returns true
if a merge has occurred, indicating that the current traversal may terminate.
This function is generalized by MERGEDELTAS(deltaset), which combines a set of ∆ graphs
into a new graph by making them siblings of a new common root.

We now briefly analyse the complexity of PDIFF. Let N,M be the total number of nodes in the
left and right graph, respectively. The trace traversal is driven by functions UPD() and UPS(), which
perform one step upwards in each of the two graphs. As noted, port names ensure that only matching
genBy() (resp. used()) relations are traversed. Thus, if the two traces were identical, PDIFF would
complete the traversal in N = M steps. On the other hand, a mismatch amongst two activity nodes
may trigger a call to the FINDNODE() operator, which involves searching for pairs of matching
activity nodes across the two traces. Here port names cannot be used to assist the matching, which
therefore requires one activity node lookup in one of the graph, for each activity node in the other

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

graph. In the worst case, this results in N.M comparisons for a call to FINDNODE() that occurs near
the bottom of the graph (i.e., at the first activity node from the bottom). As the traversal progresses
upwards, more calls to FINDNODE() may occur, but they operate on progressively smaller fragments
of the graphs, and any new search will stop at the first sync node that was found in a previous search
(i.e., when function ISDELTASTOP() returns true). Considering the extreme cases, suppose that
divergence is detected at the bottom of the graphs, and the only sync node is at the very top. This
involves only one call to FINDNODE(), with cost approximately N.M , and then PDIFF terminates.
In this case, the algorithm involves at most min(N,M) + N.M steps. The other extreme case
occurs when the sync nodes are one step away from the diverging nodes. Now FINDNODE() is
called repeatedly, at most min(N,M) times, but each time it completes after only one comparison,
resulting in 2.min(N,M) steps.

To summarize, PDIFF is designed to assist reproducibility analysis by using provenance traces
from different executions to identify the following possible causes of diverging output values for
those executions:

• data and workflow evolution;
• non-deterministic behaviour in some of the services, including the apparent non-determinism

due to changes in external service (or database) state;
• service version upgrades.

3.3. Differencing data (DDiff)

Determining the similarity between two data sets is highly dependant not only on the type and
representation but also the semantics of the data. Not all data sets can be compared using a byte-
wise comparator to determine if they are equivalent. For example, two models produced from the
same data set may well be equivalent but are unlikely to be byte-wise identical. In addition, a
Boolean response of equivalent or not equivalent is a somewhat naı̈ve approach and may provide
false negatives and be less amenable to statistical analysis.

Within e-Science Central we have built a flexible architecture in which it is possible to
embed different algorithms for different types and representations of data. Following the standard
extensibility model of e-Science Central, new data comparison functions can be implemented as
workflow blocks (typically as Java classes that interact with the system’s API).

We provide algorithms which calculate the equivalent of three classes of data. The algorithms are
implemented as e-Science Central workflows (described in Section 4) which implement a common
interface allowing the system to determine dynamically which one to use for the relevant data set.

Text or CSV Comparing textual files is straightforward, and tools such as GNU diff or cmp††

are commonly used and well understood. By default GNU diff works by comparing each
file, line by line, and returning the differences, known as hunks. It is possible to configure
diff to ignore whitespace or text case differences which is useful for scientific data sets
where, for example, the header row may have different capitalisation but the data sets are
otherwise identical. If no hunks are returned by diff the files are identical. However, if hunks
are returned, the files differ in some way. In order to calculate the similarity, s, we return the
percentage of lines that are unchanged, converted to a number in the range 0 ≤ s ≤ 1

XML Comparing XML files is more complex than comparing textual data due to the semantic rules
governing its structure. For example, the ordering of attributes is not important, generally the
order of nodes is not important (although this is schema dependent) and where namespaces
are used the prefix is not important. Existing work on comparing XML documents often tries
to minimise the transformation necessary to turn one document into another (the so called,
‘edit script’) or maximise the common structure from one document to another [33, 4, 34].
For the purposes of comparing XML documents we use XOM (xom.nu/) which is able

††gnu.org/software/diffutils/

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

xom.nu/

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 15

to canonicalise XML documents so that they can be compared. Again, similarity, s is the
percentage of the document which has changed where 0 ≤ s ≤ 1.

Mathematical Models Some modelling algorithms (for example, Neural Networks [35]) have an
element of random initialisation and can be expected to give different results each time they
are applied to the same dataset. Whilst these models may fail a byte-wise comparison, their
predictive capabilities might be statistically the same. To calculate the similarity of models,
we use the ANCOVA test (Analysis of Covariance - [36]) which analyses the predictive
performance of two models. This is demonstrated below in Figure 8, which shows a plot
of two models’ estimates of a variable against the actual observed values for that variable. A
good model in this case would have a regression line at 45 degrees with very little spread in the
actual and observed points. Different models applied to the same data set could be expected to
have slightly altered regression line slopes, and the differencing tool needs to be able to take
account of this.

The ANCOVA test is divided into two parts: the first determines whether the slope of the
regression lines is significantly different (A and B); whilst the second checks whether the y-
axis intercepts of the two regression lines (C and D) are equivalent. It should be noted that
whilst there are many more tests that should be done in order to compare two models (analysis
of the model residuals, comparison of the model error measurements, etc.), for the purposes of
demonstrating the expandability of the data diff if two models pass the ANCOVA tests, they
will be considered equivalent. It is also important to note that the comparison is implemented
as a workflow within e-Science Central and, as such, can be expanded to include additional
tests if necessary.

Figure 8. Comparison of Model fit

4. INFRASTRUCTURE FOR REPRODUCIBILITY IN E-SCIENCE CENTRAL

The e-Science Central system [37] is a portable cloud ‘platform-as-a-service’ that can be deployed
on either private clusters or public clouds, including Amazon EC2 and Windows Azure. Cloud
computing has the potential to give scientists the computational resources they need, when they

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

need them. However, cloud computing does not make it easier to build the often complex, scalable
secure applications needed to support science. e-Science Central was designed to overcome these
obstacles by providing a platform on which users can carry out their research, and build high-level
applications. Figure 9 shows the key components of the e-Science Central ‘Platform as a Service’
sitting on an ‘Infrastructure as a Service’ cloud. It combines three technologies – Software as a
Service (so users only need a web browser to do their research), Social Networking (to support
sharing and community interaction) and Cloud Computing (to provide storage and computational
power). Using only a browser, users can upload data, share it in a controlled way with colleagues,
and analyse the data using either a set of pre-defined services, or their own, which they can upload
for execution and sharing. A range of data analysis and programming languages is supported,
including Java, Javascript, R and Octave. From the point of view of users, this gives them the
power of cloud computing without them actually having to manage the complexity of developing
cloud-specific software – they can create services in a variety of languages, upload them into e-
Science Central, and have them run transparently on the cloud. These services can be composed
into workflows to automate the analysis.

Figure 9. e-Science Central Components

Versioning is an integral storage feature in e-Science Central, allowing users to work with old
versions of data, services and workflows. All objects (data sets, services and workflows) are stored
in files through a virtual filestore driver than can be mapped onto a range of actual storage systems
including standard local and distributed filesystems, and Amazon S3. When a file is stored, if a
previous version exists then a new one is automatically created.

Whilst three of the elements, workflows, services and libraries (the latter two being part of ED),
presented in Section 2 are within the control of e-Science Central and are versioned this alone is not
sufficient to detect workflow decay. By default, workflow W will use the latest version of a service,
SnV i when it is executed at time t. However at time, t′ a service version may have been updated
and so SnV j where j > i would be used. It is possible to override this behaviour and always use
a particular version of a service if desired. In addition, even if a workflow evolves Wi →Wj the
evolution may only effect branches which do not appear in a particular execution trace.

4.1. Capturing provenance traces in e-Science Central

The provenance system within e-Science Central is used to capture the history and life cycle of
every piece of data within the system. For instance: who created the data? who has downloaded the
data? what version of which services (in what workflow) accessed the data? and who has the data
been shared with?

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 17

Figure 10. e-Science Central Provenance Model

The provenance data model, shown in Figure 10, is based on the Open Provenance Model (OPM)
Version 1.1 [9], and can be used to produce a directed acyclic graph of the history of an object.
Objects in OPM are categorised as either artifacts, processes or actors which correspond to nodes
within the graph. Vertices in the graph represent relationships between two objects and are of types
such as wasGeneratedBy, used, wasControlledBy and wasDerivedFrom. The OPM Core model
has been extended with subclasses to identify the different types of processes and artifacts we
are concerned with. For example, execution of a workflow and a service within a workflow have
been differentiated. The relationship between workflow execution and service execution is of type
contained and is not strictly required by our model but its inclusion makes it easier to generate the
different views of the process. The artifacts described in the model are also subclassed in order to
differentiate between versions of data, services, libraries and workflows. Without this subclassing,
it would be necessary to either encode the object type in the identifier (not desirable as it adds
an unnecessary layer of obfuscated information) or perform many lookups to answer the question
‘what type of object has a particular identifier’.

The relationships between processes and artifacts is specified in the OPM standard with the Save
process taking one version of an artifact and generating a new version.

The self referential relationship between artifacts of type WasDerivedFrom, shown with a dashed
line, indicates a second level, inferred relationship omitting the Save process. This implies that Di,v

is in some way derived from Di,v−1 when v > 0.
Our model deals with two different types of data artifact: Data Version and Transient Data. This

is due to the semantics of workflows in e-Science Central: data generated by a workflow must be
explicitly saved using a service which ‘exports’ the data back into the e-Science Central repository.
Any data which is not explicitly exported will be discarded when the workflow completes.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

4.2. Provenance database implementation

Given that the provenance structure being stored is a directed acyclic graph, we chose to store it
in the non-relational graph database, Neo4j (www.neo4j.org). Neo4j differs from traditional
relational databases as its structure is not in terms of tables and rows and columns, but in nodes,
relationships and properties. This provides a much more natural fit to our model, and allows us to
store the provenance graph directly instead of encoding it in a relational model. Neo4j has also been
shown to scale well, and most importantly, to perform well in terms of queries even when storing a
very large graph structure [38]. Libraries are provided to allow users to work with Neo4j directly in
either Java or Ruby.

Various components within e-Science Central all log provenance information. From the outset
the system was designed such that the order in which provenance events are received by the server
is not important. For instance, we could have an arbitrary interleaving of the events which signify
that a ‘Service has run’ and that the ‘Service accessed some data’. Each of these events contains a
subset of information which must be added to the provenance database: the first event contains the
service name, start and completion time (and some other information) whereas the latter defines the
identity of the data which was read. Instead of SQL queries, Neo4j supports an operation known as
a traversal whereby the user defines a starting node and rules about what types of relationship/node
to ‘traverse’. The result is a set of paths from the starting node to the acceptable ending nodes. The
provenance server is decoupled from e-Science Central with a durable JMS queue which allows e-
Science Central to minimise the number of synchronous write operations which must be performed
in a synchronous request.

4.3. Implementing PDIFF using Neo4j

The Neo4j database used by e-Science Central contains not just the execution traces which we
are interested in traversing for PDIFF but also all the provenance for other items within e-Science
Central. For example, there may be multiple executions of each workflow but we are only interested
in two specific executions. Also, the provenance may indicate a data set may have been created
through a Save process which does not concern us.

The Neo4j traversal framework allows us to traverse the graph but restrict the traversal to
relationships of a particular type and direction. During most of our traversals we restrict ourselves
to the used and genBy types with direction outgoing . This allows us to navigate back from the
output data set in each execution trace back to the original input data sets. However, the semantics
of Neo4j traversals are that you are guaranteed to visit each node in the graph but not traverse every
edge. This would have the potential to miss branches in the execution trace which we should be
comparing. To mitigate this we make additional calls to the database to ensure we retrieve all the
relationships for each node.

As we traverse through the graph we build up a report containing the tree of ‘Delta’ descriptions
making use of the functions described below.

UPD(d) Navigates from either a Transient Data or Data Version node along an outgoing genBy
relationship to the Service Run node which created it and returns this node. If there is no such
relationship null is returned indicating the end of the graph. In this case, d is a Transient Data
node and an exception is thrown as this is an invalid starting point in the execution trace.

UPS(a, p) Navigates along an outgoing used relationship to a Transient Data or Data Version node
and returns it. The Neo4j relationship which represents the edge contains an attribute for the
port name p and so we filter based on this. If no such node is found an exception is thrown as
this is an invalid starting point to the execution trace.

DDIFF(NL, NR) If nL and nR are Transient Data nodes then this returns whether or not the MD-5
hash values of the data are the same. If nL and nR are Data Version nodes then it will execute
and e-Science Central workflow to determine whether or not the data sets are equivalent. The
workflow executed is dependent on the MIME type of the data set as recorded as an attribute
of the node in Neo4j.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.neo4j.org

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 19

ADIFF(NL, NR) This returns a 2-tuple containing whether or not the service identifier and version
identifier for nL and nR are equal. In order to get the service and version identifier we must
navigate the instanceOf relationship to the Service Version node in the provenance database.
If either of the Service Version nodes is null then an exception is thrown as the graph is invalid.

FINDNODE(NL, NR) This performs a breadth first search of each of the execution traces in order
to try to find two nodes that enable the analysis to be re-synchronised. For brevity we will
assume in the following discussion that the Service Run nodes can be compared directly –
in practice we must navigate along the instanceOf relationship and perform the comparison
there. Initially we select nL′ as a match candidate which is the next Service Run in the trace
traversing along used and genBy with direction outgoing . We then perform a breadth first
traversal of the same relationship types beginning from nR searching for a match with nL′. If
a match is found it is recorded as candidateL along with the depth at which it was found. If
no match was found, we traverse back one step further from nL′ and repeat the search from
nR.
If no candidate is found, the entire graph fragments from nL and nR are returned as there is no
matching node that enables the graphs to be re-synchronised. However, if a match is found, the
search is re-performed but searching for nR′ nodes in the nL graph. When a second match is
found, namely candidateR, the search terminates. The returned nodes (and associated graph
fragments) are those with the lowest combined depths from nL and nR. The second search
deals with the case where a closer node match is found had we searched the other graph first.
We can terminate on finding a match as we know that this will either be the same match as
the candidateL or a match with a lower combined depth. The nodes which are returned as a
synchronisation point are also stored so that we are able to join future branches in the results.

ADDDELTA(∆, DATAELEMENT) Builds up the result graph. The results are constructed using a
simple graph implementation where each node is able to contain one of the following objects:
a Transient Data mismatch (the actual MD-5 hash values are of little use); the service and
version identifiers in case of a service or version change; or two graphs representing the
graph fragments which appear in one of the graphs but not the other. In the case of the graph
fragments, the previous node nL and nR are included along with the subsequent nodes nL′

and nR′ for clarity. The result is stored in e-Science Central and can be exported to GraphML
for visualisation or use in other applications.

At this time, the PDIFFimplementation is not yet integrated into e-Science Central. In the next
stage, the diagnosis functionality offered by the algorithm will be exposed to users through a
simple interface. Users will be able to select two workflow runs and obtain a “diff” report on their
divergence. Thanks to the relative small size of typical workflows, the diff graph can be visualized
as part of the e-Science Central web-based graphical interface.

5. CONCLUSIONS

The ability to reproduce experimental results underpins scientific discourse and is key to establishing
credibility in scholarly communication. Yet, several factors complicate the task of reproducing other
scientists’ results in settings other than the original one. Such factors include differences in the
experimental environment (different lab, research group, equipment technology) and insufficient
detail in the description of the methods. In computational science, the operating environment
typically includes e-science infrastructure facilities, and the methods are formally encoded in the
form of executable scripts, workflows, or general computer programs. This level of automation
creates the perception that the limitations in reproducibility of results can be easily overcome. In
reality, however, the traditional limiting factors are simply replaced by others, including an unstable
and evolving operational environment, and lack of maintenance of related programs with mutual
dependencies, which become unable to function together. As a result, scientific applications suffer
from forms of decay that limit their longevity, and thus their reuse and evolution in time.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 P. MISSIER, S. WOODMAN, H, HIDEN, P. WATSON

In this paper we have focused specifically on workflow-based e-science, and on a scenario where
attempts to reproduce earlier results translates into new runs of the same workflow at a later time.
We assume that the workflow is still executable, but it may produce unexpected results or may have
been made dysfunctional by changes in its system environment, or by uncontrolled evolution of the
workflow itself or of its input data.

We have presented two main contributions. Firstly, we have proposed a framework meant to
clarify the range of meanings of the often ambiguous term “reproducibility”. We have then used
the famework to situate our second contribution, namely the PDIFF algorithm for diagnosing the
divergence between two executions by comparing their associated provenance traces. We have
also described a number of data comparison function, which underpin provenance comparison.
Finally, we have discussed the current implementation of PDIFF on the e-Science Central workflow
management middleware. PDIFF will be integrated in the public-facing version of e-Science
Central in the near future, with attention to usability testing, which has not being addressed in
the current prototype version.

REFERENCES

1. Roure DD, Belhajjame K, Missier P, Al E. Towards the preservation of scientific workflows. Procs. of the 8th
International Conference on Preservation of Digital Objects (iPRES 2011), Singapore, 2011; 228–231.

2. Cohen-Boulakia S, Leser U. Search, adapt, and reuse: the future of scientific workflows. SIGMOD Rec.
Sep 2011; 40(2):6–16, doi:http://doi.acm.org/10.1145/2034863.2034865. URL http://doi.acm.org/10.
1145/2034863.2034865.

3. Groth P, Deelman E, Juve G, Mehta G, Berriman B. A Pipeline-Centric Provenance Model. The 4th Workshop on
Workflows in Support of Large-Scale Science, 2009.

4. Wang Y, DeWitt D, Cai JY. X-diff: an effective change detection algorithm for XML documents. Data Engineering,
2003. Proceedings. 19th International Conference on, 2003; 519 – 530, doi:10.1109/ICDE.2003.1260818.

5. Berztiss AT. A Backtrack Procedure for Isomorphism of Directed Graphs. J. ACM Jul 1973; 20(3):365–377, doi:
10.1145/321765.321766. URL http://doi.acm.org/10.1145/321765.321766.

6. Ullmann JR. An Algorithm for Subgraph Isomorphism. J. ACM Jan 1976; 23(1):31–42, doi:10.1145/321921.
321925. URL http://doi.acm.org/10.1145/321921.321925.

7. Hiden H, Watson P, Woodman S, Leahy D. e-Science Central: Cloud-based e-Science and its application to chemical
property modelling. Technical report cs-tr-1227, School of Computing Science, Newcastle University 2011.

8. Cala J, Watson P, Woodman S. Cloud Computing for Fast Prediction of Chemical Activity. Procs. 2nd International
Workshop on Cloud Computing and Scientific Applications (CCSA), Ottawa, Canada, 2012.

9. Moreau L, Clifford B, Freire J, Futrelle J, Gil Y, Groth P, Kwasnikowska N, Miles S, Missier P, Myers J, et al.. The
Open Provenance Model — Core Specification (v1.1). Future Generation Computer Systems 2011; 7(21):743–756,
doi:http://dx.doi.org/10.1016/j.future.2010.07.005.

10. Moreau L, Missier P, Belhajjame K, B’Far R, Cheney J, Coppens S, Cresswell S, Gil Y, Groth P, Klyne G,
et al.. PROV-DM: The PROV Data Model. Technical Report, World Wide Web Consortium 2012. URL http:
//www.w3.org/TR/prov-dm/.

11. Hanson B, Sugden A, Alberts B. Making Data Maximally Available. Science 2011; 331(6018):649, doi:10.1126/
science.1203354.

12. Merall Z. Computational science: ...Error. Nature Oct 2010; 467:775–777, doi:10.1038/467775a.
13. Peng RD, Dominici F, Zeger SL. Reproducible Epidemiologic Research. American Journal of Epidemiology 2006;

163(9):783–789, doi:10.1093/aje/kwj093. URL http://aje.oxfordjournals.org/content/163/9/
783.abstract.

14. Drummond C. Science, Replicability is not Reproducibility: Nor is it Good Science. Procs. 4th workshop on
Evaluation Methods for Machine Learning In conjunction with ICML 2009, Montreal, Canada, 2009. URL
http://cogprints.org/7691/7/ICMLws09.pdf.

15. Peng R. Reproducible Research in Computational Science. Science Dec 2011; 334(6060):1226–1127.
16. Bechhofer S, De Roure D, Gamble M, Goble C, Buchan I. Research Objects: Towards Exchange and Reuse of

Digital Knowledge. Nature Precedings 2010; URL http://dx.doi.org/10.1038/npre.2010.4626.1.
17. Schwab M, Karrenbach M, Claerbout J. Making Scientific Computations Reproducible. Computing in

Science Engineering 2000; 2(6):61–67, doi:10.1109/5992.881708. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=881708.

18. Mesirov J. Accessible Reproducible Research. Science 2010; 327. URL www.sciencemag.org.
19. Nekrutenko A. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent

computational research in the life sciences. Genome Biology 2010; 11(8):R86. URL http://dx.doi.org/
10.1186/gb-2010-11-8-r86.

20. Scheidegger C, Vo H, Koop D, Freire J. Querying and Re-Using Workflows with VisTrails. Procs. SIGMOD, 2008;
1251–1254. URL http://portal.acm.org/citation.cfm?id=1376747.

21. Ludäscher B, Altintas I, Berkley C. Scientific Workflow Management and the Kepler System. Concurrency and
Computation: Practice and Experience 2005; 18:1039–1065. URL http://onlinelibrary.wiley.com/
doi/10.1002/cpe.994/abstract;jsessionid=B39961C2FDAF407AB30BCB118612D171.
d02t02.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://doi.acm.org/10.1145/2034863.2034865
http://doi.acm.org/10.1145/2034863.2034865
http://doi.acm.org/10.1145/321765.321766
http://doi.acm.org/10.1145/321921.321925
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
http://aje.oxfordjournals.org/content/163/9/783.abstract
http://aje.oxfordjournals.org/content/163/9/783.abstract
http://cogprints.org/7691/7/ICMLws09.pdf
http://dx.doi.org/10.1038/npre.2010.4626.1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=881708
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=881708
www.sciencemag.org
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://portal.acm.org/citation.cfm?id=1376747
http://onlinelibrary.wiley.com/doi/10.1002/cpe.994/abstract;jsessionid=B39961C2FDAF407AB30BCB118612D171.d02t02
http://onlinelibrary.wiley.com/doi/10.1002/cpe.994/abstract;jsessionid=B39961C2FDAF407AB30BCB118612D171.d02t02
http://onlinelibrary.wiley.com/doi/10.1002/cpe.994/abstract;jsessionid=B39961C2FDAF407AB30BCB118612D171.d02t02

PROVENANCE AND DATA DIFFERENCING FOR REPRODUCIBILITY 21

22. Missier P, Soiland-Reyes S, Owen S, Tan W, Nenadic A, Dunlop I, Williams A, Oinn T, Goble C. Taverna,
reloaded. Procs. SSDBM 2010, Gertz M, Hey T, Ludaescher B (eds.), Heidelberg, Germany, 2010. URL http:
//www.ssdbm2010.org/.

23. Zhao J, Gomez-Perez J, Belhajjame K, Klyne G, Al E. Why Workflows Break - Understanding and Combating
Decay in Taverna Workflows. Procs. e-science conference, Chicago, 2012.

24. Missier P, Paton N, Belhajjame K. Fine-grained and efficient lineage querying of collection-based workflow
provenance. Procs. EDBT, Lausanne, Switzerland, 2010.

25. Moreau L. Provenance-based reproducibility in the Semantic Web. Web Semantics: Science, Services and
Agents on the World Wide Web 2011; 9(2):202–221, doi:10.1016/j.websem.2011.03.001. URL http://www.
sciencedirect.com/science/article/pii/S1570826811000163.

26. Kim J, Deelman E, Gil Y, Mehta G, Ratnakar V. Provenance trails in the Wings-Pegasus system. Concurrency and
Computation: Practice and Experience 2008; 20:587–597, doi:http://dx.doi.org/10.1002/cpe.1228. URL http:
//www3.interscience.wiley.com/journal/115805532/abstract.

27. Koop D, Scheidegger C, Freire J, Silva C. The Provenance of Workflow Upgrades. Provenance and Annotation of
Data and Processes, Lecture Notes in Computer Science, vol. 6378, McGuinness D, Michaelis J, Moreau L (eds.).
Springer Berlin / Heidelberg, 2010; 2–16. URL http://dx.doi.org/10.1007/978-3-642-17819-1_
2.

28. Bunke H. Graph Matching: Theoretical Foundations, Algorithms, and Applications. Procs. Vision Interface, 2000.
29. Chawathe SS, Garcia-Molina H. Meaningful change detection in structured data. SIGMOD Rec. Jun 1997;

26(2):26–37, doi:10.1145/253262.253266. URL http://doi.acm.org/10.1145/253262.253266.
30. Altintas I, Barney O, Jaeger-Frank E. Provenance Collection Support in the {K}epler Scientific Workflow System.

IPAW, 2006; 118–132, doi:http://dx.doi.org/10.1007/11890850\ 14.
31. Bao Z, Cohen-Boulakia S, Davidson S, Eyal A, Khanna S. Differencing Provenance in Scientific Workflows.

Procs. ICDE, 2009, doi:http://dx.doi.org/10.1109/ICDE.2009.103. URL http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?tp=&arnumber=4812456&isnumber=4812372.

32. Deelman E, Gannon D, Shields M, Taylor I. Workflows and e-Science: An overview of workflow system
features and capabilities. Future Generation Computer Systems 2009; 25(5):528–540, doi:DOI:10.1016/j.future.
2008.06.012. URL http://www.sciencedirect.com/science/article/B6V06-4SYCPKX-2/2/
bb631979e3dd7071ddede90bbff65a91.

33. Schubert E, Schaffert S, Bry F. Structure-preserving difference search for XML documents. Extreme Markup
Languages R©, 2005.

34. Cobena G, Abiteboul S, Marian A. Detecting changes in XML documents. Data Engineering, 2002. Proceedings.
18th International Conference on, 2002; 41 –52, doi:10.1109/ICDE.2002.994696.

35. Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Sig-
nals, and Systems (MCSS) 1989; 2:303–314. URL http://dx.doi.org/10.1007/BF02551274,
10.1007/BF02551274.

36. Rutherford A. Introducing ANOVA and ANCOVA : a GLM approach. SAGE, 2001. URL http://www.
worldcat.org/isbn/9780761951605.

37. Watson P, Hiden H, Woodman S. e-Science Central for CARMEN: science as a service. Concurrency and
Computation: Practice and Experience December 2010; 22:2369–2380, doi:http://dx.doi.org/10.1002/cpe.v22:17.
URL http://dx.doi.org/10.1002/cpe.v22:17.

38. Dominguez-Sal D, Urbón-Bayes P, Giménez-Vañó A, Gómez-Villamor S, Martı́nez-Bazán N, Larriba-Pey JL.
Survey of graph database performance on the HPC scalable graph analysis benchmark. Proceedings of the 2010
international conference on Web-age information management, WAIM’10, Springer-Verlag: Berlin, Heidelberg,
2010; 37–48. URL http://dl.acm.org/citation.cfm?id=1927585.1927590.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.ssdbm2010.org/
http://www.ssdbm2010.org/
http://www.sciencedirect.com/science/article/pii/S1570826811000163
http://www.sciencedirect.com/science/article/pii/S1570826811000163
http://www3.interscience.wiley.com/journal/115805532/abstract
http://www3.interscience.wiley.com/journal/115805532/abstract
http://dx.doi.org/10.1007/978-3-642-17819-1_2
http://dx.doi.org/10.1007/978-3-642-17819-1_2
http://doi.acm.org/10.1145/253262.253266
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=4812456&isnumber=4812372
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=4812456&isnumber=4812372
http://www.sciencedirect.com/science/article/B6V06-4SYCPKX-2/2/bb631979e3dd7071ddede90bbff65a91
http://www.sciencedirect.com/science/article/B6V06-4SYCPKX-2/2/bb631979e3dd7071ddede90bbff65a91
http://dx.doi.org/10.1007/BF02551274
http://www.worldcat.org/isbn/9780761951605
http://www.worldcat.org/isbn/9780761951605
http://dx.doi.org/10.1002/cpe.v22:17
http://dl.acm.org/citation.cfm?id=1927585.1927590

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Contributions
	1.4 Related work

	2 A framework for reproducibility in computational experiments
	2.1 Evolution of workflow execution elements
	2.2 Mapping the reproducibility space

	3 Provenance and data differencing
	3.1 Detecting divergence in execution traces
	3.2 Support functions
	3.3 Differencing data (DDiff)

	4 Infrastructure for reproducibility in e-Science Central
	4.1 Capturing provenance traces in e-Science Central
	4.2 Provenance database implementation
	4.3 Implementing PDIFF using Neo4j

	5 Conclusions

